WorldWideScience

Sample records for ionizing gamma radiation

  1. Electron equilibrium for parallel plate ionization chambers in gamma radiation fields

    International Nuclear Information System (INIS)

    Caldas, L.; Albuquerque, M. da P.P.

    1989-08-01

    Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt

  2. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  3. Trans-generational effects induced by alpha and gamma ionizing radiations at Daphnia magna

    International Nuclear Information System (INIS)

    Parisot, Florian

    2015-01-01

    Anthropogenic activities related to the nuclear industry contribute to continuous discharges of radionuclides into terrestrial and aquatic ecosystems. Over the past decades, the ecological risk of ionizing radiation has become a growing public, regulatory and scientific concern for ecosystems protection. Until recently, only few studies focus on exposure situations at low doses of irradiation, although these situations are representative of realistic environmental conditions. Understanding how ionizing radiation affects species over several generations and at various levels of biological organization is a major research goal in radioecology. The aim of this PhD was to bring new knowledge on the effects of ionizing radiation during a multi-generational expose of the aquatic invertebrate, Daphnia magna. A two-step strategy was implemented. First, an external gamma radiation at environmentally relevant dose rates was performed on D. magna over three successive generations (F0, F1 and F2). The objective of this experiment was to examine whether low dose rates of radiation induced increasing effects on survival, growth and reproduction of daphnids over generations and to test a possible accumulation and transmission of DNA alterations from adults to offspring. Results showed an accumulation and a transmission of DNA alterations over generations, together with an increase in effect severity on growth and reproduction from generation F0 to generation F2. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in generation F1. Second, data from the external gamma irradiation and those from an earlier study of internal alpha contamination were analyzed with DEBtox models (Dynamic Energy Budget applied to toxicology), to identify and compare the causes of the trans-generational increase in effect severity between the two types of radiation. In each case, two distinct metabolic modes of action were necessary to explain effects on

  4. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  5. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  6. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  7. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    International Nuclear Information System (INIS)

    He Baoping; Yao Zhibin; Zhang Fengqi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60 Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60 Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes. (authors)

  8. Basic symbol for ionizing radiations (second revision)

    International Nuclear Information System (INIS)

    1992-01-01

    Includes a detailed description of basic symbol for ionizing radiations to be used to prevent about the presence, or possibility of presence, of ionizing radiations (X-ray, gamma radiation, particles, electrons, neutrons and protons), as well as to identify radioactive devices and materials

  9. Radiation ionization is an underestimated industrial technique

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Industrial radiation ionization requires electron beams coming from an accelerator or gamma radiation from a radioactive source (Co 60 ). The energy deposed in the irradiated material modifies its chemical bounds or kills micro-organisms. This process is used in medical material sterilization, in disinfestation of stored and packaged food products, in the production of plastic, in the coloring of glass, in the hardening of electronic components and in the modification of the properties of semi-conductors. For 40 years radiation ionization has been investigated, UNO (United Nations Organization) and WHO (World Health Organisation) recommend it for food processing. With a growing rate of 15% per year for the last 15 years, radiation ionization is now widely used. More than 170 gamma irradiation facilities are operating throughout the world. (A.C.)

  10. Action of an ionizing radiation and hydrodynamic effect on matrix properties of DNA during extracellular synthesis of RNA, and thiophosphate protection of matrix properties of T2-DNA against. gamma. -radiation. [gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, Ya L; Domashenko, A D; Kamzolova, S G; Medvedkov, A A [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1976-05-01

    Action of an ionizing radiation and the hydrodynamic effect of the matrix activity of thymus DNA and T2 phase DNA have been studied in vitro in the RNA: polymerase system of E.coli B. Also studied have been the thiophosphate protection of matrix properties of T2-DNA against ..gamma..-radiation.

  11. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  12. Ionizing and non-ionizing radiation and the risk of childhood cancer-illustrated with domestic radon and radio frequency electromagnetic field exposure

    OpenAIRE

    Hauri, Dimitri

    2013-01-01

    Background Children are exposed to many different environmental factors, including exposure to low-dose ionizing radiation and to non-ionizing radiation. Low-dose ionizing radiation comprises anthropogenic modified radiation and natural ionizing radiation from cosmic rays from the atmosphere, terrestrial gamma radiation from radionuclides in rocks and soils and radiation from radon. Non-ionizing radiation comprises optical radiation and radiation from electromagnetic fields. The la...

  13. Ionizing radiation and life.

    Science.gov (United States)

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  14. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B.

    2001-01-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  15. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  16. Modern state of the application of ionizing radiation for protection of environment. 1. Ionizing radiation sources. Purification of natural and drinking water (review)

    International Nuclear Information System (INIS)

    Pikaev, AK.

    2000-01-01

    Review of modern state of the application of ionizing radiations for protection of environment and natural and drinking water purification is presented. Building of installations with electron accelerators with summarized power of beam ∼0.6 MW signifies that application of ionizing radiation for ecological needs increase. It is pointed out that extensible application of electron accelerators is explained by their safety and efficiency as compared with gamma-sources. New information about ionizing radiation sources, radiation-chemical purification of polluted natural and drinking water, mechanisms of processes taking place during treatment by ionizing radiations are generalized [ru

  17. Files for workstations with ionizing radiation risks: variation in the use of gamma densitometers

    International Nuclear Information System (INIS)

    Tournadre, A.

    2008-01-01

    After a brief presentation of the different gamma-densitometers proposed by MLPC to measure roadway density, and having outlined the support role of the provider, the author describes the form and content of workstation files for workstations exhibiting a risk related to ionizing radiation. He gives an analytical overview of dose calculation: analysis of instrument use phases, exposure duration, dose rates and way of introducing these dose rates in the workstation file. He formulates how different procedures are to be followed by the radiation protection expert within the company. He outlines that workstation files are very useful as information feedback tool

  18. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    Nonato, Fernanda Beatrice Conceicao

    2010-01-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ( 37 Cs and 60 Co), and some of them were tested in beta radiation ( 90 Sr+ 9' 0Y e 204 Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  19. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  20. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  1. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  2. Ionizing radiation and non-ionizing radiation in educational environment

    International Nuclear Information System (INIS)

    Matsuzawa, Takao; Otsubo, Tomonobu; Ikke, Satoshi; Taguchi, Noriko; Takeda, Rie

    2005-01-01

    By chance, we measured gamma dose rates in our school, and around the JCO Tokai Plant during the criticality on September 30 in 1999, with our GM survey meter. At that time, we made sure to estimate the position of criticality reaction (source point), and the source intensity of criticality reaction, with our own data, measured along the public roads, route 6 and local road 62. The intensity of gamma dose rates along the road was analyzed as Lorentz functions. At the time, there were no environmental radiation data about the criticality accident, or all the data, especially radioactivity and dose rates around the JCO Tokai Plant, was closed to the public. Recently, we are interested in the intensity of non-ionizing radiation, especially extremely low frequency (ELF) magnetic field, and electric field, in our environment. We adopted the same method to analyze the source position and source intensity of an ELF magnetic field and electric behind a wall. (author)

  3. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  4. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  5. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  6. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  7. A comparison of the effects of 900 MHz electromagnetic fields and gamma ionizing radiation in human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Savova, G.; Stankova, K. [Molecular Radiobiology and Prophylaxis Laboratory, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria); Kuzmanova, M. [Sofia University „St. Kl. Ohridski”, Faculty of Biology, Sofia (Bulgaria)

    2013-07-01

    The usage of mobile phones increased significantly in the last 15 years. The concerns about the potential negative health effects arise, because of the daily use of electromagnetic field (EMF) sources. EMF, produced by cell phones may affect biological systems by increasing the production of free radicals, and even DNA damage. Other environmental factor, with an impact on humans’ life is the ionizing radiation. The main purpose of this work is to compare the effects of 900-MHz radiofrequency fields and gamma-ionizing radiation (γ-IR) on the levels of free radicals and DNA damage in human peripheral blood mononuclear cells (PBMC). The EMF generated, at a power of 2W used for cell phone applications, led to a significant increase in the levels of intracellular reactive oxygen species (ROS), but not in persisting DNA damage 2h post-exposure. In contrast, irradiation with 4Gy of gamma rays increased dramatically both - the intracellular ROS and the DNA damage compared to background. (author)

  8. Process for hardening an alkyd resin composition using ionizing radiation. [electron beams, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Murata, K; Maruyama, T

    1969-11-27

    In an alkyd resin composition having free hydroxide radicals and containing a conjugated unsaturated fatty acid and/or oil as a component thereof, a process for hardening an alkyd resin composition comprises the steps of dissolving into a vinyl monomer, the product obtained by the semi-esterification reaction of said hydroxide radicals with acid anhydrides having polymerizable radicals and hardening by ionizing radiation to provide a coating with a high degree of cross-linking, with favorable properties such as toughness, hardness, chemical resistance and resistance to weather and with the feasibility of being applied as the ground and finish coat on metals, wood, paper, outdoor construction or the like. Any kind of ionization radiation, particularly accelerated electron beams, ..gamma.. radiation can be used at 50/sup 0/C to -5/sup 0/C for a few seconds or minutes, permitting continuous operation. In one example, 384 parts of phthalic anhydride, 115 parts of pentaerythritol, 233 parts of trimethylol ethane, 288 parts of tung fatty acid and 49 parts of para-tertiary-butyl benzoic acid are mixed and heated with 60 parts of xylene to an acid value of 12. In addition, 271 parts of maleic anhydride and 0.6 parts of hydroquinone are admixed with the content and heated to terminate the reaction. 100 parts of a 50% stylene solution of this alkyd resin are mixed with 1 part of a 60% toluene solution of cobalt naphthenate, and then coated on a glass plate and irradiated with high energy electron beams of 300 kV with a dose of 5 Mrad for 1 sec.

  9. Effect of gamma radiation on optical and electrical properties of ...

    Indian Academy of Sciences (India)

    Wintec

    Tellurium dioxide; thin films; optical bandgap; gamma radiation dose; dosimeter. 1. Introduction. It is now ... material to ionizing radiations (such as X-rays, gamma rays, beta ..... Mag. 19 19. Mott N F and Davis E 1979 Electronic process in non-.

  10. Possible use of ionizing radiation in food preservation

    International Nuclear Information System (INIS)

    Salkova, Z.

    1975-01-01

    An informative survey is presented of the application of ionizing radiation in the food industry based on experiments performed and literary data. The possibility of radiation treatment of potatoes, onions and strawberries is discussed and the positive effect of experimentally determined gamma radiation doses on the extension of storage of meat is shown

  11. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  12. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  13. Effect of ionizing (gamma and non-ionizing (UV radiation on the development of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    Tuncbilek Aydin S.

    2012-01-01

    Full Text Available The potential of using gamma and ultraviolet radiation as an alternative treatment to increase the efficiency of Trichogramma euproctidis (Girault 1911 (Hymenoptera: Trichogrammatidae was investigated in the laboratory. The developmental and adult stages of T. euproctidis were exposed to gamma radiation of different doses (0-30 Gy and ultraviolet radiation of 254 nm wavelengths (UV-C for different durations (0-10 min to assess their effect on each of the instars and their potential in breaking the developmental cycle of the egg parasitoid. The LD50 values for eggs, prepupae, pupae and adults were 8.1, 10.0, 22.7 and 9.5 Gy for gamma radiation and 9.5, 0.12, 2.0 and 11.9 min for UV radiation, respectively. The pupa and adult stages were more radioresistant to both gamma and UV radiation. The most interesting and unexpected result obtained for the prepupal stage was that UV radiation has a greater effect on prepupal stages than gamma radiation.

  14. Use of ionizing radiation for preservation of food and feed products

    International Nuclear Information System (INIS)

    Josephson, E.S.; Brynjolfsson, A.; Wierbicki, E.

    1975-01-01

    Exposing food to ionizing radiation can contribute to closing the worldwide food deficit by reducing food spoilage losses, by making available more food of higher nutritional quality (animal protein food) to more people, and by keeping prices down by reducing losses. Because ionizing radiation kills disease-causing organisms, it can reduce the incidence of food-borne diseases. It also reduces our dependence upon some of the chemical additives, such as nitrites and nitrates, now being questioned by health authorities to control food spoilage and food-borne diseases. The three basic types of ionizing radiation used for processing of food are electrons (10 MeV maximum energy), X-rays (5 MeV maximum energy) produced by electrons in an X-ray target, and gamma rays from 60 Co and 137 Cs. Electrons, X-rays, and gamma rays cause ionization in the food by either the primary electrons or by the secondary electrons resulting from gamma or X-ray interactions in the food with little rise in temperature and little total chemical change. The ionized and activated molecules form unstable secondary products that kill the organisms. Another effect is to slow down post-harvest growth and maturation in some fruits and vegetables

  15. NMR Metabolomics in Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.

    2016-09-08

    Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as a chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.

  16. Dosimetry and Shielding of X and Gamma Radiation

    International Nuclear Information System (INIS)

    Oncescu, M.; Panaitescu, I.

    1992-01-01

    This book covers the following problems: 1. X and Gamma radiations, 2. Interaction of X-ray and gamma radiations with matter, 3. Interaction of electrons with matter, 4. Principles and basic concepts of dosimetry, 5. Ionization dosimetry, 6. Calorimetric chemical and photographic dosimetry, 7. Solid state dosimetry, 8. Computation of dosimetric quantities, 9. Dosimetry in radiation protection, 10. Shielding of X and gamma radiations. The authors, well-known Romanian experts in Radiation Physics and Engineering, gave an up-dated, complete and readable account of this subject matter. The analyses of physical principles and concepts, of materials and instruments and of computational methods and applications are all well balanced to meat the needs of a broad readership

  17. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    Science.gov (United States)

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  18. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  19. Decontamination of pesticide packing using ionizing radiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O.

    2007-01-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases

  20. Decontamination of pesticide packing using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, C.L. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)], E-mail: clduarte@ipen.br; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)

    2007-11-15

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  1. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  2. Physicochemical processes occurring under action of ionizing radiation in sarcophagus

    International Nuclear Information System (INIS)

    Azarov, S.I.; Pshenichny, V.A.; Vilenskaya, L.N.; Korchevnaya, O.V.; Martseniuk, L.S.

    1998-01-01

    The result of analysis of environment ionization process inside Sarcophagus owing to alpha-, beta- and gamma-radiation processes with forming of ions. It is shown that as a result of ionization and physicochemical transformations gaseous mixtures, which are dangerous for personnel's health and can influence upon general technical safety of Sarcophagus, can release into atmosphere

  3. Review Ionizing Radiation In The Environment

    International Nuclear Information System (INIS)

    Hassan, K.M.

    2007-01-01

    Our environment is pervaded by ionizing radiation of natural origin including terrestrial radionuclides and extra-terrestrial sources but man's activities can increase radiation levels by acting on natural sources or by producing artificial radionuclides. The energy released by radionuclides can be measured. The amount of energy generated in our bodies from the radioactive decay of within- body radionuclides is called internal dose. External dose results from gamma rays emitted by terrestrial sources such as the ground, building materials and from extraterrestrial sources. The major contributors to human exposure are radon and its daughters in the air that we breathe. Ionizing radiation can penetrate into matter and thus, causing damage by interacting with the atoms and molecules of the medium. If the medium is living tissue, damage to cells can take place. Very large doses of radiation will result in serious tissue, damage that may lead to death of the organism. Lower doses may also be harmful and do not cause the immediate damage of high doses but instead act to increase the likelihood of developing cancer. So, exposure to ionizing radiation can have health consequences, which is why we are concerned about and, to a large extent, is why this review paper was written. Exposure to ionizing radiation should be kept as minimum as practically possible. People are advised to monitor the concentrations of radon in their houses. In addition, the levels of radionuclides in drinking water should also be monitored in accordance with the guidelines used in the USA

  4. Ionizing radiations in aseptic bottling: a comparison between technologies and safety requirements [beverages

    International Nuclear Information System (INIS)

    Bottani, E.; Rizzo, R.; Vignali, G.

    2006-01-01

    Ionizing radiations, commonly adopted in the medical field, are recently experiencing a wide diffusion in industrials applications. One of the most widespread uses of ionizing radiations refers to foodstuffs and packaging sterilization. In the aseptic bottling area, the application of this technology on polymeric caps is quickly developing. In such application, sterilization could be obtained with beta-rays, generated by an electron beam, or with gamma-rays, emitted by a radioactive source. After a brief explanation of physical properties of ionizing radiations, the aim of this paper is to discuss the use of radiations in aseptic bottling. Based on results available in literature, radiations effects on treated materials are discussed, as well as safety requirements aiming at reducing risks related to radiation exposure. Finally, sterilization plants with gamma and beta radiation are compared, with the aim of examining functioning principles and management complexity. As a result of the comparison between the two technologies, the electron beam (beta-rays) adoption for caps sterilization process proves to be preferable [it

  5. Regulations on the prevention of ionizing radiation hazards

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the labor safety and health law and the provisions of the order for enforcing the law. The enterpriser shall try to reduce to the minimum doses of ionizing radiation received by workers. Ionizing radiation hereunder includes such rays as deutron, proton, beta, electron, neutron, gamma and X-ray. The enterpriser engaged in radiation business shall indicate by marks the area whose radiation dose may exceed 30 mili-rem per week by exterior radiation or radioactive materials in the air. Doses of the workers regularly engaged in radiation business in the controlled area shall not surpass the accumulative dose calculated by the formula D = 5(N-18), when D means limit of accumulative dose (unit rem) and N number of the age of the worker concerned. Doses of the workers entering into the controlled area on business shall not go over 1.5 rem for a year. The maximum permissible dose is 12 rem for the urgent work. Measures for prevention from exterior radiation are designated, including irradiation tubes, filter plates, signals, shelters and alarms, etc. Independent regular inspection, record, measurement and others are particularly essential. Prevention of contamination, emergent measures, appointment of the head of X or gamma rays business, measurement of working environment, health examination and others are stipulated respectively. (Okada, K.)

  6. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  7. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation

    International Nuclear Information System (INIS)

    Mitchel, R.E.; Smith, B.P.; Wheatly, N.; Chan, A.; Child, S.; Paterson, M.C.

    1985-01-01

    Human xeroderma pigmentosum (XP) or Fanconi anemia (FA) fibroblasts displayed shouldered 45 0 C heat survival curves not significantly different from normal fibroblasts, a result similar to that previously found for ataxia telangiectasia (AT) cells, indicating heat resistance is not linked to either uv or low-LET ionizing radiation resistance. Hyperthermia (45 0 C) sensitized normal and XP fibroblasts to killing by gamma radiation but failed to sensitize the cells to the lethal effects of 254 nm uv radiation. Thermal inhibition of repair of ionizing radiation lesions but not uv-induced lesions appears to contribute synergistically to cell death. The thermal enhancement ratio (TER) for the synergistic interaction of hyperthermia (45 0 C, 30 min) and gamma radiation was significantly lower in one FA and two strains (TER = 1.7-1.8) than that reported previously for three normal strains (TER = 2.5-3.0). These XP and FA strains may be more gamma sensitive than normal human fibroblasts. Since hyperthermia treatment only slightly increases the gamma-radiation sensitivity of ataxia telangiectasia (AT) fibroblasts compared to normal strains, it is possible that the degree of thermal enhancement attainable reflects the genetically inherent ionizing radiation repair capacity of the cells. The data indicate that both repair inhibition and particular lesion types are required for lethal synergism between heat and radiation. We therefore postulate that the transient thermal inhibition of repair results in the conversion of gamma-induced lesions to irrepairable lethal damage, while uv-type damage can remain unaltered during this period

  8. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula

    2013-01-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  9. Roles of ionizing radiation in cell transformation

    International Nuclear Information System (INIS)

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures

  10. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  11. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  12. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    Directory of Open Access Journals (Sweden)

    Joshua S. Alwood

    2012-01-01

    Full Text Available Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy. We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137Cs and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident at longer times in controls (4 months. Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.

  13. About particular use of ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    Different uses of ionizing radiations are reviewed: tracers techniques, nuclear gauges, dating by carbon 14, silica doping, use of gamma irradiation for the density measurement in civil engineering, use of a electron capture detector to study by gas chromatography chlorinated contaminants in environment, neutron activation as environmental gauge, analysis of lead in paint and pollutants in ground and dusts, help for work of art valuation by x spectrometry. (N.C.)

  14. Ionizing radiation population doses at Sao Paulo city, Brazil: open-pit gamma dose measurement

    International Nuclear Information System (INIS)

    Oliveira, Raimundo Enoch Rodrigues

    2001-01-01

    The effects of ionizing radiation to the human beings are well known for high and intermediate doses. As far as low level) radiation doses are concerned, there is no consensus. In order to get a better understanding of such effects it is necessary to assess the low doses with better accuracy. In this work, it was made an estimate of the annual ambient dose equivalent (H * (10)) to which the people are exposed in the city of Sao Paulo. Until now there are no data about it available in the literature. For the purpose of this evaluation, a map with various routes covering the largest and more representative area of the city was designed. The choice of points for data collection was made taking into account mainly the occupancy of the region. A portable gamma spectrometry system was used. It furnishes the rate of H * (10) and the measured gamma spectrum (in the range from 50 to 1670 keV) in the place of interest. The measurements were performed in a short time interval, since the gamma radiation arrives from a great extent of soil. Each measurement was done 1 m above the soil during 300 s. The rates of H * (10) varied from 33.1 to 152.3 nSv.h -1 , net values, obtained after subtraction of the cosmic rays contribution. The standard deviation was 22 n Sv.h -1 for an average for the city of Sao Paulo of 96.1(24) nSv.h -1 . In addition, average values of H * (10) rates for the city Health Divisions were calculated. Those values are not statistically equivalent and the whole set of data could not be treated as one, as the statistical Student test indicated a non homogeneity of the group of data. Hence it is necessary the accomplishment of a more detailed survey in order to verify the origin of the discrepancy. The mean value of H * (10) rate obtained for the city of Sao Paulo as converted to effective dose. in order to be compared with other places results It could be noticed that the annual average of effective dose for the city of Sao Paulo, 0.522(13) mSv, is superior to

  15. Pressurized ionization chamber dose ratemeter for enviromental radiation measaurement

    Energy Technology Data Exchange (ETDEWEB)

    Qingyu, Yue; Hua, Jin; Youling, Jiang

    1986-01-01

    The dose ratemeter, mainly used for measuring absorbed doserate of environmental gamma radiation and the charged particle components of cosmic-rays in /sup f/ree-air/sup ,/ consists of an energy compensated spherical pressurized ionization chamber, a MOS electrometer and a digital voltmeter. The flat energy response of the pressurized ionization chamber ranges from 60 keV to 1250 keV. It has good stability and higher sensitivity, and weights 6 kg.

  16. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  17. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  18. Ionizing radiation - one of the most important link of the energetic chain in biological cell

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, W. [Technical Univ. Poznan, Radio- and Photochemistry Dept., Poznan (Poland)

    1999-09-01

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation ('bio-positive') effects by low-level doses of ionizing radiation are called radiation hormesis. It is still controversial idea, however it was found that some biological objects (yeast, seeds, animals) after gamma irradiation by low-level doses (10-50 times more NBR) can increase their development. The result of present researches demonstrate that the excitation of living system by gamma quanta (high energy) initiates prolonged secondary emission that influences biota and activates many important processes in biological systems. According to the excitation theory of bio-molecules the author suggests that gamma irradiation in low-level doses excites such molecules as DNA and proteins, and this being followed by a long-termed secondary coherent radiation. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. The data obtaining by using SPC method (single photon counting) make possible a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to UV emission from biological systems during mitotic processes. The experiments with humic acid (high doses) and glycine (low doses) confirm the author hypothesis that gamma-irradiated organic compounds are capable to emit secondary radiation. This secondary radiation probably plays very significant role in the intercellular communication inside the living systems. In conclusion the author proposed de-excitation processes in bio-molecules as a common denominator of UV and ionizing radiation interacting with living cells. Finally he refers to the Cerenkov radiation which is created inside the biological cells

  19. Ionizing radiation - one of the most important link of the energetic chain in biological cell

    International Nuclear Information System (INIS)

    Goraczko, W.

    1999-01-01

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation ('bio-positive') effects by low-level doses of ionizing radiation are called radiation hormesis. It is still controversial idea, however it was found that some biological objects (yeast, seeds, animals) after gamma irradiation by low-level doses (10-50 times more NBR) can increase their development. The result of present researches demonstrate that the excitation of living system by gamma quanta (high energy) initiates prolonged secondary emission that influences biota and activates many important processes in biological systems. According to the excitation theory of bio-molecules the author suggests that gamma irradiation in low-level doses excites such molecules as DNA and proteins, and this being followed by a long-termed secondary coherent radiation. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. The data obtaining by using SPC method (single photon counting) make possible a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to UV emission from biological systems during mitotic processes. The experiments with humic acid (high doses) and glycine (low doses) confirm the author hypothesis that gamma-irradiated organic compounds are capable to emit secondary radiation. This secondary radiation probably plays very significant role in the intercellular communication inside the living systems. In conclusion the author proposed de-excitation processes in bio-molecules as a common denominator of UV and ionizing radiation interacting with living cells. Finally he refers to the Cerenkov radiation which is created inside the biological cells. Because

  20. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  1. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  2. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  3. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  4. A pressurized ionization chamber dose ratemeter for enviromental radiation measaurement

    International Nuclear Information System (INIS)

    Yue Qingyu; Jin Hua

    1986-01-01

    The dose ratemeter, mainly used for measuring absorbed doserate of environmental gamma radiation and the charged particle components of cosmic-rays in f ree-air , consists of an energy compensated spherical pressurized ionization chamber, a MOS electrometer and a digital voltmeter. The flat energy response of the pressurized ionization chamber ranges from 60 keV to 1250 keV. It has good stability and higher sensitivity, and weights 6 kg

  5. Ionization radiations - basis, risks and benefits

    International Nuclear Information System (INIS)

    Bodart, F.

    1991-01-01

    An attempt is made to discuss the use of ionizing radiations in an impartial way. Ionizing radiation is potentially harmfull; excessive doses have a devastating effect on living cells. However, there is no direct, conclusive evidence of human disability, either in the form of cancer or genetic anomalies, arising as a consequence of low-level doses of x- or gamma-rays of about 0.01 Gray (1 rad) the entire dose range involved in medical radiography or in nuclear industry. Statements appearing in the press that a certain number of excess cancers will be produced are estimates, based maybe on plausible assumptions, but estimates nevertheless; they are not measured quantities or established facts. A balanced view of radiation must include appreciation of the substantial benefits which result from their use in both medicine and industry. The risks are small and hard to demonstrate, and it is instructive to make a comparison with the other hazards occuring continually in an industrialized society, such as driving a motorcar or smoking cigarettes. (Author)

  6. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  7. Study on the energy dependence of gamma radiation detectors for 137Cs and 60Co

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Diniz, Raphael E.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    38 Geiger-Mueller radiation detectors and 9 ionization chambers were calibrated, viewing to study the energy dependence of the monitor response for gamma radiation fields ( 137 Cs and 60 Co). The results were considered satisfactory only for ionization chambers and for some Geiger-Mueller detectors

  8. The electric charge of the aerosols under gamma radiation

    International Nuclear Information System (INIS)

    Gensdarmes, F.; Cetier, P.; Boulaud, D.; Gensdarmes, F.; Renoux, A.

    2000-01-01

    During a PWR type reactor accident, the gamma radiation may create a high ionized atmosphere. In such a situation the aerosols properties knowledge is useful to simulate the particles transport and deposit in the enclosed. The aim of this study is to determine the aerosol charges distribution in a high ionized medium, in function of the ionic properties of the medium. (A.L.B.)

  9. Ionizing radiation and thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hall, P. (Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine); Holm, L.E. (Swedish Radiation Protection Inst., Stockholm (Sweden))

    1994-01-01

    Epidemiological studies provide the primary data source on cancer risk in man after exposure to ionizing radiation. The present paper discusses methodological difficulties in epidemiological studies and reviews current epidemiological knowledge on radiation-induced thyroid cancer. Most studies of radiation-induced cancer are of a ''historical observational'' type and are also non-experimental in design. Seldom is there an opportunity to consider other factors playing on cancer risk. Since many of the study subjects were exposed a long time ago there could also be difficulties in calculating the radiation doses, and to identify and follow the exposed subjects. Short exposure to low doses of gamma radiation can induce thyroid cancer in children, whereas a relationship between protracted low-dose exposure and thyroid cancer has not been established so far. The most important future issues concerning radiation-induced thyroid cancer are the risks following low radiation doses and/or protracted radiation exposure and cancer risks after [sup 131]I exposure in childhood. (authors). 35 refs., 3 tabs.

  10. Anomalous effect of small doses of ionizing radiation on metals and alloys

    International Nuclear Information System (INIS)

    Chernov, I.P.; Mamontov, A.P.; Botaki, A.A.; Cherdantsev, P.A.; Chakhlov, B.V.; Sharov, S.R.; Timoshnikov, Yu.A.; Filipenko, L.A.

    1986-01-01

    The effect of small doses of 60 Co gamma rays on copper, tungsten, and WCo alloys has been investigated. A decrease in the concentration of material defects under the influence of small doses of ionizing radiation was found. Also the structural rearrangement of the crystal was found to be still in progress after irradiation ceased. The mechanism of the anomalous effect of small doses of ionizing radiation on metals and alloys is discussed in terms of the electron energy scheme. (U.K.)

  11. Protection of wood with ionizing radiation

    International Nuclear Information System (INIS)

    Jokel, J.; Paserin, V.

    1975-01-01

    The method is described of accelerated killing of wood cells by ionizing radiation. From the conducted experiments the relation was derived for the resistance of these cells to the effects of high-energy gamma radiation and a relationship was ascertained between the level of the irradiation of live cells and the spread of tylosis in beech trees. Live wood cells may be killed by doses of up to 25 J/g (2.5 Mrad). The occurrence and formation rate of tylosis is restricted by doses between 0.25 J/g to 4.5 J/g. Doses of more than 4.5 J/g prevent the occurrence of tylosis. (J.K.)

  12. Degradation of chlorpyrifos by ionizing radiation

    International Nuclear Information System (INIS)

    Mori, M.N.; Oikawa, H.; Sampa, M.H.O.; Duarte, C.L.

    2006-01-01

    Chlorpyrifos is an organophosphate pesticide commercialized since 1965 and it is now one of the top five commercial insecticides. It is registered for use in over 900 different pesticide formulations in the world. Chlorpyrifos poisoning usually affects many organs of the body, such as the central and peripheral nervous system, eyes, respiratory system, and the digestive tract. Depending on the pesticide formulation and type of application, chlorpyrifos residues may be detectable in water, soil, and on the surfaces from months to years. This paper presents preliminary studies of the removal of chlorpyrifos by exposition to ionizing radiation, to be applied in pesticide container decontamination. Samples containing various concentrations of chlorpyrifos in acetonitrile were irradiated with absorbed doses varying from 5 to 50 kGy, using a 60 Co gamma-source with 5,000 Ci activity (Gamma cell type). The chemical analysis of the chlorpyrifos and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GCFID). (author)

  13. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  14. V. Physical effects in ionizing radiation passage through matter

    International Nuclear Information System (INIS)

    1984-01-01

    The ionization of the medium during absorption of alpha particles is described. The ranges are given of alpha particles in the air and in certain liquids and solids. The absorption of protons and deuterons takes place similarly as in alpha particles but protons and deuterons have a bigger range at the same energy. The term half-thickness has been introduced for the absorption of beta particles. For different energies of beta particles the absorption of these particles is graphically represented for different materials. The greatest attention is devoted to the absorption of electromagnetic radiation, i.e., X radiation and gamma radiation. The mechanisms are explained of absorption by photoelectric effect, the Compton effect and electron pair formation. In X radiation radiotherapy, filters are used, mostly aluminium, copper or zinc plates. The values are given of radiation intensity for different thicknesses of aluminium and copper filters and a survey is given of combined filters for 220 to 400 kV. For radiotherapy purposes great attention is devoted to the calculation of the depth dose. The effects are discussed of ionizing radiation on photographic emulsion, on changes in the colouring of some substances and fluorescence. Also given are the biological effects of ionizing radiation and the theory of direct and indirect effects is briefly described. (E.S.)

  15. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  17. Physico-chemical modifications of plastics by ionization

    International Nuclear Information System (INIS)

    Rouif, S.

    2002-01-01

    The industrial use of ionizing radiations (beta and gamma), initially for the sterilization of medico-surgical instruments and for the preservation of food products, has led to the development of the chemistry of polymers under radiations. Ionizing radiations can initiate chemical reactions (chain cutting, poly-additions, polymerization etc..) thanks to the formation of free radicals. The main applications concerns the degradation of plastics, the reticulation of plastics and of woods impregnated with resin, and the grafting of polymers. The processing of plastic materials was initially performed with low energy electron accelerators (0.1 to 3 MeV), allowing only surface treatments, while recent high energy accelerators (10 MeV) and gamma facilities allow the treatment in depth of materials (from few cm to 1 m). This article describes the industrial treatments performed with such high energy facilities: 1 - action of ionizing radiations on plastic materials: different types of ionizing radiations, action of beta and gamma radiations, chemical changes induced by beta and gamma radiations; 2 - reticulation of plastic materials submitted to beta and gamma radiations: radio-'reticulable' polymers and reticulation co-agents, modification of the properties of reticulated plastic materials under beta and gamma radiations; 3 - industrial aspects of reticulation under beta and gamma radiation: industrial irradiation facilities, dosimetry and radio-reticulation control, applications; 4 - conclusion. (J.S.)

  18. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  19. Does ionizing radiation lead to activation of oncogenes

    International Nuclear Information System (INIS)

    Berg, K.J. van den; Jonker, R.R.

    1983-01-01

    Attention has been focused on the action of ionizing radiation on genes (DNA), this being a critical first step in radiation carcinogenesis. Here, experiments have been carried out where isolated BALB/c DNA in solution was subjected to different doses of gamma radiation and subsequently assayed by means of the NIH transfection system. At doses higher than 3 Gy, a rapid loss of focus formation was found. However, with doses between 0.3 and 1 Gy, focus formation was consistently higher, e.g., by about a factor of two, than with DNA that was not irradiated. (Auth.)

  20. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  1. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation; Peliculas delgadas depositadas por ablacion laser para la medicion de radiacion ionizante y no ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a {sup 60} Co source, beta radiation of a {sup 90} Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  2. Evaluation of an ionization chamber response at small distances during dosimetry of gamma radiation beams

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Luciana C.; Potiens, Maria da Penha A.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: lafonso@ipen.br; mppalbu@ipen.br; lcaldas@ipen.br

    2007-07-01

    The beam dosimetry measurements of a gamma irradiator, utilized for calibration of mainly portable radiation monitors, at the Calibration Laboratory of IPEN, have been taken between the source-instrument distance of 1 m and 4 m. Due to the source decay and instruments with higher dose rate ranges, calibrations at distances smaller than 1 m are necessary. For this purpose, a 30 cm{sup 3} ionization chamber calibrated against a secondary standard system was utilized. The use of this chamber is appropriate, because it can be totally irradiated. The behavior of this ionization chamber was studied in terms of: repeatability, stability and current leakage, using a {sup 90}Sr+{sup 90}Y source. The repeatability test presented uncertainties lower than {+-}0.5%. Analyzing the stability results, the variation did not exceed {+-}1.0%. The current leakage did not exceed 0.5% of the reference value. The measurements at the irradiator beams were taken at smaller distances than 1 m (in steps of 10 cm). The distance square inverse law was verified for both {sup 137}Cs and {sup 60}Co sources; the variations did not exceed {+-}5%, according to the ISO 4037-1 standard. (author)

  3. Evaluation of an ionization chamber response at small distances during dosimetry of gamma radiation beams

    International Nuclear Information System (INIS)

    Afonso, Luciana C.; Potiens, Maria da Penha A.; Caldas, Linda V.E.

    2007-01-01

    The beam dosimetry measurements of a gamma irradiator, utilized for calibration of mainly portable radiation monitors, at the Calibration Laboratory of IPEN, have been taken between the source-instrument distance of 1 m and 4 m. Due to the source decay and instruments with higher dose rate ranges, calibrations at distances smaller than 1 m are necessary. For this purpose, a 30 cm 3 ionization chamber calibrated against a secondary standard system was utilized. The use of this chamber is appropriate, because it can be totally irradiated. The behavior of this ionization chamber was studied in terms of: repeatability, stability and current leakage, using a 90 Sr+ 90 Y source. The repeatability test presented uncertainties lower than ±0.5%. Analyzing the stability results, the variation did not exceed ±1.0%. The current leakage did not exceed 0.5% of the reference value. The measurements at the irradiator beams were taken at smaller distances than 1 m (in steps of 10 cm). The distance square inverse law was verified for both 137 Cs and 60 Co sources; the variations did not exceed ±5%, according to the ISO 4037-1 standard. (author)

  4. Mutation induction in plants by ionizing radiation

    International Nuclear Information System (INIS)

    1985-01-01

    This training film deals with the use of x-rays, gamma rays and fast neutrons for mutation induction in plants. Specific features of different types of ionizing radiation and of biological materials are outlined and methods demonstrated which control modifying factors and warrant an efficient physical mutagenesis. The first step of mutation breeding aims at an enhanced level of genetic variation which forms the basis for mutant selection and use in plant breeding

  5. The annual terrestrial gamma radiation dose to the population of the urban Christchurch area

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1983-01-01

    Natural terrestrial gamma radiation dose rates were measured with a high pressure ionization chamber at 70 indoor (195 site measurements) and 58 outdoor locations in the metropolitan Christchurch area. Based on these site measurements, the average gonad dose rate to the population from natural terrestrial gamma radiation was estimated to be 273+-56 microgray per annum. (auth)

  6. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  7. Flow cytometric assessment of DNA damage in the fish Catla catla (Ham.) exposed to gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar, Mary N.; Selvanayagam, M.

    2012-01-01

    Environmental mutagens such as ionizing radiation and chemicals induce DNA damage in a wide variety of organisms. The International Commission on Radiological Protection (lCRP) has recently emphasized the need to protect non-human biota from the potential effects of ionizing radiation. Radiation exposures to non-humans can occur as a result of low-level radioactive discharges into the environment. Molecular genetic effects at low-level radiation exposures are largely unexplored and systematic studies using sensitive biomarkers are required to assess DNA damage in representative non-human species. The objective of the study was to detect DNA damage in the fish Catla catla exposed to gamma radiation using flow cytometry at different time intervals. Increases in the coefficient of variation (CV) of the G 0 /G 1 peak, indicating abnormal DNA distributions were observed in fish exposed to gamma radiation than in controls. Significant increase in the CV was observed from day 12-90 and thereafter decreased. This increase in CV might be due to DNA damage in the cell populations at G 0 /G 1 phase or deletions and duplications caused by improper repair of chromosomes in the cell-cycle machinery. Ionizing radiation induced cell-cycle perturbations and apoptosis were also observed after gamma radiation exposure. (author)

  8. X-ray and γ-radiation personnel monitoring by means of ionization chambers

    International Nuclear Information System (INIS)

    Gavrilovskij, L.P.; Nikitin, V.I.

    1981-01-01

    Several sets of condensator ionization chambers for measuring a dose of short-wave X-ray and gamma radiations within the limits of 0.005-50 R is described in short. In particular the following sets for personnel monitoring are described: the KID-2 set intended for determining an exposure dose of roentgen and gamma radiations of 150 keV - 2 MeV energy within the limits of 0.005-1R; the DK-02 set providing the measurement of personnel exposure doses of X-ray and gamma radiations within the limits of 0.02-200 mR in the energy range of 100 keV-2 MeV; the DP-22 V, DP-24 sets providing the measurement of an exposure dose of X-ray and gamma radiations within the limits of 1-50 R at a power of 0.5-200 R/h in the energy range of 0.1-2 MeV. An order of work with the sets is described [ru

  9. Chemical effects of ionizing radiation on the individual amino acids within intact and pure protein molecules. Final report

    International Nuclear Information System (INIS)

    Freidberg, F.

    1977-01-01

    Progress is reported on the following research projects: gamma radiation induced chemical and molecular weight changes in proteins; the free radical pattern for the irradiated protein; similarities in the mechanism of action of ionizing and of uv radiation; and spin trapping in the study of gamma radiolysis

  10. Effect of ionizing radiations on bacterial endotoxins: comparison between gamma radiations and accelerated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, S; Goury, V; Darbord, J C

    1988-01-01

    Determinations of the effect of radiation sterilization processing on purified endotoxins, in aqueous solution or on dried support, are reported. These observations allow us to accept gamma radiations for sterilization of parenteral devices with an estimated probability of existence of non apyrogenic items, based upon a similar definition of the usual Sterility Assurance Level (SAL = 10/sup -6/).

  11. The electric charge of the aerosols under gamma radiation; La charge electrique des aerosols sous irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F.; Cetier, P.; Boulaud, D. [CEA/Saclay, Inst. de Protection et de Surete Nucleaire, IPSN/DPEA/SERAC, 91 - Gif-sur-Yvette (France); Renoux, A. [Paris-12 Univ., Lab. de Physique des Aerosols et de Transfert des Contaminations, 94 - Creteil (France)

    2000-07-01

    During a PWR type reactor accident, the gamma radiation may create a high ionized atmosphere. In such a situation the aerosols properties knowledge is useful to simulate the particles transport and deposit in the enclosed. The aim of this study is to determine the aerosol charges distribution in a high ionized medium, in function of the ionic properties of the medium. (A.L.B.)

  12. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  13. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  14. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  15. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  16. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    International Nuclear Information System (INIS)

    Antebi, Uri; Mathor, Monica B.; Guimaraes, Rodrigo P.

    2015-01-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  17. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  18. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  19. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  20. GAMMA RADIATION INTERACTS WITH MELANIN TO ALTER ITS OXIDATION-REDUCTION POTENTIAL AND RESULTS IN ELECTRIC CURRENT PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.; Ekechukwu, A.; Milliken, C.

    2011-05-17

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  1. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  2. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  3. Effects of ionizing radiation on gastrointestinal function

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, C; Dublineau, I; Griffiths, N M; Joubert, C; Linard, C; Martin, J M; Mathe, D; Scanff, P; Valette, P [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1994-10-01

    The aim of this project is to investigate the effects of ionizing radiation (<10 Gy) on several parameters of gastrointestinal function: (a) regulatory peptides; (b) pancreatic and biliary secretions and (c) electrolyte and lipid transport using both gamma alone (cobalt-60) and a mixture of gamma/neutron ({gamma}/N Silene reactor) in two animal models, the rat and the pig. Preliminary data in rats following gamma irradiation (2-8 Gy) show that plasma nurotensin gastrin releasing peptide and substance P are increased in a dose dependent manner most markedly between two and four days after exposure. Intestinal brush border marker enzyme activities (sucrose and leucine amino-peptidase) were also reduced. Such differences were more marked and persisted longer after {gamma}/N irradiation (2-4 Gy: +Pb: {gamma}/:N =0.2). Following the latter type of irradiation (4 Gy) plasma cholesterol increased as well as the cholesterol/phospholipid ratio. Analysis of cholesterol distribution in lipoprotein actions revealed a large increase in cholesterol carried b High Density Lipoprotein-1 (HDL1). In the pig following either type of irradiation the volumes of both pancreatic and biliary secretions were reduced. Irradiation of pigs with either {gamma} (6 Gy) alone or {gamma}/N (6 Gy: {gamma}/N I :1) resulted in a marked decrease in both brush border (sucrase: leucine aminopeptidase) and basolateral (sodium ump` aden late cyclase) enzyme activities. Vasoactive intestinal peptide (VIP) stimulated adenylate cyclase was markedly attenuated and in addition specific VIP binding was modified as shown by a reduction in receptor affinity. The significance of the data will be discussed and the importance of a new therapeutic strategies or new biological markers of radiation-induced gastrointestinal dysfunction.

  4. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  5. Application of Ionizing Radiation on the Cork Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P. M.P.; Silva, T.; Leal, J. P.; Botelho, M. L. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Sacavém (Portugal)

    2012-07-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  6. Application of Ionizing Radiation on the Cork Wastewater Treatment

    International Nuclear Information System (INIS)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P.M.P.; Silva, T.; Leal, J.P.; Botelho, M.L.

    2012-01-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  7. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  8. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  9. What is ''ionizing radiation''?

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1997-01-01

    The scientific background of radiation protection and hence ''ionizing radiation'' is undergoing substantial regress since a century. Radiations as we are concerned with are from the beginning defined based upon their effects rather than upon the physical origin and their properties. This might be one of the reasons why the definition of the term ''ionizing radiation'' in radiation protection is still weak from an up to date point of view in texts as well as in international and national standards. The general meaning is unambiguous, but a numerical value depends on a number of conditions and the purpose. Hence, a clear statement on a numerical value of the energy threshold beyond a radiation has to be considered as ''ionizing'' is still missing. The existing definitions are, therefore, either correct but very general or theoretical and hence not applicable. This paper reviews existing definitions and suggests some issues to be taken into account for possible improvement of the definition of ''ionizing radiation''. (author)

  10. Comparative effects of exposure to high-energy electrons and gamma radiation on active avoidance behaviour

    International Nuclear Information System (INIS)

    Hunt, W.A.

    1983-01-01

    The effect of two types of ionizing radiation was examined on active avoidance behaviour. Male Sprague-Dawley rats were trained to avoid footshock by jumping onto a retractable ledge. When irradiated with high-energy electrons or gamma photons, their performance was degraded in a dose-dependent manner. However, electrons were 1.6 times as effective as gamma photons with ED50s of 62 and 102 Gy, respectively. All animals recovered within 24 min for all doses used. The data suggest that different types of ionizing radiation may not be equivalent when assessing their effect on behaviour. (author)

  11. Study of radiation detectors response in standard X, gamma and beta radiation standard beams; Estudo da resposta de monitores de radioprotecao em feixes padronizados de radiacao X, gama e beta

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda Beatrice Conceicao

    2010-07-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ({sup 37}Cs and {sup 60}Co), and some of them were tested in beta radiation ({sup 90}Sr+{sup 9'}0Y e {sup 204}Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  12. Study of radiation detectors response in standard X, gamma and beta radiation standard beams; Estudo da resposta de monitores de radioprotecao em feixes padronizados de radiacao X, gama e beta

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda Beatrice Conceicao

    2010-07-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ({sup 37}Cs and {sup 60}Co), and some of them were tested in beta radiation ({sup 90}Sr+{sup 9'}0Y e {sup 204}Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  13. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  14. Density measurement using gamma radiation - theory and application

    International Nuclear Information System (INIS)

    Springer, E.K.

    1979-01-01

    There are still widespread uncertainties about the use and safety of gamma radiation in industries. This paper describes, by the example of radiometric density measurement, the theory of gamma radiation. The differences and advantages of both types of detectors, the ionization chamber and the scintillation counter, are discussed. The degree of accuracy which can be expected from the radiometric density meter will be defined, and the inter-relationship: source strength - measuring range - measuring length(normally the pipe diameter) in relation to the measuring accuracy required will be explained in detail. The use of radioactive material requires the permission of the Atomic Energy Board. The formalities involved to receive a user's licence and the implementations of safety standards set by the local authorities are discussed in depth [af

  15. Ce activated potassium bromide phosphor for lyoluminescence dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Bhujbal, P.M.; Dhoble, S.J.

    2013-01-01

    The lyoluminescence (LL) properties of gamma irradiated KBr:Ce phosphor are reported in this paper. The samples were prepared by wet chemical route. The prepared material was characterized by lyoluminescence technique. LL in KBr:Ce have been recorded for different gamma doses. The nature of variation of peak LL intensity is found to be sublinear with gamma irradiation dose, and the peak LL intensity is found to be dependent on concentrations of added Ce in the samples. Negligible fading in the prepared KBr:Ce (0.5 mol%) sample is observed. -- Highlights: • The LL intensities are found to be dependent on concentrations of Ce ion. • The LL intensities are found to be dependent on gamma rays radiation dose. • Dose response of KBr:Ce (0.5 mol%) is observed linear between 0.08 and 1.00 kGy. • The prepared material may be useful for ionizing radiation dosimetry

  16. Sterilization by ionizing radiation comparative evaluation

    International Nuclear Information System (INIS)

    Tata, A.; Giuliani, S.

    1996-01-01

    Sterilization of surgical and medical devices by ionizing radiation (gamma or accelerated electron beams) is currently regarded as one of the main industrial-scale applications of radiation technology processes. Considering the most widely utilized chemical-physical methods (i.e. ethylene oxide (EtO) fumigation and radiation treatment), about 10-12 millions m(3) of surgical and medical devices are estimated to be processed yearly all around the world, of which 7 on beams. Due to the increasing demand for reusable and single-use devices, and the need of assuring their sterility in order to prevent, as much as possible, the diffusion of serious infective diseases (among which for instance Aids), the market of sterilization of these items is considerably expanding. In the general depicted scenario, radiation technologies are expected to gain a leading role, even a part from their economic attractiveness, as an alternative to EtO treatment, which is more and more considered as responsible for increasing environmental, social and public health problems

  17. Ionization radiation in sterilization of the tissue transplants

    International Nuclear Information System (INIS)

    Uhrynowska-Tyszkiewicz, I.; Kaminski, A.

    2007-01-01

    Established in 1963, the Central Tissue Bank in Warsaw is a multi-tissue bank located in the Department of Transplantology of the Medical University in Warsaw. Allografts such as bone, cartilage, tendons, ligaments, sclera, skin and amnion are preserved mainly by deep-freezing and/or lyophilization and subsequently radiation-sterilized with a dose of 35 kGy with gamma rays in a 60 Co source (at the Institute of Applied Radiation Chemistry in Lodz) or with electron beam 10 MeV accelerator (at the Institute of Nuclear Chemistry and Technology in Warsaw). This is the oldest working tissue bank in the world, which for almost 40 years now has routinely used ionizing radiation for sterilization of tissue allografts

  18. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  19. Sensorial analysis evaluation in cereal bars preserved by ionizing radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Araujo, M.M.; Fanaro, G.B.; Rela, P.R.; Mancini-Filho, J.

    2007-01-01

    Gamma-rays utilized as a food-processing treatment to eliminate insect contamination is well established in food industries. Recent troubles in Brazilian cereal bars commercialization require a special consumer's attention because some products were contaminated by insects. To solve the problem, food-irradiation treatment was utilized as a safe and effective solution. The final product was free of insect contamination. The aim of this study was to determine the best radiation dose processing utilized to disinfestations and detect some change on sensorial characteristic by sensorial analysis in cereal bars. In this study, three different kinds of cereal bars were purchased in Sao Paulo (Brazil) in supermarkets and irradiated with 1.0, 2.0 and 3.0 kGy at 'Instituto de Pesquisas Energeticas e Nucleares' (IPEN-CNEN/SP). The samples were treated with ionizing radiation using a 60 Co gamma-ray facility (Gammacell 220, A.E.C.L.). That radiation doses were used successfully as an anti-insect treatment in the cereal bars, since in some food industries doses up to 3.0 kGy are used to guarantee at least a dose of 1.0 kGy in internal cereal bars package. Sensorial analysis was necessary since cereal bars contain ingredients very sensitive to ionizing radiation process

  20. Construction, calibration and test of an ionization chamber for exposure measurement of x and gamma radiation in region from 40 keV to 1250 keV

    International Nuclear Information System (INIS)

    Campos, C.A.A.L.

    1982-01-01

    An unsealed thimble ionization chamber with connecting cable was designed, manufactured and tested at the IRD=CNEN, for exposure or exposure rate measurement of X or gamma rays in the energy range from 40 KeV up to Cobalt-60. Recommendations given by IEC, TC-62 (1974) were used as acceptance tests of the ionization chamber for use as a tertiary standard (field class instruments) in radiation therapy. In addition, intercomparison with commercially available chambers of reference class type were carried out in respect to field size dependence, energy dependence, short and long term stability. The results of those tests indicated the usefulness of the developed ionization chamber as a tertiary standard. (author)

  1. Gamma radiation influence on technological characteristics of wheat flour

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L.d.

    2012-01-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it. - Highlights: ► We study the influence of gamma radiation on wheat flour and properties of breads. ► Falling number decreased with radiation remaining almost constant up to one month. ► Ionizing radiation may confer an increase in texture parameters, weight and height on the bread.

  2. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  3. NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiongjie [Pacific Northwest National Laboratory, Richland, Washington 99352; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99352; Zhang, Xu [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99352

    2017-07-01

    The health effects of exposing to ionizing radiation are attracting great interest in the space exploration community and patients considering radiotherapy. However, the impact to metabolism after exposure to high dose radiation has not yet been clearly defined in livers. In the present study, 1H nuclear magnetic resonance (NMR) based metabolomics combined with multivariate data analysis are applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole body exposure to either gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) radiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification of potential biomarkers associated with gamma and proton irradiation. The results show that the radiation exposed groups can be well separated from the control group. At the same radiation dosage, the group exposed to proton radiation is well separated from the group exposed to gamma radiation, indicating different radiation sources induce different alterations based on metabolic profiling. Common to both gamma and proton radiation at the high radiation doses studied in this work, compared with the control groups the concentrations of choline, O-phosphocholine and trimethylamine N-oxide are decreased statistically, while those of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate are statistically and significantly elevated after exposure to radiation. Since these altered metabolites are associated with multiple biological pathways, the changes suggest that the exposure to radiation induce abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be good candidates of pre-diagnose biomarkers for ionizing radiation in liver.

  4. Level of terrestrial gamma radiation and doses to population in Jiangsu province

    International Nuclear Information System (INIS)

    1985-01-01

    In this paper the results of investigation of terrestrial gamma radiation level in Jiangsu Province are reported and the population doses due to this radiation are estimated. The sketch map of the geographical distribution of the terrestrial gamma radiation level is given. In this investigation FD-71 portable scintillation counters and RSS-111 high pressure ionization chambers were used. The results showed that the terrestrial gamma absorbed dose rates in air for indoors and outdoors were 10.7 x 10 -8 Gy/h and 6.5 x 10 -8 Gy/h (weighted values) respectively. The indoors-to-outdoors ratio was 1.65. The total (indoor plus outdoor) annual effective dose equivalent from terrestrial gamma radiation, averaged over the population in this province, was 6.0 x 10 -4 Sv. The collective annual effective dose equivalent was 3.6 x 10 4 man.Sv. Therefore, the absorbed dose to population in Jiangsu Province is in the range of the normal background

  5. Transistor collector breakdown in the presence of conducted EMP and gamma radiation

    International Nuclear Information System (INIS)

    Rice, D.H.

    1975-01-01

    In this paper we develop expressions which describe breakdown, negative resistance and latch characteristics for a common emitter transistor when exposed to simultaneous conducted EMP and ionizing radiation. These expressions are derived from a modified Ebers-Moll model and show that common emitter breakdown voltage is reduced, latch (or sustaining voltage) remains unchanged, and that the negative resistance characteristics are changed. Using the modified Ebers-Moll model good agreement between predicted and observed circuit response is demonstrated when the circuits are exposed to a rising collector voltage (due to EMP) and simultaneous ionizing (gamma) radiation

  6. Protective role of radish oil (raphson sativus) against gamma radiation on lipids and carbohydrate in male rats

    International Nuclear Information System (INIS)

    Omran, M.F.; Soliman, N.K.I.

    2005-01-01

    The present work was carried out to investigate the effects of ionizing radiation on some biochemical parameters in rats. The rats were exposed to sublethal whole body gamma irradiation dose (1Gy x 4). The protective role of radish oil (Raphanus sativus) was evaluated by oral administration to rats before gamma radiation exposure and the lipid profile, serum glucose and liver glycogen were investigated. Exposed rats to gamma radiation showed significant alterations in the assayed parameters indicating disturbances in lipid and carbohydrate metabolisms. Oral administration of radish oil (Raphanus sativus) before gamma irradiation exerted marked ameliorations in the disorders induced by gamma radiation in most of the tested parameters such as lipid profile, serum glucose and liver glycogen

  7. Dielectric losses in tissues under ionizing radiation conditions

    International Nuclear Information System (INIS)

    Kamalov, N.; Narizov, N.N.; Norbaev, N.

    1977-01-01

    Dielectric losses of tissues caused by ionizing radiation were studied. The experiments were carried out on seven-day-old seedlings of two wild cotton species (G. barbadense ssp. darvini, G. hirsutum ssp. mexicanum) and of cultivated cotton sorts Tashkent-1, C-6030, AN-401. The study showed that the irradiation of the seedlings with CO 60 gamma-rays (radiation doses 0.3, 3, 20, 35 kr, the dose rate 90 rs/s) changed the tangent of the angle of losses. It was found out that the maximum tangent of the angle of dielectric losses tg sigma of cultivated forms lies within the range of 5-10 kHz frequencies, this value changing under the effect of radiation to a greater extent in wild-growing ssp. mexicanum cotton plants than in commercial varieties (Tashkent 1). In commercial cotton varieties, in distinction to wild forms, the radiation is shifting tg sigma to low frequencies. The electric capacity is much lower in wild forms (ssp. mexicanum) than in cultivated cotton seedlings. Thus the capacity of cells and the maximum of the tg sigma absorption in cultivated and wild cotton seedlings are significantly different which is probably connected with their different radiosensitivity to the ionizing radiation

  8. Ionization versus indirect effects of ionizing radiation on cellular DNA

    International Nuclear Information System (INIS)

    Cadet, Jean; Ravanat, Jean-Luc; Douki, Thierry

    2012-01-01

    Emphasis has been placed in the last decade on the elucidation of the main degradation pathways of isolated DNA mediated by hydroxyl radical (OH) and one-electron oxidation reactions as the result of indirect and direct effects of ionizing radiation respectively. This has led to the isolation and characterization of about 100 oxidized purine and pyrimidine nucleosides if hydroperoxide precursors and diastereomers are included. However, far less information is available on the mechanisms of radiation-induced degradation of bases in cellular DNA mostly due partly to analytical difficulties. It may be reminded that the measurement of oxidized nucleosides and bases in nuclear DNA is still a challenging issue which until recently has been hampered by the use of inappropriate methods such as the GC-MS that have led to overestimated values of the lesions by factors varying between two and three orders of magnitude. At the present, using the accurate and sensitive HPLC/MS/MS assay, 11 single modified nucleosides and bases were found to be generated in cellular DNA upon exposure to gamma rays and heavy ions. This validates several of the OH-mediated oxidation pathways of thymine, guanine and adenine that were previously inferred from model studies. The concomitant decrease in the yields of oxidized bases with the increase in the LET of heavy ions is accounted for by the preponderance of indirect effects in the damaging action of ionizing radiation on DNA. Further evidence for the major role played by .OH was provided by the results of exposure of cells to high intensity 266 nm laser pulses. Under these conditions 8-oxo-7,8-dihydroguanine is mostly produced by biphotonic ionization of DNA nucleobases and subsequent hole migration to guanine bases. It is likely that some of the oxidized bases that have been isolated as single lesions are in fact involved in clustered damage. Interestingly it was recently shown that a single oxidation hit is capable of generating complex

  9. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  10. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Wilfred [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Yusoff, Wan Yusmawati Wan [Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  11. Ionizing radiations: medical and industrial applications

    International Nuclear Information System (INIS)

    Vidal, H.

    1994-01-01

    Medical diagnosis with X-rays is the best known use of ionizing radiations on account of its wide diffusion (about 57 500 units in France). Other medical applications of artificial radionuclides involving a smaller number of installations are also well known, i.e. gamma teletherapy (167 units), brachytherapy (119 units) or therapy using unsealed sources (257 units). The industrial uses of ionising radiation, the diversity of which is very large, are generally less well known. The use of X- and gamma rays for non-destructive testing or food preservation and the use of tracers have some notoriety, but few people know that radioactive sources are involved in the measurement of parameters controlling industrial processes. The number of persons authorized to hold, use and/or sell artificial radionuclides amounts to about 4 800, all applications included. Approximately 650 of them are involved in therapy and 500 in medical research. The aim of this paper, which is not exhaustive, is to review a few typical applications of radionuclides both in the medical and industrial fields. It also supplies data both on the number of people authorized to use each technique and the radionuclides involved. (author). 10 tabs

  12. The influence of ultrasound on ionizing radiation effects, 3

    International Nuclear Information System (INIS)

    Ishigaki, Takeo; Fujita, Katsuzo; Sakuma, Sadayuki

    1976-01-01

    The effects of simultaneous administration of ionizing radiation ( 60 Co gamma-rays) and ultrasound (1 MHz, 3 W/cm 2 ) on normal tissues of the auricules and kidneys, of rabbits were examined. Irreversible damages of the auricules were obtained with simultaneous irradiation of 690 R of 60 Co gamma-rays and exposure to ultrasound for 15 minutes, but with only irradiation of 2760 R of 60 Co gamma-rays or only administration of ultrasound for 60 minutes, damages were reversible. In 5 of 6 kidneys, interstitial nephritis was demonstrated histopathologically after simultaneous administration of 200 R of 60 Co gamma-rays and ultrasound for 5 minutes. However, with each alone (600 R of 60 Co gamma-rays and ultrasound for 60 minutes) no detectable changes were found. The results obtained from these experiments suggest that the effect of simultaneous irradiation with 60 Co gamma-rays and exposure to ultrasound on normal tissues may be synergistic and that ultrasound may potentiate the effects of 60 Co gamma-rays. (Evans, J.)

  13. Applying Ionizing Radiation for the Treatment of Sewage Sludge for Reuse

    International Nuclear Information System (INIS)

    Elammari, M.; Mashai, M.; Dehmani, K.; Abokhabta, S.; Akrim, M.

    2004-01-01

    The increased waste production by human activities world wide raised the problem of how to get red of this waste which cause undesirable impact on human and the surrounding environment. Sewage sludge generally contains high concentrations of pathogens even after digestion or after treating with other conventional methods. This paper brings to light the radiation treatment of sludge by ionizing radiation as a simple and reliable process for sludge disinfection and also the effect of Gamma radiation on sludge characteristics and heavy metals which exist in the sludge. Samples of moist sludge were brought from Elhadba Elkhadra waste water treatment plant, the main sewage water treatment plant in the City of Tripoli; they were collected in sterile plastic bags from different locations. Samples were then irradiated using gamma irradiator at Tajura Research Centre with a dose rate of 10 Gy/min, using a Co60 Gamma irradiator. They received a dose ranged between 0 -5 kGy with an increment of 1 kGy. Microorganisms are damaged when exposed to gamma radiation and the extent of damage is proportional to the radiation dose absorbed by the organism. Gamma irradiation greatly reduced the pathogen density in the investigated samples, as the 5 kGy dose was sufficient to terminate the total bacterial count for all microorganisms. A 3 kGy was only needed to demolish Enterobacter ease, Total coliform and Fecal coliform, whereas spore forming needed a dose of 4 kGy for complete elimination. (authors)

  14. Experimental research on transient ionizing radiation effects of CMOS microcontroller

    International Nuclear Information System (INIS)

    Jin Xiaoming; Fan Ruyu; Chen Wei; Wang Guizhen; Lin Dongsheng; Yang Shanchao; Bai Xiaoyan

    2010-01-01

    This paper presents an experimental test system of CMOS microcontroller EE80C196KC20. Based on this system, the transient ionizing radiation effects on microcontroller were investigated using 'Qiangguang-I' accelerator. The gamma pulse width was 20 ns and the dose rate (for the Si atom) was in the range of 6.7 x 10 6 to 2.0 x 10 8 Gy/s in the experimental study. The disturbance and latchup effects were observed at different dose rate levels. Latchup threshold of the microcontroller was obtained. Disturbance interval and the system power supply current have a relationship with the dose rate level. The transient ionizing radiation induces photocurrent in the PN junctions that are inherent in CMOS circuits. The photocurrent is responsible for the electrical and functional degradation. (authors)

  15. Evaluation of performance of food packagings when treated with ionizing radiation

    International Nuclear Information System (INIS)

    Moura, Esperidiana Augusta Barretos de

    2006-01-01

    In this study the mechanical properties (tensile strength and percentage elongation at break and penetration resistance), optical properties, gas oxygen and water vapor permeability, the overall migration tests into aqueous food simulant (3% aqueous acetic acid) and fatty food simulant (n-heptane), as well as the formation of volatile radiation product tests were used to evaluate the effects of ionizing radiation (gamma irradiation or electron-beam irradiation) on commercial monolayer and multilayer flexible plastics packaging materials. These films are two typical materials produced in Brazil for industrial meat packaging, one of them is a monolayer low-density polyethylene (LDPE) and other is a multilayer co extruded low-density polyethylene (LDPE), ethylene vinyl alcohol (EVOH), polyamide (PA) based film (LDPE/EVOH/PA). Film samples were irradiated with doses up to 30 kGy, at room temperature and in the presence of air with gamma rays using a 60 Co facility and electron beam from 1.5 MeV electrostatic accelerator. Alterations of these properties were detected according to the dose applied initially eight day after irradiation took place and new alterations of these values when the properties were evaluate two to three months after irradiation process. The results showed that scission reactions are higher than cross-linking process for both studied films, irradiated with gamma rays and electron beam. The evaluated properties of the irradiated films were not affected significantly with the dose range and period studied. The monolayer Unipac PE-60 and the multilayer Lovaflex CH 130 films can be used as food packaging materials for food pasteurization and in the sterilization process of by ionizing radiation using a gamma facilities and electron beam accelerators in commercial scale. (author)

  16. Non-ionizing radiation

    International Nuclear Information System (INIS)

    Fischer, P.G.

    1983-01-01

    The still growing use of non-ionizing radiation such as ultraviolet radiation laser light, ultrasound and infrasound, has induced growing interest in the effects of these types of radiation on the human organism, and in probable hazards emanating from their application. As there are up to now no generally approved regulations or standards governing the use of non-ionizing radiation and the prevention of damage, it is up to the manufacturers of the relevant equipment to provide for safety in the use of their apparatus. This situation has led to a feeling of incertainty among manufacturers, as to how which kind of damage should be avoided. Practice has shown that there is a demand for guidelines stating limiting values, for measuring techniques clearly indicating safety thresholds, and for safety rules providing for safe handling. The task group 'Non-ionizing radiation' of the Radiation Protection Association started a programme to fulfill this task. Experts interested in this work have been invited to exchange their knowledge and experience in this field, and a collection of loose leaves will soon be published giving information and recommendations. (orig./HP) [de

  17. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  18. 29 CFR 1910.1096 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Ionizing radiation. 1910.1096 Section 1910.1096 Labor... Ionizing radiation. (a) Definitions applicable to this section. (1) Radiation includes alpha rays, beta... the quantity of ionizing radiation absorbed, per unit of mass, by the body or by any portion of the...

  19. Evaluation of contrast media submitted to ionizing radiation

    International Nuclear Information System (INIS)

    Pinho, Katia Elisa Prus; Gewehr, Pedro Miguel; Soboll, Danyel Scheidegger; Silva, Caroline Werner Pereira da; Barison, Andersson; Tilly Junior, Joao Gilberto

    2009-01-01

    Objective: the purpose of the present study was to investigate the influence of ionizing radiation from x-rays and gamma rays on the molecular structure stability of several radiologic contrast media employed in diagnostic imaging by means of 1 H and 1 3C nuclear magnetic resonance spectroscopy. Materials and methods: eight different types of iodinated contrast media (three ionic and five non-ionic) were exposed to x-rays and gamma rays irradiation. Subsequently, the 1 H and 1 3C{ 1 H} nuclear magnetic resonance spectra of these contrast media were collected. Results: the 1 H and 1 3C{ 1 H} nuclear magnetic resonance spectra of both ionic and non-ionic contrast media irradiated by x-rays or gamma rays demonstrated the absence of any alteration of the contrast media chemical composition. Conclusion: there is no problem in keeping contrast media inside examination rooms or close to radiological equipment. It is important to mention that, during the tests, the samples were directly irradiated, while in a radiology examination room, the irradiation is not direct and, therefore, radiation levels in these cases are much lower than those employed in the present study. (author)

  20. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  1. Influence of gamma radiation on the immunological and immunochemical properties of cholera

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Results of studying the effect of gamma-radiation on immunochemical properties and serologic activity of unpurified cholera exotoxin are presented. It is found that in irradiated toxin preparations physico-chemical alterations take place as the dose of ionizing radiation increases, which brings about the increase in electrophoretic mobility, aggregation of protein components. It is shown that serologic activity contained in antigene toxin preparations retains within the limits of radiation doses studied

  2. Responses of a grassland arthropod community to chronic beta and gamma radiation

    International Nuclear Information System (INIS)

    Styron, C.E.; Dodson, G.J.; Beauchamp, J.J.; Miller, F.L. Jr.

    1976-01-01

    A long-term project was initiated in 1968 at Oak Ridge National Laboratory to assess effects of mixed beta and gamma radiation from simulated fallout on a grassland ecosystem. Beta and gamma radiation dose rates in microhabitats of the experimentally contaminated enclosure were measured with LiF thermoluminescent microdosimeters. Extensive statistical analyses of data on numbers of individuals collected for each of 76 arthropod and 2 molluscan taxa have identified no lasting significant changes in similarity or species diversity of experimental versus control communities as the result of the long-term irradiation at low dose rates. Natural fluctuations in community dynamics obscured any possible radiation effects. Thus, the apparent threshold for mixed beta and gamma radiation inducing changes in community structure must be above the exposure rate range of 2.3 to 13 rad/day delivered during the 5 yr of observation. Establishing such a threshold is of importance in assessing the impact of communities subjected to chronic, low level environmental exposure to ionizing radiation

  3. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  4. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  5. The Enceladus Ionizing Radiation Environment: Implications for Biomolecules

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Davila, A. F.; McKay, C.; Dartnell, L.

    2016-12-01

    Enceladus' subsurface ocean is a possible abode for life, but it is inaccessible with current technology. However, icy particles and vapor are being expelled into space through surface fractures known as Tiger Stripes, forming a large plume centered in the South Polar Terrains. Direct chemical analyses by Cassini have revealed salts and organic compounds in a significant fraction of plume particles, which suggests that the subsurface ocean is the main source of materials in the plume (i.e. frozen ocean spray). While smaller icy particles in the plume reach escape velocity and feed Saturn's E-ring, larger particles fall back on the moon's surface, where they accumulate as icy mantling deposits at practically all latitudes. The organic content of these fall-out materials could be of great astrobiological relevance. Galactic Cosmic Rays (GCRs) that strike both Enceladus' surface and the lofted icy particles produce ionizing radiation in the form of high-energy electrons, protons, gamma rays, neutrons and muons. An additional source of ionizing radiation is the population of energetic charged particles in Saturn's magnetosphere. The effects of ionizing radiation in matter always involve the destruction of chemical bonds and the creation of free radicals. Both affect organic matter, and can damage or destroy biomarkers over time. Using ionizing radiation transport codes, we recreated the radiation environment on the surface of Enceladus, and evaluated its possible effects on organic matter (including biomarkers) in the icy mantling deposits. Here, we present full Monte-Carlo simulations of the nuclear reactions induced by the GCRs hitting Enceladus's surface using a code based on the GEANT-4 toolkit for the transport of particles. To model the GCR primary spectra for Z= 1-26 (protons to iron nuclei) we assumed the CREAME96 model under solar minimum, modified to take into account Enceladus' location. We considered bulk compositions of: i) pure water ice, ii) water ice

  6. The iQID camera: An ionizing-radiation quantum imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States); Gregory, Stephanie J.; Fuller, Erin S. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R. [Center for Gamma-Ray Imaging, The University of Arizona, Tucson, AZ 85719 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States)

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  7. Some immune reactions of the personnel, subjected to combined effect of ionizing radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Shubin, V.M.; Litver, B.Ya.; Zykova, I.A.

    1978-01-01

    Some factors of nonspecific bodily protection (bactericidal capacity, complement, lysozyme, beta lysins of blood serum) are analyzed in gamma defectoscopists and in workers exposed to occupational factors of nonradiation nature. A number of alterations in immunity indices in persons exposed to combined radiation and nonradiation factors (stimulation of beta lysins, increased levels of antitissue antibodies, etc.) had has been revealed. These alterations appear to have resulted from the potentiation of the effects from ionizing radiation and nonradiation nature factors

  8. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  9. 29 CFR 1926.53 - Ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  10. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  11. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  12. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  13. Project, construction and calibration of parallel plate ionization chambers for x-radiation

    International Nuclear Information System (INIS)

    Albuquerque, M.P.P.

    1989-01-01

    Two pairs of parallel-plate ionization chambers were projected and constructed. In each pair one of the chambers has a collecting electrode and a guard ring made of graphite and the other, of aluminium. The difference between both pairs is that in only one case screws were used to fix the chamber components. The chambers are made of Lucite with aluminized Mylar entrance windows; they have circular form and are unsealed. All chamber components are easily available. The main chamber characteristics were determined, applying the tests of current leakage, repetitively and long term stability. The energy and angular dependence, and the polarity effect were also studied, obtaining the saturation curves and determining the build-up effect for gamma radiation detection. The chambers were calibrated with low and intermediate energy X-radiation, gamma radiation of sup(60)Co an sup(137)Cs, and beta radiation of sup(90)Sr + sup(90)Y. The obtained results show the viability of utilization of these chambers in radiation dosimetry and the results were compared with those of imported commercial ionization chambers of the secondary standard type. The great difference between the energy dependence of the chambers according to the collecting electrode material, allowed the formation of a Tandem system (constituted by a chamber pair A, C), for the determination of the effective energy and the exposure rate in air of unknown X-radiation fields, in the case of low intermediate energy ranges. (author)

  14. In Vivo Imaging of Microglia Turnover in the Mouse Retina After Ionizing Radiation and Dexamethasone Treatment

    DEFF Research Database (Denmark)

    Alt, C.; Runnels, J. M.; Mortensen, L. J.

    2014-01-01

    irradiation with a confocal scanning laser ophthalmoscope that we custom-built specifically for multicolor imaging of the murine retina. RESULTS. Ionizing radiation resulted in loss of 75% of the resident retinal microglia population after 70 days. Recruitment of BMDCs was delayed with respect...... dexamethasone preserves resident microglia and minimizes recruitment of BMDCs after ionizing radiation exposure and BMT.......PURPOSE. Gamma irradiation and bone marrow transplantation (BMT) are established clinical procedures for the treatment of hematologic malignancies. The radiation targets cells in the bone marrow, but injury to other tissues, including the central nervous system (CNS), have been reported. Here, we...

  15. Signal Network Analysis of Plant Genes Responding to Ionizing Radiation

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Kim, Sang Hoon

    2012-12-01

    In this project, we irradiated Arabidopsis plants with various doses of gamma-rays at the vegetative and reproductive stages to assess their radiation sensitivity. After the gene expression profiles and an analysis of the antioxidant response, we selected several Arabidopsis genes for uses of 'Radio marker genes (RMG)' and conducted over-expression and knock-down experiments to confirm the radio sensitivity. Based on these results, we applied two patents for the detection of two RMG (At3g28210 and At4g37990) and development of transgenic plants. Also, we developed a Genechip for use of high-throughput screening of Arabidopsis genes responding only to ionizing radiation and identified RMG to detect radiation leaks. Based on these results, we applied two patents associated with the use of Genechip for different types of radiation and different growth stages. Also, we conducted co-expression network study of specific expressed probes against gamma-ray stress and identified expressed patterns of duplicated genes formed by whole/500kb segmental genome duplication

  16. Gamma non-ionizing energy loss: Comparison with the damage factor in silicon devices

    Science.gov (United States)

    El Allam, E.; Inguimbert, C.; Meulenberg, A.; Jorio, A.; Zorkani, I.

    2018-03-01

    The concept of non-ionizing energy loss (NIEL) has been demonstrated to be a successful approach to describe the displacement damage effects in silicon materials and devices. However, some discrepancies exist in the literature between experimental damage factors and theoretical NIELs. 60Co gamma rays having a low NIEL are an interesting particle source that can be used to validate the NIEL scaling approach. This paper presents different 60Co gamma ray NIEL values for silicon targets. They are compared with the radiation-induced increase in the thermal generation rate of carriers per unit fluence. The differences between the different models, including one using molecular dynamics, are discussed.

  17. Calibration of radioprotection equipment gamma radiation at the Laboratory of Ionizing Radiation Metrology - DEN/UFPE

    International Nuclear Information System (INIS)

    Nazario, Macilene; Khoury, Helen; Hazin, Clovis

    2003-01-01

    This work presents aspects of the radioprotection equipment calibration service of the Laboratory for Metrology of Ionizing Radiations (LMRI) of the DEN/UFPE related to the calibration procedures, characteristics of the radiation beam and the evaluation of equipment calibrated in the period of 2001-2002. The LMRI-DEN/UFPE is one of the four laboratories in Brazil licensed by the Brazilian Nuclear Energy Commission for the execution of calibration services on area, surface contamination and personal monitors used by industries, hospitals, universities and research institutes using radioactive sources

  18. Risk to Krakow population of gamma radiation from building materials

    International Nuclear Information System (INIS)

    Koperski, J.; Jasinska, M.

    1980-01-01

    A statistics was made of 7128 dwelling-houses considering their age, types of building materials and density of population. Gamma dose rates were measured by means of the TL and pressurized ionization chamber techniques inside 300 buildings and in 44 points outdoors over different kinds of beddings. Personal doses of 49 inhabitants of the buildings monitored were also recorded. By means of the spectrometric analysis of gamma radiation, and basing on a specially developed computational programme ''DOZA'' mean concentrations of 40 K, 226 Ra and 232 Th in 61 samples of building materials were evaluated. It was found that the mean personal dose rate as well as the mean indoor dose rate equals 5.7 urad/h /15.8 pGy/s/ and is about 19% higher than the dose outdoors which equals 4.8 urad/h /13.3 pGy/s/. Gamma dose rates inside the buildings made of gravel-sand concrete elements are about 10% lower than those in the buildings made of red bricks. Mean annual dose equivalent per capita from gamma radiation of building materials equals 40.6 mrem/y /406 uSv/y/, which constitutes about 57% of total annual dose equivalent per capita from all environmental sources of gamma radiation in the residential districts in Krakow. (author)

  19. Environmental exposure to ionizing radiation and childhood leukaemia incidence

    International Nuclear Information System (INIS)

    Evrard, Anne-Sophie

    2006-01-01

    This thesis aimed at providing an epidemiological approach of the hypothesis of the existence of an association between environmental exposure to ionizing radiation and childhood leukaemia incidence. From 1990 to 2001, 5,330 cases of acute leukaemia were registered by the French National Registry of Childhood Leukemia and Lymphoma in children under 15 years of age and living in mainland France at the time of diagnosis. Indoor radon concentration was estimated using 13,240 measurements carried out by the Institute for Radiation Protection and Nuclear Safety (IRSN), and covering the whole country. Exposure to terrestrial gamma radiation was based on continuous measurements, using thermoluminescent dosimeters, at about 1,000 sites covering the whole of France, in order to monitor the level of environmental radioactivity in France. Analyses were conducted using Poisson regressions, including ecological co-variates, at the level of the 'Departments' (95 administrative geographical units in France). A significant positive ecological association between indoor radon concentration and the incidence of acute myeloid leukaemia was evidenced (SIR=1.19 per 100 Bq/m 3 - 95% confidence interval=[1.03-1.38]) and remained significant in multivariate regression analyses including exposure to terrestrial gamma radiation and/or some ecological co-variates. Conversely, there was no evidence of an ecological association between exposure to terrestrial gamma radiation and childhood leukaemia incidence. The epidemiological studies of the incidence of childhood leukaemia around nuclear sites analyzed incidence with respect to the distance from the plants, without considering any information on the levels or geographic distribution of the radiation dose due to discharges from the plants. The present study investigated for the first time the incidence of childhood leukaemia around French nuclear installations using a geographic zoning based on estimated doses due to gaseous

  20. Paramecium aurelia as a cellular model used for studies of the biological effects of natural ionizing radiation or chronic low-level irradiation

    International Nuclear Information System (INIS)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Croute, F.; Richoilley, G.

    1979-01-01

    Paramecium aurelia appears to be a very suitable object for investigating the biological effects of natural ionizing radiation or the influence of low doses of radiation. The biological effects of ionizing radiation on cell proliferation kinetics were tested. It is shown that radio-protection or chronic exposure to very low doses of 60 Co gamma rays induce different changes in cell growth rate. Special experimental techniques can help to obtain more obvious results using cells more sensitive to the stimulating effects of low doses of ionizing radiation. (author)

  1. Effect of temperature and gamma radiation on pupae of tenebrio molitor LINNE

    International Nuclear Information System (INIS)

    Arthur, Valter; Arthur, Paula Bergamin

    2001-01-01

    Among insect pests of grains and stored products Tenebrio molitor (Coleoptera : Tenebriodae) is one of the species of insects that attack flours, corn meal, rations, macaronis and damages grains. Chemical treatment is not always the remedy because it causes problems of residue on treated food. One alternative method of control is the application of ionization radiations as suggested by Hunter, some others recommended the use of gamma radiation to control insects that attack grains and stored products. Arthur and Wiendl reported that the sterilizing dose to adults of this species is 60 Gy. The effect of temperature after and before the gamma radiation to Laemophleous spp. Zabrotes subfasciatus and Sitophilus oryzae has been studied by many workers. Since no study with radiological effects in combination with temperature is reported on T. molitor, research work has been carried out to study the synergistic effects of gamma radiation and temperature on pupae of this insect

  2. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  3. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  4. Modulation of the Inflammatory Response by Ionizing Radiation and the Possible Role of Curcumin

    International Nuclear Information System (INIS)

    Hegazy, M.El.A.

    2009-01-01

    The increasing use of radiation and the recent incidents of massive radiation exposure give an importance to study possible radiation hazards. Radiation-induced cell changes may result in death of the organism, death of the cells, modulation of physiological activity, or cancers that have no features distinguishing them from those induced by other types of cell injury (Valko et al., 2004). Electromagnetic radiation is divided into non-ionizing and ionizing radiation according to the energy required to eject electrons from molecules (Bessonov, 2006). Ionizing radiation, which may exhibit the properties of both waves and particles, has sufficient energy to produce ionization in matter. The ionizing radiation that exhibits corpuscular properties include alpha and beta particles, while those that behave more like waves of energy include x-rays and gamma-rays (γ-rays) (Bessonov, 2006). Radiation exposure comes from many sources and may be directly or indirectly ionizing. Directly ionizing radiation carries an electric charge that directly interacts, by electrostatic attraction or repulsion, with atoms in the tissue or the exposed medium. On the other hand, indirectly ionizing radiation is not electrically charged but results in production of charged particles by which its energy is absorbed (Metting et al., 1988). One of the characteristics of charged particles produced directly or indirectly is the linear energy transfer (LET), the energy loss per unit of distance traveled, usually expressed in kilo-electron volts (keV) per micrometer (μm). The LET, depending on the velocity and charge of the particles, may vary from about 0.2 to more than 1000 keV/μm (Table (1)). Radiation interacts with matter by direct and indirect processes to form ion pairs, some of which may be free radicals. These ion pairs rapidly interact with themselves and other surrounding molecules to produce free radicals. Both the indirect and direct activities of ionizing radiation lead to molecular

  5. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  6. Polymers under ionizing radiation: the study of energy transfers to radiation induced defects

    International Nuclear Information System (INIS)

    Ventura, A.

    2013-01-01

    Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H 2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author) [fr

  7. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  8. Effect of low-dose gamma-radiation upon hatchability and weight of chickens

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Simpraga, M.; Miljanic, S.

    2006-01-01

    Full text of publication follows: Although any dose of ionizing radiation has generally been recognized to be detrimental to living being, low dose ionizing radiation seems to invoke primary stimulative effects. Stimulatory effects of low dose ionizing radiation include many aspects such as growth, fecundity and longevity stimulation, accelerated development, enhance biological responses for immune systems, enzymatic repair, physiological functions, and the removal of cellular damage, including prevention and removal of cancers and other diseases. Low dose ionizing radiation might also cause changes in the concentration of some biochemical parameters in blood plasma of chickens such as changes in the concentration of total proteins, glucose and cholesterol. The objective of this study was to determine the effect of low doses of gamma irradiation before incubation and on the seventh day of incubation on hatchability of eggs and body weight of chickens. This study includes three independent experiments. In the first experiment, six-hundred eggs produced by a commercial flock of Avian-line 34, were irradiated by a dose of 0.15 Gy gamma radiation (60 Co) before incubation. In the second experiments also involving six-hundred-line 34 eggs were irradiated by dose of 0.15 Gy gamma radiation on the seventh day of incubation. In the third experiment three-hundred eggs produced by a commercial flock of Ross 308 were irradiated by dose 0.30 Gy gamma irradiation before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. Hatchability was calculated in terms of all eggs divided with fertile eggs which hatched. The individual weights of the chickens were determined on the first and on the forty second day. Growth data were analyzed statistically by t-test. Irradiation of chicken eggs and embryos at rates o f 0.15 Gy increases

  9. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  10. Expression profile of cell cycle genes in the fish CATLA CATLA (Ham.) exposed to gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar Mary, N.

    2012-01-01

    The International Commission on Radiological Protection (ICRP) emphasized the need to protect non-human biota from the potential effects of ionizing radiation and proposed to include molecular effects such as DNA damage as endpoints. Molecular effects of ionizing radiation exposure in representative non-humans are largely unexplored and sufficient data is not available in fishes. Gene expression is a fast and sensitive end point in detecting the molecular cues as a result of ionizing radiation exposure in a wide variety of aquatic organisms under suspected environmental contamination. Exposure to ionizing radiation transiently alters gene expression profiles as cells regulate certain genes to protect cellular structures and repair damage. The present study focused on genes like Gadd45á, Cdk1 and Bcl-2 in DNA damage repair and cell cycle machinery and its implication as molecular markers of radiation exposure. This study is first of its kind showing the in vivo expression profile of cell cycle genes in fish exposed to gamma radiation. Although this preliminary investigation points to certain molecular markers of ionizing radiation, elaborate studies with various doses and dose-rates are required before these markers find application as prospective molecular markers in aquatic radiation biodosimetry

  11. Application of spectroscopic methods to the study of ionizing radiation effects in polymers

    International Nuclear Information System (INIS)

    Jimenez P, G.

    1995-01-01

    In general the interaction of ionizing radiation with polymers generates physic-chemical changes. Aiming to quantity these changes, three spectroscopic analytical techniques were used (UV, IR and EPR) and the chemical corrosion technique was used for three DSTN (CR39, Lexan and Makrofol) which were exposed to two radiation types: electrons and gammas. The effects of radiation are compared. Also a correlation between the UV and Vg results in function of dose is presented. The possible causes of the increase in chemical corrosion are discussed. (Author)

  12. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  13. Effects of 60Co gamma radiation on crotamine

    Directory of Open Access Journals (Sweden)

    Boni-Mitake M.

    2001-01-01

    Full Text Available Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (pI 10.3 from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (LD50. Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it.

  14. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  15. Effects of ionizing-radiation and post-radiation action of some plant growth regulators on the seed germination and seedling growth of Scotch pine

    Directory of Open Access Journals (Sweden)

    Leszek Michalski

    2015-01-01

    Full Text Available The effects of small doses of gamma irradiation on the seed germination and seedling growth of Scotch pine and post-radiation action of water solutions of IAA, GA3 and kinetin have been investigated. Changes in the destructive action of ionizing-radiation toy gibberellic acid and its intensifying by IAA and kinetin has been found.

  16. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  17. Comparison between radiological protection against ionizing radiation and non ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1992-01-01

    Protection against IR and NIR developed in completely different ways because of the very different evolution of the techniques they involve. While as soon as 1928, the International Society of Radiology created the International Commission of Radiological Protection, we had to wait until 1977 to see the creation of the International Committee for NIR (INIRC) by IRPA. To compare protection against Ionizing Radiations and Non Ionizing Radiations we will first carry out a general analysis of its components and then we will draw the general conclusions leading to a quite comparable evolution. (author)

  18. Comparison between radiological protection against ionizing radiation and non-ionizing radiation

    International Nuclear Information System (INIS)

    Jammet, H.P.

    1988-01-01

    The comparison of doctrines concerning protection against ionizing and non-ionizing radiation is a difficult task, because of the many areas in which it is applied. Radiological pollution has grown during the century, but its evolution has not been concomitant. This has resulted in a distortion that can be identified in the successive steps of the evaluation and protection against such radiation. For a better understanding, this discussion deals with the differences in interaction with matter and the induction of the related risks, on the varieties of protection systems and monitoring procedures

  19. Analysis of texture in baby carrot (Daucus carota) subjected to the process of ionizing radiation

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Sabato, Susy F.

    2011-01-01

    The carrot is a vegetable of great economic value due to its versatility in the food industry and can be used as raw or minimally processed vegetable or aggregating value to the product, transforming the fresh carrots in baby carrots. It is well known that the application of gamma radiation in food may help in maintaining the quality of food. The aim of this study was to analyze the effects of the low doses of ionizing radiation on texture of minimally processed baby carrot after the processing in a Multipurpose 60 Co irradiator. It can be concluded that the treatment with low doses of gamma radiation keep the quality of fresh-cut baby carrot. (author)

  20. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  1. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    Science.gov (United States)

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  2. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2017-08-01

    Full Text Available A recent hypothesis has revealed that low-dose irradiation (LDI with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam and indirect (gamma-ray low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG–I and IG–II and respectively exposed to electron and gamma-radiations (75 cGy immediately after the surgical procedure. The third group was considered as the control (CG and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing.

  3. Biochemical and immunological responses to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; Mahdy, E.M.; El-Gawish, M.A.; Shosha, W.

    2006-01-01

    Malondialdehyde, lactate dehydrogenase, iron concentration, IL-6 and IL-1b concentration, hemoglobin content, red cells, white cells and platelet counts were determined in seventy-two male albino rats divided into two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7 and 1 Gy single dose of gamma radiation. The other was subdivided into 4 subgroups irradiated with fractionated doses of gamma radiation; three groups were irradiated with 0.3, 0.7 and 1 Gy (0.1 Gy/day) and the last subgroup with 1 Gy (0.2 Gy/day). All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated doses more than the single doses. Hematological parameters were decreased in rats exposed to single doses more than the fractionated ones. In conclusion, the data of this study highlights the stimulatory effect of low ionizing radiation doses (= 1 Gy), whether single or fractionated, on some biochemical and immunological parameters

  4. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    Science.gov (United States)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  5. Oxidative stress in mollusks Biomphalaria Glabrata exposed to gamma radiation

    International Nuclear Information System (INIS)

    Silva, Luanna R.S.; Augusto, Ricielle L.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Pereira, Dewson R.; França, Elvis J.; Silva, Edvane B.; Melo, Ana M.M.A.

    2017-01-01

    Ionizing radiation can cause biological changes in different organisms such as mollusks from Biomphalaria glabrata species, in which alterations could be observed in the reproductive system of the specimens, prejudicing fertility and fecundity. As the changes may occur due to the lipid peroxidation caused by the action of free radicals on the gonads, the objective of this work was to evaluate the oxidative damage caused by the exposure of B. glabrata mollusks to different doses of gamma radiation. In addition, efforts were carried out to standardize a sensitive and low-cost technique for detecting negative effects caused by high doses of ionizing radiation. For this, each mollusk group (n = 10) was submitted to 0 (control), 10, 15, 20 and 25 Gy (Gammacell- "6"0Co, dose rate 3.532 kGy/h). The TBARS method was applied for the quantification of lipid peroxidation of the gonads of the mollusks after 24 and 48 h. ANOVA, followed by the mean comparison (Tukey) at the 5% of significance level, indicated high concentrations of TBARS in the gonads after 24 h. Otherwise, after 48 h, differences for TBARS concentrations were not significant at the 95% confidence level, determining that the action of free radicals from ionizing radiation on cell membranes mainly occurred within 24 h after irradiation. (author)

  6. Oxidative stress in mollusks Biomphalaria Glabrata exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luanna R.S.; Augusto, Ricielle L.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Pereira, Dewson R.; França, Elvis J.; Silva, Edvane B.; Melo, Ana M.M.A., E-mail: luannaribeiro_lua@hotmail.com, E-mail: williams.wns@gmail.com, E-mail: ejfranca@gmail.com, E-mail: edvborges@yahoo.com, E-mail: luannaribeiro_lua@hotmail.com, E-mail: williams.wns@gmail.com, E-mail: ricardolclf@hotmail.com, E-mail: dewson.rocha@gmail.com, E-mail: s, E-mail: amdemelo@hotmail.com, E-mail: ricielleaugusto@gmail.com, E-mail: williams.wns@gmail.com, E-mail: ejfranca@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-11-01

    Ionizing radiation can cause biological changes in different organisms such as mollusks from Biomphalaria glabrata species, in which alterations could be observed in the reproductive system of the specimens, prejudicing fertility and fecundity. As the changes may occur due to the lipid peroxidation caused by the action of free radicals on the gonads, the objective of this work was to evaluate the oxidative damage caused by the exposure of B. glabrata mollusks to different doses of gamma radiation. In addition, efforts were carried out to standardize a sensitive and low-cost technique for detecting negative effects caused by high doses of ionizing radiation. For this, each mollusk group (n = 10) was submitted to 0 (control), 10, 15, 20 and 25 Gy (Gammacell- {sup 60}Co, dose rate 3.532 kGy/h). The TBARS method was applied for the quantification of lipid peroxidation of the gonads of the mollusks after 24 and 48 h. ANOVA, followed by the mean comparison (Tukey) at the 5% of significance level, indicated high concentrations of TBARS in the gonads after 24 h. Otherwise, after 48 h, differences for TBARS concentrations were not significant at the 95% confidence level, determining that the action of free radicals from ionizing radiation on cell membranes mainly occurred within 24 h after irradiation. (author)

  7. Isolation of a bacteria of the Bacillus genus as indicator in the disinfection of residual waters by means of the ionizing radiation (e{sup -} , {gamma}); Aislamiento de una bacteria del genero Bacillus como indicador en la desinfeccion de aguas residuales mediante la radiacion ionizante (e{sup -} , {gamma})

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M

    2003-07-01

    The pollutants of the water can be chemical, physical and biological. Among those biological we find to the microorganisms: bacterias, virus and protozoa. These cause important infections in many countries, mainly of Latin America. With the advance of the technology and the quick demographic growth, the biological pollution of the water has already become an important topic since it would damage the public health and it causes that their disinfection has greater attention. In the treatment of residual waters three basic treatments exist the one primary, secondary and tertiary; in this last we find the disinfection, which can be taken to end by chemical and physical methods. For this work of investigation it was used the ionizing radiation, because it is an innovative technology that it eliminates microorganisms in residual waters. The investigation consisted on treating, samples of residual water after the biological treatment of the plant RECICLAGUA with ionizing radiation (electrons and gammas), for the case of electrons it was used the dose of 0.5 kGy and for gamma the dose, of 5 kGy, later the survivor bacteria was isolated to these doses in both cases and they were carried out the tests of identification. In accordance with the obtained results can say that it is about a B. subtilis. The isolated B.subtilis was presented as a pollutant of the flora of the residual water, having a greater survival to the dose of 0.5 and 5 kGy with electrons and gammas, respectively that other present polluting microorganisms in the samples of residual water. For it fits signalize that this microorganism shows characteristics as it easy isolation and identification, the presence with pathogen microorganisms and a greater survival when being irradiated, therefore it can use as indicator in the disinfection of residual waters through ionizing radiation (electrons and gammas). (Author)

  8. Suppression of non-photochemical quenching in Arabidopsis leaves to a ionizing radiation

    International Nuclear Information System (INIS)

    Yu Ran Moon; Jin-Hong Kim; Min Hee Lee; Byung Yeoup Chung; Jae-Sung Kim

    2007-01-01

    Complete text of publication follows. Non-photochemical quenching (NPQ) of chlorophyll fluorescence has been known to be involved in a protection of photosystems against photoinhibition through a dissipation of excess light absorbed by photosynthetic pigments. In the present study, we aimed to elucidate the effects of a ionizing radiation on NPQ by comparing alterations in the development and release of NPQ after gamma-irradiation between the wild-type (WT) and the npq1-2 mutant of Arabidopsis. The npq1-2 mutant can't develop with a normal NPQ under excess light, since it is defective in its de-epoxidase activity for conversion of violaxanthin to zeaxanthin. Gamma-irradiation with a dose of 200 Gy inhibited the development of NPQ in both the WT and mutant but more noticeably in the latter. Moreover, Fv/Fm as an indice of the photochemical efficiency of photosystem II (PSII) was almost the same in both the WT and npq1-2 mutant throughout the post-irradiation period of 5 d. The obtained results will be also discussed with those from photoinhibition induced by non-ionizing radiations such as visible light and UV-B.

  9. Effects and radiation protection aspects of Gamma-rays in Nuclear Medicine: A review

    International Nuclear Information System (INIS)

    Begum, Ferdousi; Paul, Ashoke Kumar; Miah, Md. Sayedur Rahman; Rahman, Hosne Ara

    2004-01-01

    In Nuclear Medicine Centre of Bangladesh the radioisotope like ''1''3''1I, ''1''2''5I, ''9''9''mTc and ''9''0Sr are mainly used. These isotopes radiate gamma and /or beta rays. Ionizing radiation cannot be sensed or identified without special knowledge and scientific instruments. The radiation, unless properly controlled, causes harm to special type and nature to the patients, worker, public and environment. It causes somatic and genetic effects. (author) 5 tabs., 8 refs

  10. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  11. Biological effects of low-level ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1986-01-01

    Early in this century it was recognized that large doses of ionizing radiation could injure almost any tissue in the body, but small doses were generally thought to be harmless. By the middle of the century however it came to be suspected that even the smallest doses of ionizing radiation to the gonads might increase the risk of hereditary disease in subsequently-conceived offspring. Since then the hypothesis that carcinogenic and teratogenic effects also have no threshold has been adopted for purposes of radiological protection. It is estimated nevertheless that the risks that may be associated with natural background levels of ionizing irradiation are too small to be detectable. Hence validation of such risk estimates will depend on further elucidation of the dose-effect relationships and mechanisms of the effects in question, through studies at higher dose levels. In contrast to the situation with ionizing radiation, exposure to natural background levels of ultraviolet radiation has been implicated definitively in the etiology of skin cancers in fair-skinned individuals. Persons with inherited effects in DNA repair capacity are particularly susceptible. Non-ionizing radiations of other types can also affect health at high dose levels, but whether they can cause injury at low levels of exposure is not known

  12. Ionizing radiation and cancer prevention

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation in unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. 9 refs., 1 fig., 5 tabs

  13. Risk Factors: Radiation

    Science.gov (United States)

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  14. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  15. HISTOLOGICAL CHANGES IN POECILIA RETICULATA AFTER INTERACTION OF IONIZING RADIATION AND ZINC SULFID

    Directory of Open Access Journals (Sweden)

    Michaela Špalková

    2012-12-01

    Full Text Available In our experiment we have studied interaction of ionizing radiation and zinc at Poecilia reticulata. Fish were irradiated with a 20 Gy of gamma-rays. Zinc sulphate in concentration 25 mg.l-1 was added to water in aquarium. Food intake, clinicl symptoms and histological changes were followed after gamma-irradiation and zinc sulfid in guppy Poecilia reticulata. In the first days timidity and lethargy were observed. The most prominent clinical symptoms observed were emaciation, hampered breathing and haemorrhages. Histological findings corresponded with these symptoms.doi:10.5219/228

  16. Degradation of diazinon contaminated waters by ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Mohamed, K.A.; Al-Abduly, A.J.; Al-Kuraiji, T.S.; Al-Shahrani, A.A.

    2007-01-01

    Study of degradation of diazinon pesticide by 60 Co gamma irradiation in a single aqueous solution was conducted on a laboratory scale and the effect of ionizing radiation on the removal efficiency of diazinon residues was investigated. Distilled water solutions at three different concentrations of targeted compound (i.e. 0.329, 1.643 and 3.286 μmol dm -3 ) were irradiated over the range 0.1-6 kGy. The initial concentration of contaminant and irradiation doses play a significant role in the rate of destruction; this was evident from the calculated decay constants of diazinon residue. Gamma radiolysis showed that the absorbed doses from 1.5 to 5.6 kGy at a dose rate of 4.79 kGy h -1 achieved 90% destruction for diazinon with initial concentrations over the range 0.329-3.286 μmol dm -3 . The radiolytic degradation by-products and their mass balances were qualitative determined with good confidence by using GC/quadrupole mass spectrometry (GC/MS) with EI + or CI in positive and negative ionization mode and diazinon degradation pathways were proposed. Additionally, the final products of irradiation were identified by ion chromatography (IC) to be acetic and formic acid

  17. Low-power laser irradiation did not stimulate breast cancer cells following ionizing radiation

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Cabral, F. V.; Ribeiro, M. S.

    2016-03-01

    Cancer has become a public health problem worldwide. Radiotherapy may be a treatment to a number of types of cancer, frequently using gamma-radiation with sources such as 137Cs and 60Co, with varying doses, dose rates, and exposure times to obtain a better as a stimulant for cell proliferation and tissue healing process. However, its effects on cancer cells are not yet well elucidated. The purpose of this work was to evaluate the effects of the LPL on breast cancer cultures after ionizing radiation. The breast cancer-MDA-MB-231 cells were gamma irradiated by a 60Co source, with dose of 2.5 Gy. After 24h, cells were submitted to LPL irradiation using a red laser emitting at λ= 660 nm, with output power of 40 mW and exposure time of 30 s and 60 s. The plates were uniformly irradiated, with energy of 1.2 J and 2.4 J, respectively. Cell viability was analyzed using the exclusion method with trypan blue. Our results show that breast cancer cells submitted to LPL after ionizing radiation remained 95 % viable. No statistically significant differences were observed between laser and control untreated cells, (P > 0.05). These findings suggest that LPL did not influenced cancer cells viability.

  18. Down syndrome and ionizing radiation.

    Science.gov (United States)

    Verger, P

    1997-12-01

    This review examines the epidemiologic and experimental studies into the possible role ionizing radiation might play in Down Syndrome (trisomy 21). It is prompted by a report of a temporal cluster of cases of this chromosomal disorder observed in West Berlin exactly 9 mo after the radioactive cloud from Chernobyl passed. In approximately 90% of cases, Down Syndrome is due to the nondisjunction of chromosome 21, most often in the oocyte, which may be exposed to ionizing radiation during two separate periods: before the completion of the first meiosis or around the time of ovulation. Most epidemiologic studies into trisomies and exposure to ionizing radiation examine only the first period; the Chernobyl cluster is related to the second. Analysis of these epidemiologic results indicates that the possibility that ionizing radiation might be a risk factor in Down Syndrome cannot be excluded. The experimental results, although sometimes contradictory, demonstrate that irradiation may induce nondisjunction in oogenesis and spermatogenesis; they cannot, however, be easily extrapolated to humans. The weaknesses of epidemiologic studies into the risk factors for Down Syndrome at birth (especially the failure to take into account the trisomy cases leading to spontaneous abortion) are discussed. We envisage the utility and feasibility of new studies, in particular among women exposed to prolonged or repeated artificially-produced ionizing radiation.

  19. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  20. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  1. Degradation of morphine and codeine by gamma radiation in methanol solution

    International Nuclear Information System (INIS)

    Kantoglu, Oemer; Ergun, Ece

    2015-01-01

    The high concentrations of opiate and solvent in wastewater are toxic to biological life and affect the aquatic environment. Therefore, it must be treated by an advanced treatment process such as ionizing radiation. Effect of organic media on morphine and codeine during gamma irradiation was determined for the first time in this paper. Samples were irradiated at ambient temperature and in air environment at various doses (0, 10, 20, 30, 40, 50 and 60 kGy). Gamma irradiation-induced changes in the molecular structure of morphine and codeine were monitored by direct infusion electrospray ionization mass spectrometry in positive ion mode. The mass of the by-products were appeared to be more than the mass of the original alkaloids. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated morphine and oxygenated codeine were identified in the presence of oxygen. However, solvent radical addition reactions were observed as the main mechanism for the by-product formation in oxygen-free irradiation. The results indicated that 89% of morphine and 98% of codeine were degraded at dose of 50 kGy. In addition, alkaloids and their by-products were not detected above 50 kGy. Here, we demonstrated that ionizing radiation process is a promising method to remove morphine and codeine in solvent/opiate rich industrial wastewater.

  2. Degradation of morphine and codeine by gamma radiation in methanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Kantoglu, Oemer; Ergun, Ece [TAEA, Saraykoey Nuclear Research and Training Center, Ankara (Turkey)

    2015-05-01

    The high concentrations of opiate and solvent in wastewater are toxic to biological life and affect the aquatic environment. Therefore, it must be treated by an advanced treatment process such as ionizing radiation. Effect of organic media on morphine and codeine during gamma irradiation was determined for the first time in this paper. Samples were irradiated at ambient temperature and in air environment at various doses (0, 10, 20, 30, 40, 50 and 60 kGy). Gamma irradiation-induced changes in the molecular structure of morphine and codeine were monitored by direct infusion electrospray ionization mass spectrometry in positive ion mode. The mass of the by-products were appeared to be more than the mass of the original alkaloids. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated morphine and oxygenated codeine were identified in the presence of oxygen. However, solvent radical addition reactions were observed as the main mechanism for the by-product formation in oxygen-free irradiation. The results indicated that 89% of morphine and 98% of codeine were degraded at dose of 50 kGy. In addition, alkaloids and their by-products were not detected above 50 kGy. Here, we demonstrated that ionizing radiation process is a promising method to remove morphine and codeine in solvent/opiate rich industrial wastewater.

  3. Microbial cells can cooperate to resist high-level chronic ionizing radiation

    OpenAIRE

    Shuryak, Igor; Matrosova, Vera Y.; Gaidamakova, Elena K.; Tkavc, Rok; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P.; Daly, Michael J.

    2017-01-01

    Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13–126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strain...

  4. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  5. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  6. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  7. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  8. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  9. Prenatal exposition on ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    The Sessions on Prenatal Exposition on Ionizing Radiations was organized by the Argentine Radioprotection Society, in Buenos Aires, between 8 and 9, November 2001. In this event, were presented papers on: biological effects of ionizing radiation; the radiation protection and the pregnant woman; embryo fetal development and its relationship with the responsiveness to teratogens; radioinduced delayed mental; neonatal irradiation: neurotoxicity and modulation of pharmacological response; pre implanted mouse embryos as a model of uranium toxicity studies; hereditary effects of the radiation and new advances from the UNSCEAR 2001; doses estimation in embryo

  10. Evaluation of effects of ionizing radiation on materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio

    2009-01-01

    This work consisted of quantitative studies of the effects caused by ionizing radiation on materials used in dental restorations (Titanium, Amalgam, Resin Composite and Glass Ionomer) aiming the deleterious effects of radiotherapy when patients with tumors in head and neck, arising when the teeth are restored within in the field of radiation. Samples were submitted to X-ray beams of 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. The sample were submitted to Geiger-Mueller detectors and the ionization chambers in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a Germanium detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  11. Effects of {sup 60} Co gamma radiation on crotamine

    Energy Technology Data Exchange (ETDEWEB)

    Boni-Mitake, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Radioprotecao Ocupacional; Costa, H.; Spencer, P.J. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Bioengenharia; Rogero, J.R [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Diretoria de Materiais; Vassilieff, V.S. [UNESP, Botucatu, SP (Brazil). Instituto de Biociencias. Ceatox - Centro de Assistencia Toxicologica]. E-mail: mbmitake@net.ipen.br

    2001-12-01

    Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (p I 10.3) from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60 Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (Ld50). Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it. (author)

  12. Calibration curve to establish the exposure dose at Co60 gamma radiation

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2000-01-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  13. Regulation on protection against ionizing radiations

    International Nuclear Information System (INIS)

    1995-01-01

    This regulation has as the objective to establish the criteria tending toward protecting the health of the population of the radiologic risks that can be derive from the employment of the ionizing radiations and similar activities. It establishes the requirements to comply with the radiactive installations, equipment transmitters of ionizing radiations, personal that works in them, operate the equipment and carry out any another similar activity such as: production, importation, exportation, transportation, transference of radioactive material or equipment generators of radiations ionizing. (S. Grainger) [es

  14. Ionizing radiation control of Tribolium castaneum in wheat flour type 000

    International Nuclear Information System (INIS)

    Ritacco, M.

    1988-01-01

    The insects, mainly those of the coleoptera order, produce serious changes on the grains and flours, producing in some regions up to 50 % loss. Taking in account the information available up to date, this experiment consists of putting under the effect of the ionizing radiation specimens of Tribolium castaneum feeded with bread flour type 000, with the purpose of controling their biological cycle. They received gamma radiation doses between 250 and 2000 Gy, using 60 Co source. The daily observation made over a population of 590 insects, indicates the efficiency of the procedure, non toxic, which provokes the sterility at 250 Gy and inmediate dead starting at 1750 Gy. On the other hand, it was verified that the DL 50 on the insects irradiated at the lower of eight different doses applied, reaches 15,3 days, against the 162,6 days of the reference Tribolium. Then it is concluded that it is technologically feasible the application of ionizing radiation to the bread wheat flour type 000 for controling this main plage. (Author) [es

  15. Ionizing radiation interactions with DNA: nanodosimetry

    International Nuclear Information System (INIS)

    Bug, Marion; Nettelbeck, Heidi; Hilgers, Gerhard; Rabus, Hans

    2011-01-01

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction id of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  16. Effect of ionizing radiation on the physiological activities of ethanol extract from hizikia fusiformis cooking drips

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon

    2009-01-01

    Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.

  17. About particular use of ionizing radiations; Des usages particuliers des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    Different uses of ionizing radiations are reviewed: tracers techniques, nuclear gauges, dating by carbon 14, silica doping, use of gamma irradiation for the density measurement in civil engineering, use of a electron capture detector to study by gas chromatography chlorinated contaminants in environment, neutron activation as environmental gauge, analysis of lead in paint and pollutants in ground and dusts, help for work of art valuation by x spectrometry. (N.C.)

  18. Effect of gamma-radiation on callus initiation and oraganogenesis in the tissue culture of Nicotiana tabaccum L

    International Nuclear Information System (INIS)

    Shin, S. H.; Kim, J. G.; Song, H. S.

    2004-01-01

    It is generally agreed that ionizing radiations stimulate cell division, growth and development in various organisms including animals and plants. Differentiating tissues are the most sensitive to radiation. The present experiment was carried out to investigate the effects of ionizing radiation on callus initiation and organogenesis from the stem in the culture of Nicotiana tabaccum L. cv. When the stem segments were cultured on a Murashige and Skoog (MS) medium with 2 mg/L kinetin, with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), with 2 mg/L kinetin and 1 mg/L 2,4-D, the shoots and callus were differentiated 14 days after cultivation. Callus was especially formed on the MS medium with 2,4-D and/or kinetin and the formation was promoted by 1 Gy and 5 Gy of gamma radiation. The formation of the shoot clusters on the MS medium with 2 mg/L kinetin were prominent in the 5 Gy-irradiated groups. It is concluded that that gamma radiation enhanced the callus initiation and organogenesis in the tissue culture of Nicotiana tabaccum L

  19. Determination of the detection limit and decision threshold for ionizing radiation measurements. Part 3: Fundamentals and application to counting measurements by high resolution gamma spectrometry, without the influence of sample treatment

    International Nuclear Information System (INIS)

    2000-01-01

    This part of ISO 11929 addresses the field of ionizing radiation measurements in which events (in particular pulses) are counted by high resolution gamma spectrometry registrating a pulse-heights distribution (acquisition of a multichannel spectrum), for example on samples. It considers exclusively the random character of radioactive decay and of pulse counting and ignores all other influences (e.g. arising from sample treatment, weighing, enrichment or the instability of the test setup). It assumes that the distance of neighbouring peaks of gamma lines is not smaller than four times the full width half maximum (FWHM) of gamma line and that the background near to gamma line is nearly a straight line. Otherwise ISO 11929-1 or ISO 11929-2 should be used. ISO 11929 consists of the following parts, under the general title Determination of the detection limit and decision threshold for ionizing radiation measurements: Part 1: Fundamentals and application to counting measurements without the influence of sample treatment; Part 2: Fundamentals and application to counting measurements with the influence of sample treatment; Part 3: Fundamentals and application to counting measurements by high resolution gamma spectrometry, without the influence of sample treatment; Part 4: Fundamentals and application to measurements by use of linear scale analogue ratemeters, without the influence of sample treatment. This part of ISO 11929 was prepared in parallel with other International Standards prepared by WG2 (now WG 17): ISO 11932:1996, Activity measurements of solid materials considered for recycling, re-use or disposal as nonradioactive waste, and ISO 11929-1, ISO 11929-2 and ISO 11929-4, and is, consequently, complementary to these documents

  20. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  1. Design and construction of a radiation monitor with ionization chamber

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1994-01-01

    The design and construction of a portable radiation monitor with ionization chamber for gamma and x rays measurements in the range from 40 KeV to 2 MeV are described in detail. The monitor is calibrated to give the exposure rate in Roentgens/hour in three linear ranges: 0-25 mR/h, 0-250 mR/h and 0-2500 mR/h for an ionization chamber with a sensitive volume of 600 cubic centimeters. Two conventional 9 V alkaline batteries are used to energize the monitor. The small current coming from the ionization chamber is measured by an operational amplifier with electrometer characteristics. The high voltage power supply to bias the chamber is made with a blocking oscillator and a ferrite transformer. Starting form a discussion of the desired characteristics of the monitor, the technical specifications are established. The design criteria for every section are shown. The testing procedures used to qualify every block and the results for three units are reported. (Author)

  2. Effect of ionizing radiation and aging time on total phenolics in Brazilian sugarcane spirit with green propolis

    International Nuclear Information System (INIS)

    Aguiar, Claudio L. de; Baptista, Antonio S.; Alencar, Severino M. de; Tiveron, Ana P.; Prado, Adna; Bergamaschi, Keityane B.; Veiga, Lucimara F. da; Baptista, Aparecido S.; Horii, Jorge

    2009-01-01

    Propolis is a natural product from vegetable origin that is generally collected from beehives. This product is well-known for its heath benefits attributed to its biological properties. On the other hand, Brazilian sugarcane spirit, cachaca, shows increasing interest and importance in the alcoholic beverage segment in many markets in the world. Therefore, it was evaluated the addition of propolis into cachaca and the effect of ionizing radiation on propolis compounds with biological activity. Samples of cachaca with propolis used in irradiation experiments were prepared from cachaca (40 deg GL) composed with propolis (0,1 %). Eight treatments, with four repetitions each, were carried out in this study. Three doses of ionizing radiation from electron beam and gamma radiation by 60 Co were applied on the cachaca samples, i.e. 0.5, 1.0, and 2.0 kGy, aiming to accelerate the aging of the cachaca samples. The spirits samples were stored for two periods (immediately after the radiation treatment and 30 months after the treatments) and their phenolic compounds contents were analyzed. Phenolic compounds contents were statistically different between both storage times of the cachaca. The samples of cachaca treated with electron beam at 2.0 kGy presented higher reduction in phenolic compounds contents, approximately 6 % in the first analysis and 11 % in the second analysis. In conclusion, the time of storage to promote reduction on the phenolics compounds and the ionizing radiations from electron beams affect more the contents of these compounds than gamma radiation. (author)

  3. Effect of ionizing radiation and aging time on total phenolics in Brazilian sugarcane spirit with green propolis

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Claudio L. de; Baptista, Antonio S.; Alencar, Severino M. de; Tiveron, Ana P.; Prado, Adna; Bergamaschi, Keityane B.; Veiga, Lucimara F. da; Baptista, Aparecido S.; Horii, Jorge [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao], e-mail: claguiar@esalq.usp.br, e-mail: asbaptis@esalq.usp.br, e-mail: alencar@esalq.usp.br, e-mail: anptiver@esalq.usp.br, e-mail: adprado@esalq.usp.br, e-mail: kbergamas@esalq.usp.br, e-mail: lcfernan@esalq.usp.br, e-mail: pmatao@gmail.com, e-mail: jhorii@esalq.usp.br; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)], e-mail: arthur@cena.usp.br

    2009-07-01

    Propolis is a natural product from vegetable origin that is generally collected from beehives. This product is well-known for its heath benefits attributed to its biological properties. On the other hand, Brazilian sugarcane spirit, cachaca, shows increasing interest and importance in the alcoholic beverage segment in many markets in the world. Therefore, it was evaluated the addition of propolis into cachaca and the effect of ionizing radiation on propolis compounds with biological activity. Samples of cachaca with propolis used in irradiation experiments were prepared from cachaca (40 deg GL) composed with propolis (0,1 %). Eight treatments, with four repetitions each, were carried out in this study. Three doses of ionizing radiation from electron beam and gamma radiation by {sup 60}Co were applied on the cachaca samples, i.e. 0.5, 1.0, and 2.0 kGy, aiming to accelerate the aging of the cachaca samples. The spirits samples were stored for two periods (immediately after the radiation treatment and 30 months after the treatments) and their phenolic compounds contents were analyzed. Phenolic compounds contents were statistically different between both storage times of the cachaca. The samples of cachaca treated with electron beam at 2.0 kGy presented higher reduction in phenolic compounds contents, approximately 6 % in the first analysis and 11 % in the second analysis. In conclusion, the time of storage to promote reduction on the phenolics compounds and the ionizing radiations from electron beams affect more the contents of these compounds than gamma radiation. (author)

  4. Evaluation of optical fibres as gamma radiation dosimeter

    International Nuclear Information System (INIS)

    Bohra, Dinesh; Chaudhary, H.S.; Panwar, Lalit; Vaijapurkar, S.G.; Bhatnagar, P.K.; Dasgupta, K.

    2005-01-01

    Semiconductor base gamma and neutron sensors are the fastest and popular dosimeters and are in competition with Thermoluminescence (TL) and Radio photoluminescence (RPL) dosimeters. All over the world armed forces require a dosimeter which records cumulative doses of ionizing radiations from mcGy to 10 Gy and is readable repeatedly without loss of dose information. TL dosimeters do not meet the criteria and RPL dosimeter meet the expectations and are in use by armed forces. Technologists have used laser as an excitation source to stimulate the glass and have achieved success in recording gamma doses of occupational/accidental span (mcGy to 10 Gy). However synthesizing RPL glass batches with exactly same characteristics predoses is a difficult task. Silicon base phosphorous doped step index multimode optical fibre can be made in a significant quantity and large number of dosimeters from it can be achieved with uniform predose. The radiation induced transmission loss gives a measure of gamma dose which is cumulative, readable repeatedly without loss of information. Assorted composition, core dia optical fibres have been synthesized and evaluated for dose linearity, dose rate independence, fading, length optimization. Here in is described some results of recent experiments and sensitivities achieved. (author)

  5. Effects of ionizing radiation and partial hepatectomy on messenger RNA synthesis

    International Nuclear Information System (INIS)

    Abdel-Halim, M.N.

    1979-01-01

    Newly synthesized messenger RNA, as measured by a 40 min uptake of the radioactive precursor (6- 14 C) orotic acid, was studied in the regenerating livers of non-irradiated and gamma-irradiated (1800 rad) adrenal-intact and adrenalectomized rats 24 and 48 hours after partial hepatectomy. Two groups of rats, one with and one without adrenal glands were each divided into four subgroups: (1) control rats, (2) irradiated rats, (3) partially hepatectomized rats and (4) irradiated, partially hepatectomized rats. The radioactive profile of polyribosome formation and distribution was determined by sucrose density gradient centrifugation (10 to 40 per cent). The result of this study indicates that ionizing radiation decreases the synthesis of newly formed messenger RNA in regenerating livers of adrenal-intact rats. However, adrenalectomy largely abolished that inhibition. These data suggest that the decrease in messenger RNA synthesis may be explained by the disturbance of adrenal hormones induced by partial hepatectomy and ionizing radiation. (author)

  6. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Saurabh; Kumar, A. Vinod [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai (India); Aggarwal, Bharti; Singh, Arvind; Topkar, Anita, E-mail: anita@barc.gov.in [Electronics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-05-23

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  7. Possibilities of controlling storage pests by ionizing radiation. Part 1. The influence of gamma and X-rays on life history, longevity and reproductive power of harmful mites, beetles and butterflies ocurring in food stores

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1983-01-01

    Effects of gamma and X radiation on the different development stages of pests such as Coleoptera, Lepidoptera and Acaroidea have been evaluated. It was found that Coleoptera pests were the most sensitive to ionizing radiation, while Acaroidea pests needed the highest doses. It was also established that the development stages were more radiosensitive than the imago forms. Applied doses were compared with food irradiation standards. 48 references are given. (E.G.M)

  8. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  9. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  10. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  11. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  12. Effect of ionizing radiation on the activity of pectinesterase in papaya (cultivar solo)

    International Nuclear Information System (INIS)

    Iaderoza, M.; Bleinroth, E.W.; Azuma, E.HG.

    1988-01-01

    Papaya fruits (Carica papaya L.) were exposed to ionizing radiation gamma type ( sup(60)Co), using a dose of 0.7kGy, and then stored in a cold room at 10C with a relative humidity of 85% for a period of 25 days. The pectinesterase activity of the irradiated fruits was found to be similar to that of the non-irradiated fruits during the storage period. The radiation dose maintained the texture and enzyme activity of the irradiated fruits the same as that of the non-irradiated fruits. (author)

  13. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  14. Calibration of a radiation survey meter using Cs-137 gamma source

    International Nuclear Information System (INIS)

    Khalid, R. O.

    2005-07-01

    The survey instrument smartIon was calibrated at the Secondary Standard Dosimetry Laboratory, Sudan Atomic Energy Commission, in terms of kerma, free in air using Cs-137 gamma radiation. All the calibrations were performed using the reference instrument spherical ionization chamber LS-01. This reference instrument has been calibrated at the International Atomic Energy Agency, Vienna for x-rays, 137 Cs and 60 Co gamma radiation. The air kerma calibration factors for the instrument were determined as the ratio of the dose rates obtained with the reference standard chamber LS-01 and the dose rates of the instrument under calibration. The uncertainties for the survey meter smartIon and another survey meter RADOS were obtained and the results compared with the uncertainty for the reference standard chamber. Also, the values of dose rates were obtained for various angles of the incident beam, by changing the angle by which the radiation was incident on the sensitive point of the instrument.(Author)

  15. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  16. Effect of ionizing radiation on the respiration intensity of pears during storage

    International Nuclear Information System (INIS)

    Al Bachir, Mahfouz; Sass, P.

    1989-01-01

    According to the results of a 3-year series of experiments on the effect of ionizing radiation (gamma radiation and X radiation, respectively) on the storage life of fruits a relationship exists between the radiation doses (40, 60, 100, 500, 1000, 1500 Gy) and the changes in the quality of the fruit varieties. Radiation was generally found to stimulate the ripening process. The acceleration of ripening takes place for a short time (5-7 days) immediately after irradiation, as proved by respiration and enzyme activity tests. It can be concluded that on removal from storage, the rate of respiration of the treated fruits was lower both in controlled and in constant atmosphere which suggests that irradiated fruits can be stored for a longer time. (author) 14 refs.; 4 figs.; 6 tabs

  17. A biotechnological project with a gamma radiation source of 100,000 Ci

    International Nuclear Information System (INIS)

    Lombardo, J.H.; Smolko, E.E.

    1990-01-01

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The latter is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost. (author)

  18. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  19. Radiation hormesis: an outcome of exposure to low level ionizing radiation

    International Nuclear Information System (INIS)

    Kant, Krishan

    2012-01-01

    Ionizing radiation is a benign environmental agent at background levels. Human population is always exposed to ionizing radiation from natural sources. Important sources are cosmic rays which come from outer space and from the surface of the sun, terrestrial radionuclides which occur in the earths crust in various geological formations in soils, rocks, building materials, plants, water, food, air and in the human body itself. With the increasing use of radiation in health facilities, scientific research, industry and agriculture, the study of impact of low-level ionizing radiation on environment and possible health effects on future generations has been a cause of concern in recent years. As regards the effects, it is established fact that high doses of ionizing radiation are harmful to health, there exists, however, a substantial controversy regarding the effects of low doses of ionizing radiation (LLIR). In the present paper, brief review of the available literature, data and reports on stimulation by low-dose irradiation and recent data supporting radiation hormesis. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to the Indian population. This overview summarizes various reports

  20. Safe use of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    Based on the ''Code of Practice for the protection of persons against ionizing radiations arising from medical and dental use'' (CIS 74-423), this handbook shows how hospital staff can avoid exposing themselves and others to these hazards. It is designed particularly for junior and student nurses. Contents: ionizing radiations, their types and characteristics; their uses and dangers; basic principles in their safe use; safe use in practice; explanation of terms.

  1. Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters

    International Nuclear Information System (INIS)

    Koslow, E.E.; Edelman, R.R.

    1985-01-01

    This invention provides a radiation imaging system employing arrays of scintillators. An object of the invention is to produce a detector with high spatial resolution, high gamma-photon absorption efficiency, excellent source and detector scatter rejection, and utilizing low-cost solid state opto-electronic devices. In one embodiment, it provides a radiation detection and conversion apparatus having an array of optically isolated radiation sensitive elements that emit optical radiation upon absorption of ionizing radiation. An array of channels, comprising a material that absorbs and traps the radiation emitted and transports it or radiation that has been shifted to longer wavelengths, is placed near the radiation-sensitive elements. Electro-optical detectors that convert the transported radiation into electrical signals are coupled to the channels. The activation of one of the electro-optical devices by radiation from one of the channels indicates that at least one of the radiation-sensitive elements near that channel has absorbed a quantity of radiation

  2. Code of practice for ionizing radiation

    International Nuclear Information System (INIS)

    Khoo Boo Huat

    1995-01-01

    Prior to 1984, the use of ionizing radiation in Malaysia was governed by the Radioactive Substances Act of 1968. After 1984, its use came under the control of Act 304, called the Atomic Energy Licensing Act 1984. Under powers vested by the Act, the Radiation Protection (Basic Safety Standards) Regulations 1988 were formulated to regulate its use. These Acts do not provide information on proper working procedures. With the publication of the codes of Practice by The Standards and Industrial Research Institute of Malaysia (SIRIM), the users are now able to follow proper guidelines and use ionizing radiation safely and beneficially. This paper discusses the relevant sections in the following codes: 1. Code of Practice for Radiation Protection (Medical X-ray Diagnosis) MS 838:1983. 2. Code of Practice for Safety in Laboratories Part 4: Ionizing radiation MS 1042: Part 4: 1992. (author)

  3. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  4. Epidemiology and ionizing radiations

    International Nuclear Information System (INIS)

    Bourguignon, M.; Masse, R.; Slama, R.; Spira, A.; Timarche, M.; Laurier, D.; Billon, S.; Rogel, A.; Telle Lamberton, M.; Catelinois, O.; Thierry, I.; Grosche, B.; Ron, E.; Vathaire, F. de; Cherie Challine, L.; Donadieu, J.; Pirard, Ph.; Bloch, J.; Setbon, M.

    2004-01-01

    The ionizing radiations have effects on living being. The determinist effects appear since a threshold of absorbed dose of radiation is reached. In return, the stochastic effects of ionizing radiations are these ones whom apparition cannot be described except in terms of probabilities. They are in one hand, cancers and leukemia, on the other hand, lesions of the genome potentially transmissible to the descendants. That is why epidemiology, defined by specialists as the science that studies the frequency and distribution of illness in time and space, the contribution of factors that determine this frequency and this distribution among human populations. This issue gathers and synthesizes the knowledge and examines the difficulties of methodologies. It allows to give its true place to epidemiology. (N.C.)

  5. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    International Nuclear Information System (INIS)

    Cosentino, Helio M.; Takinami, Patricia Y.I.; Mastro, Nelida L. del

    2016-01-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing. - Highlights: • Comparison of radiosensitivity of food colors was performed. • Carmine showed the highest resistance to radiation. • Annatto and turmeric behaved sensitive to radiation when diluted. • Turmeric was the most affected by ionizing radiation.

  6. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  7. Is ionizing radiation regulated more stringently than chemical carcinogens

    International Nuclear Information System (INIS)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-01-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals and ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens

  8. Evaluation of effects of ionizing radiation on the glass ionomer used in dental restorations

    International Nuclear Information System (INIS)

    Maio, F.M.; Santos, A.; Fernandes, M.A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on glass ionomer, a material used in dental restorations. Glass ionomer is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  9. Measurement of environmental gamma radiation by means of a large volume ionization chamber

    International Nuclear Information System (INIS)

    Gauthier, Daniel; Caput, Claude.

    1980-02-01

    A device for the measurement of the intensity of environmental gamma radiation has been realized and set up inside a vehicle especially fitted to that purpose. Because of its characteristics of sensitivity and time of response light and very local anomalies due for instance to foreign materials or punctual geological bassets can be detected and maps of dose rates at a regional scale can be drawn up. Such maps drawn before and after the operation of nuclear plants make it possible to assess their impact on environmental radiation levels [fr

  10. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  11. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2003-01-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country , grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well a s the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc...) and are part of the continuous education program of CSEN. (Author)

  12. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  13. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    International Nuclear Information System (INIS)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L.

    2013-01-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L -1 to 139 mg.L -1 were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  14. Evaluation of effects of ionizing radiation on the titanium used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio; Santos, Adimir dos; Fernandes, Marco A.R.

    2009-01-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on titanium, a material used in dental restorations. Titanium is used to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, seen when the teeth are restored within in the field of radiation. Samples were submitted to X-radiation beams from 6 and 10 Mega - Volt (MV) from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. Sample dose measurements were performed employing Geiger-Mueller detectors and the ionization chamber in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a HPGe detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  15. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages.

    Science.gov (United States)

    Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N

    1975-07-01

    The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were

  16. Hygiene of ionizing radiations

    International Nuclear Information System (INIS)

    Legare, I.-M.; Conceicao Cunha, M. da

    1976-01-01

    The concepts of quality factor and rem are introduced and a table of biological effects of external ionizing radiation sources is presented. Natural exposures, with tables of background radiation sources and of doses due to cosmic rays on high altitude areas and their populations are treated, as well as medical exposures; artificial background; fallout; scientific, industrial and other sources. The maximum and limit doses for man are given and tables of maximum admissible doses of ionizing radiations for 16-18 year old workers professionaly exposed, for professionals eventually subjected to radiation in their work and for people eventually exposed. Professional protection is discussed and tables are given of half-value layer of water, concrete, iron and lead for radiations of different energies, as well as the classification of exposure zones to the radiations and of maximum acceptable contamination for surfaces. The basic safety standards for radiation protection are summarized; tables are given also with emergency references for internal irradiation. Procedures with patients which received radioisotopes are discussed. At last, consideration is given to the problem of radioactive wastes in connection with the medical use of radionuclides [pt

  17. Effect of low dose ionizing radiation upon concentration of

    International Nuclear Information System (INIS)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-01-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  18. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  19. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preservation of photographic and cinematographic films by gamma radiation: Preliminary analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Maria Luiza E.; Santos, Paulo S.; Otubo, Larissa; Oliveira, Maria José A.; Vasquez, Pablo A.S., E-mail: malunagai@usp.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Brazilian weather conditions affect directly tangible materials causing deterioration notably getting worse by insects and fungi attack. In this sense, gamma radiation provided from the cobalt-60 is an excellent alternative tool to the traditional preservation process mainly because it has biocidal action. Radiation processing using gamma radiation for cultural heritage materials for disinfection has been widely used around the world in the last decades. Many cultural heritage objects especially made on paper and wood were studied in scientific publications aiming mechanical, physical and chemical properties changes. Over the last fifteen years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute located inside the Sao Paulo University campus has been irradiated many collections of archived materials, books, paintings and furniture. Adequate storage of photographic and cinematographic materials is a challenge for conservators from preservation institutions. Contamination by fungi is one of leading causes of problem in photographic and cinematographic collections. Several Sao Paulo University libraries have been affected by fungi in their photographic and cinematographic collections making it impossible to research on these materials either manipulate them for health and safety reasons. In this work are presented preliminary results of effects of the ionizing radiation in photographic and cinematographic films. Selected film samples made on cellulose acetate were prepared and characterized by FTIR-ATR spectroscopy. Samples were irradiated by gamma rays with absorbed dose between 2 kGy and 50 kGy. Irradiated samples were analyzed by UV-VIS spectroscopy and electron microscopy techniques. Results shown that disinfection by gamma radiation can be achieved safely applying the disinfection dose between 6 kGy to 15 kGy with no significant change or modification of main properties of the constitutive materials. (author)

  1. Preservation of photographic and cinematographic films by gamma radiation: Preliminary analyses

    International Nuclear Information System (INIS)

    Nagai, Maria Luiza E.; Santos, Paulo S.; Otubo, Larissa; Oliveira, Maria José A.; Vasquez, Pablo A.S.

    2017-01-01

    Brazilian weather conditions affect directly tangible materials causing deterioration notably getting worse by insects and fungi attack. In this sense, gamma radiation provided from the cobalt-60 is an excellent alternative tool to the traditional preservation process mainly because it has biocidal action. Radiation processing using gamma radiation for cultural heritage materials for disinfection has been widely used around the world in the last decades. Many cultural heritage objects especially made on paper and wood were studied in scientific publications aiming mechanical, physical and chemical properties changes. Over the last fifteen years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute located inside the Sao Paulo University campus has been irradiated many collections of archived materials, books, paintings and furniture. Adequate storage of photographic and cinematographic materials is a challenge for conservators from preservation institutions. Contamination by fungi is one of leading causes of problem in photographic and cinematographic collections. Several Sao Paulo University libraries have been affected by fungi in their photographic and cinematographic collections making it impossible to research on these materials either manipulate them for health and safety reasons. In this work are presented preliminary results of effects of the ionizing radiation in photographic and cinematographic films. Selected film samples made on cellulose acetate were prepared and characterized by FTIR-ATR spectroscopy. Samples were irradiated by gamma rays with absorbed dose between 2 kGy and 50 kGy. Irradiated samples were analyzed by UV-VIS spectroscopy and electron microscopy techniques. Results shown that disinfection by gamma radiation can be achieved safely applying the disinfection dose between 6 kGy to 15 kGy with no significant change or modification of main properties of the constitutive materials. (author)

  2. Effect of alpha and gamma radiation on the near-field chemistry and geochemistry of high-level waste packages

    International Nuclear Information System (INIS)

    Reed, D.T.

    1985-12-01

    Ionizing radiation can potentially alter geochemical and chemical processes in a geologic system. These effects can either enhance or reduce the performance of the waste package in a deep geologic repository. Current indications are that, in a repository located in basalt, ionizing radiation significantly affects geochemical/chemical processes but does not appear to significantly affect factors important to the long-term performance of the repository. The experimental results presented in this paper were obtained as part of an ongoing effort by the Basalt Waste Isolation Project to determine the effect of ionizing radiation on chemical and geochemical processes in the environment of the waste package. Gamma radiolysis experiments were done by subjecting samples of synthetic basalt groundwater in the presence of various waste package components (basalt/packing/low-carbon steel) to high levels of gamma radiation from a 60 Co source. Post-irradiation analysis was done on the gas, liquid, and solid components of the basalt system. The results obtained are important in evaluating waste package performance during the containment period. The effect of alpha radiation on the basalt groundwater system in the presence of waste package components is important in evaluating waste package performance during the isolation period. The experimental work in this area is in a very preliminary stage. Results from two experiments are reported. 9 refs., 4 figs., 7 tabs

  3. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  4. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    Science.gov (United States)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  5. Effects of CO-60 gamma radiation on the embryonary development of Biomphalaria Glabrata (Say, 1818)

    International Nuclear Information System (INIS)

    Okazaki, K.

    1988-01-01

    Some aspects of the effects of the ionizing radiation on the embryo and on the genetical material of Biomphalaria glabrata (Mollusca: Gastropoda) are presented. The embryos weresubmitted at various stages of development to doses of 5,10,15,20 and 25 Gy of Co-60 gamma radiation. As a criteia of evaluation of the embryos radiosensitivity, four biological parameters were used: mortality, malformation, hatching and chromossomal aberrations. (M.A.C.) [pt

  6. Bio-dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Kristova, R.; Stainova, A.; Deleva, S.; Popova, L.; Georgieva, D.

    2013-01-01

    Full text: Introduction: The impact of ionizing radiation in medical, occupational and accidental human exposure leads to adverse side effects such as increased mortality and carcinogenesis. Information about the level of absorbed dose is important for risk assessment and for implementation of appropriate therapy. In most cases of actual or suspected exposure to ionizing radiation biological dosimetry is the only way to assess the absorbed dose. What you will learn: In this work we discuss the methods for biodosimetry and technological developments in their application in various emergency situations. The application of biological dosimetry and assessment of the influence of external factors in the conduct of epidemiological studies of radiation effects in protracted low-dose ionizing radiation on humans is presented. Discussion: The results of cytogenetic analysis and biological evaluation of absorbed dose based on the analysis of dicentrics in peripheral blood lymphocytes of five people injured in a severe radiation accident in Bulgaria in 2011 are presented. The assessed individual doses of the injured persons are in the range of 1.2 to 5,2 Gy acute homogeneous irradiation and are in line with the estimates of international experts. Conclusion: An algorithm to conduct a biological assessment of the dose in limited radiation accidents and in large scale radiation accidents with large number irradiated or suspected for exposure persons is proposed

  7. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  8. Saccharose action on chrysanthemum cut inflorescences, Dendranthema grandiflorum Kitamura, after exposition to gamma radiation

    International Nuclear Information System (INIS)

    Kikuchi, Olivia Kimiko

    1998-01-01

    During the last years the Brazilian floriculture expanded and it is expected to achieve a prominent role in near future. The national territory has many favorable regions, with adequate climate for the development of commercially important cultures. Flower exportation is not expressive yet, but the country has conditions to become a great exotic tropical plants exporter. On the other hand, developed countries, as USA and Japan, have a rigorous phyto sanitary inspection to prevent the introduction of new plagues and diseases through fresh products. Ionizing radiation is considered a reliable disinfestation method to control numerous fruit and flower plagues. The aim of of this work was to verify the tolerance of some Compositae family flowers to ionizing radiation and the effects to sucrose action in protecting the flowers against the gamma-radiation induced damages. This was done by measuring biochemical and physiological parameters as a function of time after irradiation. The chrysanthemum flowers were sensitive to gamma radiation, but when the inflorescences were supplied after irradiation with preservative solution containing 2% sucrose, protection against the damaging effects of radiation was achieved. The dose of 750 Gy, considered appropriate for disinfestation purpose, did not modify the protein and lipid levels, nor plasma, tonoplast and mitochondria membrane ATPase or mitochondria cytochrome-c oxidase activities. The ethylene and carbonic gas rate production increased soon after the irradiation, but decreased one day later. The decrease of the microsomal membrane fluidity and the increase of the chrysanthemum were the most sensitive parameters to measure the irradiation treatment changes. The sucrose supply was able to maintain the irradiated flowers membrane fluidity level close to the unirradiated control. Rhodante manglesii Lindl and Helichrysum bracteatum Andr. were tolerant up to 1 KGy, thus being adequate to be disinfected by gamma radiation. (author)

  9. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    Directory of Open Access Journals (Sweden)

    Kyoung Won Jang

    2014-04-01

    Full Text Available In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  11. Evaluation of exposure to ionizing radiation among gamma camera operators

    Directory of Open Access Journals (Sweden)

    Agnieszka Anna Domańska

    2013-08-01

    Full Text Available Background: Protection of nuclear medicine unit employees from hazards of the ionizing radiation is a crucial issue of radiation protection services. We aimed to assess the severity of the occupational radiation exposure of technicians performing scintigraphic examinations at the Nuclear Medicine Department, Central Teaching Hospital of Medical University in Łódź, where thousands of different diagnostic procedures are performed yearly. Materials and Methods: In 2013 the studied diagnostic unit has employed 10 technicians, whose exposure is permanently monitored by individual dosimetry. We analyzed retrospective data of quarterly doses in terms of Hp(10 dose equivalents over the years 2001-2010. Also annual and five-year doses were determined to relate the results to current regulations. Moreover, for a selected period of one year, we collected data on the total activity of radiopharmaceuticals used for diagnostics, to analyze potential relationship with doses recorded in technicians performing the examinations. Results: In a 10-year period under study, the highest annual dose recorded in a technician was 2 mSv, which represented 10% of the annual dose limit of 20 mSv. The highest total dose for a 5-year period was 7.1 mSv, less than 10% of a 5-year dose limit for occupational exposure. Positive linear correlation was observed between total activity of radiopharmaceuticals used for diagnostics in the period of three months and respective quarterly doses received by technicians performing examinations. Conclusions: Doses received by nuclear medicine technicians performing diagnostic procedures in compliance with principles of radiation protection are low, which is confirmed by recognizing the technicians of this unit as B category employees. Med Pr 2013;64(4:503–506

  12. One of the great conundrums of the 20th century science - ionizing radiation: Radiation processing and applications in the Czech Lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The article deals with the following topics: Milestones in the early history of radiation and radiation sources (1895-1954); Radiation effects - early observations and further development; Scope of radiation processing; Radiation processing in the Czech Lands (i.e. Bohemia + Moravia = the Czech part of Czechoslovakia or Austria-Hungary till 1918) (radiation sterilization of medical items; radiation processing of cable insulations; radiation preservation of objects of art and historical monuments; radiation modification of semiconductors; radiation synthesis of organic compounds; food irradiation; application of ionizing radiation in agriculture and gardening; radiation regeneration of water wells; radiation degradation of chlorinated biphenyls; radiation coloration of glass for decorative purposes; some other applications; and problems associated with practical radiation processing). An overview of 60 Co gamma irradiators and electron accelerators installed at Czech institutions is presented in the tabular form. (P.A.)

  13. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  14. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  15. Optimization of electret ionization chambers for dosimetry in mixed neutron-gamma fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1984-01-01

    The properties of combination dosemeters consisting of two air-filled electret ionization chambers in mixed neutron-gamma fields have been investigated. The first chamber, polyethylene-walled, is sensitive to neutrons and gamma rays, the second, having walls of teflon, is sensitive to gamma rays only. The properties of the dosemeters are determined by the resulting errors and the measuring range. As both properties depend on the dimensions of the electret ionization chambers they have been taken into account in optimizing the dimensions. The results show that with the use of the dosemeters the effective dose equivalent in mixed neutron-gamma fields can be determined nearly independently of the spectra. The lower detection limit is less than 1 mSv and the maximum uncertainty of dose measurements about 12%. (author)

  16. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  17. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  18. Influence of gamma radiation and fast neutrons on the growth of Haplopappus gracilis (Nutt) A. Gray callus

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Wajda, L.; Korzonek, M.; Polska Akademia Nauk, Krakow. Inst. Fizjologii Roslin)

    1979-01-01

    The sensitivity of the callus of Haplopappus gracilis to gamma radiation and fast neutrons was studied. High doses of radiation cause inhibition of callus growth. At small doses the effect is less pronounced. Stimulation of callus growth was seen. Apart from morphological changes, ionizing radiations lowered the fresh weight ratio of the callus. The RBE value for 5.5 MeV neutrons depended on the dose rate of radiation and the combination of growth medium. (author)

  19. In situ gamma-ray spectrometry: A tutorial for environmental radiation scientists

    International Nuclear Information System (INIS)

    Miller, K.M.; Shebell, P.

    1993-10-01

    This tutorial is intended for those in the environmental field who perform assessments in areas where there is radioactive contamination in the surface soil. Techniques will be introduced for performing on-site quantitative measurements of gamma radiation in the environment using high resolution germanium detectors. A basic understanding of ionizing radiation principles is assumed; however, a detailed knowledge of gamma spectrometry systems is not required. Emphasized is the practical end of operations in the field and the conversion of measured full absorption peak count rates in a collected spectrum to meaningful radiological quantities, such as the concentration of a radionuclide in the soil, activity per unit area, and dose rate in the air. The theory of operation and calibration procedures will be covered in detail to provide the necessary knowledge to adapt the technique to site-specific problems. Example calculations for detector calibration are also provided

  20. Effects of gamma radiation on the kola nut weevil, Balanogastris kolae (Desbr. ) (Coleopera: Curculionidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ivbijaro, M F [Ibadan Univ. (Nigeria)

    1977-09-01

    Studies on the kola nut weevil, Balanogastris kolae (Desbr.) with gamma radiation showed that 20 krad effectively caused high larval mortality and prevented pupation. Dead larvae became soft and bluishblack and, occasionally, dry and brown. Percentage adult emergence from irradiated pupae, longevity and fecundity of emerging adults provided the basis for evaluating the effectiveness of the ionizing radiation. Mean survival and adult emergence from young pupae irradiated with 20 krad was 6 and 2 percent, respectively, in contrast to 86 and 8 percent, respectively, in old pupae given the same dosage. Old pupae (3-5 days old) showed some tolerance to gamma radiation and over 20 krad was required to prevent adult emergence. Gamma radiation seriously reduced longevity to an average of 6 and 15 days, respectively, in pre- and post-emergence irradiated adults in contrast to 44 days in the control. Distortion of the membranous hind wings were some of the adverse effects observed in adults that emerged from irradiated pupae. Reproduction and oviposition was seriously impaired by irradiation before or immediately after emergence. The opinion of a panel of experienced kola nut testers was that gamma irradiation did not alter the taste or flavour of the kola nuts and no change was observed in the colour or texture of the irradiated nuts.

  1. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  2. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    Science.gov (United States)

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  3. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Science.gov (United States)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  4. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  5. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  6. Somatic mutations in leafs of tobacco seedlings induced by ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, J. K.; Song, H. S.; Lee, Y. I.

    2001-01-01

    Somatic mutations induced by the combined treatment of pesticide and ionizing radiation were analyzed in the leaves of tobacco seedlings. The pesticide (1,5 and 10 ppm of parathion) was sprayed directly onto the seedlings. The seedlings, with or without pretreatment of pesticide, were irradiated with 0.1 ∼10 Gy of gamma ray. The difference in the somatic mutation frequencies were not significant among groups treated with different concentration of pesticide. The somatic mutations in tobacco seedlings irradiated with gamma-ray showed a clear dose-response relationship in a range of 0.1 to 10 Gy. However, the combined treatment of pesticide and radiation did not cause any synergistic enhancement in the mutation frequencies. The highest efficiency in the induction of somatic mutations could be obtained by irradiating the seedlings with 5 Gy, 12 hours after 1 ppm of pesticide treatment, or 24 hours after 5 ppm of pesticide treatment

  7. Protection policies for ionizing and UV radiation

    International Nuclear Information System (INIS)

    Bosnjakovic, B.F.M.

    1987-01-01

    Although ultraviolet radiation is generally considered as being part of non-ionizing radiation, the existing similarities with ionizing radiation are too striking to be overseen. A comparison of these two agents is becoming important in view of the increasing awareness of various environmental and health risks and the tendency to develop more uniform risk management policies with respect to the different physical and chemical agents. This paper explores the similarities and differences of UV and ionizing radiation from the point of view of policies either adopted or in development. Policy determinants include, among others, the following factors: biological effects, dosimetric quantities, relative contribution to exposure from different sources, hazard potential of different sources, quantification of detrimental consequences, public perception of the radiation hazards and regulation developments. These factors are discussed

  8. Use of Ionizing Radiations to Prepare Radiovaccines and Radio-Antigens

    International Nuclear Information System (INIS)

    Tumanyan, MA; Hruschev, V.G.

    1967-01-01

    The possibility of employing ionizing radiations at certain doses to kill micro-organisms was used to produce vaccines against intestinal infections, and also to obtain from these bacteria antigens capable of being used as chemical vaccines. Typhoid fever and dysentery radiovaccines and radio-antigens were prepared, and the effect of various gamma ray doses on their toxicity and their antigenic and immunogenic properties was tested. The doses used did not change properties of these products as compared with those of vaccines and antigens produced by normal means. The paper also discusses the possibility of using radiation to sterilize fabricated vaccines and antigens, including radiovaccines and radio-antigens, anitoxins, antitoxic serums and nutrient media for the culture of micro-organisms. Data on the irradiation apparatus used for these investigations are reported. (author) [ru

  9. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  10. 131I distribution in mice after continuous exposure to ionizing radiation of 0.39 C/kg

    International Nuclear Information System (INIS)

    Mraz, L.; Stollarova, N.

    1982-01-01

    The distribution of 131 I in mice has been investigated under the condition of continuous exposure to daily doses of 0.013 C/kg up to a total dose of 0.39 C/kg. Radioiodine distribution in exposed animals was compared with that in laboratory and field controls at intervals ranging from 0.5 to 24 hours. The group of experimental animals was simultaneously exposed to ionizing radiation and the climatic conditions of the open-air gamma field. Consequently, the metabolic activity of organs decreased during the distribution measurements as is also shown by the low radioiodine level in the thyroid gland. Differences in the distribution in exposed animals as compared with field controls are characteristic of changes caused by ionizing radiation. (author)

  11. Nature of mutants induced by ionizing radiation in cultured hamster cells. II. Antigenic response and reverse mutation of HPRT-deficient mutants induced by. gamma. -rays or ethyl methanesulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R; Stretch, A; Thacker, J

    1986-04-01

    A large series of independent mutants deficient in HPRT enzyme activity, isolated from V79-4 hamster cells, were assessed for properties which reflect the nature of the genetic changes induced. A total of 88 mutants were screened, 43 isolated from ..gamma..-ray-treated cultures and 45 induced by ethyl methanesulphonate (EMS). Firstly, each mutant was assayed for the presence of protein with the antigenic response of HPRT. In a competitive inhibition assay, 31% of EMS-induced mutants were CRM-positive compared to 7% of the ..gamma..-ray series. Secondly, each mutant was tested for ability to revert to HPRT proficiency. All except 2 of the EMS-induced mutants reverted with ethyl nitrosourea ENU, and many reverted spontaneously, under the given conditions. However reversion was not detected in about 80% of ..gamma..-ray-induced mutants, suggesting that the types of forward mutation caused by ionizing radiation differ qualitatively from those caused by EMS. (Auth.). 30 refs.; 6 figs.; 2 tabs.

  12. Management in the protection from ionizing radiation

    International Nuclear Information System (INIS)

    Radunovic, Miodrag; Nikolic, Krsto; Rakic, Goran

    2008-01-01

    There are numerous types and forms of endangering working and living environment, ranging from natural disasters to nuclear accidents. Challenges of the New Age determined that most of the countries reviewed its strategic decisions in the system of protection from ionizing radiation and nuclear safety and defined in a new way the threats, which could considerably imperil health of the population and national interests as well. Excessive radiation of the population became a serious and actual problem in the era of increasingly mass application of ionizing radiation, especially in medicine. The goal of this work is to reduce the risk through using knowledge and existing experiences, in particular when it comes to ionizing radiation in medicine. Optimization of the protection in radiology actually means an effort to find the compromise between quality information provided by diagnostics procedure and quality effects of therapy procedure on one side and dose of radiation received by patients on the other. Criteria for the quality management in the protection from ionizing radiation used in diagnostic radiology was given by the European Commission: European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EUR, 16260. (author)

  13. Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy

    Directory of Open Access Journals (Sweden)

    Baccaro Stefania

    2017-12-01

    Full Text Available Since the 1980s, research and qualification activities are being carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome, Italy. The Calliope facility is deeply involved in radiation processing research and on the evaluation and characterization of the effects induced by gamma radiation on materials for different applications (crystals, glasses, optical fibres, polymers and biological systems and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and high energy physics experiments. All the activities are carried out in the framework of international projects and collaboration with industries and research institutions. In the present work, particular attention will be paid to the cultural heritage activities performed at the Calliope facility, focused on two different aspects: (a conservation and preservation by bio-deteriogen eradication in archived materials, and (b consolidation and protection by degraded wooden and stone porous artefacts consolidation.

  14. Spherical ionization chamber of 14 liter for precise measurement of environmental radiation dose rate

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1991-05-01

    A spherical ionization chamber of 14 liter filled with 1 atm. nitrogen gas was arranged aiming at precise measurement of dose rate due to environmental gamma rays and cosmic rays. Ionization current-dose rate conversion factor for this ionization chamber was derived from careful consideration taking into account the attenuation by chamber wall, ionization current due to alpha particles and so on. Experiments at calibrated gamma ray fields and intercomparison with NaI(Tl) scintillation detector were also performed, which confirmed this ionization chamber using the conversion factor can measure the dose rate with an error of only a few percent. This ionization chamber will be used for measurement of environmental gamma ray and cosmic ray dose rate. (author)

  15. Gamma Radiation Assessment In Kartini Reactor And Its Vicinity

    International Nuclear Information System (INIS)

    Yazid, M.; Supriyatni, E.; Maryono; Bastianudin, Aris

    2000-01-01

    Measurement to calculate dose assesment for gamma radiation in Kartini Reactor and its vicinity has been done whether on operated or un operated condition. Measurement was performed using height pressured ionization chamber, Reuther Stokes RS-112 production. Measurement location was determined based on distance variation inwardly and outwardly of reactor building and its vicinity. The result showed that the average dose rate in the reactor building when un operated is in the range of 11.4-38.6 mu rad/hour and when the reactor operated is 166.4-1910.9 mu rad/hour. While the vicinity of the reactor on operated condition the average dose rate is 34.4-38.6 mu rad/hour in un operated condition is 6.9-7.0 mu rad/hour. This result showed that the reactor operated did not rise the radiation exposure level in its vicinity. From the personnel assesment dose rate of gamma radiation is 28.54 mrem/week on operated condition, 0.90 mrem.week on un operated condition. While dose rate outside the reactor is 0.44 and 0.27 mrem/week for operated and un operated condition consecutively. This dose rate is still below maximum permissible dose than recommended by the national regulation of radiation protection from BAPETEN No. 01/Ka.BAPETEN/V-99

  16. Gamma radiation treatment activates glucomoringin synthesis in Moringa oleifera

    Directory of Open Access Journals (Sweden)

    Tsifhiwa Ramabulana

    Full Text Available Abstract Plants are a very rich source of pharmacologically relevant metabolites. However, the relative concentrations of these compounds are subject to the genetic make-up, the physiological state of the plant as well as environmental effects. Recently, metabolic perturbations through the use of abiotic stressors have proven to be a valuable strategy for increasing the levels of these compounds. Oxidative stress-associated stressors, including ionizing radiation, have also been reported to induce metabolites with various biological activities in plants. Hence, the aim of the current study was to investigate the effect of gamma radiation on the induction of purported anti-cancerous metabolites, glucomoringin and its derivatives, in Moringa oleifera Lam., Moringaceae. Here, an UHPLC-qTOF-MS-based targeted metabolic fingerprinting approach was used to evaluate the effect of gamma radiation treatment on the afore-mentioned health-beneficial secondary metabolites of M. oleifera. Following radiation, an increase in glucomoringin and three acylated derivatives was noted. As such, these molecules can be regarded as components of the inducible defense mechanism of M. oleifera as opposed to being constitutive components as it has previously been assumed. This might be an indication of a possible, yet unexplored role of moringin against the effects of oxidative stress in M. oleifera plants. The results also suggest that plants undergoing photo-oxidative stress could accumulate higher amounts of glucomoringin and related molecules.

  17. Potentials of ionizing radiation in reducing hazards to man and environment

    Energy Technology Data Exchange (ETDEWEB)

    Mullie, W C; Van Laerhoven, M J.A.M.; Kroes, R

    1991-07-01

    The main goal of the title study was to compare a relevant number of conventional processes and technologies for a range of uses with the application of ionizing radiation technology. Special emphasis is given to the hazardous effects of contemporary processes and chemicals on man and environment and to the potential role of the radiation processing technology, gamma irradiation in particular, in reducing these hazards. Based on their quantities and on (eco)toxicological criteria, four fields of application were identified a priori as potentially of interest for radiation processing. These fields of application are food preservation, sterilization and sanitization of pharmaceuticals and cosmetics, waste water and drinking water disinfection, and disinfection of sewage sludge and infectious hospital waste. Other fields of application as mentioned above are discussed in a more general matter. 12 figs., 31 tabs., 4 apps., refs.

  18. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes

    Science.gov (United States)

    Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  19. The primary exposure standard for Co-60 gamma radiation: characteristics and measurements procedures

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.

    1983-01-01

    A description is given of a cavity ionization chamber used, as a primary exposure standard, at the Laboratorio di Metrologia delle Radiazioni Ionizzanti of the ENEA in Italy. The primary standard is designed to make absolute measurements of exposure due to the Co-60 gamma radiation. The procedures for the realizationof the exposure unit are also described. Finally results of some international comparisons are reported

  20. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx)

    International Nuclear Information System (INIS)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S.

    2016-01-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  1. Effect of ionizing radiation on rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Boraks, George; Tampelini, Flavio Silva; Pereira, Kleber Fernando; Chopard, Renato Paulo [University of Sao Paulo (USP), SP (Brazil). Inst. of Biomedical Sciences. Dept. of Anatomy]. E-mail: rchopard@usp.br

    2008-01-15

    A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolisation, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis). (author)

  2. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  3. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    Science.gov (United States)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  4. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    Gruel, G.

    2005-01-01

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  5. Gamma radiation physical-chemical effects on vitamin C contents in white and red guavas

    International Nuclear Information System (INIS)

    Amaro, Jose Daniel V.; Mansur Netto, Elias

    1995-01-01

    Guava (Psidium guajava L.) is valuable tropical fruit because its high C vitamin content. Red an white are the most common species of guava found in tropical areas. The ionizing radiation is normally used as a ripen ring retardant for longer storage periods. This work studies gamma radiation effects on the C vitamin concentration in white and red guava. Samples of juices were irradiated using a source of Cobalt-60, with doses of 1,0 2,5 and 5,0 kGy and storing periods of 0,15 and 30 days. The white guava juice showed a 49% loss in the C vitamin concentration with 5 kGy radiation dose, while the red guava juice showed 33% under the same condition. This shows that the juice of white guava is more sensitive to gamma radiations than the red guava. This results suggests a protection mechanism by colour pigments we believe is associated to the aromatic structures in the red specie. (author). 4 refs., 2 tabs

  6. Ionizing radiations

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled some fundamental notions and measurement units related to ionizing radiations, this document describes various aspects of natural and occupational exposures: exposure modes and sources, exposure levels, biological effects, health impacts. Then, it presents prevention principles aimed at, in an occupational context of use of radiation sources (nuclear industry excluded), reducing and managing these exposures: risk assessment, implementation of safety from the front end. Some practical cases illustrate the radiation protection approach. The legal and regulatory framework is presented: general notions, worker exposure, measures specific to some worker categories (pregnant and breast feeding women, young workers, temporary workers). A last part describes what is to be done in case of incident or accident (dissemination of radioactive substances from unsealed sources, anomaly occurring when using a generator or a sealed source, post-accident situation)

  7. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  8. Changes of ionizing radiation caused by natural radionuclides in the Curonian Spit

    International Nuclear Information System (INIS)

    Peciuliene, M.; Jasaitis, D.; Grigaliunaite-Vonseviciene, G. and others

    2005-01-01

    Taking into consideration a unique scenery of the Curonian Spit, dosimetric investigation of ionizing radiation caused by natural radionuclides is performed there. The influence of natural radionuclides present in the ground on the equivalent dose rate of gamma radiation in the ground surface air is established. Measurements of equivalent dose rate are carried out in the whole territory of the Curonian Spit in Lithuania. Especially numerous data have been collected on the coasts of the sea and bay, near them, in seaside dunes and by roads. The established equivalent dose rate values vary from 22 nSv/h (on the dune top) to 90 nSv/h (above an asphalt path). The values of the main gamma radiation source ( 40 K and 226 Ra) concentration are measured, and positive correlation of concentrations and equivalent dose rates in the ground surface air between 40 K and 2 '2 6 Ra is determinated. It is established that 40 K has the biggest influence on equivalent dose rate. The equivalent dose rate values in the ground surface air in the Curonian Spit are comparatively low (they can even be 1630 times lower in comparison to Guarapari beach, Brazil). (author)

  9. Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation

    Science.gov (United States)

    Chu, Libing; Zhuang, Shuting; Wang, Jianlong

    2018-04-01

    The gamma radiation induced-degradation of a β-lactam antibiotic, penicillin G was investigated in aqueous solution. Special attention was paid to the effects of the organic substances such as peptone and glucose on penicillin G degradation, which can be found in the wastewater of the factories producing antibiotics. Results showed that gamma radiation was effective to degrade and deactivate penicillin G in pure water. With the initial concentrations of 0.27 mM, 1.34 mM and 2.68 mM, a complete removal of penicillin G could be achieved at the adsorbed doses of 2.5 kGy, 10 kGy and 20 kGy, respectively. Penicilloic acid from the β-lactam ring cleavage and a series of fragment compounds such as thiazolidine and penicillic acid were identified during gamma irradiation-induced degradation of penicillin G. Addition of Fe2+ was efficient to enhance the mineralization. The TOC removal efficiency of penicillin G was 21.7% using gamma irradiation alone at 10 kGy, which increased to 56.4% with 1.0 mM Fe2+ addition. The gamma radiation-induced degradation of penicillin G was inhibited in the presence of peptone and glucose and the inhibitive effect increased with increasing their concentrations. The rate constant, k of the pseudo first-order kinetics decreased by 74% and 64% in the presence of 1.0 g/L of peptone and glucose, respectively, and by 96% and 89% in the presence of 10 g/L of peptone and glucose, respectively. The ratio of k/k0 was increased by 1.3 times with H2O2 addition and by 3 times with Fe2+ addition, in the presence of 10 g/L of glucose. Adding Fe2+ was effective to improve the ionizing radiation induced degradation of penicillin G antibiotic in the glucose-containing wastewater.

  10. Use of Biomphalaria glabrata hemocytes as a biomarker of exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hianna A.M.F.; Lima, Maira V.; Sa, Jose L.F.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Melo, Larissa S.A.; Morais, Vinicius H.T.; Melo, Ana M.M.A., E-mail: hiannaamfs@gmail.com, E-mail: mairavasconceloslima@gmail.com, E-mail: luismuma6@gmail.com, E-mail: williams.wns@gmail.com, E-mail: ricardolclf@hotmail.com, E-mail: larissamelo.pe@gmail.com, E-mail: viniciushtmorais@hotmail.com, E-mail: amdemelo@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Biofisica e Radiobiologia

    2017-11-01

    The increase of the applications of ionizing radiation in several areas and sectors of modern society has given rise to a greater probability of occurrence of accidents. These accidental occurrences have revealed the need for methods that provide quantitative data on the radiation doses absorbed by biological systems. The mollusk Biomphalaria glabrata presents as a good bioindicator in several works referenced in the literature. In this way, the objective of this work was to evaluate the morphological and quantitative alterations of hemocytes of the Biomphalaria glabrata exposed to ionizing radiation. For the experiments, adult mollusks of the species B. glabrata pigmented were used. The selected mollusks were divided into six groups: five submitted to doses of 10, 20, 30, 40, 50 Gy of {sup 60}Co gamma radiation and the control group. After 48 h, the slides were prepared and then read in a microscope. Quantitative analysis showed a decrease in the total number of hemocytes after irradiation. In the cell classification, a higher number of hyalinocytes were observed in relation to the number of granulocytes, except for the animals exposed to a dose of 30 Gy. The presence of micronuclei and binucleations were observed at all doses used. Apoptosis was observed at doses starting at 30 Gy. Therefore, it is possible to conclude that the morphological and quantitative analysis of B. glabrata hemocytes provided significant data for the identification of biological damage caused by ionizing radiation, allowing the beginning of standardization of the morphological alteration counting technique in B. glabrata hemocytes as An environmental biomarker for the action of physical agents. (author)

  11. Use of Biomphalaria glabrata hemocytes as a biomarker of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Hianna A.M.F.; Lima, Maira V.; Sa, Jose L.F.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Melo, Larissa S.A.; Morais, Vinicius H.T.; Melo, Ana M.M.A.

    2017-01-01

    The increase of the applications of ionizing radiation in several areas and sectors of modern society has given rise to a greater probability of occurrence of accidents. These accidental occurrences have revealed the need for methods that provide quantitative data on the radiation doses absorbed by biological systems. The mollusk Biomphalaria glabrata presents as a good bioindicator in several works referenced in the literature. In this way, the objective of this work was to evaluate the morphological and quantitative alterations of hemocytes of the Biomphalaria glabrata exposed to ionizing radiation. For the experiments, adult mollusks of the species B. glabrata pigmented were used. The selected mollusks were divided into six groups: five submitted to doses of 10, 20, 30, 40, 50 Gy of "6"0Co gamma radiation and the control group. After 48 h, the slides were prepared and then read in a microscope. Quantitative analysis showed a decrease in the total number of hemocytes after irradiation. In the cell classification, a higher number of hyalinocytes were observed in relation to the number of granulocytes, except for the animals exposed to a dose of 30 Gy. The presence of micronuclei and binucleations were observed at all doses used. Apoptosis was observed at doses starting at 30 Gy. Therefore, it is possible to conclude that the morphological and quantitative analysis of B. glabrata hemocytes provided significant data for the identification of biological damage caused by ionizing radiation, allowing the beginning of standardization of the morphological alteration counting technique in B. glabrata hemocytes as An environmental biomarker for the action of physical agents. (author)

  12. The Effects of Ionizing Radiation on the Oral Cavity.

    Science.gov (United States)

    de Barros da Cunha, Sandra Ribeiro; Ramos, Pedro Augusto Mendes; Nesrallah, Ana Cristina Aló; Parahyba, Cláudia Joffily; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2015-08-01

    The aim of this study is to present a literature review on the effects of the ionizing radiation from radiotherapy treatment on dental tissues. Among the effects of increasing global life expectancy and longevity of the teeth in the oral cavity, increasing rates of neoplastic diseases have been observed. One of the important treatment modalities for head and neck neoplastic diseases is radiotherapy, which uses ionizing radiation as the main mechanism of action. Therefore, it is essential for dentists to be aware of the changes in oral and dental tissues caused by ionizing radiation, and to develop treatment and prevention strategies. In general, there is still controversy about the effects of ionizing radiation on dental structures. However, qualitative and quantitative changes in saliva and oral microbiota, presence of oral mucositis and radiation-related caries are expected, as they represent the well-known side effects of treatment with ionizing radiation. Points that still remain unclear are the effects of radiotherapy on enamel and dentin, and on their mechanisms of bonding to contemporary adhesive materials. Ionizing radiation has shown important interaction with organic tissues, since more deleterious effects have been shown on the oral mucosa, salivary glands and dentin, than on enamel. With the increasing number of patients with cancer seeking dental treatment before and after head and neck radiotherapy, it is important for dentists to be aware of the effects of ionizing radiation on the oral cavity.

  13. Estimation of the contribution of ionization and excitation to the lethal effect of ionizing radiation

    International Nuclear Information System (INIS)

    Petin, V.G.; Komarov, V.P.

    1982-01-01

    A simple theoretical model is proposed for estimating the differential contribution of ionization and excitation to the lethal effect of ionizing radiation. Numerical results were obtained on the basis of published experimental data on the ability of bacterial cells Escherichia coli to undergo photoreactivation of radiation-induced damage. It was shown that inactivation by excitation may be highly significant for UV-hypersensitive cells capable of photoreactivation; inactivation by excitation increased with the energy of ionizing radiation and the volume of irradiated suspensions. The data are in qualitative agreement with the assumption of a possible contribution of the UV-component of Cerenkov radiation to the formation of excitations responsible for the lethal effect and the phenomenon of photoreactivation after ionizing radiation. Some predictions from the model are discussed. (orig.)

  14. Response of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), eggs to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, W.D., E-mail: weliton.silva@usp.b [Department of Entomology and Acarology, Laboratory of Chemical Ecology and Insect Behavior, University of Sao Paulo, ' Luiz de Queiroz' College of Agriculture, Padua Dias Avenue, 11, 13418-900 Piracicaba (Brazil); Arthur, V.; Mastrangelo, T. [Food Irradiation and Radioentomology Laboratory, Center for Nuclear Energy in Agriculture (CENA/USP), Centenario Avenue 303, 13400-970 Piracicaba (Brazil)

    2010-10-15

    As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae's cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD{sub 90} and LD{sub 99} were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile.

  15. Survival of human lymphocytes after exposure to densely ionizing radiations

    International Nuclear Information System (INIS)

    Madhvanath, U.; Raju, M.R.; Kelly, L.S.

    1976-01-01

    Interphase death of human blood lymphocytes cultured in vitro was studied after exposure to 60 Co gamma rays and to accelerated ions of 1 H, 4 He, 7 Li, 11 B, 12 C, 20 Ne, 40 Ar, and π - meson beam under aerobic conditions. Exposures were also conducted under hypoxic conditions with 60 Co gamma rays, 4 He, 7 Li, and 12 C ion beams. Time course of interphase death was followed for 6 days after irradiation. Percent survivals were determined by using the trypan blue exclusion method. Survival curves at 5 days postirradiation were exponential for all radiations studied. These observations indicate that the production of interphase death of lymphocytes by densely ionizing radiations follows a pattern similar to that observed with colony-forming mammalian cells. However, the reproductive capacity of the latter cells is impaired with maximum effectiveness at energy densities associated with 220 keV/μm for the beam conditions used in this investigation. The much lower energy densities required to kill a lymphocyte suggest that a sensitive structure other than DNA may be responsible for the production of lymphocyte death, perhaps the membranes. The calculated inactivation cross sections for high-LET radiations above 650 keV/μm yielded values larger than the actual cell dimensions. It appears that contributions from delta rays become appreciable in this system at these LET's

  16. Protection criteria from the non-ionizing radiations

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.

    2004-01-01

    The first objective of the protection philosophy is to determinate the relation reason-effect in order to establish the exposition thresholds to acceptable values. To establish the radioprotection criteria is important to considerate the following: a-) The damage and effects of the non-ionizing radiation; b-) The physical aspects of the fields exposition; and c-) The dosimetry of the involucrate tissues. The non-ionizing radiation includes the optics radiations (ultraviolet, visible, infrared and laser), and the electromagnetic radiations (microwave, radars, magnetic and electrostatics fields)

  17. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  18. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    Science.gov (United States)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  19. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  20. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  1. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  2. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  3. Stimulating effect of gamma radiation on haploid wheat production through microscope over co-culture system

    International Nuclear Information System (INIS)

    Naseri, M.; Rahimi, M.; Faramarz, M.

    2004-01-01

    Haploid production focuses on low plant regeneration in some wheat genotypes. Haploid application gamma ray as an electromagnetic ray has ionizing properties which can produce ions when passing through biological matter. It can produce genetic variation therefore, is applied in crop and ornamental improvement to enhance agronomic traits. The most important changes caused by gamma radiation is in DNA structure existing in the nucleus of cell. The desirable agronomic changes then will be passed on through generations. Another property of gamma ray can be it's stimulating effect which is the aim in this investigation. Microspore-overy co-culture of wheat along with application of low doses of gamma radiation 2,3 and 4 Gy as absorbing doses were implemented with the aim to evaluate wheat haploid production. Modified Morashig and Skoog medium was used as induction medium and 190-2 medium for regeneration. Two winter and two spring wheat cultivars were used as genetic material. Low doses of gamma radiation simulated microspore cell division and produced more calli relative to non-irradiated microspores only in winter type wheats. In microspore overy co-culture, filtered microspores were centrifuged and then plated in Petri dishes containing MMS+500 mg/I glutamine with 25 overies

  4. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  5. Influence of preliminary radiation-oxidizing treatment on the corrosion resistance of zirconium in conditions of action of ionizing radiation

    International Nuclear Information System (INIS)

    Garibov, A. A.; Aliyev, A. G.; Agayev, T. N.; Velibekova, G. Z.

    2004-01-01

    Today mainly water-cooled nuclear reactors predominate in atomic energetics. For safe work of nuclear reactors detection of accumulation process of explosives, formed during radiation and temperature influence on heat-carriers in contact with materials of nuclear reactors in normal and emergency regimes of work is of great importance. The main sources of molecular hydrogen formation in normal and emergency regimes are the processes of liquid and vaporous water in vapo metallic reaction [1-5]. At the result of these processes molecular hydrogen concentration in heat-carrier composition always exceeds theoretically expected concentration. One of the main ways to solve the problem of water-cooled reactors safety is detection of possibilities to raise material resistance of fuel elements and heat carrier to joint action of ionizing radiation and temperature. The second way is inhibition of radiation-catalytic activity of construction materials' surface during the process of water decomposition. It's been established, that one of the ways to raise resistance of zirconium materials to the influence of ionizing radiation is formation of thin oxide film on the surface of metals. In the given work the influence of preliminary oxidizing treatment of zirconium surface on its radiation-catalytic activity during the process of water decomposition. With this aim zirconium is exposed to preliminary influence of gamma-quantum in contact with hydrogen peroxide at different meanings of absorbed radiation dose

  6. Interactive visual intervention planning in particle accelerator environments with ionizing radiation

    CERN Document Server

    Fabry, Thomas

    Radiation is omnipresent. It has many interesting applications: in medicine, where it allows curing and diagnosing patients; in communication, where modern communication systems make use of electromagnetic radiation; and in science, where it is used to discover the structure of materials; to name a few. Physically, radiation is a process in which particles or waves travel through any kind of material, usually air. Radiation can be very energetic, in which case it can break the atoms of ordinary matter (ionization). If this is the case, radiation is called ionizing. It is known that ionizing radiation can be far more harmful to living beings than non-ionizing radiation. In this dissertation, we are concerned with ionizing radiation. Naturally occurring ionizing radiation in the form of radioactivity is a most natural phenomenon. Almost everything is radioactive: there is radiation emerging from the soil, it is in the air, and the whole planet is constantly undergoing streams of energetic cosmic radiation. Sinc...

  7. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  8. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  9. Application of ionizing radiation to preservation of mushrooms

    International Nuclear Information System (INIS)

    Smierzchalska, K.; Gubrynowicz, E.

    1979-01-01

    The influence of ionizing radiation on prolongation of preservation time and quality of mushrooms is discussed. Some numerical data are cited. The influence of ionizing radiation on growth rate and physiological processes is also presented. (A.S.)

  10. Pregnancy and ionizing radiation

    International Nuclear Information System (INIS)

    Plataniotis, Th.N.; Nikolaou, K.I.; Syrgiamiotis, G.V.; Dousi, M.; Panou, Th.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In this report there will be presented the effects of ionizing radiation at the fetus and the necessary radioprotection. The biological results on the fetus, caused by the irradiation, depend on the dose of ionizing radiation that it receives and the phase of its evolution. The imminent effects of the irradiation can cause the fetus death, abnormalities and mental retardation, which are the result of overdose. The effects are carcinogenesis and leukemia, which are relative to the acceptable irradiating dose at the fetus and accounts about 0,015 % per 1 mSv. The effects of ionizing radiation depend on the phase of the fetus evolution: 1 st phase (1 st - 2 nd week): presence of low danger; 2 nd phase (3 rd - 8 th week): for doses >100 mSv there is the possibility of dysplasia; 3 rd phase (8 th week - birth): this phase concerns the results with a percentage 0,015 % per 1 mSv. We always must follow some rules of radioprotection and especially at Classical radiation use of necessary protocols (low dose), at Nuclear Medicine use of the right radioisotope and the relative field of irradiation for the protection of the adjacent healthy tissues and at Radiotherapy extreme caution is required regarding the dose and the treatment. In any case, it is forbidden to end a pregnancy when the pregnant undergoes medical exams, in which the uterus is in the beam of irradiation. The radiographer must always discuss the possibility of pregnancy. (author)

  11. Method of shaping of direction-characterization of sensitivity of ionizing radiation detection probe

    International Nuclear Information System (INIS)

    Czarnecki, J.; Jaszczuk, J.; Kruczyk, M.; Slapa, M.; Wroblewski, T.

    1986-01-01

    A method of shaping of direction-characterization of sensitivity of the ionizing radiation detection probe, especially equipped with small gamma detectors is described. Two detectors are placed coaxially in the bases of the cylindrical shield. One of them is uncovered in the highest degree and the second is not covered to a maximum. The signals from them are processed on the standarized sequences of electrical impulses (taking into account the heights and the widths of the amplitude). 2 figs., 1 tab. (A.S.)

  12. Ionizing radiation in the education of medicine

    International Nuclear Information System (INIS)

    Ivanova, N.

    2016-01-01

    Physics is a fundamental science that finds its applications in all areas of our lives. Its application in modern medicine is undeniable. In today’s medical practice special attention is dedicated to the use of ionizing radiation. The wide range of modern science and technology offers enormous possibilities for creation and implementation of new equipment using adequate doses of ionizing radiation. For accurate medical diagnostics and effective treatment of patients, this type of equipment must provide the necessary information to the physicians. On the other hand, the physicians should possess enough knowledge in the relative field of medicine. This paper contains information about the knowledge communicated to the students of the graduate program Medical Physics and Biophysics in the discipline Medicine in the first year of graduate study at the Medical University “Prof. Dr. Paraskev Stoyanov” of Varna. Firstly, we discuss the topics in the lectures of these two disciplines, concerning knowledge about ionizing radiation. Secondly, the respective laboratory exercises are described that illustrate the lectures in the graduate programs Medical Physics and Biophysics. Keywords: ionizing radiation, education, medicine, medical physics, biophysics

  13. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in targeted and bystander human artificial skin models and peripheral blood lymphocytes

    Science.gov (United States)

    Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga

    Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked

  14. Tissue macrophage activation: a shared sign of exposure to ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Petrenyov, D.R.

    2012-01-01

    The features of oxidative metabolism of peritoneal macrophages were studied in rats exposed to ionizing and non-ionizing radiation. An increased RNS and ROS production reported in animals exposed to both source of radiation showing non-specific response of organism. (authors)

  15. Sterilization by ionizing radiation comparative evaluation; Sterilizzazione mediante radiazioni e confronto con le tecniche convenzionali

    Energy Technology Data Exchange (ETDEWEB)

    Tata, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione; Giuliani, S.

    1996-01-01

    Sterilization of surgical and medical devices by ionizing radiation (gamma or accelerated electron beams) is currently regarded as one of the main industrial-scale applications of radiation technology processes. Considering the most widely utilized chemical-physical methods (i.e. ethylene oxide (EtO) fumigation and radiation treatment), about 10-12 millions m(3) of surgical and medical devices are estimated to be processed yearly all around the world, of which 70 % by EtO, 27% by gamma-irradiation and 3% using accelerated beams. Due to the increasing demand for reusable and single-use devices, and the need of assuring their sterility in order to prevent, as much as possible, the diffusion of serious infective diseases (among which for instance Aids), the market of sterilization of these items is considerably expanding. In the general depicted scenario, radiation technologies are expected to gain a leading role, even a part from their economic attractiveness, as an alternative to EtO treatment, which is more and more considered as responsible for increasing environmental, social and public health problems.

  16. Ionizing radiation and wild birds: a review

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Schultz, V.

    1975-01-01

    Since the first atomic explosion, 16 July 1945 at the Trinity Site in south-central New Mexico, the impact of ionizing radiation on bird populations has been of concern to a few individuals. The proliferation of nuclear power plants has increased public concern as to possible deleterious effects of nuclear power plant operation on resident and migratory bird populations. Literature involving wild birds and ionizing radiation is not readily available, and only a few studies have been anywhere near comprehensive, with most effort directed towards monitoring radionuclide concentration in birds. The objective of the paper is to document the literature on wild birds and ionizing radiation including a brief description of pertinent papers

  17. Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings

    International Nuclear Information System (INIS)

    Yesmin, Sabina; Sonker Barua, Bijoy; Uddin Khandaker, Mayeen; Tareque Chowdhury, Mohammed; Kamal, Masud; Rashid, M.A.; Miah, M.M.H.; Bradley, D.A.

    2017-01-01

    Following the rapid growing per capita income, a major portion of Bangladeshi dwellers is upgrading their non-brick houses by rod-cement-concrete materials and simultaneously curious to decorate the houses using luxurious marble stones. Present study was undertaken to investigate the gamma-ray attenuation co-efficient of decorative marble materials leading to their suitability as shielding of ionizing radiation. A number of commercial grades decorative marble stones were collected from home and abroad following their large-scale uses. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the mass attenuation coefficients of the studied materials for high energy photons. Some allied parameters such as half-value layer and radiation protection efficacy of the investigated marbles were calculated. The results showed that among the studied samples, the marble ‘Carrara’ imported from Italy is suitable to be used as radiation shielding material. - Highlights: • Studies of decorative building materials for shielding of ionizing radiation. • High energy photon beam were used to obtain various interaction properties. • Marble stone ‘Carrara’ from Italy shows suitability to be used as shielding material.

  18. Apparatus and method for locating and quantifying or directing a source of ionizing radiation

    International Nuclear Information System (INIS)

    Rogers, W.L.; Wainstock, M.A.

    1976-01-01

    An apparatus and method for locating or directing a source of ionizing radiation such as X-rays, gamma rays, alpha particles, beta particles, etc. are described. The preferred embodiment detects and locates abnormalities of the body such as ocular melanomas by detecting the emission of radiation from a melanoma which has absorbed a radioactive medium. The apparatus includes an ultrasound probe which emits ultrasonic waves along a first axis and detects a returned portion of the waves. The ultrasound probe is associated with a display which displays the returned portion of the waves in the time domain so that suspected abnormalities can be located. The ultrasound probe is used to guide a directional probe for detecting and quantifying ionizing radiation which is equipped with a focusing collimator having a focal point along a second axis. The two probes are supported so that the first and second axes converge at the focal point of the collimator. A range marker is associated with the ultrasonic detector which indicates the point of convergence of the axes on the ultrasonic display permitting guidance of the radiation detecting probe to the suspected abnormality

  19. Radiation application for paper preservation: gamma irradiation at Eucalyptus pulp sheets

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Barbosa, Patricia S.M.; D'Almeida, Maria Luiza O.

    2009-01-01

    Ionizing radiation has been proposed in order to protect information and books that may be lost due to fungi and or insects infestation. In general restaurators are very worried about the maintenance of original properties of items to be treated. The selected technology must consider two points: type of biological contamination and contamination control. Fungi is one of the principal organism which grows well on papers. Once this infestation is installed on the paper it will signify spots, resistance loses and deterioration. The organisms feces introduces enzymes, organic acids and pigments to the contaminated material. Ionizing radiation from gamma sources were applied at laboratory sheets manufactured with commercial cellulose pulp. The subject of this present paper was to investigate the ideal radiation dose that is safe for keeping the paper quality. Laboratory sheets (75 g/m 2 ) were prepared in a TAPPI sheet former. Bleached sulphate Eucalyptus pulp, refined in laboratory PFI mill to 31 deg SR, was the raw material. The formed sheets were irradiated at IPEN's 60 Co Gammacell with 3 kGy up to 25 kGy. No significant changes were detected in paper samples irradiated up to 9 kGy. This is the radiation dose to be suggested. During irradiation the applied dose rate was 0.817 Gy/s. (author)

  20. Physical aspects on the neutron irradiation. 4. Dosimetry with ionization chamber

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi; Takada, Masashi

    2008-01-01

    Absolute measurements of the absorbed dose for irradiation are generally made using ionization chambers, which should be calibrated by the standard radiation source. The neutron dose measurements are not simple since gamma rays always contaminate the neutron flux and a variety of charged particles are induced by neutrons. Following subjects are described: (1) The method by ICRU 45 to estimate total dose of neutrons and gamma ray, (2) The method to measure the neutron dose and the gamma ray dose separately using paired ionization-chambers, and (3) The calibration of ionization chambers. The stability of the standard ionization-chambers is also presented. (K.Y.)

  1. gamma. radiation of ionium

    Energy Technology Data Exchange (ETDEWEB)

    Curie, I

    1948-12-08

    Following the work of Ward (Proc Cambridge Phil Soc 35 322(1939)), the ..gamma..-radiation of ionium (from an IoTh preparation) was studied with the aid of Ta and W screens, and an aluminum counter. The screen measurements confirmed Ward's findings of two radiations, of 68 keV and of about 200 keV. The number of quanta per second of each radiation was determined with the counter, which has been calibrated on certain L lines of radium. The global quanta number of L lines of ionium was also determined. The results were as follows: 0.7 quanta ..gamma.. of 68 keV for 100 ..cap alpha..-particles; 0.2 quanta ..gamma.. of 200 keV for 100 ..cap alpha..-particles; 10 quanta L for 100 ..cap alpha..-particles. These data, which show an important internal conversion, agree with the findings of Teillac (Compt Rend 227 1227 (1948)), who investigated the ..beta..-radiation of ionium. It is the radiation 68 keV which is highly converted. On the other hand, these results do no agree with the data on the fine structure of ionium found by Rosenblum, Valadares, and Vial (Compt Rend 227 1088(1948)).

  2. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    Science.gov (United States)

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required.

  3. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  4. New upper limits on the local metagalactic ionizing radiation density

    Science.gov (United States)

    Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom

    1995-01-01

    We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.

  5. Six categories of ionizing radiation quantities practical in various fields

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zhuo Weihai

    2011-01-01

    This paper is the part of review on the evolvement of the systems for ionizing radiation quantities and units. In the paper, for better understanding and correct use of the relevant quantities of ionizing radiation, the major ionizing radiation quantities in various fields are divided into six categories. (authors)

  6. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  7. Synthesis of metal nanoparticles using ionizing radiation and developing their applications

    International Nuclear Information System (INIS)

    Ramnani, S.P.; Sabharwal, S.

    2008-01-01

    Fine metal particles with nanometer scale dimensions are of current interest due to their unusual properties that are different from their corresponding bulk materials. They are being explored for potential applications in optics, electronics, magnetics, catalyst, chemical sensing and biomedicine. A variety of methods are available in the literature for the synthesis of metal nanoparticles. The soft solution method involving the reduction of metal ion in the solution using reducing agent such as sodium borohydride, formaldehyde, trisodium citrate etc, are the most widely used. The ability of ionizing radiation to bring about ionization and excitation in the medium through which they travel results in the formation of reactive species which can be utilized to reduce metal ions into metal atoms to generate metal nanoparticles. The difference between gamma radiation method and soft solution method is that in the former the reducing species are generated in-situ whereas in later the reducing agent are incorporated into the system from an external source. A particular advantage of radiolysis method is that the reduction rate can be controlled by the selected dose rate unlike chemical method where the local concentration of reducing species is very high and cannot be controlled

  8. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.

    Science.gov (United States)

    Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei

    2016-06-01

    Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible

  9. Some totals of hygienic researches of foodstuffs treated by ionizing radiation for extention of storing terms

    International Nuclear Information System (INIS)

    Zajtsev, A.N.; Schillinger, Yu.I.; Kamal'dinova, Z.M.

    1974-01-01

    Some results of hygienic studies of food products exposed to ionizing radiation to prolong their storage life are presented. The study concerned foods treated in order to prevent germination (potato, onion), for disinfection purposes (grain, dry groat concentrates), or to inhibit microorganisms (uncooked and cooked products prepared from beef and pork, chicken carcasses, raw and gamma-ray-preserved fish, fresh fruits and berries). (E.T.)

  10. Non-ionizing radiation protection training manual for radiation control. Lectures, demonstrations, laboratories and tours on the course on non-ionizing radiations. Final report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Burkhart, R.L.

    1976-03-01

    In late 1974, consultation with the National Training Coordination Committee of the Conference of Radiation Control Program Directors determined that State personnel needed training in order to fulfill their responsibility with respect to the growing number of non-ionizing radiation sources. A contract was awarded to the Georgia Institute of Technology to develop materials for a training program on non-ionizing radiation protection, pilot test these materials in a two-week presentation for Federal, State, and local government health personnel, and revise the materials as needed to produce a self-contained training manual. The materials were pilot-tested in March 1976, and then revised to provide the final manual. The course consists of three parts (1) general discussions of basic principles, properties, propagation and behavior of all types of non-ionizing radiations (2) an indepth study of all types and applications of coherent (laser) radiations, and (3) a study of ultraviolet, infrared, microwave, r.f., longwave and mechanical radiations as they may be used to have applications in hospitals and other medical institutions

  11. Ionizing radiation regulations and the dental practitioner: 1. The nature of ionizing radiation and its use in dentistry.

    Science.gov (United States)

    Rout, John; Brown, Jackie

    2012-04-01

    Legislation governing the use of ionizing radiation in the workplace and in medical treatment first became law in 1985 and 1988, being superseded by the Ionizing Radiations Regulations 1999 (IRR99) and the Ionizing Radiation (Medical Exposure) Regulations 2000, (IR(ME)R 2000), respectively. This legislation ensures a safe environment in which to work and receive treatment and requires that those involved in the radiographic process must be appropriately trained for the type of radiographic practice they perform. A list of the topics required is detailed in Schedule 2 of IR(ME)R 2000 and is paraphrased in Table 1, with the extent and amount of knowledge required depending on the type of radiographic practice undertaken. Virtually all dental practitioners undertake radiography as part of their clinical practice. Legislation requires that users of radiation, including dentists and members of the dental team, understand the basic principles of radiation physics, hazards and protection, and are able to undertake dental radiography safely with the production of high quality, diagnostic images.

  12. Effects of the ionizing radiation in natural food colours

    International Nuclear Information System (INIS)

    Cosentino, Helio Morrone

    2005-01-01

    The world's fast growing population and its consequent increase in demand for food has driven mankind into improving technologies which ensure a safer supply of such commodities. Both food radiation processing and its constituents are highlighted as a feasible alternative technique capable of meeting food safety standards. Natural dyes are extensively employed in the food industry thanks to their colour enhancing properties on food products. This paper has aimed at studying the effects of ionizing radiation on three natural dyes: carminic acid and its derivatives (cochineal dyes), bixine and its salts (annatto dyes) and curcumin (turmeric dyes), used in the food and cosmetic industries within dilutions and doses those goods might eventually be processed in. It also envisages clarifying the compatibility of the irradiation technique with the keeping of such relevant sensorial attribute which is the product colour. Spectrophotometry and capillary electrophoresis were the analytic methods employed. All in all, a colour decrease proportional to the increase on the applied gamma radiation (1 to 32 kGy) has been observed. The annatto dyes have proven moderately stable whereas turmeric has shown to be highly sensitive to radiation. Those results shall be taken into account as far as the need to alter the formulae additive amount in the product is concerned whenever undergoing radiation processing. (author)

  13. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  14. Evaluation of radiosensitivity hemocytes of Biomphalaria glabrata exposed to gamma radiation

    International Nuclear Information System (INIS)

    Silva, L.R.S.; Amaral, A.J.; Silva, E.B.; Amancio, F.F.; Melo, A.M.M.A.

    2013-01-01

    The mollusc Biomphalaria glabrata have characteristics that allow them to be identified as an animal model ideal for monitoring areas exposed to chemical agents and physical. This study evaluated the effect of ionizing radiation from Cobalt-60 in haemocytes present in the hemolymph of Biomphalaria glabrata, with the goal of using these cells as indicators of the presence of radiation in aquatic environments. The mollusks were divided into five groups: one control and four subjected doses of 25, 35, 45 and 55 Gy of gamma radiation. After 48 hours of irradiation, the clam hemolymph was collected and slides were prepared and stained with Giemsa for analyses under a light microscope. Statistical analysis was performed using ANOVA and Tukey's test, p <0.05. The results showed that the total number of cells after irradiation reduced compared to control except at a dose of 55 Gy. During data analysis, morphological changes were observed in haemocytes of mollusks subjected to doses of 35, 45 and 55 Gy. These modifications consisted of nucleus bilobulated and nucleo plasmatic bridges. Another change was exclusively observed in the cellular exposure of 55 Gy, where hemocytes showed misshapen nuclei and cytoplasm vacuolisation, suggestive of apoptosis. It is concluded that hemocytes are sensitive to radiation and can be used as indicators of the presence of high doses of ionizing radiation in aquatic environments. (author)

  15. 21 CFR 579.22 - Ionizing radiation for treatment of animal diets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ionizing radiation for treatment of animal diets..., AND HANDLING OF ANIMAL FEED AND PET FOOD Radiation and Radiation Sources § 579.22 Ionizing radiation for treatment of animal diets. Ionizing radiation for treatment of complete diets for animals may be...

  16. Analysis on antioxidant activity by orac method in Viola tricolor l. flowers processed by ionizing radiation

    International Nuclear Information System (INIS)

    Koike, Amanda Cristina Ramos; Silva, Pamela Galo da; Villavicencio, Anna Lucia Casanas Haasis; Rodrigues, Flávio Thihara; Alencar, Severino Matias de

    2017-01-01

    Edible flowers are increasingly being used in gastronomy, being also recognized for their potential valuable effects beneficial to human health. Viola tricolor L. (johnny-jump-up) flowers represents one of the most popular and are widely used in culinary preparations, being also acknowledged for their antioxidant properties. To improve the conservation and safety of flowers the new approaches can be used as ionizing radiation. Radiation treatment contribute to the improve the safety, quality and extends the shelf life of foods by disinfestation insects and reducing or eliminating pathogenic microorganisms. The purpose of this study was to evaluate the dose-dependent effects of electron beam and gamma irradiation in the doses of 0.5, 0.8, 1.0 kGy and control (non-irradiated) on the antioxidant activity of Viola tricolor L.by the Oxygen Radical Absorbance Capacity assay (ORAC). Therefore, the ionizing radiation did not affect the antioxidant activity of the flowers. (author)

  17. Analysis on antioxidant activity by orac method in Viola tricolor l. flowers processed by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda Cristina Ramos; Silva, Pamela Galo da; Villavicencio, Anna Lucia Casanas Haasis, E-mail: amandaramos@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Flávio Thihara, E-mail: flaviot@ymail.com [Instituto Federal de Góias (IFG), Inhumas, GO (Brazil); Alencar, Severino Matias de, E-mail: smalencar@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)

    2017-07-01

    Edible flowers are increasingly being used in gastronomy, being also recognized for their potential valuable effects beneficial to human health. Viola tricolor L. (johnny-jump-up) flowers represents one of the most popular and are widely used in culinary preparations, being also acknowledged for their antioxidant properties. To improve the conservation and safety of flowers the new approaches can be used as ionizing radiation. Radiation treatment contribute to the improve the safety, quality and extends the shelf life of foods by disinfestation insects and reducing or eliminating pathogenic microorganisms. The purpose of this study was to evaluate the dose-dependent effects of electron beam and gamma irradiation in the doses of 0.5, 0.8, 1.0 kGy and control (non-irradiated) on the antioxidant activity of Viola tricolor L.by the Oxygen Radical Absorbance Capacity assay (ORAC). Therefore, the ionizing radiation did not affect the antioxidant activity of the flowers. (author)

  18. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  19. Mechanistic study of the toxicity of ionizing radiation in Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, F.; Alonzo, F. [Institut de Radioprotection et de Surete Nucleaire, IRSN/PRP-ENV/SERIS/LECO, Laboratoire d' Ecotoxicologie des Radionucleides, Cadarache (France); Bourdineaud, J.P. [UMR CNRS 5805 EPOC - OASU Station Marine d' Arcachon Universite Bordeaux 1, Arcachon (France); Poggiale, J.C. [Mediterranean Institute of Oceanography - MIO - UMR 7294 Pytheas Institute - OSU, Aix-Marseille University, Marseille (France)

    2014-07-01

    In the last decade, the ecological impact of ionizing radiation has emerged as a growing scientific concern for ecosystems protection. However, the assessment of potential radiological effects on the environment is hampered by both a gap of available scientific data and a lack in proven methods. Understanding how ionizing radiation affects wildlife at biologically and ecologically relevant scales is a major issue in environmental protection. This issue is one of the objectives of the Strategic Research Agenda (SRA) developed in the framework of the European program STAR (Strategy for Allied Radioecology). In this context, the present PhD project aims to evaluate chronic effects of external Cs-137 gamma radiation at low doses on a representative species of aquatic ecosystems, the cladoceran crustacean Daphnia magna. More precisely, the objectives of this study are to evaluate multi-generational effects of irradiation on: (i) genotoxic effects and their potential consequences on survival, somatic growth and fecundity, (ii) the energy budget and (iii) the population dynamics of Daphnia. An experimental design was developed to expose daphnids to low doses of ionizing radiation ranging from 0,008 to 32 mGy.h{sup -1} across 3 successive generations (75 days). DNA damages were assessed using random amplified polymorphic DNA and real time PCR (RAPD - PCR). Effects on survival, somatic growth and fecundity were monitored for 21-25 days in each generation, from hatching to release of brood 5. Our aim is to: examine a potential correlation between molecular (DNA) damage and effects observed at the individual level (survival, somatic growth and fecundity) across generations and test the suitability of DNA damage as an early indice of future trans-generational effects. As a future perspective, individual and molecular effects data will be analysed using a DEBtox model (Dynamic Energy Budget Applied to Toxicology) in order to identify the metabolic modes of action of ionizing

  20. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  1. Effect of gamma radiation on seed germination and seedling vigour in cowpea [Vigna unguiculata (L.) Walp.

    International Nuclear Information System (INIS)

    Thimmaiah, S.K.; Mahadevu, P; Srinivasappa, K.N.; Shankara, A.N.

    1998-01-01

    Cowpea [Vigna unguiculata (L.) Walp.) is regarded as hardy and one of the important tropical legumes. The plants respond differently to mutagenic treatments. Ionizing radiations affect a wide range of physiological and biochemical activities of plants. The purpose of this paper is to report the effect of gamma radiation on seed germination and seedling vigour of two important cowpea varieties viz., KBC-1 and TVX-994-02E in M 1 generation under laboratory conditions. (author)

  2. Principles of medical rehabilitation of survivors of acute radiation sickness induced by gamma and beta and gumma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nedejina, N.M.; Galstian, I.A.; Savitsky, A.A.; Sachkov, A.V.; Rtisheva, J.N.; Uvatcheva, I.V.; Filin, S.V. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose of this study is to reveal the principles of medical rehabilitation different degree acute radiation syndrome (ARS) survivors, who exposed {gamma}{beta}- and {gamma}{eta}-irradiation in different radiation accidents. The main reasons of working disability in the late consequences of ARS period are consequences of local radiation injures (LRI) and joining somatic diseases. Its revealing and treatment considerably improves quality of life of the patients. The heaviest consequence of LRI of a skin at {gamma}{beta}- radiation exposure is the development of late radiation ulcers and radiation fibrosis, which require repeated plastic surgery. LRI at {gamma}{eta}-radiation exposure differ by the greater depth of destruction of a underlying tissues and similar defects require the early amputations. Last 10 years microsurgery methods of plastic surgery allow to save more large segments of extremities and to decrease expression of the late consequences (radiation fibrosis and late radiation ulcers) LRI severe and extremely severe degrees. Medical rehabilitation of radiation cataract (development at doses more than 2.0 Gy) includes its extraction and artificial lens implantation, if acuity of vision is considerably decreased. Changes of peripheral blood, observed at the period of the long consequences, as a rule, different, moderate, transient and not requiring treatment. Only one ARS survivor dead from chronic myeloid leukemia. Thyroid nodes, not requiring operative intervention, are found out in Chernobyl survivors. Within the time course the concurrent somatic disease become the major importance for patients disability growth, which concurrent diseases seem to be unrelated to radiation dose and their structure does not differ from that found in general public of Russia. The rehabilitation of the persons who have transferred ARS as a result of radiating failure, should be directed on restoration of functions critical for ionizing of radiation of bodies and

  3. Induced resistance to hydrogen peroxide, UV and gamma radiation in bacillus species

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2005-01-01

    The catalase activity produced in four bacillus spp.(bacillus cereus, B. laterosporus, B. pumilus and B. subtilis (Escherichia coli was used for comparison) was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Bacillus spp. had higher resistance to hydrogen peroxide than E. coil. cultures of bacillus spp . When pretreated with sublethal level of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen than untreated control cultures. These pretreated cells were also resistant to lethality mediated by UV light and gamma radiation. The obtained results suggest that bacillus spp. Possess inducible defense mechanism (s) against the deleterious effects of oxidants and /or ionizing radiation

  4. Study of combinations of TL/OSL single dosimeters for mixed high/low ionization density radiation fields

    International Nuclear Information System (INIS)

    Oster, L.; Druzhyna, S.; Orion, I.; Horowitz, Y.S.

    2013-01-01

    In this paper we discuss and compare the potential application of combined OSL/TL measurements using 6 LiF:Mg,Ti (TLD-600 is enriched of isotope 6 Li which has a high cross-section for the reaction with slow neutrons) or 7 LiF:Mg,Ti ( TLD-700 is enriched of 7 Li isotope) and TLD-100 (natural isotopic composition) detectors. The OSL/TL duel readout of LiF:Mg,Ti as an ionization density discriminator avoids some of the difficulties inherent to the various types of discrimination mixed-field passive dosimeters, and in addition has several advantages. The preferential excitation of OSL compared to TL following high ionization density (HID) alpha irradiation, naturally explained via the identification of OSL with the “two-hit” F 2 or F 3 center, whereas the major component of composite TL glow peak 5 is believed to arise from a ''one-hit'' complex defect. This evidence allows near-total discrimination between HID radiation and low-ionization density (LID) radiation. Beta and alpha particle irradiations were carried out with 90 Sr/ 90 Y (∼500 keV average energy) and 241 Am sources (4.7 MeV) respectively and neutron irradiations were carried out at the PTB (Germany) (E n = 5 MeV) and RARAF (Columbia University, USA) (E n = 6 MeV) accelerator facilities. The highest values of the FOM obtained was ∼30 for neutron/gamma discrimination and ∼110 for alpha/gamma discrimination using OSL/TL – peak 5 measurements in TLD-700. -- Highlights: ► The increased response of OSL compared to TL following HID irradiation is observed. ► This evidence is explained via the identification of OSL with the ''two-hit'' F2 centers. ► The potential application of combined OSL/TL in discrimination dosimetry is discussed. ► The values of FOM were 110 for alpha/gamma and 30 for neutron/gamma discrimination

  5. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  6. Project Marna Natural Gamma Radiation MAP

    International Nuclear Information System (INIS)

    Suarez, E.; Fernandez, J.A.

    1997-01-01

    The confusion created by the accident that occurred in one of the Chernobyl reactors in April of 1986 made the general public and governments aware of the need for improved monitoring of environmental radiation levels. The levels of total gamma radiation or total gamma exposure rate over large areas reached values as high as 400 micro Roentgen/hour (mu R/h) and at points exceeded 1000 mu R/h. It should be borne in mind that, depending on the type of geological formations, normal values range from 5 to 30 mu R/h. The IAEA recommended to all countries that natural gamma radiation maps be made available to evaluate the levels of natural gamma radiation and possible increases, and it also indicated its concern that information be standardized. In addition, it stressed the advisability of using data obtained from uranium prospecting. (Author)

  7. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  8. RBE [relative biological effectiveness] of tritium beta radiation to gamma radiation and x-rays analyzed by both molecular and genetic methods

    International Nuclear Information System (INIS)

    Lee, W.R.

    1988-01-01

    The relative biological effectiveness (RBE) of tritium beta radiation to 60 Co gamma radiation was determined using sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa as the biological effect. The SLRL test, a measure of mutations induced in germ cells transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. From these ratios of the slopes of the 3 H beta and the 60 Co gamma radiation linear dose response curves, an RBE of 2.7 is observed. When sources of error are considered, this observation suggests that the tritium beta particle is 2.7 ± 0.3 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generation than 60 Co gamma radiation. Ion tracks with a high density of ions (high LET) are more efficient than tracks with a low ion density (low LET) in inducing transmissible mutations, suggesting interaction among products of ionization. Molecular analysis of x-ray induced mutations shows that most mutations are deletions ranging from a few base pairs as determined from sequence data to multi locus deletions as determined from complementation tests and Southern blots. 14 refs., 1 fig

  9. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  10. Responses of populations of small mammals to ionizing radiation

    International Nuclear Information System (INIS)

    Kitchings, J.T.

    1978-01-01

    Studies on the responses of small mammals to ionizing radiation have, over the past 30 years, documented numerous effects on direct mortality, reproduction, the hemopoietic systems, and radionuclide metabolism. Three general findings have resulted from past efforts: (1) ionizing radiation is a factor in environmental stress, (2) the response of wild small mammals to ionizing radiation is a mosaic of varying radiosensitivities interacting with environmental variables, and (3) one of the most sensitive organismal processes to radiation is reproduction. While an excellent understanding of the biological effects resulting from high or intermediate-level radiation exposures has been developed, this is not the case for effects of low-level doses

  11. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  12. Clinical practitioners' knowledge of ionizing radiation doses in ...

    African Journals Online (AJOL)

    Questions on radiosensitivity of different organs, imaging modalities that use ionizing radiation and considerations for the choice of ionizing radiation (IR) based examinations were included. Participants were also asked for their preferred methods of filling any knowledge gap on IR issues. Responses were presented in ...

  13. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  14. An Escherichia coli strain deficient for both exonuclease 5 and deoxycytidine triphosphate deaminase shows enhanced sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Estevenon, A.M.; Kooistra, J.; Sicard, N.

    1995-01-01

    An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores the wild type level of UV and gamma ray resistance to this mutant has been cloned in the multicopy vector pBR322. Comparison of its restriction map with the physical map of the E. coli chromosome revealed complete identity to the recBD genes. ior affects ATP-dependent exonuclease activity, suggesting that it is an allele of recB. This mutation alone does not confer sensitivity to UV and gamma radiation, indicating that lack of Dcd activity is also required for expression of radiation sensitivity

  15. Gamma radiation damage in crotamine (venom of Brazilian rattlesnake)

    International Nuclear Information System (INIS)

    Costa, T.A.; Rogero, J.R.

    1988-01-01

    Ionizing Radiations changes the molecular structure due to chemical bond destruction. These chemical alterations is able to change the biological properties of the macro-molecules. Crotamine was obtained from Crotalus durissus terrificus venom by molecular exclusion cromatography and irradiated in concentration of 2 mg/ml of NaCl 0,85% with gamma radiation produced by a 60 Co source. We used doses of 100 Gy, 250 Gy, 500 Gy, 1000 Gy and 2000 Gy (dose rate = 1,19.10 3 Gy/h). We performed the following experiments: presence of free SH groups, proteic concentration,SDS-PAGE and immunodifusion. Preliminary results showed an increase of the number of bands in SDS-PAGE suggesting the appearence of protein aggregates that proportional to the dose increasing. The immunodiffusion data showed no modification of the immunochemical activity against theButantan anti - sera. (author) [pt

  16. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    International Nuclear Information System (INIS)

    Haddad, Gianni Q.; Arthur, Valter

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  17. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Gianni Q.; Arthur, Valter, E-mail: ghaddad2001@yahoo.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Laboratório de Radiobiologia e Ambiente; Machi, André R., E-mail: rica_machi@hotmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  18. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  19. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    International Nuclear Information System (INIS)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B.; Giovedi, Claudia; Rosa, Derval S.

    2009-01-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant R commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  20. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B., E-mail: magbardi@ipen.b, E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: giovedi@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Rosa, Derval S., E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant{sup R} commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  1. Structural aspects of crotalic venom proteins modified by ionizing radiation

    International Nuclear Information System (INIS)

    Oliveira, Karina Corleto de

    2010-01-01

    Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the Ministry of Health notified around 26 000 accidents in 2008. The genus Crotalus (rattlesnakes) accounts for approximately 7% of the total, with a high mortality rate of 72% when untreated with the specific serum, the only effective treatment in case of snake bites. In Brazil, the serum is produced in horses which, despite the large size, have a reduced lifespan due to the high toxicity of the antigen. Ionizing radiation has proven to be an excellent tool for reducing the toxicity of venoms and isolated toxins, resulting in better immunogens for serum production, and contributing to the welfare of serum producing animals. Since the action of gamma radiation on venoms and toxins has not been yet fully clarified from the structural point of view, we proposed in this paper, to characterize two toxins of the species Crotalus durissus terrificus: crotoxin and crotamine. After isolation of the toxins of interest by chromatographic techniques, they were subjected to structural analysis with the application of the following methods: Fluorescence, Circular Dichroism, Differential Calorimetry and Infrared Spectroscopy. These tests showed that both crotamine as crotoxin when subjected to gamma radiation, showed changes in their structural conformation compared with the samples in the native state. Such changes probably occur in the secondary and tertiary structure and may explain the changes on the biological activity of these toxins. (author)

  2. Gamma irradiators for radiation processing

    International Nuclear Information System (INIS)

    2006-01-01

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  3. Modification of coaxial Ge/Li detector for low-energy gamma radiation

    International Nuclear Information System (INIS)

    Skrivankova, M.; Seda, J.

    1992-01-01

    A modification is described of a coaxial Ge/Li type ionizing radiation detector which makes possible the detection and spectrometry not only of medium- and high-energy gamma rays but also of low-energy (above 5 keV) X-rays and gamma rays. The modification consists in grinding down a thick diffuse layer of the face, which is subsequently etched in a mixture of nitric and hydrofluoric acids (ratio 5:2 to 1:5). Phosphorus or arsenic is subsequently implanted at an energy of 5 to 30 keV and in a dose of 10 14 to 10 15 ions/cm 2 . The detector is then drifted at 30 to 50 degC for 2 to 20 hours, encased in a cryostat, and submerged into liquid nitrogen. (Z.S.)

  4. Influence of ionizing radiation on human body

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2016-06-01

    Full Text Available This article describes positive and negative aspects of ionizing radiation and its effects on human body. Being a part of various medical procedures in medicine, ionising radiation has become an important aspect for both medical practitioners and patients. Commonly used in treatment, diagnostics and interventional radiology, its medical usage follows numerous rules, designed to reduce excessive exposure to ionizing radiation. Its widespread use makes it extremely important to research and confirm effects of various doses of radiation on patients of all ages. Two scientific theories, explaining radiation effects on human organism, stand in contrast: commonly accepted LNT-hypothesis and yet to be proven hormesis theory. Despite the fact that the current radiation protection standards are based on the linear theory (LNT-hypothesis, the hormesis theory arouses more and more interest, and numerous attempts are made to prove its validity. Further research expanding the knowledge on radiation hormesis can change the face of the future. Perhaps such researches will open up new possibilities for the use of ionizing radiation, as well as enable the calculation of the optimal and personalised radiation dose for each patient, allowing us to find a new “golden mean”. The authors therefore are careful and believe that these methods have a large future, primarily patient’s good should however be kept in mind.

  5. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  6. Ionizing radiation environment for the TOMS mission

    Science.gov (United States)

    Lauriente, M.; Maloy, J. O.; Vampola, A. L.

    1992-01-01

    The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.

  7. The effect of ionizing radiation with different ionizing density on the uni-cellular Alga Micrasterias denticulate Breb

    International Nuclear Information System (INIS)

    Reubel, B.

    1982-01-01

    The uni-cellular green alga Micrasterias denticulata Breb is very suitable for cytological, ultrastructural investigations as well as for growth studies of cell populations because of its size and its specific cellular pattern. Therefore these cells were investigated for their cell-cycle-dependent reaction to different types of radiation, dose-rates and cumulated doses and compared with results from the literature on radiobiological effects on single cells. Different types of ionizing radiation were used such as gamma rays ( 60 Co, 241 Am), alpha rays ( 241 Am) neutrons ( 252 Cf and 14 MeV-neutrons from a particle-accelerator) and protons (20-MeV-protons from a particle-accelerator). Irradiation with low doses (gamma-, neutron irradiation) did not show any statistically significant results. No effects could be observed after alpha irradiation because of the alpha particles could not penetrate the mucus cover. Irradiation with gamma rays and protons showed statistically significant reversible and irreversible effects. The reversible effect appeared in a dose-dependent division-delay of the populations. The results from literature, cell-cycle observations and ultra-structural investigations point to a block in the G 2 -phase and prolongation of the S-phase. Irreversible irradiation damage is caused by neutron- and proton irradiation. In the first case the length of division delay shows no dose-dependence. In the second case the following cell-cycles are retarded. The dose-effect-curves of proton-irradiations with different dose-rates show a plateau at high doses, which seems to be effected by the turn-on of an additional repair-mechanism. (Author)

  8. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  9. Mechanical analysis of bone rulers sterilized by gamma radiation for use in tissue banks

    International Nuclear Information System (INIS)

    Kosmiskas, Luis Otavio Carvalho

    2007-01-01

    In the production process of health care products, contamination must be considered as one of the principal hazards to be avoided. Among the developed methods for sterilization, ionizing radiation has largely been used by many sectors in health care area as it is efficient in eliminating biological contaminants of several origins. The difficulty of deploying ionizing radiation in materials of human origin, though, includes which possible alterations it might cause in human tissue. In the present work, the extension of the bio mechanical alteration generated by radiation in bone tissue was evaluated by bio mechanical methods. More specifically, we evaluated alterations to the elastic modulus, rupture tension and percentage of deformation that are thought to be a consequence of the sterilization process. As a research model, bovine femur struts obtained from the diaphysis were used. The struts were frozen in a temperature of -70 deg C and irradiated with crescent doses of gamma radiation (0, 12.5, 25 e 50 kGy). During this work, a cutting system to obtain precision samples to use in such essays was developed. As results show that there is a significant different between the analyzed characteristics in the different doses of radiation. (author)

  10. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    Science.gov (United States)

    Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2016-07-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.

  11. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  12. Mutagenic action of non-ionizing radiations: its implication in radiation protection

    International Nuclear Information System (INIS)

    Madhvanath, U.; Subrahmanyam, P.; Sankaranarayanan, N.; Singh, D.R.

    1977-01-01

    Mutagenic effects of non-ionizing radiations except in the ultraviolet and near ultraviolet region are just not known. Results of the investigation carried out using a sensitive diploid yeast system, are presented. The arginine requiring mutant yeast strain BZ34 reverts to prototrophy following exposure to ionizing radiation. Reversion frequencies were determined following exposure to UV (254 nm), near ultraviolet (313, 353 nm) visible region (480 nm), neodymium laser (1.01 μm) and microwave (2450 MHz) radiations. An Aminco - Bowman Spectrophotofluorimeter was used to obtain wavelengths from UV to visible region. Yeast suspensions (concentration of 10 7 cells/ml) were irradiated to doses ranging from 10 7 to 10 9 erg/cm 3 as determined with potassium ferri-oxalate system. Exposure to laser pulses and microwave radiation ranged up to 45 J/cm 2 and 60 mW-h/cm 2 respectively. Results showed that the reversion induction efficiency decreased by six orders of magnitude from ionizing radiations to ultraviolet for the same absorbed dose and this efficiency has further decreased by a factor of fifteen when the wavelength is increased from 254 nm to 313 nm. Although killing could be effected with laser beams (45 J/cm 2 for 50% survival) no increase in the reversion was observed than the background level. It is concluded that radiation of wavelengths higher than 450 nm up to 12 cm studied is not mutagenic and with sufficient intensities of these radiations only killing of cells is possible due to thermal effects. This finding is compared with other known functional and morphological effects at cellular level due to low-level exposures of non-ionizing radiations

  13. Study on the energy dependence of gamma radiation detectors for {sup 137}Cs and {sup 60}Co; Estudo da dependencia energetica de detectores de radiacao gama para {sup 137}Cs e {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Diniz, Raphael E.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E., E-mail: fbnonato@ipen.b, E-mail: rediniz@ipen.b, E-mail: vcsouza@ipen.b, E-mail: vivolo@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    38 Geiger-Mueller radiation detectors and 9 ionization chambers were calibrated, viewing to study the energy dependence of the monitor response for gamma radiation fields ({sup 137}Cs and {sup 60}Co). The results were considered satisfactory only for ionization chambers and for some Geiger-Mueller detectors

  14. Study of multi-generational effects of a chronic exposure to ionizing radiations at a model organism: the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Buisset-Goussen, Adeline

    2014-01-01

    The environmental risk assessment of chronic exposure to ionizing radiation (natural and ubiquitous phenomenon enhanced by human activities) has become a major concern. Few studies relating to chronic exposure over several generations - essential knowledge to better understand the disruption caused by ionizing radiation and its possible consequences on the population - exist. In addition, it has become necessary to understand the mechanisms of disturbances related to ionizing radiation at the molecular and cellular level. Without this mechanistic understanding, it is difficult to extrapolate the effects observed between the different levels of biological organization and between different species. The aim of this PhD was to study the multi-generational effects of chronic gamma radiation in an integrated manner (to the life history traits from the subcellular mechanisms) in a model organism, the nematode Caenorhabditis elegans. A two-step strategy was implemented. First, studying the effects of chronic gamma radiation on the life history traits of C. elegans was performed. The objective of this experiment was to test the hypothesis of an increase of the sensitivity according generations. For that, three generations have been exposed to different dose rates. In parallel, two generations have been placed in 'control' environment after parental exposure to test a possible transmission of maternal effects. The second part of this thesis aimed to characterize the different subcellular mechanisms that could explain the observed effects on the life history traits after multi-generational exposure. The results showed that (i) the cumulative number of larvae was the most sensitive endpoint to gamma radiation, (ii) an increase in radiosensitivity was observed over three exposed generations and (iii) the effects of the parental generation were transmitted to the non-exposed generations. An increase in apoptosis, a reduction in the stock of sperm, and to a lesser

  15. Protection during work with ionizing radiation sources; Ochrana pri praci se zdroji ionizujiciho zareni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The publication has been set up as a textbook for training courses dealing with health protection during work with ionizing radiation, designed for supervisory staff and persons directly responsible for activities which involve the handling of ionizing radiation sources. The book consists of a preface and the following chapters: (1) Fundamentals of ionizing radiation physics; (2) Quantities and units used in ionizing radiation protection; (3) Principles of ionizing radiation dosimetry; (4) Biological effects of ionizing radiation; (5) An overview of sources of public irradiation; (6) Principles and methods of health protection against ionizing radiation; (7) Examples of technical applications of sources of ionizing radiation; (8) Personnel and working environment monitoring; (9) Documentation maintained at sites with ionizing radiation sources; (10) Methods of personnel protection against external irradiation and internal radionuclide contamination; (11) Radiation incidents and accidents; (12) Health care of personnel exposed to the ionizing radiation risk; (12) Additional radiation protection requirements in handling radioactive substances other than sealed sources; (13) Measurement and metrology. (P.A.).

  16. Localization of the gamma-radiation sources using the gamma-visor

    Directory of Open Access Journals (Sweden)

    Ivanov Kirill E.

    2008-01-01

    Full Text Available The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures allowed localizing the new gamma-source.

  17. Localization of the gamma-radiation sources using the gamma-visor

    International Nuclear Information System (INIS)

    Ivanov, K. E.; Ponomaryev-Stepnoi, N. N.; Stepennov, B. S.; Teterin, Y. A.; Teterin, A. Y.; Kharitonov, V. V.

    2008-01-01

    The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures al lowed localizing the new gamma-source. (author)

  18. Basic ionizing radiation symbol

    International Nuclear Information System (INIS)

    1987-01-01

    A description is given of the standard symbol for ionizing radiation and of the conditions under which it should not be used. The Arabic equivalent of some English technical terms in this subject is given in one page. 1 ref., 1 fig

  19. Effects of ionizing radiation on male germ cells of crab-eating monkey

    International Nuclear Information System (INIS)

    Okamoto, Masanori; Kitazuma, Masayuki; Tobari, Izuo

    1989-01-01

    Effects of ionizing radiation on sperm concentration, testicular volume, and sperm shape of the crab-eating monkey were studied by using acute and low dose-rate gamma-ray and X-ray. The animals were acutely irradiated with 0.25-3.00 Gy with Cs-137 gamma-ray at a dose-rate of 0.25 Gy/min. Sperm concentrations were decreased with time after irradiation in a dose-dependent fashion. The time required for the lowest concentration of sperm depended on radiation doses. A linear dose-response relationship was seen for sperm concentrations. In comparing the present results in monkeys to previous results in mice and golden hamsters, the sensitivity of spermatogenic cells in killing effect of gamma ray varied in the following order: monkeys>hamsters>mice. The present monkeys were also subjected to whole-body irradiation with 0.3-1.5 Gy of Cs-137 gamma-ray at 1.8 x 10 -5 Gy/min, for the purpose of estimating low-dose rate irradiation on sperm concentrations, testicular volume and sperm shape. Noticeable changes in either sperm concentration or testicular volume did not occur by irradiation of 0.3 Gy. Sperm concentrations were markedly changed with 1.0 Gy. Changes in sperm concentrations and testicular volume after X-ray irradiation at the dose-rate of 0.32 Gy/min showed that killing effects of X-ray are apparently higher than those of gamma-ray. When the incidence of abnormal head shapes of sperm was examined in monkeys with chronic gamma-ray irradiation, the highest incidence of abnormality was 1.5-1.8% at 0.25-0.50 Gy. The incidence of sperm abnormality in monkeys was comparable to that in hamsters; however, it was markedly higher in mice than monkeys. (Namekawa, K)

  20. Role of ionizing radiation in chemical evolution studies

    International Nuclear Information System (INIS)

    Albarran, G.; Negron-Mendoza, A.; Trevino, C.; Torres, J.L.

    1988-01-01

    The purpose of this paper is to emphasize the role of ionizing radiation in radiation-induced reactions in prebiotic chemistry. The use of ionizing radiation as an energy source is based on its unique qualities, its specific manner of energy deposition and its abundance in the Earth's crust. As an example of radiation-induced reactions, the radiolysis of malonic acid was investigated. Malonic acid is converted into other carboxylic acids. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. (author)

  1. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  2. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  3. The effect of ionizing radiations on rat serum albumin on in vivo and in vitro

    International Nuclear Information System (INIS)

    Portakal, S.

    1984-01-01

    The effect of ionizing radiations on rat serum albumin was studied on in vivo and in vitro. Male rats (rattus norvegicus) were exposed to 225 roentgen wholebody X-irradiation on in vivo experiments. Time-course effects of irradiation on albumin level examined at immediately, 2.5 hours and 3 days after irradiation. Albumin level decreased above control level 2.5 hours after irradiation and rised within 3 days reaching control level. Pre-albumin/albumin ratio enhanced after x-irradiation. Aqueous solutions (0.5 percent) of rat serum albumin was exposed to various doses (0.2, 0.5, 1.0 and 1.9 Mrad) of 60 Co gamma irradiation on in vitro experiments. Results showed that electrophoretic mobility of serum albumin decreased after gamma irradiation. No significant change in albumin UV absorption spectrum was observed at 0.2, 0.5, 1.0 and 1.9 Mrad doses. Albumin becomes progressively less soluble in water as the radiation doses is increased. Radiation induced transformation into insoluble albumin agregates and scission products. (author)

  4. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Suk Chul [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Lee, Kyung-Mi [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kang, Yu Mi [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Kwanghee [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Chong Soon [Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University, Busan 612-030 (Korea, Republic of); Kim, Hee Sun, E-mail: hskimdvm@khnp.co.kr [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of)

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  5. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  6. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  7. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  8. Effect of ionizing and non ionizing radiation on Protozoan and Parasites Ova causing gastroenteritis presents in sewage sludge wastes

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Sharabi, N.

    2006-01-01

    Helminths eggs viability was determined by aid of methods and techniques which depend on the morphological parameters, studying the motility incubation and applying the vital staining. The protozoa viability was studied by using many vital staining, but applying culture techniques on specific composed media did not give any results. The disinfection results showed that for ascaris eggs, protozoa and amoeba oocysts irradiated by 6 KGy of gamma (Co 6 0) which was sufficient to kill all types of such parasites. On the contrary, conflict the UV radiation was able to motivate the ascaris eggs embryonations. Also, the viability of the Giardia and Entamoeba oocysts were not affected. In the light of the current experiments, it is possible to conclude that using the UV technique instead of the ionizing radiation for killing the helminths eggs and protozoa is not usable. (Authors)

  9. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  10. Study of ionizing radiation effects in human costal cartilage by thermogravimetry and optical coherence tomography

    International Nuclear Information System (INIS)

    Martinho Junior, Antonio Carlos

    2012-01-01

    Tissue Banks around the world have stored human cartilages obtained from post mortem donors for use in several kinds of reconstructive surgeries. To ensure that such tissues are not contaminated, they have been sterilized with ionizing radiation. However, high doses of gamma radiation may cause undesirable changes in the tissues. In this work, we evaluated the possibility of use Optical Coherence Tomography (OCT) and Thermogravimetric Analysis (TGA) to identify possible structural modifications caused by both preservation methods of cartilage and gamma irradiation doses. Cartilages were obtained from cadaveric donors and were frozen at -70 deg C or preserved in glycerol. Irradiation was performed by 60 Co source with doses of 15, 25 and 50 kGy. Our TGA results showed that glycerolized cartilages irradiated with different doses of radiation does not presented statistical differences when compared to the control group for the dehydration rate. However, the same was not observed for deep-frozen cartilages irradiated with 15 kGy. The results of OCT associated to total optical attenuation coefficient showed that doses of 15 kGy promote cross-link between collagen fibrils, corroborating the results obtained from TGA. Moreover, total optical attenuation coefficient values are proportional to stress at break of cartilages, what will be very useful in a near future to predict the quality of the allografts, without unnecessary loss of biological tissue, once OCT is a nondestructive technique. By PS-OCT images, we found that high doses of ionizing radiation does not promote sufficient impairments to promote complete loss of tissue birefringence. Thus, TGA and OCT are techniques that can be used for tissue banks to verify tissue quality before its transplant. (author)

  11. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  12. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  13. SGR-76 gamma radiation level indicator

    International Nuclear Information System (INIS)

    Chubinskij-Nadezhdin, I.V.

    1978-01-01

    The design of a gamma-radiation level indicator is described; the instrument is part of a mobile radiometric laboratory (MRL). The design of the instrument permits gamma-radiation dose rates recording at 0.2-200 R/hr, and signals on gamma-background levels. The instrument has two separate threshold levels of signalling actuation. The light signalling at the first level is precautionary, and the sound signalling at the second level indicates the necessity of taking a decision as to whether or not the MRL can remain in the gamma-radiation field. Halogenic counters operating in a current mode are used as detectors. The basic error in recording the dose rate amounts to +-25%. Overall dimensions of the instrument 150x280x100 mm; weight less than 2.5 kg

  14. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... to ionizing radiation. 3.311 Section 3.311 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Evaluations; Service Connection § 3.311 Claims based on exposure to ionizing radiation. (a) Determinations of... to ionizing radiation in service, an assessment will be made as to the size and nature of the...

  15. Effects of gamma radiation on antinutritional factors of soybean

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Tais C.F. de; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia]. E-mail: tcftoled@cena.usp.br; arthur@cena.usp.br; Brazaca, Solange G.C. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao]. E-maik: sgcbraza@esalq.usp.br; Piedade, Sonia M. de S. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas]. E-mail: piedade@esalq.usp.br

    2007-07-01

    The soybean is one of the most important legume cultivated in the world. Some leguminous, particularly soybeans, contain significant amounts of bioactive compounds that may change the utilization of nutrients by the organism, when consumed. The main protein responsible for the low nutritional value of raw soybean grains and the trypsin and lectin inhibitors. Some methods can be used to minimize lost during storage, and the ionizing radiation with Cobalto-60 constitutes a safe and efficient method for the increase in the time of useful life of foods. The sum of observations exposed in previous chapters leads to the proposal of determining the possible alterations promoted by the use of gamma radiation (with doses of 2, 4 and 8 kGy) in the alteration of antinutrients (total phenolic, trypsin inhibitor and tannins) in soybean (cultivars BRS 212, BRS 213, BRS 214, BRS 231 and EMBRAPA 48). Total phenolic ranged from 2.46 to 10.83 mg/g, and the dose of 8 kGy promoted an increase on the content of total phenolic compounds in all raw samples and in cooked samples from some cultivars. The trypsin inhibited ranged from 18.19 to 71.64 UTI/g, and all cultivars presented the same behavior in relation to radiation for inhibited trypsin units both for raw and cooked samples, with significant differences (p{<=}0.05) between all doses used. For tannins, ranged from 0.01 to 0.39 mg/g, and the gamma radiation promoted reduction on the tannin contents as the radiation dose increased until a limited dose. All the antinutrients studied underwent reduction with increases on the doses. (author)

  16. A Role for Bioelectric Effects in the Induction of Bystander Signals by Ionizing Radiation?

    Science.gov (United States)

    Mothersill, C.; Moran, G.; McNeill, F.; Gow, M.D.; Denbeigh, J.; Prestwich, W.; Seymour, C.B.

    2007-01-01

    The induction of “bystander effects” i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy 60Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure. PMID:18648606

  17. Calibration curve to establish the exposure dose at Co{sup 60} gamma radiation; Curva de calibracion para establecer dosis de exposicion a radiacion gamma de Co{sup 60}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C; Brena V, M [Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  18. Specification for symbol for ionizing radiation

    International Nuclear Information System (INIS)

    1974-01-01

    This Malaysia Standard specification specifies a symbol recommended for use only to signify the actual or potential presence of ionizing radiation (#betta#, α, #betta# only) and to identify objects, devices, materials or combinations of materials which emit such radiation. (author)

  19. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    Science.gov (United States)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  20. Toxicological evaluation of natural rubber latex film vulcanized with ionizing radiation

    International Nuclear Information System (INIS)

    Campos, Vania E.; Higa, Olga Z.; Guedes, Selma M.L.; Hanada, Seico

    1999-01-01

    The industrial vulcanization of natural rubber latex (NRL) is made worldwide by conventional process using sulphur, but it can be made by an alternative process using ionizing radiation. The main advantages of this process are related to absence of toxic effect promoted by chemical substances added to the NRL on the conventional process. In this research was tested the toxicological properties of the films vulcanized by the alternative process in relation to that vulcanized by the conventional process. The toxicity was evaluated by in vitro cytotoxicity assay and in vivo systemic toxicity assay. The results showed that vulcanized films by gamma ray are less cytotoxic. The systemic toxicity assay showed that only the vulcanized film using sulphur induced allaying and motor in coordination on the animals for a short period of time. these results evidence the less cytotoxic properties of vulcanized films by gamma ray in relation to that vulcanized by conventional process using sulphur. (author)

  1. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  2. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  3. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    International Nuclear Information System (INIS)

    Kubin, M.; Sedlackova, J.; Vacek, K.

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10 3 , 48.5 and 3.2x10 3 , respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D 10 =0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applxcable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection. (author)

  4. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kubin, M [Institut Hygieny a Epidemiologie, Prague (Czechoslovakia); Sedlackova, J; Vacek, K [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10/sup 3/, 48.5 and 3.2x10/sup 3/, respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D/sub 10/=0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applicable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection.

  5. Ionizing radiation: effects upon acquisition and performance of behavior

    International Nuclear Information System (INIS)

    Vasconcelos, Laercia Abreu

    1999-03-01

    The present study, using rats as subjects, attempted to assess the effects of multiple exposures to gamma radiation upon behavior in two procedures of a multiple schedule of repeated acquisition and performance. With an experimental chamber containing three levers displaced horizontally, left (l), center (c) and right (r), different levels of complexity were programmed for procedures A and B. In both procedures a new sequence of three responses was programmed for each session (lcr, lrc, clr, crl, rlc) for the acquisition component, whereas for the performance component the same sequence was maintained throughout the sessions. The completion of three sequences (nine responses) was followed by reinforcement and incorrect responses were followed by time-out without correction procedures. In procedure A the sequences consisted of one response in each lever (for example, crl→crl→crl→reinforcement) while in procedure B a sequence consisted of three response in the same lever, with the following three responses having to occur in a different lever (for example, ccc→rrr→lll→reinforcement). Six subjects were trained in each procedure. Base line data showed, by means of error percentage, that procedure B regardless of being more complex represented a lower difficulty level than procedure A: subjects in procedure B displayed, in general, a lower number of errors per session. After training in these procedures of repeated acquisition and performance, the subjects were exposed to doses of ionizing radiation of 3.0, 4.5, 6.0 and 8.0 Gy, with an interval of 45 days between exposures. With measurements of response rate and obtained reinforcers, the data showed a dose-response relation, with higher doses producing lower rates of responses and reinforcers. Percentage of errors was higher after doses of 6.0 and 8.0 Gy in the performance component, while changes in error patterns occurred in the acquisition component. The effects of radiation was more evident and orderly

  6. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    International Nuclear Information System (INIS)

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, william F.

    2006-01-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizing radiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation

  7. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    International Nuclear Information System (INIS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.

    1994-01-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to γ radiation form a 60 Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers

  8. Signalling detection of DNA damage induced by low doses of ionizing radiation in human lymphocytes

    International Nuclear Information System (INIS)

    Valente, M.

    2011-01-01

    Individuals spontaneously present different sensitivities to ionizing radiation, measured by the severity of their post-radiotherapy side-effects. Cells from some patients with extreme clinical radiosensitivity have shown altered cellular radiosensitivity measured by different endpoints as apoptosis or DNA damage. Linking clinical and cellular sensitivity is of fundamental importance to establish a clinical test capable of predicting a person's radiosensitivity from a sample. Easily sampled, peripheral blood lymphocytes (PBL) are an appealing cellular model to study individual radiosensitivity as they have been shown to be the most radiosensitive hematopoietic cells. DNA damages and repair can be visualized by observing the kinetics of appearance and disappearance of gamma-H2AX foci on DNA double-strand breaks through immunofluorescence microscopy. The experimental strategy chosen here was to follow lymphocyte gamma-H2AX foci kinetics in response to different levels of irradiation as delayed gamma-H2AX foci disappearance has been observed in cells of individuals with high clinical radiosensitivity. For our initial study we irradiated in vitro samples of radiotherapy patients with different clinical radiosensitivities. The groups of distinct clinical sensitivities showed no corresponding differences in their cellular gamma-H2AX response. In addition, several samples were lost, mainly due to the long transportation period before being treated in our lab. To render this method usable for clinical applications, several changes were made: after improving sample viability, speed was increased by automation of image acquisition (Metasystem) and gamma-H2AX focus scoring (freeware CellProfiler). This technique was able to detect doses as low as 0.005 Gy and gave similar results to manual focus scoring. The possibility of discriminating different lymphocyte subsets (CD4, CD8 and CD19) during analysis was added to identify among the lymphocyte subsets the one producing more

  9. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  10. Q{sub {gamma}-H2AX}, an analysis method for partial-body radiation exposure using {gamma}-H2AX in non-human primate lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Redon, Christophe E., E-mail: redonc@mail.nih.gov [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Nakamura, Asako J.; Gouliaeva, Ksenia [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Rahman, Arifur; Blakely, William F. [Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20889-5603 (United States); Bonner, William M. [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States)

    2011-09-15

    We previously used the {gamma}-H2AX assay as a biodosimeter for total-body irradiation (TBI) exposure ({gamma}-rays) in a rhesus macaque (Macaca mulatta) model. Utilizing peripheral blood lymphocytes and plucked hairs, we obtained statistically significant {gamma}-H2AX responses days after total-body exposure to 1-8.5 Gy ({sup 60}Co {gamma}-rays at 55 cGy min{sup -1}). Here, we introduce a partial-body exposure analysis method, Q{sub {gamma}-H2AX}, which is based on the number of {gamma}-H2AX foci per damaged cells as evident by having one or more {gamma}-H2AX foci per cell. Results from the rhesus monkey - TBI study were used to establish Q{sub {gamma}-H2AX} dose-response calibration curves to assess acute partial-body exposures. {gamma}-H2AX foci were detected in plucked hairs for several days after in vivo irradiation demonstrating this assay's utility for dose assessment in various body regions. The quantitation of {gamma}-H2AX may provide a robust biodosimeter for analyzing partial-body exposures to ionizing radiation in humans.

  11. Ionizing radiation, nuclear energy and radiation protection for school

    International Nuclear Information System (INIS)

    Lucena, E.A.; Reis, R.G.; Pinho, A.S.; Alves, A.S.; Rio, M.A.P.; Reis, A.A.; Silva, J.W.S.; Paula, G.A. de; Goncalves Junior, M.A.

    2017-01-01

    Since the discovery of X-rays in 1895, ionizing radiation has been applied in many sectors of society, such as medicine, industry, safety, construction, engineering and research. However, population is unaware of both the applications of ionizing radiation and their risks and benefits. It can be seen that most people associate the terms 'radiation' and 'nuclear energy' with the atomic bomb or cancer, most likely because of warlike applications and the stealthy way radioactivity had been treated in the past. Thus, it is necessary to clarify the population about the main aspects related to the applications, risks and associated benefits. These knowledge can be disseminated in schools. Brazilian legislation for basic education provides for topics such as nuclear energy and radioactivity to high school students. However, some factors hamper such an educational practice, namely, few hours of class, textbooks do not address the subject, previous concepts obtained in the media, difficulty in dealing with the subject in the classroom, phobia, etc. One solution would be the approximation between schools and institutions that employ technologies involving radioactivity, which would allow students to know the practices, associated radiological protection, as well as the risks and benefits to society. Currently, with the increasing application of ionizing radiation, especially in medicine, it is necessary to demystify the use of radioactivity. (author)

  12. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  13. Effects of gamma radiations on some aspects of the biology of salmonella

    International Nuclear Information System (INIS)

    Ben Miloud, Najla

    2007-01-01

    This work aimed at the study of the effect of gamma radiation on certain aspects of the biology of Salmonella, few works joined this type and gamma radiations. The lethal effect of ionizing radiations was associated at other bacterial types, to an oxidative stress due to the presence of reactive spices of oxygen and leading to deteriorations of membrane cells, proteins and nucleic acids.Thus, we proceeded to an analysis of the viability of four Salmonella serovars subject to different radiation doses going from 0.5 to 2 KGy. The results showed a viability reduction dose dependent with a differential behavior, statistically significant. In order to detect possible radio induced changes at the restriction site of the enzymes XbaI and BlnI usually used for the typing of Salmonella, we carried out a DNA restriction profile analyse of the four serovars by pulsed filed gel electrophoresis. The results showed that no change appeared on the level of these restriction sites for the used enzymes following an irradiation of 2KGy. The study of the sensitivity of Salmonella to antibiotics after a gamma radiation showed that gamma radiation has increased the sensitivity of Salmonella isolates to porin associated antibiotics. Statistical analyses showed that the effect of different irradiation dose treatment on the antibiotic sensitivity is increasingly significant. The irradiation didn't induce modifications of the sensitivity to other antibiotics, probably because of their nature, of their penetration mode inside the cell or their action way. To tray to explain the differential behavior of different serovars to irradiation. We analyzed by Quantitative real time PCR (RT- PCR), the expression level of the ARNm of the genes KATN (catalase non-hemique), DNAK (protein of thermal shock), RNA polymerase as well as of the 16S rRNA. The results showed either a repression or an induction of certain genes under the effect of an irradiation of 2 KGy. (Author)

  14. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  15. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    Science.gov (United States)

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Gamma radiation shielding analysis of lead-flyash concretes

    International Nuclear Information System (INIS)

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A.S.; Singh, Gurmel

    2015-01-01

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content – 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662 keV, 1173 keV and 1332 keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes. - Highlights: • Concrete samples with lead as admixture were casted with flyash replacing 0%, 20%, 30%, 40%, 50% and 60% of cement content (by weight). • Gamma radiation shielding parameters of concretes for different gamma ray sources were measured. • The attenuation results of lead-flyash concretes were compared with the results of ordinary flyash concretes

  17. Environmental Gamma Radiation Measurements in Baskil District

    International Nuclear Information System (INIS)

    Canbazoglu, C.

    2008-01-01

    In this study, we have determined environmental gamma radiation dose rate in Baskil district which has very high granite content in its geographical structure. Gamma radiation dose rate measurements were achieved by portable radiation monitoring equipment based on the energy range between 40 keV and 1.3 MeV. The measurements were performed on asphalt and soil surface level and also one meter above the ground surface. The gamma dose rate was also performed inside and outside of buildings over the district. The dose rates were found to be between 8.46μR/h and 34.66 μR/h. Indoor and outdoor effective dose rate of the gamma radiation exposure has been calculated to be 523μSv/y and 196μSv/y, respectively

  18. Assessment of background gamma radiation and determination of excess lifetime cancer risk in Sabzevar City, Iran in 2014

    Directory of Open Access Journals (Sweden)

    Akbar Eslami

    2016-01-01

    Full Text Available Background: Background gamma radiation levels vary in different locations and depended on many factors such as radiation properties of soil, building materials as well as construction types which human lives on it. People are always exposed to ionizing radiation, which could badly influence their health. The aim of this study was to evaluate the background gamma-ray dose rate and the estimated annual effective dose equivalent and determination of excess lifetime cancer risk in Sabzevar City, Iran. Methods: The aim of this cross-sectional study was to determine the dose rate of background gamma radiation in outdoor an indoor areas, 26 stations were selected using the map of the Sabzevar City. The amount of gamma radiation was measured at 4 months (September to January in 2014 year. The dosimeter used in this study was a survey meter, that is designed for monitoring radiation of x, gamma and beta rays. Results: The obtained results show that there are significant differences between the indoor and outdoor exposures (P> 0.05. We did not observe significant differences between the time of sampling and sampling locations, (P<0.05. The minimum and maximum values of dose rate were found 66±20 nSvh-1 and 198±28 nSvh-1. The annual effective dose for Sabzevar residents was estimated to be 0.85 mSv and also the amount of excess lifetime cancer risk was estimated 3.39×10-3. Conclusion: According to the results, the excess lifetime cancer risk and the annual effective dose for the Sabzavar City residents due to the background gamma radiation was higher than the global average (0.5 mSv. The epidemiological studies have been proposed to evaluate the risk of chronic diseases associated with natural radiation exposure among residents.

  19. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  20. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  1. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  2. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  3. Ionizing radiation sources management in the Commonwealth of Independent States - CIS

    International Nuclear Information System (INIS)

    Iskra, A.; Bufetova, M.

    2006-01-01

    Ionizing radiation sources cover a broad band of power: from powerful NPP reactors and research reactors to portable radioisotope ionizing radiation sources applied in medicine, agriculture, industry and in the energy supply systems of remote facilities. At present, scales and use field of radionuclide sources in the CIS have the tendency to increase. In this connection, the issues of ionizing radiation sources management safety at all stages of their life cycle, from production to treatment, have been of a great importance. The materials on ionizing radiation sources inventory and treatment in the CIS (Russia, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan and Ukraine) are presented in the report. It is shown that in some republics, there is difficulty in ionizing radiation sources accounting and control system; the national regulatory and legal framework bases regulating activity on radioactive sources use, localization and treatment require update. Many problems are connected with the sources beyond state accounting. The problem of ionizing radiation sources use safety is complicated by the growing activity of various terrorist groups. The opportunity to use ionizing radiation sources with terrorism goals requires the application of defined systems of security and physical protection at all stages of their management. For this purpose a collective, with all CIS countries, organization of radioactive sources accounting and control as well as countermeasures on their illegal transportation and use are necessary. In this connection, the information collection regarding situation with providing of ionizing radiation sources safety, conditions of equipment and storage facilities, radioactive materials accounting and control system in the CIS countries is vitally needed

  4. Radiation protection requirements for medical application of ionizing radiation in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Nestoroska, Svetlana; Angelovski, Goran; Shahin, Nuzi

    2010-01-01

    In this paper, the regulatory infrastructure in radiation protection in the Republic of Macedonia is presented. The national radiation protection requirements for the medical application of ionizing radiation are reviewed for both occupational exposed persons and patients undergoing a medical treatment with ionizing radiation and their compliance with the international standards is considered. The gaps identified on the national level are presented and steps for overcoming such gaps are analyzed.(Author)

  5. Practice for dosimetry in gamma irradiation facilities for radiation processing. 2. ed.

    International Nuclear Information System (INIS)

    2004-01-01

    This practice outlines the installation qualification program for an irradiator and the dosimetric procedures to be followed during operational qualification, performance quali- fication, and routine processing in facilities that process product with ionizing radiation from radionuclide gamma sources to ensure that product has been treated within a predetermined range of absorbed dose. Other procedures related to installation qualification, operational qualification, performance qualification, and routine processing that may influence absorbed dose in the product are also discussed. Information about effective or regulatory absorbed-dose limits is not within the scope of this practice

  6. Protection in handling ionizing radiation sources in national economy

    International Nuclear Information System (INIS)

    1986-01-01

    The collection of study texts is divided into 13 chapters giving an explanation of the structure of the atom, the properties of ionizing radiation and its interactions, quantities and units used, basic dosimetric methods, biological radiation effects, the sources of population exposure, the principles of radiation protection, technological applications of ionizing radiation, the monitoring of personnel and environment, the method of recording and filing, the method of protection from external radiation and internal contamination, health care, and requirements for protection in handling nonsealed sources. (M.D.)

  7. Environmental gamma radiation monitoring at Visakhapatnam using thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Swarnkar, M.; Sahu, S.K.; Takale, R.A.; Shetty, P.G.; Pundit, G.G.; Puranik, V.D.

    2012-01-01

    The gamma rays are the most significant part of environmental dose due to its large range and deep penetrating power. The environmental gamma radiation is mainly originated from two sources natural radiation and artificially produced radiation. The natural radiation dose arises from the cosmic radiation (galactic and solar) and from the Earth (terrestrial) surface. In the last few decades there is a growing concern all over the world about radiation and their exposure to population. Thus it is necessary to conduct radiological environmental surveillance. The radiation survey data are useful to establish the natural background gamma radiation levels. Extensive gamma radiation survey was carried out around the surroundings of Vishakhapatnam using Thermoluminescence Dosimeters (TLDs). The CaSO 4 :(0.2 mole %) Dy Teflon TLD discs, specifically designed for environmental gamma radiation monitoring purpose were used. These TLD badge are having very high TL sensitivity, a negligible fading rate and a stable TL response. TLDs were deployed on quarterly basis for two years to obtain the cumulative gamma background radiation levels in the study area. The radiological survey was also carried out by using a calibrated radiation survey meter. The annual dose rates were computed from quarterly values actually found and normalised to 365 days. The environmental gamma radiation levels around Vishakhapatnam were found to be in the range of 0.79 mGy/y to 1.86 mGy/y. It is clearly seen from the results that location to location there is a large variation in external gamma radiation levels. During the cycle of the TLD survey, spot readings of the background radiation levels were taken, both while placing the TLDs and while removing them. The instantaneous dose rates measured using survey meter, are also following the large variation as found in TLDs. It varies between 110 nGy/hr to 210 nGy/hr. (author)

  8. Effects of {gamma}-radiation on the fungus Alternaria alternata in artificially inoculated cereal samples

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, R. [Departamento de Microbiologia, Instituto de Ciencias Biomedicas II, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-900 Sao Paulo (Brazil)], E-mail: raquelbraghini@yahoo.com.br; Pozzi, C.R. [Instituto de Zootecnia, Rua Heitor Penteado 56, CEP 13460-000, Nova Odessa, Sao Paulo (Brazil); Aquino, S. [Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355 , CEP 01246-902, Sao Paulo (Brazil); Rocha, L.O.; Correa, B. [Departamento de Microbiologia, Instituto de Ciencias Biomedicas II, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-900 Sao Paulo (Brazil)

    2009-09-15

    The objective of this study was to evaluate the effects of different {gamma}-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1x10{sup 6} spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different {gamma}-radiation doses used.

  9. Review on evolvement of systems of ionizing radiation quantities and units

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zeng Zhi

    2009-01-01

    To scientifically and practically measure the ionizing radiation in unison is an indispensable prerequisite and foundation for the extensive uses of nuclear science and technology, development of radiological protection and safety standards, as well as prevention and treatment of ionizing radiation hazards. Concerning about the quantities and units of ionizing radiation as well as their corresponding measurement and application methods, relevant international organizations and all countries in the world generally adopt the systems proposed by the International Commission on Radiation Units and Measurements (ICRU) which is a well recognized and authoritative academic organization.In the paper,the major evolutions of the systems for ionizing radiation quantities and units in the past decades are summarized. (authors)

  10. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Güven, O.; Barsbay, M.; Ateş,; Akbulut, M. [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2009-07-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers.

  11. Surface and Bulk Nanostructuring of Polymers Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Güven, O.; Barsbay, M.; Ateş; Akbulut, M.

    2009-01-01

    Ionizing radiation has long been known tobe a powerful tool in modifying and controlled the properties, forms and eventually end-uses of polymeric materials for a variety of applications. Industrial applications are full of successful examples of macro scale, bulk property modifications by radiation. Extremely short wavelength of ionizing radiation however, makes it an important and useful tool in creating very small size structures in polymers

  12. Gamma radiation effects in coriander (coriandrum sativum L) for consumption in Mexico

    International Nuclear Information System (INIS)

    Cruz Z, E.; Ruiz G, B.; Flores E, T.; Barboza F, M.

    2011-01-01

    Ionizing radiation is an effective process for disinfecting and prolonging the shelf-life of several food products. Food irradiation may be one of the most significant contributions to public health in the developing countries. Following the irradiation it is necessary to analyze the radiation dose effects in foodstuffs. Thermally stimulated luminescence (Tl) properties and microbiological load as a function of the gamma doses were analyzed in fresh commercial Coriander (Coriandrum sativum L.) samples. For Tl analyses the poly mineral fraction was separated from a coriander and 10 μm size particles were selected. The poly mineral samples were exposed to a 0.5-15,000 Gy dose from gamma radiation using a 60 Co facility, Gamma beam 651PT, semi-industrial irradiator with 98.4 Gy/min dose rate. The glow curves were broad bands and characteristic of quartz that is present in the sample as detected by XRD. The main Tl characteristics were determined, including the structure of the glow curves, Tl response, reproducibility of Tl signals over 12 cycles of subsequent irradiations, and the fading effect during the storage during 30 days. The Tl method was found useful for detection of irradiated coriander. In order to analyze the effect of gamma radiation on the bacterial load in the fresh food coriander, several coriander samples were exposed to 0-10 kGy dose. It was observed that at 0.5 kGy dose the aerobic mesophilic count was reduced to 99.9%, while the initial total coliform bacteria decreased from 871,000 cfu/g to less than 100. The microbiological results are lower than the limit indicated by the Mexican regulatory authority; 150,000 cfu/g for mesophiles and 100 cfu/g for total coliforms. The aim of this work is to investigate the Tl properties of the poly mineral fraction obtained from coriander and to measure the microbiological load as a function of the gamma irradiation dose also. (Author)

  13. Gamma radiation effects in coriander (coriandrum sativum L) for consumption in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Unidad de Irradiacion y Seguridad Radiologica, Apdo. Postal 70-543, 04510 Mexico D. F. (Mexico); Ruiz G, B. [Universidad de Sonora, Departmento de Agricultura y Ganaderia, Apdo. Postal 305, 83190 Hermosillo, Sonora (Mexico); Flores E, T. [UNAM, Facultad de Quimica, Departamento de Alimentos y Biotecnologia, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Barboza F, M. [Universidad de Sonora, Centro de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2011-02-15

    Ionizing radiation is an effective process for disinfecting and prolonging the shelf-life of several food products. Food irradiation may be one of the most significant contributions to public health in the developing countries. Following the irradiation it is necessary to analyze the radiation dose effects in foodstuffs. Thermally stimulated luminescence (Tl) properties and microbiological load as a function of the gamma doses were analyzed in fresh commercial Coriander (Coriandrum sativum L.) samples. For Tl analyses the poly mineral fraction was separated from a coriander and 10 {mu}m size particles were selected. The poly mineral samples were exposed to a 0.5-15,000 Gy dose from gamma radiation using a {sup 60}Co facility, Gamma beam 651PT, semi-industrial irradiator with 98.4 Gy/min dose rate. The glow curves were broad bands and characteristic of quartz that is present in the sample as detected by XRD. The main Tl characteristics were determined, including the structure of the glow curves, Tl response, reproducibility of Tl signals over 12 cycles of subsequent irradiations, and the fading effect during the storage during 30 days. The Tl method was found useful for detection of irradiated coriander. In order to analyze the effect of gamma radiation on the bacterial load in the fresh food coriander, several coriander samples were exposed to 0-10 kGy dose. It was observed that at 0.5 kGy dose the aerobic mesophilic count was reduced to 99.9%, while the initial total coliform bacteria decreased from 871,000 cfu/g to less than 100. The microbiological results are lower than the limit indicated by the Mexican regulatory authority; 150,000 cfu/g for mesophiles and 100 cfu/g for total coliforms. The aim of this work is to investigate the Tl properties of the poly mineral fraction obtained from coriander and to measure the microbiological load as a function of the gamma irradiation dose also. (Author)

  14. The industrial applications of ionizing radiations

    International Nuclear Information System (INIS)

    1992-10-01

    This report presents all industrial applications of ionizing radiations in France, for food preservation, radiosterilization of drugs, medical materials and cosmetic products, for radiation chemistry of polymers. This report also describes the industrial plants of irradiation (electron, cobalt 60). Finally, it explains the legal and safety aspects

  15. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2010-01-01

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 μM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  16. Effects of Co60 gamma radiation on Biomphalaria glabrata (Say, 1818) Embryo. II. Malformations

    International Nuclear Information System (INIS)

    Okazaki, K.; Kawano, T.

    1990-01-01

    The morphogenetic effects of ionizing radiation were investigated in Biomphalaria glabrata embryos irradiated in the cleavage, blastula, gastrula, young trochophore and trochophore stages with 5 to 25 Gy doses of 60 CO gamma radiation. The number of malformed embryos rapidly increased with increasing radiation dose, reaching a maximum between 5th to 8th day after irradiation in all stages analyzed. Susceptibility to malformation induction was higher the younger than the age of the irradiated embryo. However, for the cleavage stage the frequency of malformed embryos was inversely proportional to radiation dose for the same radiation dose. Several types of morphogenetic malformations were obtained, among then cephalic malformations, exogastrula, shell malformations and embryos with everted stomodeum, unspecific malformations being the most frequent. The results show that the types of malformation induced by radiation probably are not radiation-specific and do not depend on the dose applied [pt

  17. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  18. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  19. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  20. Isolation of a bacteria of the Bacillus genus as indicator in the disinfection of residual waters by means of the ionizing radiation (e- , γ)

    International Nuclear Information System (INIS)

    Mata J, M.

    2003-01-01

    The pollutants of the water can be chemical, physical and biological. Among those biological we find to the microorganisms: bacterias, virus and protozoa. These cause important infections in many countries, mainly of Latin America. With the advance of the technology and the quick demographic growth, the biological pollution of the water has already become an important topic since it would damage the public health and it causes that their disinfection has greater attention. In the treatment of residual waters three basic treatments exist the one primary, secondary and tertiary; in this last we find the disinfection, which can be taken to end by chemical and physical methods. For this work of investigation it was used the ionizing radiation, because it is an innovative technology that it eliminates microorganisms in residual waters. The investigation consisted on treating, samples of residual water after the biological treatment of the plant RECICLAGUA with ionizing radiation (electrons and gammas), for the case of electrons it was used the dose of 0.5 kGy and for gamma the dose, of 5 kGy, later the survivor bacteria was isolated to these doses in both cases and they were carried out the tests of identification. In accordance with the obtained results can say that it is about a B. subtilis. The isolated B.subtilis was presented as a pollutant of the flora of the residual water, having a greater survival to the dose of 0.5 and 5 kGy with electrons and gammas, respectively that other present polluting microorganisms in the samples of residual water. For it fits signalize that this microorganism shows characteristics as it easy isolation and identification, the presence with pathogen microorganisms and a greater survival when being irradiated, therefore it can use as indicator in the disinfection of residual waters through ionizing radiation (electrons and gammas). (Author)

  1. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  2. New method of preparation of CaSO{sub 4}: Dy for ionizing radiation dosimetry; Nuevo metodo de preparacion del CaSO{sub 4}: Dy para dosimetria de radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Rivera M, T.; Alarcon F, G.; Guzman M, J. [CICATA-IPN, 11500 Mexico D.F. (Mexico); Azorin N, J.; Sosa F, R. [UAM-I, 09340 Mexico D.F. (Mexico); Serrano F, A.K. [Hospital Juarez General de Mexico, 07760 Mexico D.F. (Mexico)]. e-mail: holand_jeos@hotmail.com

    2008-07-01

    In this work some results of the characterization of solid state materials exposed at a gamma radiation beam coming from a {sup 60} Co bomb for medical use are presented. These thermoluminescent dosemeters are prepared and proposed for the ionizing radiations dosimetry using the thermoluminescence method. The passive dosemeters of CaSO{sub 4}: Dy are developed in the polycrystalline powder form being used a new synthesis route by means of the precipitation method. To determine the sensibility of the pellets of CaSO{sub 4}: Dy before gamma radiation, these were exposed before a gamma radiation beam coming from a {sup 60} Co bomb. The morphological and structural characteristics were also studied and present two in this work. (Author)

  3. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  4. Influence of gamma radiation on grapes color during storage period

    International Nuclear Information System (INIS)

    Santillo, Amanda G.; Rogovschi, Vladimir D.; Araujo, Michel M.; Silva, Priscila V.; Silveira, Ana P.M.; Villavicencio, Anna L.C.H.

    2009-01-01

    In general food contains some components that are very sensible to irradiation processing and if radiation dose is higher, can cause some harmful transformation in taste, odor and flavor in these foods, present in very lower concentrations, regulating their appearance and nutritious value. The ionizing radiation application in order to preserve and disinfect food is used for the reduction of pathogenic microorganisms, extending the shelf life and reducing the loss of crops during storage of the product. The genus Vitis is the main representative of the Vitaceae family due to the nutritional importance of the grape (Vitis vinifera L.), widely consumed 'in natura'. The V. vinifera produces a fruit of great nutritional value to humans. The quality and acceptance of products are associated with sensory parameters such as color, which is the primary criterion for acceptance by the consumer. Anthocyanins are generally unstable when exposed to sources of ionizing radiation. The flavonoids are largely distributed in nature and are responsible for most of blue, purple and all shades of red colors. In vines, these compounds are responsible for the color of the grape skin and are also found in the flesh of some varieties of grapes. The objective of this study is to analyze the effects of gamma radiation on color of grapes at different days of storage. The irradiation will be in 60 Co source at doses of 0 and 4.5 kGy. The samples will be stored at room and refrigerated temperature for 21 days. The evaluation of color will be analyzed through 'L', 'a' and 'b' parameters. (author)

  5. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  6. The protector role of Mn2+ in Saccharomyces cerevisiae exposed to 60Co gamma radiation

    International Nuclear Information System (INIS)

    Galvao, Izabela; Leal, Alexandre Soares; Neves, Maria Jose

    2009-01-01

    The radiation is present on all over the world and can be classified, according to the effect that produces on matter, as non-ionizing and ionizing. The ionizing radiations transfer a sufficient amount of energy to the molecule and charged atoms called ions can be formatted. The biological organisms have approximately 70% of water and when submit to the incident radiation occur the radiolysis of water. Water radiolysis produces highly reactive oxygen species (ROS) known as free radicals. The ROS can interact with all important biomolecules like lipid, protein and DNA. This interaction can cause the loss of functions of theses molecules and thus lead to cell death. The manganese is a heavy metal that at low concentrations is essential for the biological system, since it is cofactor for action of several enzymes. At high concentrations the manganese is toxic to the organisms. Recently was observed that manganese can have a protector role against oxidative stress. In this work, it was studied the anti-oxidant role of manganese in cells submitted to gamma irradiation. It was performed the determination of two oxidative stress indicators: lipid peroxidation and determination of thiol group, the results presented suggest that the manganese had protective role against lipid damage and in this way, has an antioxidant role. (author)

  7. Production of radioisotopic gamma radiation sources in JAERI

    International Nuclear Information System (INIS)

    Katoh, Hisashi; Kogure, Hiroto; Suzuki, Kyohei

    1980-04-01

    The present state of production of gamma radiation sources in Japan Atomic Energy Research Institute (JAERI) is described. Sources of 192 Ir, 60 Co and 170 Tm for industrial and 198 Au and 192 Ir for medical applications are produced and delivered routinely by JAERI. Prefabricated assembly targets are irradiated in JRR-2, JRR-3, JRR-4 or JMTR. The irradiated targets are disassembled in a heavy density concrete cave or a lead-shielded cell, depending on the level of radioactivity. The yield of radioactivity in each target is measured with the aid of an ionization chamber. Where necessary, irradiated targets are encapsulated hermetically in capsules of aluminium, stainless steel or other material. The yield of radioactivity is estimated in relation with the burn-up of target nuclide and product nuclide. (author)

  8. The effects of simultaneous application of ultrasound and ionizing radiation on cultured mammalian cells and normal tissues

    International Nuclear Information System (INIS)

    Fujita, Shozo

    1976-01-01

    The influence of therapeutic ultrasound on ionizing radiation effects was studied. Cultured mammalian cells, FM3A, and normal tissues, auricle and kidney of rabbits, were irradiated with ionizing radiation alone, ultrasound alone and both simultaneously. The biological experiments were conducted on the basis of the investigations about the physical and the chemical aspects of ultrasound. The results obtained from such a systematic study were as follows. It was considered that so called ''cavitation'' with bubble formation played an important role on the chemical effects of ultrasound. The chemical effect showed an intensity threshold in the range from 0.5 to 1 W/cm 2 . In the biological studies of ultrasound, the following must be considered; (1) the inhomogeneity of ultrasound intensity on the same plane (2) the distance between ultrasound transducer and sample. At a distance of 3 cm, the radiosensitizing effect due to simultaneous irradiation of x-rays and ultrasound on cells in suspension was detected at intensities above 2 W/cm 2 . The KI starch system in solution also showed a similar tendency. The irreversible tissue destruction was observed in the auricle irradiated with 690 R of 60 Co gamma-rays with simultaneous ultrasound at an intensity of 3 W/cm 2 for 15 minutes. However, no irreversible damage was recognized in the separate treatments with a dose four times of the combined irradiation. The interstitial nephritis was found in the kidney irradiated with 200 R of gamma-rays with simultaneous ultrasound for 5 minutes. No histological change was detectable in the separate treatments with a dose three times of the combined irradiation. The results seem to indicate that the ionizing radiation effects are enhanced by therapeutic ultrasound. (auth.)

  9. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  10. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  11. To manage the ionizing radiations risks

    International Nuclear Information System (INIS)

    Metivier, H.; Romerio, F.

    2000-01-01

    Mister Romerio's work tackles the problem of controversy revealed by the experts in the field of estimation and management of ionizing radiations risks. The author describes the three paradigms at the base of the debate: the relationship without threshold (typified by the ICRP and its adepts), these ones that think that low doses risks are overestimated ( Medicine Academia for example) or that ones that believe that dose limits are too severe and induce unwarranted costs; then that ones that think that these risks are under-estimated and limits should be more reduced, even stop these practices that lead to public exposure to ionizing radiations. The author details the uncertainties about the risk estimations, refreshes the knowledge in radiation protection with the explanations of the different paradigms. At the end a table summarize the positions of the three paradigms

  12. Dose rate effects of low-LET ionizing radiation on fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Nguyen T.K. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); Seymour, Colin B.; Mothersill, Carmel E. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); McMaster University, Department of Biology, Hamilton, ON (Canada)

    2017-11-15

    Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D{sub o}, and D{sub q} values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. (orig.)

  13. Ionizing radiation calculations and comparisons with LDEF data

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  14. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S.

    2015-01-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  15. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    Science.gov (United States)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  16. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    International Nuclear Information System (INIS)

    Docters, E.H.; Smolko, E.E.

    1990-01-01

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All these grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA). (author)

  17. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    Energy Technology Data Exchange (ETDEWEB)

    Docters, E H; Smolko, E E [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Direccion de Radioisotopos y Radiaciones; Suarez, C E [Instituto Nacional de Tecnologia Agropecuaria, Castelar (Argentina)

    1990-01-01

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All these grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA). (author).

  18. Research on Paramecium aurelia sensitivity factors to natural ionizing radiations

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Gros, N.; Planel, H.

    1976-01-01

    Previous results have demonstrated that the proliferative activity of Paramecium aurelia is linked to the level of natural ionizing radiations since this activity is decreased under radiation protection (lead cell) and increased under chronic exposure to very low dose of 60 Co gamma rays. The results of this investigation indicate that cell sensitivity in spite of variations in natural irradiation levels can be isolated; they are called 'radioresistant' in opposition to 'radiosensitive' cells which present the other response. These characters are being retained for 9 months after the strains have been isolated. On the other hand, in the case of radiosensitive strains, it has been demonstrated that autogamy affected the cell response to background irradiation; no response at all occured on the very day when autogamy took place, but it reached a maximum level 8 days approximately after autogamy. Moreover, it has been proved that the catalase activity of Paramecium aurelia is higher than those already studied in other cell varieties. This great amount of catalase, which seems to vary with the age of cultures after autogamy, could act on Paramecium sensitivity to very low radiation doses [fr

  19. Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Osawa, Misako; Taguchi, Mitsumasa

    2012-01-01

    Pharmaceuticals in wastewater were treated by the combined method of activated sludge and ionizing radiation in laboratory scale. Oseltamivir, aspirin, and ibuprofen at 5 μmol dm −3 in wastewater were decomposed by the activated sludge at reaction time for 4 h. Carbamazepine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac were not biodegraded completely, but were eliminated by γ-ray irradiation at 2 kGy. The rate constants of the reactions of these pharmaceuticals with hydroxyl radicals were estimated by the competition reaction method to be 4.0–10×10 9 mol −1 dm 3 s −1 . Decompositions of the pharmaceuticals in wastewater by ionizing radiation were simulated by use of the rate constants and the amount of total organic carbon as parameters. Simulation curves of concentrations of these pharmaceuticals as a function of dose described the experimental data, and the required dose for the elimination of them in wastewater by ionizing radiation can be estimated by this simulation. - Highlights: ► We treat pharmaceuticals in wastewater by activated sludge and ionizing radiation. ► Activated sludge decreases the amounts of total organic carbons in wastewater. ► Pharmaceuticals were decomposed by γ-ray irradiation at 2 kGy. ► We construct simulation for treatment of pharmaceuticals by ionizing radiation.

  20. Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka

    2009-01-01

    Full Text Available The wide-spread use of semiconductor and gas-filled diodes for non-linear over-voltage protection results in a variety of possible working conditions. It is therefore essential to have a thorough insight into their reliability in exploitation environments which imply exposure to ionizing radiation. The aim of this paper is to investigate the influence of irradiation on over-voltage diode characteristics by exposing the diodes to californium-252 combined neutron/gamma radiation field. The irradiation of semiconductor over-voltage diodes causes severe degradation of their protection characteristics. On the other hand, gas-filled over-voltage diodes exhibit a temporal improvement of performance. The results are presented with the accompanying theoretical interpretations of the observed changes in over-voltage diode behaviour, based on the interaction of radiation with materials constituting the diodes.

  1. Genetic effects of ionizing radiation – some questions with no answers

    International Nuclear Information System (INIS)

    Mosse, Irma B.

    2012-01-01

    There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses – are they harmful or beneficial? The “hormesis” phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation. - Highlights: ► There are a lot of questions about genetic effects of ionizing radiation. ► Does ionizing radiation induce mutations in human? ► During evolution germ cell selection ex vivo has been changed to a selection in vivo. ► Radioadaptive response proves positive effects of low radiation doses. ► Many uncontrolled factors may be responsible for significant biodosimetry mistakes.

  2. Sterilization plants equipped with the isotopic gamma radiation sources

    International Nuclear Information System (INIS)

    Mehta, K.; Chmielewski, A.G.

    2007-01-01

    Presentation describes different isotopic gamma radiation sources applicable for sterilization of food and medical materials. Certain gamma pallet irradiators, mini gamma irradiators and different scale gamma tote irradiators are presented. It is concluded, that about two hundreds plants with gamma radiation sources operates in different countries. However, industrially developed countries must construct much more plants than operates now

  3. The situation of knowledge on ionizing radiation

    International Nuclear Information System (INIS)

    2005-01-01

    Occupational exposure to ionizing radiation occurs: during sources use, during the use of matter including radioactivity used for other properties than their radioactivity, in presence of natural radioactivity on the working area, following an accident during an industrial process. to protect man taken into account the incurred risk, goes by the risk evaluation, in taking into account the industrial process and exposure conditions of persons, then by the application of prevention measures that aim to control the contamination risks by radioactive matters as well as the exposure risks to ionizing radiations. (N.C.)

  4. Identifying and managing the risks of medical ionizing radiation in endourology.

    Science.gov (United States)

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  5. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  6. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  7. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  8. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  9. Performance of a pencil ionization chamber in various radiation beams

    International Nuclear Information System (INIS)

    Maia, A.F.; Caldas, L.V.E.

    2003-01-01

    Pencil ionization chambers were recommended for use exclusively in the computed tomography (CT) dosimetry, and, from the start, they were developed only with this application in view. In this work, we studied the behavior of a pencil ionization chamber in various radiation beams with the objective of extending its application. Stability tests were performed, and calibration coefficients were obtained for several standard radiation qualities of the therapeutical and diagnostic levels. The results show that the pencil ionization chamber can be used in several radiation beams other than those used in CT

  10. Combined effects of gamma radiation and potassium dichromate on morphological changes in guppy kidneys

    International Nuclear Information System (INIS)

    Benova, K.; Almasiova, V.; Dvorak, P.; Halan, M.

    2008-01-01

    Our experiment was conducted to investigate the effect of ionizing radiation and potassium dichromate on morphological changes in the kidneys of Poecilia reticulata. Fish were irradiated with gamma rays at a dose of 20 Gy and exposed to potassium dichromate in concentration of 50 mg · dm -3 . The combined effects resulted in marked morphological changes in urinary tubules. The brush border on the apical part of the cells was discontinuous, cytoplasm showed vacuolisation and the integrity of vessels was disturbed. (authors)

  11. Assessment of environmental gamma radiation levels at locations having different source characteristics using TLDs

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Takale, R.A.; Shetty, P.G.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Naturally occurring radionuclides are the major contributor to the total effective dose of ionizing radiation received by the population (UNSCEAR, 1993). The dose in environment thus depends largely on natural radiation than manmade or artificially produced radiation. In the last few decades, there is a growing concern all over the world about radiation and their exposure to population. Thus, it is a necessity to conduct frequent radiological environmental surveillance in order to assess population exposure accurately. Recently, application of thermoluminescence dosimeters (TLDs) has been extended to the measurement of mixed radiation field as encountered in the environment. The advantages of passive TL dosimeters for environmental monitoring are that they are small, cheap and do not require power supply during application. The passive TL dosimeters play an important role to provide data on natural background radiation and to determine the contribution to the dose to public from man-made sources. In the present study, three different sites were chosen to compare environmental gamma radiation levels in different scenarios. Kaiga has been chosen as site 1, where four unit of pressurized heavy water reactor (PHWR) of 220 MWe each are in operation. Site 2 is chosen at natural high background radiation area (NHBRA) of Kerala and Vishakhapatnam was chosen as site 3, which is situated at a normal background area. The objective of the study is to illustrate the effect, if any, of an operating nuclear power reactor on environmental gamma radiation levels

  12. Simulation of space protons influence on silicon semiconductor devices using gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Zhukov, Y.N.; Zinchenko, V.F.; Ulimov, V.N.

    1999-01-01

    In this study the authors focus on the problems of simulating the space proton energy spectra under laboratory gamma-neutron radiation tests of semiconductor devices (SD). A correct simulation of radiation effects implies to take into account and evaluate substantial differences in the processes of formation of primary defects in SD in space environment and under laboratory testing. These differences concern: 1) displacement defects, 2) ionization defects and 3) intensity of radiation. The study shows that: - the energy dependence of nonionizing energy loss (NIEL) is quite universal to predict the degradation of SD parameters associated to displacement defects, and - MOS devices that are sensitive to ionization defects indicated the same variation of parameters under conditions of equality of ionization density generated by protons and gamma radiations. (A.C.)

  13. Effects of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin; Franco, Caio Haddad

    2015-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  14. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  15. Physiological and enzymatic analyses of pineapple subjected to ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Josenilda Maria da; Silva, Juliana Pizarro; Spoto, Marta Helena Fillet

    2007-01-01

    The physiological and enzymatic post-harvest characteristics of the pineapple cultivar Smooth Cayenne were evaluated after the fruits were gamma-irradiated with doses of 100 and 150 Gy and the fruits were stored for 10, 20 and 30 days at 12 deg C (±1) and relative humidity of 85% (±5). Physiological and enzymatic analyses were made for each storage period to evaluate the alterations resulting from the application of ionizing radiation. Control specimens showed higher values of soluble pectins, total pectins, reducing sugars, sucrose and total sugars and lower values of polyphenyloxidase and polygalacturonase enzyme activities. All the analyses indicated that storage time is a significantly influencing factor. The 100 Gy dosage and 20-day storage period presented the best results from the standpoint of maturation and conservation of the fruits quality. (author)

  16. Targeted and non-targeted effects of ionizing radiation

    OpenAIRE

    Omar Desouky; Nan Ding; Guangming Zhou

    2015-01-01

    For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT), possible ris...

  17. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  18. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  19. Study of the gamma radiation of ionium

    Energy Technology Data Exchange (ETDEWEB)

    Curie, I

    1949-12-01

    A Geiger counter study has been made of the ..gamma.. radiation of ionium. Eleven quanta of the L radiation of radium were observed for every hundred ..cap alpha.. disintegrations, and three ..gamma.. rays were found with energies of 68, 140, and 240 keV at a rate of 0.85, 0.33, 0.05 quanta, respectively, for 100 disintegrations. It is noted that the radiation spectrum of ionium as a whole is difficult to interpret. In the course of this work, the author calculated the efficiency of a thin-walled aluminum counter, both for the L radiation of radium and for ..gamma.. rays of 68 keV. The author also measured, for soft radiation, the ratio between the efficiency of a thin-walled aluminum counter and that of a similar counter lined with 0.11 mm of lead.

  20. Effect of ionizing and non ionizing radiation on Protozoan and Parasites Ova causing gastroenteritis presents in sewage sludge wastes

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Sharabi, N.

    2005-06-01

    The efficacy of Adra wastewater treatment plant for removing of parasitic eggs and other pathogens was various as the results of this work showed many eggs detected on and numeration referenced methods were applied for liquid and dried sledges. Helminths eggs viability was determined by aid of methods and techniques which depend on the morphological parameters, studying the motility incubation and applying the vital staining. The protozoa viability was studied by using vital staining, but applying culture techniques on specific composed media did not give any results. The disinfection results for ascaris eggs, protozoa and amoeba oocysts irradiated by 6 KGy of gamma (Co 6 0) which was sufficient to kill all types of such parasites. In conflict the UV radiation was able to motivate the division of the ascaris eggs embryo nations. Also, the viability of the Giardia and Entamoeba oocysts not affected. Therefor the UV technique couldn't be the alternative technology of ionizing radiation. (author)