WorldWideScience

Sample records for ion collider project

  1. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  2. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  3. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  4. The Antiproton-Ion-Collider at FAIR

    International Nuclear Information System (INIS)

    Kruecken, R.; Fabbietti, L.; Faestemann, T.; Homolka, J.; Kienle, P.; Ring, P.; Suzuki, K.; Bosch, F.; Franzke, B.; Kozhuharov, Ch.; Litvinov, Y.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R. S.; Lenske, H.

    2006-01-01

    An antiproton-ion collider (AIC) has been proposed for the FAIR Project at Darmstadt to independently determine rms radii for protons and neutrons in stable and short lived nuclei by means of antiproton annihilation at medium energies. The AIC makes use of the ELISe electron ion collider complex to store, cool and collide antiprotons of 30 MeV energy with short lived radioactive ions in the NESR. The exotic nuclei are produced by projectile fragmentation or projectile fission and separated in the Super FRS. By detecting the loss of stored ions using the Schottky method the total absorption cross-section for antiprotons on the stored ions with mass A will be measured. Cross sections for the absorption on protons and neutrons, respectively, will be measured by the detection of residual nuclei with A-1 either by the Schottky method or by detecting them in recoil detectors after the first dipole stage of the NESR following the interaction zone. The absorption cross sections are in first order directly proportional to the mean square radii

  5. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    Science.gov (United States)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  6. Probing sea quarks and gluons: the electron-ion collider project

    International Nuclear Information System (INIS)

    Horn, T.

    2014-01-01

    A future Electron-Ion Collider (EIC) would be the world's first polarized electron-proton collider, and the world's first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge. (authors)

  7. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  8. Theoretical perspective on RHIC [relativistic heavy ion collider] physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-10-01

    We discuss the status of the relativistic heavy ion collider (RHIC) project at Brookhaven, and assess some key experiments which propose to detect the signatures of a transient quark-gluon plasma (QGP) phase in such collisions. 24 refs

  9. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  10. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, V. S.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Lin, F.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.; Gerity, J.; Mann, T.; McIntyre, P.; Pogue, N. J.; Satttarov, A.

    2015-01-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated superconducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  11. The antiproton ion collider at FAIR

    International Nuclear Information System (INIS)

    Fabbietti, L.; Faestermann, T.; Homolka, J.; Kienle, P.; Kruecken, R.; Ring, P.; Suziki, K.; Beller, P.; Bosch, F.; Frankze, B.; Kozhuharov, C.; Nolden, F.; Cargnelli, M.; Fuhrmann, H.; Hirtl, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Hayano, R.S.; Yamaguchi, T.; Lenske, H.; Litvinov, Y.; Shatunov, Y.; Skrinsky, A.N.; Vostrikov, V.A.; Wycech, S.

    2005-01-01

    A novel method is proposed to determine the charge and the matter radii instable and short lived nuclei using an pBar-A collider. The experiment makes use of the appropriately modified electron-ion collider Elise, to collide 30 MeV anti-protons with 740 AMeV ions. The anti-protons are first collected in the CR ring with 3 GeV energy and then cooled in the RESR ring to 30 MeV. The heavy ions produced in the SFRS are precooled in the CR ring, cooled in the RESR ring to 740 AMeV and fed to the NESR ring. The total pBar-nucleon annihilation cross-section is measured detecting the loss of stored ions and the pBar-n, pBar-p cross-sections detecting the A - 1 (Z - 1 or N - 1) nuclei left over after the annihilation, using the Schottcky method. Theoretical predictions show that the annihilation cross-section is proportional to the mean squared radius. (author)

  12. The Relativistic Heavy Ion Collider at Brookhaven

    International Nuclear Information System (INIS)

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 x 10 26 cm -2 sec -1 at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab

  13. The BNL Relativistic Heavy Ion Collider (A new frontier in nuclear physics)

    International Nuclear Information System (INIS)

    Makdisi, Y.I.

    1992-01-01

    The Relativistic Heavy Ion Collider at Brookhaven is in its second year of construction with a target date for completion in late 1997. In this report, I will describe the status of the project, the designated milestones and the capabilities of this collider that set it apart as the premier facility to probe the new frontier of nuclear matter under extreme temperatures and densities. Two large detectors and a pair of smaller detectors, which are in various stages of approval, form the experimental program at this point. They provide a complementary set of probes to study quark gluon plasma formation through different signatures. The two ring design of this collider allows for collisions between different ion species ranging from protons to gold

  14. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF

  15. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10 34 cm -2 s -1 per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10 34 cm -2 s -1 at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R and D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a

  16. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  17. SLAC-Linac-Collider (SLC) Project

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system

  18. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  19. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  20. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$

  1. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  2. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  3. Ions in the linacs of future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Chen, P.

    1992-01-01

    Ions have been identified as a potential limitation in high current storage rings. In this paper we consider the effects of ions in the linacs of future linear colliders. Future linear collider designs call for long trains of closely spaced bunches and/or very dense bunches. Significant ion densities can be generated through the collisional ionization process and trapping in a long train of bunches or through tunneling ionization with very dense bunches. These ions provide skew fields which cause transverse betatron coupling and increase the vertical emittance of the flat beams, and they increase the rate of filamentation, making correction of the emittance dilutions more difficult. While transverse coupling can be alleviated by separating the horizontal and vertical phase advances, the increased filamentation will reduce the effectiveness of non-local correction techniques, leading to tighter alignment tolerances. To reduce the effect of the ions in the designs considered to the level of the intrinsic energy spread one would need to achieve vacuum pressures less than 10 -9 Torr. 5 figs., 5 refs

  4. An Antiproton Ion Collider (AIC) for Measuring Neutron and Proton Distributions in Stable and Radioactive Nuclei

    International Nuclear Information System (INIS)

    Kienle, Paul

    2005-01-01

    An antiproton-ion collider is proposed to independently determine mean square radii for protons and neutrons in stable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron ion collider complex (ELISE) of the GSI FAIR project with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740A MeV energy ions.The total absorption cross-section of antiprotons by the stored ions will be measured by detecting their loss by means of the Schottky noise spectroscopy method. Cross sections for the absorption on protons and neutrons, respectively, will be studied by detection of residual nuclei with A-1 either by the Schottky method or by analysing them in recoil detectors after the first dipole stage of the NESR following the interaction zone. With a measurement of the A-1 fragment momentum distribution, one can test the momentum wave functions of the annihilated neutron and proton, respectively. Furthermore by changing the incident ion energy the tails of neutron and proton distribution can be measured.The absorption cross section is at asymptotic energies in leading order proportional to the mean square radius of the nucleus. Predicted cross sections and luminosities show that the method is applicable to nuclei with production rates of about 105 s-1 or lower, depending on the lifetime of the ions in the NESR, and for half-lives down to 1 second

  5. Review of heavy ion collider proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1985-01-01

    In this paper we review proposals for heavy-ion colliders generated during the last few years for several national laboratories. The proposals span over a large range of energy and luminosity to accommodate the experimental needs of both the nuclear and the high-energy physicists. We report also briefly efforts in the same field happening in Europe

  6. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  7. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  8. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  9. Heavy-Ion Collimation at the Large Hadron Collider: Simulations and Measurements

    OpenAIRE

    Hermes, Pascal Dominik; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    2017-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets ca...

  10. Feedback scheme for kink instability in ERL based electron ion collider

    International Nuclear Information System (INIS)

    Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.

    2011-01-01

    Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides opportunity for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations. The main advantage of an energy recovery linac (ERL) based electron ion collider (EIC) over a ring-ring type counterpart is the higher achievable luminosity. In ERL-based version, one electron beam collides with the opposing ion beam only once so that the beam-beam parameter can largely exceed the usual limitation in an electron collider ring, while the beam-beam parameter for the ion beam remains small values. The resulting luminosity may be enhanced by one order of magnitude. The beam dynamics related challenges also arise as the luminosity boost in ERL based EIC due to the significant beam-beam effect on the electron beam. The effects on the electron beam include the additional large beam-beam tune shift and nonlinear emittance growth, which are discussed. The ion beam may develop a head-tail type instability, referred as 'kink instability', through the interaction with the electron beam. In this paper, we discuss the feasibility of an active feedback system to mitigate the kink instability, by taking advantage of the flexibility of ERL. Throughout the paper, we will discuss the collision between proton and electron beam. Any other ion species can be scaled by its charge Z and ion mass A.

  11. arXiv Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A.; Armesto, N.; d'Enterria, D.; Jowett, J.M.; Lansberg, J.P.; Milhano, J.G.; Salgado, C.A.; Schaumann, M.; van Leeuwen, M.; Albacete, J.L.; Andronic, A.; Antonioli, P.; Apolinario, L.; Bass, S.; Beraudo, A.; Bilandzic, A.; Borsanyi, S.; Braun-Munzinger, P.; Chen, Z.; Cunqueiro Mendez, L.; Denicol, G.S.; Eskola, K.J.; Floerchinger, S.; Fujii, H.; Giubellino, P.; Greiner, C.; Grosse-Oetringhaus, J.F.; Ko, C.M.; Kotko, P.; Krajczar, K.; Kutak, K.; Laine, M.; Liu, Y.; Lombardo, M.P.; Luzum, M.; Marquet, C.; Masciocchi, S.; Okorokov, V.; Paquet, J.F.; Paukkunen, H.; Petreska, E.; Pierog, T.; Ploskon, M.; Ratti, C.; Rezaeian, A.H.; Riegler, W.; Rojo, J.; Roland, C.; Rossi, A.; Salam, G.P.; Sapeta, S.; Schicker, R.; Schmidt, C.; Stachel, J.; Uphoff, J.; van Hameren, A.; Watanabe, K.; Xiao, B.W.; Yuan, F.; Zaslavsky, D.; Zhou, K.; Zhuang, P.

    2017-06-22

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  12. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  13. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  14. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  15. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  16. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  17. Status of the SLAC Linear Collider Project

    International Nuclear Information System (INIS)

    Stiening, R.

    1983-01-01

    The SLAC Linear Collider Project has two principal goals. The first is to serve as a prototype for a future very high energy linear electron-positron collider. The second is to quickly, at low cost, achieve sufficient luminosity at 100 GeV center-of-mass energy to explore the physics of the Z 0 . The first goal is important to the future of electron-positron physics because the rapid increase of synchrotron radiation with energy causes the cost of circular storage ring colliders to whereas the cost of linear colliders increases only in proportion to the center-of-mass energy. The second is important because the existance at SLAC of a linear accelerator which can be converted at low cost to collider operation makes possible a unique opportunity to quickly achieve 100 GeV center-of-mass collisions. At the design luminosity of 6.0 x 10 30 many thousands of Z 0 decays should be observed in each day of operation

  18. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  19. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  20. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  1. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  2. Colliding-beams polarized ion source

    International Nuclear Information System (INIS)

    Trainor, T.A.; Douglas, J.G.; Badt, D.; Christiensen, C.; Herron, A.; Leach, D.; Olsen, J.; Osborne, J.L.; Zeps, V.

    1985-01-01

    This ion source was to be purchased from ANAC, Inc., a New Zealand-based supplier of beam optics hardware and atomic beam polarized ion sources in December 1982. Shortly before scheduled delivery ANAC went into receivership. During 1983 little work was done on the project as various steps were taken by us, first to get the ion source completed at ANAC, and then, failing that, to obtain the existing parts. In early 1984 we began work to finish the ion source in Seattle. The project is nearly complete, and this article presents progress to date. 2 refs

  3. B factory at RHIC [Relativistic Heavy Ion Collider]?

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Van Berg, R.; Newcomer, F.M.

    1988-01-01

    A dedicated B physics experiment located in the proposed Relativistic Heavy Ion Collider at Brookhaven (RHIC) is considered. The machine may operate in a p-p mode with a luminosity in excess of 10 32 cm/sup /minus/2/ sec/sup /minus/1/ at 250 /times/ 250 GeV. The estimated B/bar B/ cross section at these energies is about 10 μbarns and a run of 10 7 sec would produce roughly 10 10 B/bar B/ pairs. A comparison to similar ideas proposed for the Fermilab Tevatron Upgrade and the SSC are discussed. The most ambitious physics objective of such an experiment would be the study of CP nonconservation. Particular emphasis at this workshop was given to the self tagging mode B → K + π/sup /minus//. Experimental techniques developed during this experiment would be extremely useful for more ambitious projects anticipated at the SSC. 36 refs., 10 figs

  4. GPDs at an electron ion collider

    International Nuclear Information System (INIS)

    Fazio, Salvatore

    2013-01-01

    The feasibility for a precise determination of Generalized Parton Distribution (GPDs) functions at an Electron Ion Collider (EIC) has been explored. The high luminosity of the machine, together with the large resolution and rapidity acceptance of the new dedicated detector, will open opportunity for high precision measurements of GPDs. We report on the study of GPDs from deeply virtual Compton scattering (DVCS). We also point out that such measurements at a proposed EIC provide insight to both, the transverse distribution of sea quarks and gluons as well as the proton spin decomposition.

  5. GPDs at an electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, Salvatore [Brookhaven National Laboratory, 11973 Upton NY (United States)

    2013-04-15

    The feasibility for a precise determination of Generalized Parton Distribution (GPDs) functions at an Electron Ion Collider (EIC) has been explored. The high luminosity of the machine, together with the large resolution and rapidity acceptance of the new dedicated detector, will open opportunity for high precision measurements of GPDs. We report on the study of GPDs from deeply virtual Compton scattering (DVCS). We also point out that such measurements at a proposed EIC provide insight to both, the transverse distribution of sea quarks and gluons as well as the proton spin decomposition.

  6. The Multi-Purpose Detector (MPD) of the collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Golovatyuk, V.; Kekelidze, V.; Kolesnikov, V.; Rogachevsky, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Sorin, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study dense baryonic matter in heavy-ion collisions in the energy range up to √(s{sub NN}) = 11 GeV with average luminosity of L = 10{sup 27} cm{sup -2}s{sup -1} (for {sup 197}Au{sup 79}). The experimental program at the NICA collider will be performed with the Multi-Purpose Detector (MPD). We report on the main physics objectives of the NICA heavy-ion program and present the main detector components. (orig.)

  7. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  8. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    The commencement of the relativistic heavy ion collider (RHIC) operation at Brookhaven ... that an unprecedented high-energy density has been achieved in ... for charged particles and measurement of ionization energy loss (dE/dx) for limited ...

  9. The e+, e- background at Relativistic Heavy Ion Collider (RHIC) generated by beam crossing

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.; Ludlam, T.; Wu, J.; Bottcher, C.; Strayer, M.

    1990-01-01

    At the Brookhaven Relativistic Heavy Ion Collider (RHIC), fully stripped heavy ions will circulate in each of two rings up to beam energies of 250 (Z/A) GeV/u. During the beam crossing, the peripheral electromagnetic interaction between the heavy ions is sufficient to induce copious production of di-lepton pairs. These pairs are a potential source of background for the detectors at RHIC. In this paper we discuss the expected number of e + ,e - pairs, given the accepted initial luminosity value L of the collider. More importantly, we also calculate the differential cross sections for the angle, energy, rapidity and momentum distribution of the leptons. Using the luminosity L of the collider, these differential cross sections are normalized to the expected number of leptons per second. We restrict ourselves to e + ,e - production, a discussion of μ + ,μ - and τ + τ - distributions will be published later. The results are presented for the expected worst case, namely 197 Au 79+ ions at a beam kinetic energy of 100 GeV/u. This is forseen to be the heaviest ion for high luminosity experiments at RHIC. We note for a given energy, the cross section for e + ,e - production scales as Z 4 , where Z is the atomic number of the ions

  10. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  11. Pre-Town Meeting on spin physics at an Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, Elke-Caroline; Bland, Leslie; Huang, Jin; Tarasov, Andrey [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Balitsky, Ian; Radyushkin, Anatoly [Old Dominion University, Physics Department, Norfolk, VA (United States); Jefferson Lab, Newport News, VA (United States); Brodsky, Stanley J. [Stanford University, SLAC National Accelerator Laboratory, Stanford, CA (United States); Burkardt, Matthias [New Mexico State University, Department of Physics, Las Cruces, NM (United States); Burkert, Volker; Chen, Jian-Ping; Kubarovsky, Valery; Melnitchouk, Wally; Qiu, Jian-Wei; Richards, David [Jefferson Lab, Newport News, VA (United States); Deshpande, Abhay [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); Stony Brook University, SUNY, Department of Physics and Astronomy, Stony Brook, NY (United States); Diehl, Markus [Deutsches Elektronen-Synchroton DESY, Hamburg (Germany); Gamberg, Leonard [Penn State University-Berks, Division of Science, Reading, PA (United States); Grosse Perdekamp, Matthias [University of Illinois at Urbana-Champaign, Urbana, IL (United States); Hyde, Charles [Old Dominion University, Physics Department, Norfolk, VA (United States); Ji, Xiangdong [Shanghai Jiao Tong University, INPAC, Department of Physics, and Shanghai Key Lab for Particle Physics and Cosmology, Shanghai (China); Peking University, Center for High-Energy Physics, Beijing (China); University of Maryland, Maryland Center for Fundamental Physics, College Park, MD (United States); Jiang, Xiaodong; Liu, Ming [Los Alamos National Laboratory, Los Alamos, NM (United States); Kang, Zhong-Bo [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); University of California, Mani L. Bhaumik Institute for Theoretical Physics, Los Angeles, CA (United States); Lajoie, John [Iowa State University, Ames, IA (United States); Liu, Keh-Fei [University of Kentucky, Dept. of Physics and Astronomy Center for Computational Sciences, Lexington, KY (United States); Liuti, Simonetta [University of Virginia, Department of Physics, Charlottesville, VA (United States); Mulders, Piet [VU University Amsterdam, Nikhef and Department of Physics and Astronomy, Amsterdam (Netherlands); Prokudin, Alexei [Jefferson Lab, Newport News, VA (United States); Penn State University-Berks, Division of Science, Reading, PA (United States); Sichtermann, Ernst; Yuan, Feng [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stratmann, Marco; Vogelsang, Werner [Tuebingen University, Institute for Theoretical Physics, Tuebingen (Germany)

    2017-04-15

    A polarized ep/eA collider (Electron-Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center-of-mass energy √(s) ∝ 20 to ∝ 100 GeV (upgradable to ∝ 150 GeV) and a luminosity up to ∝ 10{sup 34} cm{sup -2}s{sup -1}, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three-dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini-review contains a short update on progress in these areas since the EIC White paper (A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)). (orig.)

  12. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    60, No. 4. — journal of. April 2003 physics pp. 765–786. What have we learned from relativistic heavy-ion collider? ... What do we hope and expect to learn in .... experimental results and difficult numerical, presumably lattice Monte–Carlo simulation, ... For technical reasons, lattice Monte–Carlo methods are very difficult to.

  13. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  14. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    1987-03-01

    In this report e + e - colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  15. 6th International Conference on the Physics Opportunities at an ElecTron-Ion Collider

    CERN Document Server

    Sabatié, F; POETIC6

    2015-01-01

    POETIC6, the 6th edition of the International Conference on the "Physics Opportunities at an ElecTron-Ion Collider", will take place at Ecole Polytechnique in Palaiseau, France from Monday, September 7th to Friday, September 11th 2015, a few weeks before the National Science Advisory Committee recommends a new Long Range Plan to the United States' DOE and NSF. In the midst of this much-anticipated report, and following earlier workshops at Stellenbosch, Bloomington, Valparaiso, Jyvaskyla and Yale, it is timely for the POETIC series to become an international conference. The primary goal will remain to continue the advancement of the field of electron-ion collider physics. While the central theme of the conference will be the physics of a future electron-ion collider, the workshop will also cover strongly-related physics in the CEBAF, RHIC, and LHC experimental programs. The conference will aim primarily at developments on the theory/phenomenology side, but the latest accelerator and experimental developments ...

  16. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  17. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  18. Crabbing system for an electron-ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As high energy and nuclear physicists continue to push further the boundaries of knowledge using colliders, there is an imperative need, not only to increase the colliding beams' energies, but also to improve the accuracy of the experiments, and to collect a large quantity of events with good statistical sensitivity. To achieve the latter, it is necessary to collect more data by increasing the rate at which these processes are being produced and detected in the machine. This rate of events depends directly on the machine's luminosity. The luminosity itself is proportional to the frequency at which the beams are being delivered, the number of particles in each beam, and inversely proportional to the cross-sectional size of the colliding beams. There are several approaches that can be considered to increase the events statistics in a collider other than increasing the luminosity, such as running the experiments for a longer time. However, this also elevates the operation expenses, while increasing the frequency at which the beams are delivered implies strong physical changes along the accelerator and the detectors. Therefore, it is preferred to increase the beam intensities and reduce the beams cross-sectional areas to achieve these higher luminosities. In the case where the goal is to push the limits, sometimes even beyond the machines design parameters, one must develop a detailed High Luminosity Scheme. Any high luminosity scheme on a modern collider considers|in one of their versions|the use of crab cavities to correct the geometrical reduction of the luminosity due to the beams crossing angle. In this dissertation, we present the design and testing of a proof-of-principle compact superconducting crab cavity, at 750 MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In addition to the design and validation of the cavity prototype, we present the analysis of the first order beam dynamics and the integration of the

  19. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  20. The chromatic correction in RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum

  1. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  2. Naming Conventions for the Large Hadron Collider Project

    CERN Document Server

    Faugeras, Paul E

    1997-01-01

    This report gives the procedures for defining standard abbreviations for the various machine components of the Large Hadron Collider (LHC) Project, as well as for the surface buildings and the underground Civil Engineering works of the LHC. The contents of this report has been approved by the LHC Project Leader and is published in the form of a Project Report in order to allow its immediate implementation. It will be incorporated later in the Quality Assurance Plan of the LHC Project which is under preparation.

  3. Probing the Big Bang at the Relativistic Heavy Ion Collider (RHIC) (or Probing the Big Bang 13.7 billion years later)

    International Nuclear Information System (INIS)

    Lee, David M

    2010-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the USA is a variable energy proton-proton and ion-ion collider that is the first accelerator capable of colliding heavy ions. RHIC was designed to do experiments that provide important information about the Standard Model of particle physics, Quantum Chromodynamics (QCD). QCD predicts that in the early part of the Universe just after the Big Bang the world consisted of a Quark Gluon Plasma, a weakly interacting collection of quarks and gluons. At RHIC we can recreate the conditions of the early Universe by colliding heavy ions at 200 GeV. This paper will give a general overview of the physics motivation for studying the QGP, how our experiments are designed to study the QGP, what we have learned over the last 9 years, and what the future holds.

  4. Status of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Karl, F.

    1999-01-01

    At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)

  5. Berkeley mini-collider

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-06-01

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  6. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  7. submitter Projects for ultra-high-energy circular colliders at CERN

    CERN Document Server

    Bogomyagkov, A V; Levichev, E B; Piminov, P A; Sinyatkin, S V; Shatilov, D N; Benedict, M; Oide, K; Zimmermann, F

    2016-01-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron–positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  8. Charge transfer cross-sections of argon ions colliding on argon atoms

    International Nuclear Information System (INIS)

    Aubert, J.; Bliman, S.; Chan-Tung, N.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-04-01

    A device has been built to measure charge changing cross-sections of Argon ions colliding on argon atoms. It consists of an E.C.R. ion source (Micromafios) that delivers argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given separated charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The pressure is varied in the collision cell in order to check that the single collision condition is satisfied. It is shown that the ions do two types of collisions: charge exchange and stripping whose cross-sections are measured. Interpretation of charge exchange is proposed along yet classic theoretical approaches. As to stripping no available theory allows interpretation

  9. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    Science.gov (United States)

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  10. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    Science.gov (United States)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  11. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  12. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Pascal Dominik

    2016-12-19

    The CERN Large Hadron Collider (LHC) stores and collides proton and {sup 208}Pb{sup 82+} beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new

  13. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    International Nuclear Information System (INIS)

    Hermes, Pascal Dominik

    2016-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and 208 Pb 82+ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new tracking

  14. Linear colliders - prospects 1985

    International Nuclear Information System (INIS)

    Rees, J.

    1985-06-01

    We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs

  15. Proceedings of the workshop on the PS-spin collider

    International Nuclear Information System (INIS)

    Mori, Yoshiharu

    1993-05-01

    This volume is a record of the PS-Spin Collider Workshop which was held at KEK, Jan. 31-Feb.1, 1992. As a future project of the KEK 12-GeV proton synchrotron (KEK-PS), the hadron collider (PS-Collider), has been under discussion. Originally, the PSC was designed for heavy ion beam collisions with the energy range of 5-7 GeV/u. If polarized protons are accelerated in PSC, 19 x 19 GeV collisions are possible. This workshop was proposed to bring together interested experimentalists and accelerator physicists to discuss the case that could be made for polarization physics and the technical feasibility at the PS Spin Collider. More than 30 physicists participated in the workshop and very interesting and useful discussions took place. (author)

  16. Accelerator-colliders for relativistic heavy ions or in search of luminosity

    International Nuclear Information System (INIS)

    Young, G.R.

    1984-01-01

    Some issues pertinent to the design of collider rings for relativistic heavy ions are presented. Experiments at such facilities are felt to offer the best chance for creating in the laboratory a new phase of subatomic matter, the quark-gluon plasma. It appears possible to design a machine with sufficient luminosity, even for the heaviest nuclei in nature, to allow a thorough exploration of the production conditions and decay characteristics of quark-gluon plasma

  17. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Crease, Robert P.

    2007-01-01

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In 'Recombinant Science: The Birth of the Relativistic Heavy Ion Collider,' Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  18. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  19. TMDs and GPDs at a future Electron-Ion Collider

    International Nuclear Information System (INIS)

    Ent, Rolf

    2016-01-01

    In the U.S., an Electron-Ion Collider (EIC) of energy √(s) = 20-100 GeV is under design, with two options studied at Brookhaven National Lab and Jefferson Laboratory. The recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC, coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similarly allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies. (orig.)

  20. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  1. Polarized Parton Distributions at an Electron-Ion Collider

    CERN Document Server

    Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron-ion collider (EIC) on longitudinally polarized parton distribution (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  2. Polarized parton distributions at an electron–ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)

    2014-01-20

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  3. Polarized parton distributions at an electron–ion collider

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron–ion collider (EIC) on longitudinally polarized parton distributions (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin

  4. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    Energy Technology Data Exchange (ETDEWEB)

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  5. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  6. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  7. Beam losses from ultraperipheral nuclear collisions between ^{208}Pb^{82+} ions in the Large Hadron Collider and their alleviation

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2009-07-01

    Full Text Available Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of ^{208}Pb^{82+} ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal ^{208}Pb^{82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  8. Performance of initial full-length RHIC [Relativistic Heavy Ion Collider] dipoles

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1987-01-01

    The first four full-length (9.7 m) R and D dipoles for the proposed Relativistic Heavy Ion Collider (RHIC) have been successfully tested. The magnets reached a quench plateau of approximately 4.5 T with very reasonable training - a field level comfortably above the design field of 3.45 T required for operation with beams of 100 GeV/amu gold nuclei. Measured field multipoles are considered to be quite acceptable for this series of R and D magnets

  9. Field quality evaluation of the superconducting magnets of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.C.; Jain, A.; Peggs, S.G.; Trahern, C.G.; Trbojevic, D.; Wanderer, P.

    1995-01-01

    In this paper, the authors first present the procedure established to evaluate the field quality, quench performance, and alignment of the superconducting magnets manufactured for the Relativistic Heavy Ion Collider (RHIC), and then discuss the strategies used to improve the field quality and to minimize undesirable effects by sorting the magnets. The field quality of the various RHIC magnets is briefly summarized

  10. Beam-based measurements of persistent current decay in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2001-04-01

    Full Text Available The two rings of the Relativistic Heavy Ion Collider are equipped with superconducting dipole magnets. At injection, induced persistent currents in these magnets lead to a sextupole component. As the persistent currents decay with time, the horizontal and vertical chromaticities change. From magnet measurements of persistent current decays, chromaticity changes in the machine are estimated and compared with chromaticity measurements.

  11. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R.; Jowett, J.M.; Bocian, D.; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  12. RADIATION PROTECTION FOR THE RELATIVISTIC HEAVY ION-COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Musolino, S.V.; Stevens, A.J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy particle accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon. The rings consist of a circular lattice of superconducting magnets 3.8 km in circumference. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective when the facility goes into operation is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. There are only a few other high energy particle accelerators like RHIC in the world. The rules promulgated in the Code of Federal Regulations under the Atomic Energy Act do not cover prompt radiation from accelerators, nor are there any State regulations that govern the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance for the design of radiation shielding

  13. Governance of the International Linear Collider Project

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; /Oxford U.; Barish, B.; /Caltech; Delahaye, J.P.; /CERN; Dosselli, U.; /INFN, Padua; Elsen, E.; /DESY; Harrison, M.; /Brookhaven; Mnich, J.; /DESY; Paterson, J.M.; /SLAC; Richard, F.; /Orsay, LAL; Stapnes, S.; /CERN; Suzuki, A.; /KEK, Tsukuba; Wormser, G.; /Orsay, LAL; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency

  14. The Relativistic Heavy Ion Collider control system

    International Nuclear Information System (INIS)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-01-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning

  15. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Sickles, Anne [BNL Physics Department

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

  16. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  17. NICA project at JINR: status and prospects

    International Nuclear Information System (INIS)

    Kekelidze, V.D.

    2017-01-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.

  18. Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid

    OpenAIRE

    PHENIX Collaboration; Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.

    2014-01-01

    The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, providing powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.

  19. The first tunnel section of the Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Lundin, T.K.; Laughton, C.; Nelson, P.P.

    1990-11-01

    The Superconducting Super Collider (SSC) project will be constructed for the United States Department of Energy at a competitively-selected site in Ellis County, Texas, about 30 mile (50 km) south of the central business district of Dallas. The injector system and main collider ring will be housed in 70 mile (110 km) of tunnel, and the project will include additional shafts and underground enclosures with clear spans up to 30 ft (10 m) at depths of more than 250 ft (75 m). The first tunnel segment to be designed and constructed will include approximately 5.9 mile (9.4 km) of 12 ft (3.7 m) finished internal diameter tunnel, four shafts up to 55 ft (16.8 m) diameter, and various connecting tunnels and adits. Construction will be in weak rock lithologies, including mudstones, marls, and chalks with compressive strengths typically between 300 and 2500 psi (2.0 and 17.2 MPa). Design is underway, with an expected bid date before the end of 1990, and with start of construction following in the spring of 1991. 7 refs., 8 figs., 1 tab

  20. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  1. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-01-01

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  2. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  3. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  4. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10 33 -10 34 cm -2 sec -1 range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it

  5. Potential performance for Pb-Pb, p-Pb, and p-p collisions in a future circular collider

    Directory of Open Access Journals (Sweden)

    Michaela Schaumann

    2015-09-01

    Full Text Available The hadron collider studied in the future circular collider (FCC project could operate with protons and lead ions in similar operation modes as the LHC. In this paper the potential performances in lead-lead, proton-lead, and proton-proton collisions are investigated. Based on average lattice parameters, the strengths of intrabeam scattering and radiation damping are evaluated and their effect on the beam and luminosity evolution is presented. Estimates for the integrated luminosity per fill and per run are given, depending on the turnaround time. Moreover, the beam-beam tune shift and bound free pair production losses in heavy-ion operation are addressed.

  6. Status of the NICA project at JINR

    Directory of Open Access Journals (Sweden)

    Kekelidze V.

    2016-01-01

    Full Text Available The project NICA (Nuclotron-based Ion Collider fAcility is aimed to study hot and dense baryonic matter in heavy ion collisions in the energy range up to √sNN = 11 GeV, and to study nucleon spin structure in polarized proton and deuteron collisions in the energy range up to √s = 27 GeV. The heavy ion program will be performed at the Nuclotron extracted beams with the BM@N (Baryonic Matter at Nuclotron set-up and with the MPD (MultiPurpose Detector at the NICA collider with the average luminosity of L = 1027 cm−2s−1 (for 197Au79+. The spin physics will be studied with the SPD (Spin Physics Detector at the NICA collider.

  7. Towards a heavy-ion transport capability in the MARS15 Code

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Gudima, K.K.; Mashnik, S.G.; Rakhno, I.L.; Striganov, S.

    2004-01-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  8. Numerical calculation of ion polarization in the NICA collider

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams.

  9. Numerical calculation of ion polarization in the NICA collider

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Filatov, Yu N; Kondratenko, M A; Kondratenko, A M

    2016-01-01

    The NICA Collider with two solenoid Siberian snakes is “transparent” to the spin. The collider transparent to the spin provides a unique capability to control any polarization direction of protons and deuterons using additional weak solenoids without affecting orbital parameters of the beam. The spin tune induced by the control solenoids must significantly exceed the strength of the zero-integer spin resonance, which contains a coherent part associated with errors in the collider's magnetic structure and an incoherent part associated with the beam emittances. We present calculations of the coherent part of the resonance strength in the NICA collider for proton and deuteron beams. (paper)

  10. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    Science.gov (United States)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  11. Measurements of phi meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC)

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 79, č. 6 (2009), 064903/1-064903/20 ISSN 0556-2813 R&D Projects: GA MŠk LC07048 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : QUARK-GLUON-PLASMA * LARGE TRANSVERSE-MOMENTUM * NUCLEUS-NUCLEUS COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  12. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  13. COLLIDE Pro Helvetia Award

    CERN Multimedia

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  14. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    International Nuclear Information System (INIS)

    KING, B.J.

    2000-01-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e + e - and hadron colliders and three μ + μ - colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory

  15. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  16. Technological stakes of LHC, the large superconducting collider in project at CERN

    International Nuclear Information System (INIS)

    Lebrun, P.

    1991-01-01

    The LHC large superconducting particle collider project is presented, with particular emphasis on its major technological requirements and returns, mostly in the domains of high-field electromagnets, superfluid helium cryogenics, and integration of such advanced techniques in a large machine. The corresponding cooperation and technological transfer to European laboratories and industries are briefly discussed [fr

  17. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  18. System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B.D.; Arkipin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielčík, Jaroslav; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M. C.D.L. l. B.; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Chung, S.U.; Clarke, R.F.; Codrington, M.J.M.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Moura, M.M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Du, F.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jin, F.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; Lange, S.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednický, R.; Lee, Ch.; LeVine, M.J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G.L.; Ma, J.G.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Millane, J.; Miller, M.L.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Nepali, C.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorov, V.; Olson, D.; Pachr, M.; Pal, S.K.; Panebrattsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A.M.; Potekhin, M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Qattan, I.A.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van der Kolk, N.; van Leeuwen, M.; Vander Molen, A.M.; Varma, R.; Vasconcelos, G.M.S.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Waggoner, W.T.; Wang, F.; Wang, Y.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.Y.; Yepes, P.; Yoo, I.K.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W.M.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Bielčíková, Jana; Kapitán, Jan

    2008-01-01

    Roč. 101, č. 25 (2008), 252301/1-252301/6 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10480505 Keywords : nucleus-nucleus collisions * time projection chamber * QUARK-GLUON PLASMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.180, year: 2008

  19. Future Circular Collider Study FCC-he Baseline Parameters

    CERN Document Server

    Bruning, Oliver; Klein, Max; Pellegrini, Dario; Schulte, Daniel; Zimmermann, Frank

    2017-01-01

    Initial considerations are presented on the FCC-he, the electron-hadron collider con guration within the Future Circular Collider study. This note considers arguments for the choice of the electron beam energy based on physics, ep scattering kinematics and cost. The default con guration for the electron accelerator, as for the LHeC, is chosen to be a multi-turn energy recovery linac external to the proton beam tunnel. The main accelerator parameters of the FCC-he are discussed, assuming the concurrent operation of ep with the 100TeV cms energy pp collider. These are compared with the LHeC design concept, for increased performance as for a Higgs facility using the HL-LHC, and also the high energy HE-LHC ep collider configuration. Initial estimates are also provided for the luminosity performance of electron-ion colliders for the 60 GeV electron ERL when combined with the LHC, the HE-LHC and the FCC ion beams.

  20. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  1. The status of RandD for the relativistic heavy ion collider at Brookhaven

    International Nuclear Information System (INIS)

    Forsyth, E.B.

    1989-01-01

    Formal development of the Relativistic Heavy Ion Collider (RHIC) has been funded for the past three years. Prototype superconducting magnets and cryostats have been tested. Detailed designs have been prepared for the arc sections, the insertion regions and injection and ejection systems. The rf system has undergone significant revisions in order to enhance the experimental capability of RHIC. Progress has been made with the design of detectors. We are putting in place a management information system in anticipation of an expeditious start of construction. 20 refs., 2 figs., 3 tabs

  2. The status of RandD for the relativistic heavy ion collider at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.

    1989-01-01

    Formal development of the Relativistic Heavy Ion Collider (RHIC) has been funded for the past three years. Prototype superconducting magnets and cryostats have been tested. Detailed designs have been prepared for the arc sections, the insertion regions and injection and ejection systems. The rf system has undergone significant revisions in order to enhance the experimental capability of RHIC. Progress has been made with the design of detectors. We are putting in place a management information system in anticipation of an expeditious start of construction. 20 refs., 2 figs., 3 tabs.

  3. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  4. Prospects for colliders and collider physics to the 1 PeV energy scale

    Science.gov (United States)

    King, Bruce J.

    2000-08-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  5. Matter Formed at the BNL Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Brown, G.E.; Gelman, B.A.; Rho, Mannque

    2006-01-01

    We suggest that the 'new form of matter' found just above T c by the Relativistic Heavy Ion Collider is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π, σ, ρ, and a 1 . Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at T c just as they do from below T c as predicted by the vector manifestation of hidden local symmetry. This could explain the rapid rise in entropy up to T c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue

  6. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  7. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  8. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162 ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.200, year: 2015

  9. International Linear Collider Project and civil engineering technology

    International Nuclear Information System (INIS)

    2007-01-01

    The objectives, activities and members of the Linear Collider Subcommittee of Japan Society of Civil Engineers (LC subcommittee) are described. The LC subcommittee consisted of five working groups such as the working group on planning and project and management, working group on geological survey, test, and environmental design, working group on structural and environmental design, working group on construction and maintenance and working group on information investigation of ILC. The policy of activities, work schedule, and report of each working group are described. Construction of ILC research facilities, standard cross section of tunnel, measurement results of long-term displacement of large underground cavities, the tunnel damages by earthquake in the south part of Hyogo prefecture in Japan, TBM method, collection of information are reported. (S.Y.)

  10. Seismic studies for Fermilab future collider projects

    International Nuclear Information System (INIS)

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators

  11. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    International Nuclear Information System (INIS)

    Latina, Andrea

    2009-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  12. SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described

  13. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  14. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  15. Indications of Conical Emission of Charged Hadrons at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 102, č. 5 (2009), 052302/1-052302/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : PARTICLE CORRELATIONS * QCD MATTER * CONICAL EMISSION Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  16. In the loop Large Hadron Collider project - UK engineering firms

    CERN Document Server

    Wilks, N

    2004-01-01

    This paper presents the latest measures being taken to boost the level of UK engineering firms' involvement in research at CERN (Centre for Nuclear Research), including its 27 km circular Large Hadron Collider (LHC) project. Virtually all of the components on this complex project have had to be custom-made, usually in the form of collaboration. It is part of these collaborations that some UK firms have proved they can shine. However, despite the proven capabilities, the financial return continues to be less than the government's funding. Each of the 20 CERN member states provides funds in proportion to its GDP and the UK is the second largest financial contributor. UK firms become price-competitive where a contract calls for a degree of customisation or product development, project management and tight quality control. Development of the Particle Physics Grid, for dissemination and analysis of data from the LHC, continues to provide major supply opportunities for UK manufacturers.

  17. Status of the NICA project at JINR

    Directory of Open Access Journals (Sweden)

    Kekelidze Vladimir

    2017-01-01

    Full Text Available The NICA (Nuclotron-based Ion Collider fAcility project is now under active realization at the Joint Institute for Nuclear Research (JINR, Dubna. The main goal of the project is a study of hot and dense strongly interacting matter in heavy-ion (up to Au collisions at the center-of-mass energies up to 11 GeV per nucleon. Two modes of operation are foreseen, collider mode and extracted beams, with two detectors: MPD and BM@N. The both experiments are in preparation stage. An average luminosity in the collider mode is expected to be 1027 cm−2 s−1 for Au (79+. Extracted beams of various nuclei with maximum momenta of 13 GeV/c (for protons will be available. A study of spin physics with extracted and colliding beams of polarized deuterons and protons at energies up to 27 GeV (for protons is foreseen with the NICA facility. The proposed program allows one to search for possible signs of phase transitions and critical phenomena as well as to shed light on the problem of the nucleon spin structure.

  18. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  19. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  20. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  1. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  2. Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-13

    We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.

  3. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  4. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  5. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  6. The linear collider alignment and survey (LiCAS) project

    International Nuclear Information System (INIS)

    Bingham, Richard; Botcherby, Edward; Coe, Paul; Grzelak, Grzegorz; Mitra, Ankush; Reichold, Armin; Prenting, Johannes

    2003-01-01

    For the next generation of Linear Colliders (LC) the precision alignment of accelerator components will be critical. The DESY applied geodesy group has developed the concept of an automated 'survey train'. The train runs along the accelerator wall measuring the 3D position of a set of equispaced reference markers. This reference structure is then used to align the accelerator components. The LiCAS group is developing a measurement system for the survey train. It will use a combination of Laser Straightness Monitors (SM) and Frequency Scanning Interferometry (FSI). FSI is an interferometric length measurement technique originally developed for the online alignment of the ATLAS Inner Detector. This novel combination of optical techniques is expected to overcome the limitations of traditional open air survey. The authors describe the LiCAS project, the measurement systems and their integration into the survey train. The technical parameters and constraints will be mentioned. There will also be brief discussion of the second phase of the project to allow on-line monitoring of the LC alignment. (author)

  7. Atlas positive-ion injector project

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R C; Bollinger, L M; Shepard, K W

    1987-04-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make beams of essentially all elements including uranium available at ATLAS. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides ions of high charge states at microampere currents, and rf superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m resulting in an essentially new method of acceleration for low-energy heavy ions.

  8. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  9. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  10. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  11. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  12. Proton-ion collisions: behind the scenes of an exotic interaction

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Protons to the right, ions to the left: the basic principle of proton-ion collisions at the LHC might seem straightforward. However, this is an almost unprecedented mode of collider operation, certainly unique at the energy provided by the LHC. In addition to being a remarkable technical achievement, this interaction between a proton and an ion can potentially contribute a lot to the understanding of the properties of matter in its primordial state.   Prior to last week, the LHC had only collided protons with protons and lead ions with lead ions. These were indeed the two operational schemes the LHC was designed for. However, since science can often evolve in directions that were not necessarily expected at the beginning of a project, over the years the scientific community has become more and more interested in the hybrid type of interaction – that between protons and ions. Last week’s collisions were only a test for the teams involved in the operation of the LHC, in prepara...

  13. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Czech Academy of Sciences Publication Activity Database

    Apel, P. Yu.; Ivanov, O.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacík, Jiří; Dmitriev, S. N.

    2015-01-01

    Roč. 365, DEC (2015), s. 641-645 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ion beam * irradiation * ion track * etching * single nanopore Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  14. Final project report for NEET pulsed ion beam project

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurement of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.

  15. Electrolyte penetration into high energy ion irradiated polymers

    Czech Academy of Sciences Publication Activity Database

    Fink, D.; Petrov, A.; Müller, M.; Asmus, T.; Hnatowicz, Vladimír; Vacík, Jiří; Červená, Jarmila

    158/159 (2002), s. 228-233 ISSN 0257-8972 R&D Projects: GA AV ČR KSK1010104; GA ČR GA102/01/1324 Keywords : polymers * ion bombardment * defects * diffusion * nanostructrure Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2002

  16. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Staněk, S.; Nekvindová, P.; Švecová, B.; Vytykáčová, S.; Míka, M.; Oswald, Jiří; Macková, Anna; Malinský, Petr; Špirková, J.

    2016-01-01

    Roč. 371, Mar (2016), s. 350-354 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion implantation * silicate glass * silver * nanoparticles * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 1.109, year: 2016

  17. Design optimization of 600 A-13 kA current leads for the Large Hadron Collider project at CERN

    CERN Document Server

    Spiller, D M; Al-Mosawl, M K; Friend, C M; Thacker, P; Ballarino, A

    2001-01-01

    The requirements of the Large Hadron Collider project at CERN for high-temperature superconducting (HTS) current leads have been widely publicized. CERN require hybrid current leads of resistive and HTS materials with current ratings of 600 A, 6 kA and 13 kA. BICC General Superconductors, in collaboration with the University of Southampton, have developed and manufactured prototype current leads for the Large Hadron Collider project. The resistive section consists of a phosphorus de-oxidized copper conductor and heat exchanger and the HTS section is constructed from BICC General's (Pb, Bi)2223 tapes with a reduced thermal conductivity Ag alloy sheath. We present the results of the materials optimization studies for the resistive and the HTS sections. Some results of the acceptance tests at CERN are discussed. (9 refs).

  18. Large hadron collider workshop. Proceedings. Vol. 3

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentaiton and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  19. Large hadron collider workshop. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol.1 of these proceedings contains the papers presented at the plenary sessions, Vol.2 the individual contributions to the physics sessions, and Vol.3 those to the instrumentation sessions. (orig.)

  20. Large hadron collider workshop. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LCH workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  1. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  2. Light ion program at BNL

    International Nuclear Information System (INIS)

    Foelsche, H.; Barton, D.S.; Thieberger, P.

    1986-08-01

    At Brookhaven National Laboratory (BNL) two existing facilities, the Tandem Van de Graaff machines and the AGS have been joined by a beam transfer line, and modified to permit acceleration of light ions (up to sulfur) to energies of 14.6 GeV/amu. Light ions supplied by a pulsed ion source are accelerated by the Tandem to an energy of about 7 to 8 MeV/amu, and are transferred directly into the AGS in the fully stripped state. In the AGS an auxiliary rf system has been added to accelerate through the low velocity region from about 7 to about 200 MeV/amu, at which point the previously existing AGS RF system takes over to complete the acceleration cycle to full energy, as it normally does for protons. Standard resonant slow extraction delivers the beam to the existing experimental beam facilities. This is the first phase of a long range program to provide facilities for relativistic heavy ion experiments with fixed targets and ultimately with colliding beams at BNL. The design objectives for this project and preliminary results obtained during the commissioning of the light ion program are described in this paper. Plans for a future second phase, a booster accelerator to permit heavy ion acceleration in the AGS, and of the third phase, a proposed Relativistic Heavy Ion Collider (RHIC) are briefly mentioned as well

  3. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  4. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  5. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  6. Electron-Ion Collider: The next QCD frontier. Understanding the glue that binds us all

    Energy Technology Data Exchange (ETDEWEB)

    Accardi, A. [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Albacete, J.L. [Universite Paris-Sud 11, CNRS/IN2P3, IPNO, Orsay (France); Anselmino, M. [Torino University (Italy); INFN, Torino (Italy); Armesto, N. [University of Santiago de Campostela, Santiago de Compostela (Spain); Aschenauer, E.C.; Burton, T.; Fazio, S.; Hao, Y.; Lamont, M.A.C.; Lee, J.H.; Lee, Y.; Litvinenko, V.; Ludlam, T.W.; Ptitsyn, V.; Qiu, J.W.; Roser, T.; Toll, T.; Trbojevic, D.; Ullrich, T.; Venugopalan, R.; Vigdor, S. [Brookhaven National Laboratory, Upton, NY (United States); Bacchetta, A. [University of Pavia, Pavia (Italy); Boer, D. [University of Groningen, Groningen (Netherlands); Brooks, W.K.; Hakobyan, H.; Kopeliovich, B. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Chang, N.B.; Huang, M. [Shandong University, Shandong (China); Deng, W.T. [Frankfurt University, FIAS, Frankfurt (Germany); Shandong University, Shandong (China); Deshpande, A.; Kumar, K. [Stony Brook University, Stony Brook, NY (United States); Diehl, M. [DESY, Hamburg (Germany); Dumitru, A.; Jalilian-Marian, J. [Baruch College, CUNY, New York, NY (United States); Dupre, R.; Sabatie, F. [Centre de Saclay, CEA, Gif-sur-Yvette (France); Ent, R.; Guzey, V.; Hutton, A.; Lin, F.L.; McKeown, R.; Morozov, V.S.; Nadel-Turonski, P.; Prokudin, A.; Weiss, C.; Zhang, Y.H. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gao, H. [Duke University, Durham, NC (United States); Hasch, D. [INFN, LNF, Frascati (Italy); Holt, R. [Argonne National Laboratory, Argonne, IL (United States); Horn, T. [The Catholic University of America, N.E. Washington, DC (United States); Hyde, C. [Old Dominion University, Norfolk, VA (United States); Klein, S.; Sichtermann, E.; Yuan, F. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kovchegov, Y. [The Ohio State University, Columbus, OH (United States); Kumericki, K. [University of Zagreb, Zagreb (Croatia); Lappi, T.; Paukkunen, H. [University of Jyvaskyla, Jyvaskyla (Finland); Levin, E.M. [Tel Aviv University, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Marquet, C. [CERN, Geneva (Switzerland); Meziani, Z.E.; Metz, A. [Temple University, Philadelphia, PA (United States); Milner, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Mueller, A.H. [Columbia University, New York, NY (US); Mueller, B. [Brookhaven National Laboratory, Upton, NY (US); Duke University, Durham, NC (US); Mueller, D. [Ruhr-University Bochum, Bochum (DE); Qian, X. [California Institute of Technology, Pasadena, CA (US); Ramsey-Musolf, M. [University of Massachusetts at Amherst, Amherst, MA (US); Sassot, R. [University of Buenos Aires, Buenos Aires (AR); Schnell, G. [University of Basque Country, Bilbao (ES); Schweitzer, P. [University of Connecticut, Storrs, CT (US); Stratmann, M.; Vogelsang, W. [University of Tuebingen, Tuebingen (DE); Strikman, M. [Pennsylvania State University, Philadelphia, PA (US); Sullivan, M. [Stanford Linear Accelerator Center, Menlo Park, CA (US); Taneja, S. [Dalhousie University, Halifax, Nova Scotia (CA); Stony Brook University, Stony Brook, NY (US); Xiao, B.W. [Central China Normal University, Wuhan, Hubei (CN); Zheng, L. [Brookhaven National Laboratory, Upton, NY (US); Central China Normal University, Wuhan, Hubei (CN)

    2016-09-15

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on ''Gluons and quark sea at high energies'' at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier. (orig.)

  7. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  8. Ion Sources, Preinjectors and the Road to EBIS (459th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Alessi, James

    2010-01-01

    To meet the requirements of the scientific programs of the Relativistic Heavy Ion Collider and the NASA Space Radiation Lab, BNL's Collider-Accelerator Department needs a variety of ion sources. Although these sources are a relatively small and inexpensive part of an accelerator, they can have a big impact on the machine's overall performance. For the 459th Brookhaven Lecture, James Alessi will describe C-AD's long history of developing state-of-the-art ion sources for its accelerators, and its current process for source and pre-injector development. He will follow up with a discussion of the features and development status of EBIS, which, as the newest source and preinjector, is in the final stages of commissioning at the end of a five-year construction project.

  9. Dosimetry in heavy ion beams using various detectors

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Kateřina; Jadrníčková, Iva; Molokanov, A. G.; Spurný, František

    2010-01-01

    Roč. 45, č. 10 (2010), s. 1384-1386 ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : tack-etched detectors * LET spectra * TLD * heavy ion beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010

  10. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  11. Nuclear structure functions at a future electron-ion collider

    Science.gov (United States)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P.

    2017-12-01

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x —robust experimental constraints below x ˜10-2 at low resolution scale Q2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x ˜10-5 at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q2. In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.

  12. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  13. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  14. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  15. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  16. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  17. Control of colliding ion beams

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to a method and system for enhancing the power-producing capability of a nuclear fusion reactor, and more specifically to methods and structure for enhancing the ion density in a directed particle fusion reactor. In accordance with the invention, oppositely directed ion beams constrained to helical paths pass through an annular reaction zone. The object is to produce fusion reactions due to collisions between the ion beams. The reaction zone is an annulus as between an inner-cylindrical electrode and an outer-cylindrical coaxial electrode. The beams are enhanced in ion density at spaced points along the paths by providing spline structures protruding from the walls of the electrodes into the reaction zone. This structure causes variations in the electric field along the paths followed by the ion beams. Such fields cause the beams to be successively more and less concentrated as the beams traverse the reaction zone. Points of high concentration are the points at which fusion-producing collisions are most likely to take place

  18. The stopping power and energy straggling of light ions in graphene oxide foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Sofer, Z.

    2017-01-01

    Roč. 406, SEP (2017), s. 173-178 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA16-05167S Institutional support: RVO:61389005 Keywords : ion energy loss * ion energy straggling * graphene oxide Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  19. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  20. Formation of doubly charged argon ions, Ar2+, from long-lived highly excited argon ions, Arsup(+*), colliding with Ar and N2 gases

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    1976-01-01

    Formation of Ar 2+ from long-lived highly excited Ar + * colliding with Ar and N 2 gases is studied by means of a tandem mass spectrometer. The tandem mass spectrometer used consists of two mass analyzers connected in series and a collision chamber located in between. The collision chamber is electrically floated and can be set at a desired potential, so that one can identify the fast ions (resulting from the primary ions) and the slow ions (secondary ions) in the mass spectra taken by the second mass analyzer. When the first mass analyzer is tuned to Ar + , peaks corresponding Ar 2+ appear in the second mass spectra. From the analysis of variation of mass positions and heights of these peaks with the change of the potential and pressure of the collision chamber, the Ar 2+ is concluded to result from the primary Ar + in collision with gas molecules and wall surface. From the threshold behavior of the product Ar 2+ with the electron energy in the ion source, three sets of long-lived highly excited Ar + * states (Rydberg states) are found to be responsible for this process. They are 3s 2 3p 4 ( 3 P)nl, 3s 2 3p 4 ( 1 D 2 )n'l and 3s 2 3p 4 ( 1 S 0 )n''l converging to Ar 2+3 Psub(2.1.0) (43.38, 43.51, 43.57 eV), 1 D 2 (45.11 eV) and 1 S 0 (47.50 eV), respectively. Their fractional ratio in the primary Ar + beam is determined as 3.0:1.0:1.2 which is close to that of multiplicities of the states concerned. The autoionization mechanism reported by other investigators to be responsible for the formation of Ar 2+ in Aston band or tandem mass spectra is found to be negligible. The cross sections of formation of Ar 2+ from Ar + * colliding with Ar and N 2 increase in proportion to the 1.15th power of the collision energy in the range from 750 eV to 2.5 keV. At the collision energy of 1.0 keV, they are 2.0x10 -20 /F cm 2 for Ar target and 6.6x10 -20 /F cm 2 for N 2 target, where the fractional density of Ar + * is estimated to be 0.7x10 -4 -4 . (auth.)

  1. Final focus designs for crab waist colliders

    Directory of Open Access Journals (Sweden)

    A. Bogomyagkov

    2016-12-01

    Full Text Available The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DAΦNE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DAΦNE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  2. A GEM-TPC prototype with low-Noise highly integrated front-end electronics for linear collider studies

    CERN Document Server

    Kappler, Steffen; Kaminski, Jochen; Ledermann, Bernhard; Müller, Thomas; Ronan, Michael T; Ropelewski, Leszek; Sauli, Fabio; Settles, Ronald

    2004-01-01

    Connected to the linear collider project, studies on the readout of time projection chambers (TPCs) based on the gas electron multiplier (GEM) are ongoing. Higher granularity and intrinsically suppressed ion feedback are the major advantages of this technology. After a short discussion of these issues, we present the design of a small and very flexible TPC prototype, whose cylindrical drift volume can be equipped with endcaps of different gas detector types. An endcap with multi-GEM readout is currently set up and successfully operated with a low-noise highly integrated front-end electronics. We discuss results of measurements with this system in high intensity particle beams at CERN, where 99.3 plus or minus 0.2% single-pad-row efficiency could be achieved at an effective gain of 2.5 multiplied by 10**3 only, and spatial resolutions down to 63 plus or minus 3 mum could be demonstrated. Finally, these results are extrapolated to the high magnetic field in a linear collider TPC. 5 Refs.

  3. High-performance DIRC detector for the future Electron Ion Collider experiment

    Science.gov (United States)

    Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Hartlove, T.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.

    2018-04-01

    Excellent particle identification (PID) is an essential requirement for a future Electron-Ion Collider (EIC) detector. Identification of the hadrons in the final state is critical to study how different quark flavors contribute to nucleon properties. A detector based on the Detection of Internally Reflected Cherenkov light (DIRC) principle, with a radial size of only a few cm, is a perfect solution for those requirements. The R&D process performed by the EIC PID consortium (eRD14) is focused on designing a high-performance DIRC that would extend the momentum coverage well beyond the state-of-the-art, allowing 3 standard deviations or more separation of π/K up to 6 GeV/c, e/π up to 1.8 GeV/c, and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer compound lens. This article describes the status of the High-Performance DIRC R&D for the EIC detector, with a focus on the detailed Monte Carlo simulation results and performance tests of the 3-layer lens.

  4. eγ and γγ colliders

    International Nuclear Information System (INIS)

    Watanabe, Isamu

    1994-01-01

    The results that can be expected by eγ and γγ colliders in future are summarized. eγ and γγ colliders have many fine possibilities, and are the economical selection for utilizing future e + e - colliders more effectively. eγ and γγ colliders were proposed by former USSR researchers at the beginning of 1980s, but recently, the prospect of realizing future e + e - collision type linear accelerator projects has become high, they have become to be considered seriously as the option of remodeling them. The high energy photon beam of eγ and γγ colliders is obtained by causing Compton reverse scattering, irradiating laser beam to the electron beam of e + e - accelerators. The production of γ-beam is explained. As for the physics noteworthy in eγ colliders, abnormal gauge coupling, the formation of Higgs particles, excited leptons, lepto-quark, supersymmetric particles and top quark are explained. As the physics noteworthy in γγ colliders, the formation of Higgs particles which is most interesting in γγ colliders, abnormal gauge coupling, top quark, Yukawa coupling, Higgs pair formation and other particles are enumerated. The linear e + e - accelerators of TeV range including JLC have the performance to be remodeled to eγ and γγ colliders, and the prospect of realizing them has become high. Their possibility of realization is discussed. (K.I.)

  5. SuperB: Next-Generation e+e− B-factory Collider

    CERN Document Server

    Novokhatski, A; Chao, A; Nosochkov, Y; Seeman, J T; Sullivan, M K; Wienands, J T; Wittmer, W; Baylac, M A; Bourrion, O; Monseu, N; Vescovi, C; Bettoni, S; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Preger, M A; Raimondi, P; Tomassini, S; Zobov, M; Bogomyagkov, A V; Nikitin, S A; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Vobly, P; Bolzon, B; Brunetti, L; Jeremie, A; A. Chancé; Fabbricatore, P; Farinon, S; Musenich, R; Liuzzo, S M; Paoloni, E; Okunev, I N; Poirier, F; Rimbault, C; Variola, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interactio...

  6. Physics at a future collider beyond the LHC and a TeV class linear collider

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    After the LHC will have probed the physics at the TeV frontier, new generations of colliders capable of reaching into the multi-TeV energy domain will need to be considered. Concepts for both high energy e+e- linear colliders and muon storage rings have been proposed as well as hadron colliders. Highly challenging R&D programs are presently pursued to demonstrate their principles. The definition of a physics programme in the multi-TeV range still requires essential data that is likely to become available only after the first years of LHC operation and, possibly, also the results from a TeV-class linear collider. At present we have to envisage several possible scenarios for the fundamental questions to be addressed by collider experiments in the next decade, to guide the choices in the accelerator designs and parameters. After a brief review of the main accelerator projects and the present status of their R&D, I shall discuss the main signatures of the physics of possible relevance in relation to the e...

  7. The stopping power and energy straggling of the energetic C and O ions in polyimide

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Slepička, P.

    2016-01-01

    Roč. 371, MAR (2016), s. 81-85 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : ion energy loss * ion energy straggling * ion irradiated polymers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  8. Modification of poly(ether ether ketone) by ion irradiation

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír; Havránek, Vladimír; Bočan, Jiří; Macková, Anna; Vacík, Jiří; Švorčík, V.

    2008-01-01

    Roč. 266, č. 2 (2008), s. 283-287 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : PEEK * ion beam modification * polymer degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.999, year: 2008

  9. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křelina, M.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 93, č. 2 (2016), s. 024917 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : heavy ion collisions * ALICE collaboration * deuteron production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 3.820, year: 2016

  10. Ion Micro Beam, promising methods for interdisciplinary research

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Havránek, Vladimír; Torrisi, L.; Švecová, B.

    2016-01-01

    Roč. 11, MAY (2016), C05001 ISSN 1748-0221 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : accelerator application * accelerator subsystems and technolgies * ion sources Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.220, year: 2016

  11. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  12. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  13. Top physics at high-energy lepton colliders. Summary

    International Nuclear Information System (INIS)

    Vos, M.

    2016-04-01

    A summary is presented of the workshop ''top physics at linear colliders'' that was held at IFIC Valencia from the 30"t"h of June to the 3"r"d July 2015. We present an up-to-date status report of studies into the potential for top quark physics of lepton colliders with an energy reach that exceeds the top quark pair production threshold, with a focus on the linear collider projects ILC and CLIC. This summary shows that such projects can offer very competitive determinations of top quark properties (mass, width) and its interactions with other Standard Model particles, in particular electroweak gauge bosons and the Higgs boson. In both areas the prospects exceed the LHC potential significantly - often by an order of magnitude.

  14. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  15. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  16. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Vytykačová, S.; Švecová, B.; Nekvindová, P.; Špirková, J.; Macková, Anna; Mikšová, Romana; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 245-255 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * silver nanoparticles * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  17. A DSP based data acquisition module for colliding beam accelerators

    International Nuclear Information System (INIS)

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  18. Bio-compatibility of ion beam-modified and RGD-grafted polyethylene

    Czech Academy of Sciences Publication Activity Database

    Ročková-Hlaváčková, K.; Švorčík, V.; Bačáková, L.; Dvořánková, B.; Heitz, J.; Hnatowicz, Vladimír

    2004-01-01

    Roč. 225, č. 3 (2004), s. 275-282 ISSN 0168-583X R&D Projects: GA AV ČR IAA5011301 Institutional research plan: CEZ:AV0Z1048901 Keywords : modified polyethylene * ion beam * RGD grafting Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.997, year: 2004

  19. Hadronic resonance production in d+Au collisions at root S-NN = 200 GeV measured at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkipin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, D.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M. C.D.L. l. B.; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopdhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Chung, S.U.; Clarke, R.F.; Codrington, M.J.M.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Du, F.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jin, F.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, R.; Lee, Ch.; LeVine, M.J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, M.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Millane, J.; Miller, M.L.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mishra, D.K.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Nepali, C.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; deToledo, A.S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, D.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Molen, A.M.V.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Waggoner, W.T.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, J.C.; Westfall, G.D.; Whitten, C.J.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W.M.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Kapitán, Jan; Tlustý, David; Zoulkarneeva, Y.; Zuo, J.X.

    2008-01-01

    Roč. 78, č. 4 (2008), 044906/1-044906/20 ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079 Institutional research plan: CEZ:AV0Z10480505 Keywords : LARGE TRANSVERSE-MOMENTUM * ENERGY NUCLEAR COLLISIONS * TIME PROJECTION CHAMBER Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.124, year: 2008

  20. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  1. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  2. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001

    International Nuclear Information System (INIS)

    ABE, T.; DAWSON, S.; HEINEMEYER, S.; MARCIANO, W.; PAIGE, F.; TURCOT, A.S.; ET

    2001-01-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e + e - linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e + e - linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e + e - linear collider; in any scenario that is now discussed, physics will benefit from the new information that e + e - experiments can provide

  3. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    Energy Technology Data Exchange (ETDEWEB)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  4. Linear Collider Physics Resource Book for Snowmass 2001

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E

    2001-06-05

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.

  5. Review of linear colliders

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1992-01-01

    The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab

  6. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-01-01

    Roč. 331, JUL (2014), s. 157-162 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  7. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  8. Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Benáček, Pavel; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Horák, D.; Kravčáková, A.; Křížek, Filip; Kučera, Vít; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 93, č. 5 (2016), s. 054908 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LG13031; GA MŠk LG15001 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * Bose-Einstein correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 3.820, year: 2016

  9. Experiments and detectors for high energy heavy ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T.

    1984-01-01

    Problems and possibilities are discussed for experiments at the highest collision energies achievable in man-made accelerators; i.e., colliding beams of heavy nuclei at cm energies greater than or equal to 100 GeV/amu, well beyond the threshold of nuclear transparency. Here the final state consists of two hot, dense, baryon-rich fireballs flying away from each other at large rapidity (the fragmentation regions), and thermally-produced particles with near-zero net baryon number populating the central rapidity range. The matter produced at central rapidity (the lab frame for a collider) may reach extremely high temperatures and energy densities, and it is here that one expects to produce thermodynamic conditions similar to those which existed when the early universe condensed from a plasma of quarks and gluons to a gas of hadrons. The problem of tracking, lepton measurements, and calorimeters are discussed. (WHK)

  10. Symphony and cacophony in ion track etching: how to control etching results

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Kiv, A.; Cruz, S. A.; Munoz, G. H.; Vacík, Jiří

    2012-01-01

    Roč. 167, č. 7 (2012), s. 527-540 ISSN 1042-0150 R&D Projects: GA AV ČR IAA200480702 Institutional support: RVO:61389005 Keywords : ion track s * polymers * etching * diodes * resistances Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.502, year: 2012

  11. Linear Collider Physics Resource Book Snowmass 2001

    International Nuclear Information System (INIS)

    Ronan, M.T.

    2001-01-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e + e - linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e + e - linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e + e - linear collider; in any scenario that is now discussed, physics will benefit from the new information that e + e - experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make

  12. Linear Collider Physics Resource Book Snowmass 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ronan (Editor), M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  13. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  14. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  15. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Fang Yutian; Guo Wenjun

    2004-01-01

    The degree of isospin fractionation is measured by the ratio of saturated neutron-proton: i.e. the ratio of gas phase (nucleon emission) to that of liquid phase (fragment emission) in heavy ion collisions. The authors have studied the dependence of the degree of isospin fractionation on the neutron-proton ratio in the colliding system by using isospin-dependent quantum molecular dynamical model. The calculated results show that the degree of isospin fractionation depends sensitively on the symmetry potential and weakly on the isospin effect of nucleon-nucleon cross section. In particular, the degree of isospin fractionation increases with increasing neutron-proton ratio in the colliding system for the neutron-rich system, in this process the neutron-rich gas phase and neutron-poor liquid phase are produced. The degree of isospin fractionation is very sensitive to the degree of symmetry potential. On the contrary, for the neutron-poor system the neutron-poor gas phase and neutron-rich liquid phase are produced. In this case, the degree of isospin fractionation is not sensitive to the symmetry potential. The authors also find that the role of momentum dependent interaction in the isospin fractionation process is not obvious. The authors propose that our calculated results can compared directly with the experimental data to get the information about the symmetry potential in the intermediate energy heavy-ion collisions

  16. Electron loss from 1.4 MEV/u U4,6,10+ ions colliding with Ne, N2 and Ar targets

    International Nuclear Information System (INIS)

    DuBois, R.D.; Santos, A.C.F.; Stoehlker, T.

    2004-07-01

    Absolute, total, single, and multiple electron loss cross sections are measured for 1.4 MeV/u U 4,6,10+ ions colliding with neon and argon atoms and nitrogen molecules. It is found that the cross sections all have the same dependence on the number of electrons lost and that multiplying the cross sections by the initial number of electrons in the 6s, 6p, and 5f shells yields good agreement between the different projectiles. By combining the present data with previous measurements made at the same velocity, it is shown that the scaled cross sections slowly decrease in magnitude for incoming charge states between 1 and 10 whereas the cross sections for higher charge state ions fall off much more rapidly. (orig.)

  17. Sorting chromatic sextupoles for easily and effectively correcting second order chromaticity in the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Luo, Y.; Tepikian, S.; Fischer, W.; Robert-Demolaize, G.; Trbojevic, D.

    2009-01-01

    Based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose a method with 4 knobs corresponding to 4 pairs of chromatic sextupole families to online correct the second order chromaticities. Numerical simulation justifies this method, showing that this method reduces the unbalance in the correction strengths of sextupole families and avoids the reversal of sextupole polarities. Therefore, this method yields larger dynamic apertures for the proposed RHIC 2009 100GeV polarized proton run lattices

  18. Measurements of ion mobility and GEM discharge studies for the upgrade of the ALICE time projection chamber

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00507268

    2018-02-20

    ALICE is one of the four experiments at the Large Hadron Collider (LHC). The quark-gluon plasma, which is predominantly produced in lead-lead collisions at LHC, is of particular interest for ALICE. After the long shut-down 2 (2019-2021) the LHC will provide lead-lead collisions at an increased interaction rate of 50 kHz. In order to examine every event at this interaction rate the ALICE Time Projection Chamber (TPC) needs to be upgraded. The TPC’s ReadOut Chambers (ROCs) are currently multi-wire proportional chambers. To prevent space charge build-up of slow ions, drifting from the ROCs into the TPC, a gating grid is used. The corresponding closure time imposes a dead time on the TPC read out, which prohibits data taking at a readout rate higher than 3 kHz. New ROCs have therefore been designed, relying on stacks of Gas Electron Multiplier (GEM) foils for the gas amplification, allowing for continuous readout. With the new ROCs, a certain fraction of ions will be drifting at all time into the TPC. Knowing t...

  19. The International Linear Collider Progress Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yamamoto, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-07-15

    The International Committee for Future Accelerators (ICFA) set up the Global Design Effort (GDE) for the design of the International Linear Collider (ILC) in 2005. Drawing on the resources of over 300 national laboratories, universities and institutes worldwide, the GDE produced a Reference Design Report in 2007, followed by a more detailed Technical Design Report (TDR) in 2013. Following this report, the GDE was disbanded. A compact core team, the Linear Collider Collaboration (LCC), replaced it. This is still under the auspices of ICFA and is directly overseen by the Linear Collider Board, which reports to ICFA. The LCC is charged with continuing the design effort on a much-reduced scale until the Project is approved for construction. An additional mandate of the LCC was to bring together all linear collider work, including the CERN-based Compact Linear Collider (CLIC) under one structure in order to exploit synergies between the two studies.

  20. Large amounts of antiproton production by heavy ion collision

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10 41 m/cm 2 , a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values

  1. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  2. Simple kinetic model of ion induced gas emission from polymers

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír

    2004-01-01

    Roč. 215, 1/2 (2004), s. 162-168 ISSN 0168-583X R&D Projects: GA ČR GA106/03/0514; GA AV ČR IAA5011301 Institutional research plan: CEZ:AV0Z1048901 Keywords : polymers * ion irradiation * degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.997, year: 2004

  3. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Upsal, I.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 760-763 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * quark-gluon plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016

  4. International linear collider project and role of accelerator rock engineering

    International Nuclear Information System (INIS)

    Suzuki, Atsuto

    2008-01-01

    In the branch of physics called High Energy Physics, the scientists are studying the world of elementary particles. It is the research of what is taking place among these elementary particles in an ultra, ultra small scale of space and time. The knowledge we obtained there has tremendously deepened our understanding of the Nature. It is also expected to serves us as the founding stone of the sciences and technologies both at present and in the future. The High Energy Physicists around the world now have great expectations of the research programs at what is called a linear collider (LC). A linear collider is a new accelerator which provides us with a laboratory to investigate the particle interactions at energies of several hundred Giga-Electron-Volts (GeV) and beyond. The LC is currently being developed through an international collaboration where the scientists and engineers from all corners of the globe, including Asia, America and Europe, are congregated. It is called the International Linear Collider (ILC) collaboration. (author)

  5. Beam-Based Nonlinear Optics Corrections in Colliders

    CERN Document Server

    Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim

    2005-01-01

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.

  6. EPIC - an electron-polarized ion collider

    International Nuclear Information System (INIS)

    Cameron, J.M.

    1999-01-01

    As discussed earlier in this workshop, we have been studying at the Indiana University Cyclotron Facility (IUCF) for some time the potential of a facility-the Light Ion Spin Synchrotron (LISS)- focusing on reactions induced by polarized nucleons at ∼ 1 to 20 GeV. The technology would extrapolate from what we have learned using our existing Cooler ring using internal polarized targets. Indeed, these techniques are most viable at higher energies where the loss of the stored beam is due to the nuclear reactions which are of interest and not that of multiple Coulomb scattering which dominate in our present energy range. However, while the internal targets are not exactly fixed, they certainly do not contribute to the available energy in the center of momentum frame. Consequently, the energy and momentum which can be effective explored are 6 GeV and 3 GeV/c respectively, about the same range that we expect to explore using electromagnetic probes using the enhanced Thomas Jefferson National Accelerator Laboratory electron beam. Looking at the structure of hadrons, as we currently understand it, one can divide it into four size scales. The LISS facility would permit studies of the manifestation of the nucleon substructure but generally would not get to scales where one would only have incoherent interactions at the partonic level. Following in a path already trodden by our European colleagues, we have recently started to look at the possibility of adding an electronic collider option to our plans. This would significantly increase the kinematic range, with 25 GeV protons and 4 GeV electrons (one gets over 20 GeV in the center of mass-equivalent to about 200 GeV on a fixed proton target). The accessible range provides coverage up to Q 2 = 20 GeV/ c 2 and down to x ∼ 10 -2 (here x = Q 2 /2Mv, the usual Bjorken scaling variable). As the energy of both beams would be variable, one can cover the whole range between HERMES and CERN/FNAL muon beams. Examples of the range of

  7. Ion track etching revisited: I. Correlations between track parameters in aged polymers

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Munoz, G. H.; García Arellano, H.; Vacík, Jiří; Hnatowicz, Vladimír; Kiv, A.; Alfonta, L.

    2018-01-01

    Roč. 420, č. 4 (2018), s. 57-68 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ion track * polymer * etching Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  8. Status of the ATLAS Positive-Ion Injector Project

    International Nuclear Information System (INIS)

    Pardo, R.C.; Benaroya, R.; Billquist, P.J.

    1987-01-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make available at ATLAS essentially all beams including uranium. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides high charge state ions at microampere currents, and RF superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m, resulting in an essentially new method of acceleration for low-energy heavy ions. 5 refs., 7 figs., 1 tabs

  9. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  10. International linear collider reference design report 2007

    International Nuclear Information System (INIS)

    Aarons, G.

    2007-01-01

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R and D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade

  11. The CERN SPS proton–antiproton collider

    CERN Document Server

    Schmidt, Rudiger

    2016-01-01

    One of CERN's most ambitious and successful projects was the search for the intermediate bosons, W and Z [1]. The accelerator part of the project relied on a number of innovations in accelerator physics and technology. The invention of the method of stochastic cooling and the extension by many orders of magnitude beyond the initial proof of principle demonstration allowed the construction of the Antiproton Accumulator. Major modifications to the 26 GeV PS complex and the conversion of the 300 GeV SPS, which had just started up as an accelerator, to a collider were required. The SPS collider had to master the beam–beam effect far beyond limits reached before and had to function in a tight symbiosis with the UA1 and UA2 experiments.

  12. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J.L.; Akay, A.N.; Aksakal, H.; Albacete, J.L.; Alekhin, S.; Allport, P.; Andreev, V.; Appleby, R.B.; Arikan, E.; Armesto, N.; Azuelos, G.; Bai, M.; Barber, D.; Bartels, J.; Behnke, O.; Behr, J.; Belyaev, A.S.; Ben-Zvi, I.; Bernard, N.; Bertolucci, S.; Bettoni, S.; Biswal, S.; Blumlein, J.; Bottcher, H.; Bogacz, A.; Bracco, C.; Brandt, G.; Braun, H.; Brodsky, S.; Buning, O.; Bulyak, E.; Buniatyan, A.; Burkhardt, H.; Cakir, I.T.; Cakir, O.; Calaga, R.; Cetinkaya, V.; Ciapala, E.; Ciftci, R.; Ciftci, A.K.; Cole, B.A.; Collins, J.C.; Dadoun, O.; Dainton, J.; De Roeck, A.; d'Enterria, D.; Dudarev, A.; Eide, A.; Enberg, R.; Eroglu, E.; Eskola, K.J.; Favart, L.; Fitterer, M.; Forte, S.; Gaddi, A.; Gambino, P.; Garcia Morales, H.; Gehrmann, T.; Gladkikh, P.; Glasman, C.; Godbole, R.; Goddard, B.; Greenshaw, T.; Guffanti, A.; Guzey, V.; Gwenlan, C.; Han, T.; Hao, Y.; Haug, F.; Herr, W.; Herve, A.; Holzer, B.J.; Ishitsuka, M.; Jacquet, M.; Jeanneret, B.; Jimenez, J.M.; Jowett, J.M.; Jung, H.; Karadeniz, H.; Kayran, D.; Kilic, A.; Kimura, K.; Klein, M.; Klein, U.; Kluge, T.; Kocak, F.; Korostelev, M.; Kosmicki, A.; Kostka, P.; Kowalski, H.; Kramer, G.; Kuchler, D.; Kuze, M.; Lappi, T.; Laycock, P.; Levichev, E.; Levonian, S.; Litvinenko, V.N.; Lombardi, A.; Maeda, J.; Marquet, C.; Mellado, B.; Mess, K.H.; Milanese, A.; Moch, S.; Morozov, I.I.; Muttoni, Y.; Myers, S.; Nandi, S.; Nergiz, Z.; Newman, P.R.; Omori, T.; Osborne, J.; Paoloni, E.; Papaphilippou, Y.; Pascaud, C.; Paukkunen, H.; Perez, E.; Pieloni, T.; Pilicer, E.; Pire, B.; Placakyte, R.; Polini, A.; Ptitsyn, V.; Pupkov, Y.; Radescu, V.; Raychaudhuri, S.; Rinol, L.; Rohini, R.; Rojo, J.; Russenschuck, S.; Sahin, M.; Salgado, C.A.; Sampei, K.; Sassot, R.; Sauvan, E.; Schneekloth, U.; Schorner-Sadenius, T.; Schulte, D.; Senol, A.; Seryi, A.; Sievers, P.; Skrinsky, A.N.; Smith, W.; Spiesberger, H.; Stasto, A.M.; Strikman, M.; Sullivan, M.; Sultansoy, S.; Sun, Y.P.; Surrow, B.; Szymanowski, L.; Taels, P.; Tapan, I.; Tasci, T.; Tassi, E.; Ten Kate, H.; Terron, J.; Thiesen, H.; Thompson, L.; Tokushuku, K.; Tomas Garcia, R.; Tommasini, D.; Trbojevic, D.; Tsoupas, N.; Tuckmantel, J.; Turkoz, S.; Trinh, T.N.; Tywoniuk, K.; Unel, G.; Urakawa, J.; VanMechelen, P.; Variola, A.; Veness, R.; Vivoli, A.; Vobly, P.; Wagner, J.; Wallny, R.; Wallon, S.; Watt, G.; Weiss, C.; Wiedemann, U.A.; Wienands, U.; Willeke, F.; Xiao, B.W.; Yakimenko, V.; Zarnecki, A.F.; Zhang, Z.; Zimmermann, F.; Zlebcik, R.; Zomer, F.

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  13. Corrector/quadrupole/sextupole power leads for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shutt, R.; Hornik, K.; Rehak, M.

    1993-01-01

    In RHIC (Relativistic Heavy Ion Collider), there are 492 CQS (Corrector/Quadrupole/Sextupole) assemblies which require leads to carry the current from the power supply to the magnet. The lead assemblies will contain these leads along with instrumentation voltage taps and current carrying wires that are used only for magnet warm-up. These lead assemblies are analyzed for two cooling schemes: (1) gas flow through the lead tube and (2) heat sinking the lead tube along a 40--70 K heat shield (without gas flow). The analysis was extended to include the modeling of the cold and warm ends and effects of superinsulation shielding the lead assembly against radiation (including heat conduction due to residual gas pressure in the surrounding vacuum). Extensive parametric studies of heat exchange areas, specific copper properties, length of the lead, etc. are also included in the analysis

  14. Prompt D*+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    de Rooij, R. S.

    2013-01-01

    In this thesis the results are presented of the first measurements of the D*+ meson nuclear modification factor RAA in heavy ion collisions at the Large Hadron Collider (LHC) using the ALICE (A Large Ion Collider Experiment) detector at CERN. These open charmed mesons are a useful tool to

  15. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2017-09-01

    Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  16. Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

    CERN Document Server

    Accardi, A.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.K.; Burton, T.; Chang, N.B.; Deng, W.T.; Deshpande, A.; Diehl, M.; Dumitru, A.; Dupré, R.; Ent, R.; Fazio, S.; Gao, H.; Guzey, V.; Hakobyan, H.; Hao, Y.; Hasch, D.; Holt, R.; Horn, T.; Huang, M.; Hutton, A.; Hyde, C.; Jalilian-Marian, J.; Klein, S.; Kopeliovich, B.; Kovchegov, Y.; Kumar, K.; Kumerički, K.; Lamont, M.A.C.; Lappi, T.; Lee, J.H.; Lee, Y.; Levin, E.M.; Lin, F.L.; Litvinenko, V.; Ludlam, T.W.; Marquet, C.; Meziani, Z.E.; McKeown, R.; Metz, A.; Milner, R.; Morozov, V.S.; Mueller, A.H.; Müller, B.; Müller, Dieter; Nadel-Turonski, P.; Paukkunen, H.; Prokudin, A.; Ptitsyn, V.; Qian, X.; Qiu, J.W.; Ramsey-Musolf, M.; Roser, T.; Sabatié, F.; Sassot, R.; Schnell, G.; Schweitzer, P.; Sichtermann, E.; Stratmann, M.; Strikman, M.; Sullivan, M.; Taneja, S.; Toll, T.; Trbojevic, D.; Ullrich, T.; Venugopalan, R.; Vigdor, S.; Vogelsang, W.; Weiss, C.; Xiao, B.W.; Yuan, F.; Zhang, Y.H.; Zheng, L.

    2016-01-01

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them, and it benefited from inputs from the users' communities of BNL and JLab. This White Paper offers the promise to prope...

  17. Optimization Of Chromaticity Compensation And Dynamic Aperture In MEIC Collider Rings

    International Nuclear Information System (INIS)

    Lin, Fanglei; Derbenev, Yaroslav; Morozov, Vasiliy; Zhang, Yuhong; Beard, Kevin

    2012-01-01

    The conceptual design of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab relies on an ultra-small beta-star to achieve high luminosities of up to 10 34 cm -2 s -1 . A low-beta insertion for interaction regions unavoidably induces large chromatic effects that demand a proper compensation. The present approach of chromatic compensation in the MEIC collider rings is based on a local correction scheme using two symmetric chromatic compensation blocks that includes families of sextupoles, and are placed in a beam extension area on both sides of a collision point. It can simultaneously compensate the first order chromaticity and chromatic beam smear at the IP without inducing significant second order aberrations. In this paper, we investigate both the momentum acceptance and dynamic aperture in the MEIC ion collider ring by considering the aberration effects up to the third order, such as amplitude dependent tune shift. We also explore the compensation of the third order effects by introducing families of octupoles in the extended beam area.

  18. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hannon, Fay E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second uses a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.

  19. Compaction of polydimethylsiloxane due to nitrogen ion irradiation and its application for creating microlens arrays

    Czech Academy of Sciences Publication Activity Database

    Nagy, G. U. L.; Lavrentiev, Vasyl; Banyasz, I.; Szilasi, S. Z.; Havránek, Vladimír; Voseček, Václav; Huszank, R.; Rajta, I.

    2017-01-01

    Roč. 636, AUG (2017), s. 634-638 ISSN 0040-6090 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : ion microbeam * microprobe * polydimethylsioloxane * microlens Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.879, year: 2016

  20. The stopping powers and energy straggling of heavy ions in polymer foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Hnatowicz, Vladimír; Slepička, P.

    2014-01-01

    Roč. 331, JUL (2014), s. 42-47 ISSN 0168-583X R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : energy loss * energy straggling * heavy ions * polymers * AFM method Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  1. First transmission of electrons and ions through the KATRIN beamline

    Czech Academy of Sciences Publication Activity Database

    Arenz, M.; Dragoun, Otokar; Kovalík, Alojz; Lebeda, Ondřej; Ryšavý, Miloš; Sentkerestiová, Jana; Suchopár, Martin; Vénos, Drahoslav

    2018-01-01

    Roč. 13, č. 4 (2018), č. článku P04020. ISSN 1748-0221 R&D Projects: GA MŠk LM2015056; GA MŠk LTT18021 Institutional support: RVO:61389005 Keywords : ion sources * electron beam * detector control systems * beam-line instrumentation * spectrometers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  2. Monocrystalline Diamond for Ions Detection at Low and High Fluxes

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, Mariapompea; Cannavo, A.

    2017-01-01

    Roč. 64, č. 8 (2017), s. 3384-3391 ISSN 0018-9383 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : diamond * energy resolution * ion detector * laser-generated plasma * time of flight Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 2.605, year: 2016

  3. Beam-energy dependence of charge balance functions from Au plus Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Tlustý, David; Trzeciak, B. A.; Vértési, Robert

    2016-01-01

    Roč. 94, č. 2 (2016), s. 024909 ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR experiment * BNL * LHC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.820, year: 2016

  4. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  5. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  6. Intercomparison of ion beam analysis software for the simulation of backscattering spectra from two-dimensional structures

    Czech Academy of Sciences Publication Activity Database

    Mayer, M.; Malinský, Petr; Schiettekatte, F.; Zolnai, Z.

    2016-01-01

    Roč. 385, OCT (2016), s. 65-73 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ion beam analysis * computer simulation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  7. The Laser Calibration System of the ALICE Time Projection Chamber

    CERN Document Server

    Renault, G; Nielsen, B S; Westergaard, J

    2005-01-01

    A Large Ion Collider Experiment (ALICE) is the only experiment at the Large Hadron Collider (LHC) dedicated to the study of heavy ion collisions. The Time Projection Chamber (TPC) is the main tracking detector covering the pseudo rapidity range $|\\eta|< 0.9$. It is designed for a maximum multiplicity \\dNdy = 8000. The aim of the laser system is to simulate ionizing tracks at predifined positions throughout the drift volume in order to monitor the TPC response to a known source. In particular, the alignment of the read-out chambers will be performed, and variations of the drift velocity due to drift field imperfections can be measured and used as calibration data in the physics data analysis. In this paper we present the design of the pulsed UV laser and optical system, together with the control and monitoring systems.

  8. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  9. Luminosity Tuning at the Large Hadron Collider

    CERN Document Server

    Wittmer, W

    2006-01-01

    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)i...

  10. Loans may keep CERN collider on target

    CERN Multimedia

    Abbott, A

    1996-01-01

    The European Laboratory for Particle Physics (CERN) is considering taking out bank loans to fund its Large Hadron Collider project. CERN officials are evaluating this option in view of the German government's decision to substantially reduce its annual contributions to the project. They state that the bank loans may be the only way to complete the project by the year 2005, especially if other contributing nations follow Germany's lead.

  11. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  12. Monitoring and calibration of the ALICE time projection chamber

    CERN Document Server

    Larsen, Dag Toppe

    The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A T eV for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy- ion collisions, and opens the door to a so far unexplored energy domain. A closer look at some of the physics topics of ALICE is given in Chapter 1. ALICE consists of several sub-detectors and other sub-systems. The various sub- detectors are designed for exploring different aspects of the particle production of an heavy-ion collision. Chapter 2 gives some insight into the design. The main tracking detector is the Time Projection Chamber (TPC). It has more than half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex Detector Control System (DCS) is needed for configuration, monitoring and control. The heart of it on the RP side is a small embedded ...

  13. Coherent diffractive photoproduction of rho(0) mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 96, č. 5 (2017), č. článku 054904. ISSN 2469-9985 R&D Projects: GA MŠk LM2015054; GA MŠk LG15001 Institutional support: RVO:61389005 Keywords : STAR collaboration * LHC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.820, year: 2016

  14. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  15. Heavy ion collisions at collider energies – Insights from PHENIX

    Indian Academy of Sciences (India)

    44KFKI Research Institute for Particle and Nuclear Physics (RMKI), Budapest, Hungary†. 1. Introduction. PHENIX is one of the five experiments at the recently commissioned RHIC collider at. Brookhaven National Laboratory. During the year 2000 first data with gold beams were taken at a center-of-mass energy of 130 GeV.

  16. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  17. Higgs measurement at $e^+e^-$ circular colliders

    CERN Document Server

    Ruan, Manqi

    2016-01-01

    Now that the mass of the Higgs boson is known, circular electron positron colliders, able to measure the properties of these particles with high accuracy, are receiving considerable attention. Design studies have been launched (i) at CERN with the Future Circular Colliders (FCC), of which an e+e- collider is a potential first step (FCC-ee, formerly caller TLEP) and (ii) in China with the Circular Electron Positron Collider (CEPC). Hosted in a tunnel of at least 50 km (CEPC) or 80-100 km (FCC), both projects can deliver very high luminosity from the Z peak to HZ threshold (CEPC) and even to the top pair threshold and above (FCC-ee). At the ZH production optimum, around 240 GeV, the FCC-ee (CEPC) will be able to deliver 10 (5) ab-1 integrated luminosity in 5 (10) years with 4 (2) interaction points: hence to produce millions of Higgs bosons through the Higgsstrahlung process and vector boson fusion processes. This sample opens the possibility of subper- cent precision absolute measurements of the Higgs boson co...

  18. Higgs Measurement at e+e- Circular Colliders

    CERN Document Server

    Ruan, M

    2014-01-01

    Now that the mass of the Higgs boson is known, circular electron positron colliders, able to measure the properties of these particles with high accuracy, are receiving considerable attention. Design studies have been launched (i) at CERN with the Future Circular Colliders (FCC), of which an e+e- collider is a potential first step (FCC-ee, formerly caller TLEP) and (ii) in China with the Circular Electron Positron Collider (CEPC). Hosted in a tunnel of at least 50 km (CEPC) or 80-100 km (FCC), both projects can deliver very high luminosity from the Z peak to HZ threshold (CEPC) and even to the top pair threshold and above (FCC-ee). At the ZH production optimum, around 240 GeV, the FCC-ee (CEPC) will be able to deliver 10 (5) ab-1 integrated luminosity in 5 (10) years with 4 (2) interaction points: hence to produce millions of Higgs bosons through the Higgsstrahlung process and vector boson fusion processes. This sample opens the possibility of subper-cent precision absolute measurements of the Higgs boson cou...

  19. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at

  20. Collider baseline parameters: Milestone M1.5

    CERN Document Server

    Schulte, Daniel

    2016-01-01

    The deliverable D1.1 provided a preliminary specification of the layout and target operation parameters for the FCC-hh hadron collider concept. It serves as the basis for the studies in all work packages. Tis milestone summarises the outcome of the first studies of this design. The goal of the FCC hadron collider is to provide proton-proton collisions at a centre-of-mass energy of 100 TeV. The machine is compatible with ion beam operation. Assuming a nominal dipole field of 16 T, such a machine is based on a perimeter of 100 km. The machine is designed to accommodate two main proton experiments that are operated simultaneously. The machine delivers a peak luminosity of 5-30 x 1034 cm-2s-1. The layout allows for two additional special-purpose experiments.

  1. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  2. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  3. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  4. Heavy-ion operation of HL-LHC

    CERN Document Server

    Jowett, J M; Versteegen, R

    2015-01-01

    The heavy-ion physics programme of the LHC will continue during the HL-LHC period with upgraded detectors capable of exploiting several times the design luminosity for nucleus–nucleus (Pb–Pb) collisions. For proton–nucleus (p–Pb) collisions, unforeseen in the original design of the LHC, a comparable increase beyond the 2013 luminosity should be attainable. We present performance projections and describe the operational strategies and relatively modest upgrades to the collider hardware that will be needed to achieve these very significant extensions to the physics potential of the High Luminosity LHC.

  5. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  6. The Tevatron Hadron Collider: A short history

    International Nuclear Information System (INIS)

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade

  7. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  8. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    International Nuclear Information System (INIS)

    Fischer, W.; Bazilevsky, A.

    2011-01-01

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. (bar P)), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g. ).

  9. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  10. Fragmentation of Ne ions with energy 400 MeV/u behind targets from different materials measured with PNTD

    Czech Academy of Sciences Publication Activity Database

    Mrázová, Zlata; Jadrníčková, Iva; Brabcová, Kateřina; Spurný, František

    2010-01-01

    Roč. 45, č. 10 (2010), s. 1438-1440 ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA205/09/0171; GA AV ČR KJB100480901 Institutional research plan: CEZ:AV0Z10480505 Keywords : plastic nuclear track detectors * LET spectrometry * heavy ions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010

  11. Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Pupíková, Hana; Malinský, Petr; Slepička, P.; Švorčík, V.

    2017-01-01

    Roč. 406, SEP (2017), s. 199-204 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Ni ion implantation * polyimide * polymer degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  12. Design considerations and expectations of a very large hadron collider

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1996-01-01

    The ELOISATRON Project is a proton-proton collider at very high energy and very large luminosity. The main goal is to determine the ultimate performance that is possible to achieve with reasonable extrapolation of the present accelerator technology. A complete study and design of the collider requires that several steps of investigations are undertaken. The authors count five of such steps as outlined in the report

  13. Annealing of PEEK, PET and PI implanted with Co ions at high fluencies

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Mikšová, Romana; Pupíková, Hana; Khaibullin, R. I.; Valeev, V. F.; Švorčík, V.; Slepička, P.

    2013-01-01

    Roč. 307, č. 7 (2013), s. 598-602 ISSN 0168-583X. [18th International Conference on Ion Beam Modifications of Materials (IBMM). Qingdao, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : Co-ions implantation * polymers * depth profiles * RBS * TEM * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.186, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168583X13000906

  14. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  15. Elliptic flow of Eta and ă.sup.o./sup. mesons in heavy-ion collisions at 2 A GeV

    Czech Academy of Sciences Publication Activity Database

    Taranenko, Arkadij; Kugler, Andrej

    2000-01-01

    Roč. 50, č. 54 (2000), s. 139-140 ISSN 0011-4626 R&D Projects: GA ČR GA202/00/1668 Keywords : relativistic heavy ion collisions * Eta and Pion mesons * elliptic flow Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.298, year: 2000

  16. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  17. Future Linear Colliders: Detector R&D, Jet Reconstruction and Top Physics Potential

    CERN Document Server

    AUTHOR|(CDS)2098729; Ros Martinez, Eduardo

    During the 20th century, discoveries and measurements at colliders, combined with progress in theoretical physics, allowed us to formulate the Standard Model of the in- teractions between the constituents of matter. Today, there are two advanced projects for a new installation that will collide electrons and positrons covering an energy range from several hundreds of GeV to the multi-TeV scale, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). These Future Linear Colliders give the opportunity to study the top quark with unprecedented precision. Measurements of top quark properties are of special interest, as the top quark is the heaviest ele- mentary particle of the SM. Precision measurements of top quark properties at e+e colliders promise therefore to be highly sensitive to physics beyond the SM. This thesis has three complementary parts. The first is dedicated to the R&D of the ILD detector concept for future e+e- colliders, more precisely, the innermost region of the de...

  18. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  19. Fundamentally new physics at the Tevatron Collider?

    International Nuclear Information System (INIS)

    Chan Hongmo; Nellen, L.; Tsou Sheungtsun

    1989-02-01

    A new dispersion relation analysis of present pp-bar scattering data suggests the existence by Tevatron Collider energies of a threshold, of such nature, as is unlikely to be explainable in terms of known physics or any of its standard projections. (author)

  20. Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider

    International Nuclear Information System (INIS)

    Anselmino, M.; Avakian, H.; Boer, D.; Bradamante, F.; Burkardt, M.; Chen, J.P.; Cisbani, E.; Contalbrigo, M.; Crabb, D.; Dutta, D.; Gamberg, L.; Gao, H.; Hasch, D.; Huang, J.; Huang, M.; Kang, Z.; Keppel, C.; Laskaris, G.; Liang, Z.-T.; Liu, M.X.; Makins, N.; Mckeown, R.D.; Metz, A.; Meziani, Z.-E.; Musch, B.; Peng, J.-C.; Prokudin, A.; Qian, X.; Qiang, Y.; Qiu, J.W.; Rossi, P.; Schweitzer, P.; Soffer, J.; Sulkosky, V.; Wang, Y.; Xiao, B.; Ye, Q.; Ye, Q.-J.; Yuan, F.; Zhan, X.; Zhang, Y.; Zheng, W.; Zhou, J.

    2011-01-01

    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D ((bar D)) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.

  1. CERN-BINP Workshop for Young Scientists in $e^{+}e^{-}$ Colliders

    CERN Document Server

    Linssen, Lucie; eCOL 2016

    2017-01-01

    The "CERN-BINP workshop for young scientists in e+e- colliders" is organised in the framework of the EU-funded CREMLIN project. The CREMLIN project aims at strengthening science cooperation between six Russian megascience facilities and related research infrastructure counterparts in Europe. BINP and CERN coordinate a dedicated CREMLIN work package focusing on a future super-charm-tau factory (SCT) at BINP. SCT aims at producing e+e- collisions with up to 5 GeV centre-of-mass energy and at very high luminosity. In parallel CERN is hosting design studies for two possible high-energy e+e- colliders: FCC-ee and CLIC. In matters of physics, design and technologies the BINP and CERN studies address technological and scientific questions of common interest. Similar issues are dealt with in the framework of other flavour factories and energy frontier e+e- colliders worldwide. The 3-day workshop provides young scientists (at the student and postdoc level) opportunities to present their work and exchange experiences. ...

  2. The design, construction and commissioning of the CERN Large Electron-Positron collider

    International Nuclear Information System (INIS)

    Myers, S.; Picasso, E.

    1990-01-01

    A description is given of the most important parameters considered in the design of the CERN Large Electron-Positron collider. It is shown how these parameters affect the collider performance and how they have been optimised with respect to the cost of the project. The functioning of each major subsystem is described with respect to its role as part of the collider. Finally, the planning, testing and initial commissioning of LEP is described and possible future developments are outlined. (author)

  3. Progress report on the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Kozanecki, W.

    1987-11-01

    In this paper we report on the status of the SLAC Linear Collider (SLC), the prototype of a new generation of colliding beam accelerators. This novel type of machine holds the potential of extending electron-positron colliding beam studies to center-of-mass (c.m.) energies far in excess of what is economically achievable with colliding beam storage rings. If the technical challenges posed by linear colliders are solvable at a reasonable cost, this new approach would provide an attractive alternative to electron-positron rings, where, because of rapidly rising synchrotron radiation losses, the cost and size of the ring increases with the square of the c.m. energy. In addition to its role as a test vehicle for the linear collider principle, the SLC aims at providing an abundant source of Z 0 decays to high energy physics experiments. Accordingly, two major detectors, the upgraded Mark II, now installed on the SLC beam line, and the state-of-the-art SLD, currently under construction, are preparing to probe the Standard Model at the Z 0 pole. The SLC project was originally funded in 1983. Since the completion of construction, we have been commissioning the machine to bring it up to a performance level adequate for starting the high energy physics program. In the remainder of this paper, we will discuss the status, problems and performance of the major subsystems of the SLC. We will conclude with a brief outline of the physics program, and of the planned enhancements to the capabilities of the machine. 26 refs., 7 figs

  4. Characterisation of PEEK, PET and PI implanted with 80 keV Fe+ ions to high fluencies

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Mikšová, Romana; Hnatowicz, Vladimír; Khaibullin, R. I.; Slepička, P.; Švorčík, V.

    2014-01-01

    Roč. 331, JUL (2014), s. 176-181 ISSN 0168-583X R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : Fe ion implantation * polymers * depth profiles * RBS * TEM * UV Vis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  5. Studies of field distortions in a time projection chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Zenker, Klaus

    2014-12-01

    The International Linear Collider (ILC) will allow to do precision measurements of Standard Model parameter and to search for new physics. The ILD detector concept, which is developed for the ILC, uses a Time Projection Chamber (TPC) as central tracking device. The momentum resolution goal for the ILD TPC is δ(1/p t ) ≅ 10 -4 (GeV/c) -1 at a magnetic field of B=3.5 T. Field distortions of the magnetic or electric field inside the sensitive volume of the TPC distort the momentum measurements. Therefore, one needs to keep them under control and correct them with high precision. In this thesis the main sources of field distortions in the TPC are identified and their effects are determined. Furthermore, possibilities to reduce the identified field distortions are presented. One known source of distortions of the electric field are ions, produced by the gas amplification in the TPC anode, that drift into the sensitive volume of the TPC. In the first part of this work the creation of these ions in Gas Electron Multiplier (GEM), which are used for the gas amplification, is studied. It will be shown that the resulting field distortions are not acceptable at the ILD TPC. By tuning the parameters of the gas amplification at the anode the field distortion can be reduced, which is shown in measurements and simulations. In addition measurements using a modified GEM show that it is possible to further reduce the field distortions with such a GEM. In the second part of this work field distortions arising at boundaries between individual readout modules are investigated using simulation studies. It will be shown in simulations, which are verified by measurement results, that these field distortions significantly influence the readout module performance. Based on the simulation results the GEM based readout module developed at DESY is optimised and the field distortions are reduced. These performance improvements could also be verified in measurements. Finally, a laser

  6. Physics at Future Colliders

    CERN Document Server

    Ellis, John R.

    1999-01-01

    After a brief review of the Big Issues in particle physics, we discuss the contributions to resolving that could be made by various planned and proposed future colliders. These include future runs of LEP and the Fermilab Tevatron collider, B factories, RHIC, the LHC, a linear electron-positron collider, an electron-proton collider in the LEP/LHC tunnel, a muon collider and a future larger hadron collider (FLHC). The Higgs boson and supersymmetry are used as benchmarks for assessing their capabilities. The LHC has great capacities for precision measurements as well as exploration, but also shortcomings where the complementary strengths of a linear electron-positron collider would be invaluable. It is not too soon to study seriously possible subsequent colliders.

  7. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  8. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  9. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  10. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  11. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  12. The structural and optical properties of metal ion-implanted GaN

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Veselý, M.; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 254-257 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : RBS channelling * metal-implanted GaN * structural changes Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  13. Overview of the next generation of Fermilab collider software

    International Nuclear Information System (INIS)

    Hendricks, B.; Joshel, R.

    1992-01-01

    Fermilab is entering an era of operating a more complex collider facility. In addition, new operator workstations are available that have increased capabilities. The task of providing updated software in this new environment precipitated a project called Colliding Beam Software (CBS). It was soon evident that a new approach was needed for developing console software. Hence CBS, although a common acronym, is too narrow a description. A new generation of the application program subroutine library has been created to enhance the existing programming environment with a set of value added tools. Several key Collider applications were written that exploit CBS tools. This paper will discuss the new tools and the underlying change in methodology in application program development for accelerator control at Fermilab. (author)

  14. Dosimetry measurements using Timepix in mixed radiation fields induced by heavy ions; comparison with standard dosimetry methods

    Czech Academy of Sciences Publication Activity Database

    Ploc, Ondřej; Kubančák, Ján; Sihver, L.; Uchihori, Y.; Jakoubek, J.; Ambrožová, Iva; Molokanov, A. G.; Pinsky, L.

    2014-01-01

    Roč. 55, S1 (2014), i141-i142 ISSN 0449-3060 R&D Projects: GA MŠk(CZ) LG13031; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : LET spectrometry * heavy ions * mixed radiation field * pixel detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.797, year: 2014

  15. Coupled chemical reactions in dynamic nanometric confinement: VII. Biosensors based on swift heavy ion tracks with membranes

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Munoz, G. H.; García Arellano, H.; Alfonta, L.; Vacík, Jiří; Kiv, A.; Hnatowicz, Vladimír

    2017-01-01

    Roč. 172, 1-2 (2017), s. 159-173 ISSN 1042-0150 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : biotechnology * tracks * swift heavy ions * polymers * etching Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 0.443, year: 2016

  16. System-size dependence of transverse momentum correlations at root s(NN)=62.4 and 200 GeV at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Arkhipkin, D.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Kapitán, Jan; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Tlustý, David

    2013-01-01

    Roč. 87, č. 6 (2013), 064902 ISSN 0556-2813 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR * fluctuations * correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.881, year: 2013 http://prc.aps.org/pdf/PRC/v87/i6/e064902

  17. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Mikšová, Romana; Pupíková, Hana; Khaibullin, R. I.; Slepička, P.; Gombitová, A.; Kováčik, L.; Švorčík, V.; Matoušek, J.

    2014-01-01

    Roč. 325, APR 15 (2014), s. 89-96 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019; GA ČR GA106/09/0125; GA ČR GBP302/12/G157 Institutional support: RVO:61389005 Keywords : Mn ion implantation * polymers * depth profiles * RBS * TEM * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  18. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is

  19. Electron Loss from 1.4 MeV/u U4,6,10+ Ions Colliding with Ne, N2, and Ar Targets

    CERN Document Server

    Dubois, R D; Stöhlker, T; Bosch, F; Bräuning-Demian, A; Banas, D; Gumberidze, A; Hagmann, S; Kozhuharov, C; Mann, R; Orsic-Muthig, A; Spillmann, U; Tachenov, S; Bart, W; Dahl, L; Franzke, B; Glatz, J; Gröning, L; Richter, S; Wilms, D; Ullmann, K; Jagutzki, O

    2004-01-01

    Absolute, total, single, and multiple electron loss cross sections are measured for 1.4 MeV/u U4,6,10+ ions colliding with neon and argon atoms and nitrogen molecules. It is found that the cross sections all have the same dependence on the number of electrons lost and that multiplying the cross sections by the initial number of electrons in the 6s, 6p, and 5f shells yields good agreement between the different projectiles. By combining the present data with previous measurements made at the same velocity, it is shown that the scaled cross sections slowly decrease in magnitude for incoming charge states between 1 and 10 whereas the cross sections for higher charge state ions fall off much more rapidly.

  20. Coupled chemical reactions in dynamic nanometric confinement: IV. Ion transmission spectrometric analysis of nanofluidic behavior and membrane formation during track etching in polymers

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Vacík, Jiří; Hnatowicz, Vladimír; Munoz, G. H.; Arellano, H. G.; Kiv, A.; Alfonta, L.

    2015-01-01

    Roč. 170, č. 3 (2015), s. 155-174 ISSN 1042-0150 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ions * etching * tracks Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.472, year: 2015

  1. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The int...

  2. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb$_{3}$Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The in...

  3. Tunnel probes for measurements of the electron and ion temperature in fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Schrittwieser, R.; Balan, P.; Ionita, C.; Stöckel, Jan; Adámek, Jiří; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Bařina, O.; Hrach, R.; Vicher, M.; Van Oost, G.; Van Rompuy, T.; Martines, E.

    2004-01-01

    Roč. 75, č. 10 (2004), s. 4328-4330 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/15th./. San Diego, 19.04.2004-22.04.2004] R&D Projects: GA ČR GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : Tokamak * electron temperature * ion temperature * plasma diagnostics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.226, year: 2004

  4. Structure and Plasmonic Properties of Thin PMMA Layers with Ion-Synthesized Ag Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Popok, V. N.; Hanif, M.; Macková, Anna; Mikšová, Romana

    2015-01-01

    Roč. 53, č. 9 (2015), s. 664-672 ISSN 0887-6266 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : atomic force microscopy (AFM) * carbonization of polymers * ion implantation * localized surface plasmon resonance * nanocomposites * nanoparticles * optics * sputtering of polymers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.318, year: 2015

  5. A study of the degradation of polymers irradiated by Cn+ and On+ 9.6 MeV heavy ions

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Slepička, P.; Švorčík, V.

    2015-01-01

    Roč. 122, DEC (2015), s. 110-121 ISSN 0141-3910 R&D Projects: GA MŠk LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : energy loss * heavy ions * polymers * RBS/ERDA methods * AFM method Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.120, year: 2015

  6. Physics with the collider detectors at RHIC and the LHC

    International Nuclear Information System (INIS)

    Thomas, J.; Hallman, T.

    1995-01-01

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on 'Physics with the Collider Detectors at RHIC and the LHC'. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report

  7. Physics with the collider detectors at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Hallman, T. [eds.

    1995-07-15

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on `Physics with the Collider Detectors at RHIC and the LHC`. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report.

  8. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  9. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  10. Compositional, structural and optical changes of polyimide irradiated by heavy ions

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Cutroneo, Mariapompea; Slepička, P.; Matoušek, J.

    2016-01-01

    Roč. 48, č. 7 (2016), s. 566-569 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : polyimide * polymer degradation * swift heavy-ion irradiation * surface morphology Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.132, year: 2016

  11. Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC

    Czech Academy of Sciences Publication Activity Database

    Braun, H.H.; Fasso, Alberto; Ferrari, A.; Jowett, J.M.; Sala, P.R.; Smirnov, G.I.

    2014-01-01

    Roč. 17, č. 2 (2014), "021006-1"-"021006-14" ISSN 1098-4402 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : ions * accelerators * beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.661, year: 2014

  12. Detectors and Physics at a Future Linear Collider

    CERN Document Server

    AUTHOR|(CDS)2090240

    An electron-positron linear collider is an option for future large particle accelerator projects. Such a collider would focus on precision tests of the Higgs boson properties. This thesis describes three studies related to the optimisation of highly granular calorimeters and one study on the sensitivity of Higgs couplings at CLIC. Photon reconstruction algorithms were developed for highly granular calorimeters of a future linear collider detector. A sophisticated pattern recognition algorithm was implemented, which uses the topological properties of electromagnetic showers to identify photon candidates and separate them from nearby particles. It performs clustering of the energy deposits in the detector, followed by topological characterisation of the clusters, with the results being considered by a multivariate likelihood analysis. This algorithm leads to a significant improvement in the reconstruction of both single photons and multiple photons in high energy jets compared to previous reconstruction softwar...

  13. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt

    Science.gov (United States)

    Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.

    2016-10-01

    We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.

  14. Brookhaven collider opens its quest for Big Bang conditions

    CERN Multimedia

    Nadis, S

    2000-01-01

    The collision of two gold nuclei releasing 10 x 10 to the power 12 electron volts of energy, marked the debut of the Relativistic Heavy Ion Collider. Over the next few weeks, scientists hope to increase the accelerator's power to generate collisions 40 x 10 to the power 12 eVs of energy to simulate the conditions that existed immediately after the Big Bang (1 page).

  15. Current status of International Linear Collider Project in Technical Design stage and activities of Japan Society of Civil Engineers

    International Nuclear Information System (INIS)

    2008-01-01

    In order to invite the International Linear Collider (ILC) in Japan, Japan Society of Civil Engineers (JSCE) established the Linear Collider Subcommittee of JSCE (LC subcommittee) in April, 2006. Abstracts of the activities and objects of LC subcommittee are stated. The LC subcommittee consists of five working groups. Each working group investigated the previous reports of 2006 and 2007 and reported some important notices. The working group on planning and project and management reported the site conditions of Japan, tunnels and facilities. The working group on geological survey, test and environmental design stated the earthquake, fault, ground water, water quality, long-term displacement and survey methods. The working group on structural and environmental design described the tunnel design in fault and fracture zone, hollow, beam tunnel and service tunnel. The working group on construction and maintenance reported some examples of troubles in granite zone, survey for steering, shaft and inclined shaft. The working group on information investigation of ILC described analysis of reference materials, construction of LHC, beam tunnel and some points under consideration. (S.Y.)

  16. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  17. A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Vařák, P.; Vytykačová, S.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Bottger, R.

    2017-01-01

    Roč. 406, SEP (2017), s. 193-198 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * ion implantation * copper Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  18. Physics Case for the International Linear Collider

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Grojean, Christophe; Univ. Autonoma de Barcelona, Bellaterra; Peskin, Michael E.

    2015-06-01

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  19. Physics Case for the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keisuke; /KEK, Tsukuba; Grojean, Christophe; /DESY /ICREA, Barcelona; Peskin, Michael E.; Barklow, Tim; /SLAC; Gao, Yuanning; /Tsinghua U., Beijing, CHEP; Kanemura, Shinya; /Toyama U.; Kim, Hyungdo; /Seoul Natl U.; List, Jenny; /DESY; Nojiri, Mihoko; /KEK, Tsukuba; Perelstein, Maxim; /Cornell U., LEPP; Poeschl, Roman; /LAL, Orsay; Reuter, Juergen; /DESY; Simon, Frank; /Munich, Max Planck Inst.; Tanabe, Tomohiko; /Tokyo U., ICEPP; Yu, Jaehoon; /Texas U., Arlington; Wells, James D.; /Michigan U., MCTP; Murayama, Hitoshi; /UC, Berkeley /LBNL /Tokyo U., IPMU; Yamamoto, Hitoshi; /Tohoku U.

    2015-06-23

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  20. The Quest for High Luminosity in Hadron Colliders (413th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Fischer, Wolfram

    2006-01-01

    In 1909, by bombarding a gold foil with alpha particles from a radioactive source, Ernest Rutherford and coworkers learned that the atom is made of a nucleus surrounded by an electron cloud. Ever since, scientists have been probing deeper and deeper into the structure of matter using the same technique. With increasingly powerful machines, they accelerate beams of particles to higher and higher energies, to penetrate more forcefully into the matter being investigated and reveal more about the contents and behavior of the unknown particle world. To achieve the highest collision energies, projectile particles must be as heavy as possible, and collide not with a fixed target but another beam traveling in the opposite direction. These experiments are done in machines called hadron colliders, which are some of the largest and most complex research tools in science. Five such machines have been built and operated, with Brookhaven's Relativistic Heavy Ion Collider (RHIC) currently the record holder for the total collision energy. One more such machine is under construction. Colliders have two vital performance parameters on which their success depends: one is their collision energy, and the other, the number of particle collisions they can produce, which is proportional to a quantity known as the luminosity. One of the tremendous achievements in the world's latest collider, RHIC, is the amazing luminosity that it produces in addition to its high energy. To learn about the performance evolution of these colliders and the way almost insurmountable difficulties can be overcome, especially in RHIC, join Wolfram Fischer, a physicist in the Collider-Accelerator (C-A) Department, who will give the next Brookhaven Lecture, on 'The Quest for High Luminosity in Hadron Colliders.'

  1. A circular e+e- collider to study H(125) ?

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The strategy for future collider projects will be influenced strongly by the discoveries of the LHC. The discovery by ATLAS and CMS of a 125 GeV/c2 boson naturally focuses attention on concepts for a Higgs factory to study in detail the properties of this remarkable particle. Such a machine should be able to go significantly beyond the capabilities of the LHC and its upgrades for Higgs studies, as well as offering other physics possibilities. Circular electron-positron colliders are among the options that merit further study, for a fully-informed decision to be taken at the appropriate time. Options for CERN include LEP3 – capable of collisions at energies up to ~ 240 GeV, that could be located in the LHC tunnel either after exploitation of the LHC or in parallel – and TLEP – a collider in a larger tunnel in the Geneva area that could reach energies above the top threshold. The physics potential of these circular colliders will be presented and compared to that of other options.

  2. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    CERN Document Server

    Mahner, E

    2008-01-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  3. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  4. Lead ions and Coulomb’s Law at the LHC (CERN)

    Science.gov (United States)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  5. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  6. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Kapitán, Jan; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Tlustý, David

    2013-01-01

    Roč. 110, č. 14 (2013), s. 142301 ISSN 0031-9007 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR * elliptic flow * heavy ion collisions * particles and antiparticles comparations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.728, year: 2013 http://prl. aps .org/pdf/PRL/v110/i14/e142301

  7. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  8. Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Kolitsch, A.; Machovič, V.; Stara, S.; Míka, M.; Špirková, J.

    2010-01-01

    Roč. 356, 44-49 (2010), s. 2468-2472 ISSN 0022-3093. [XII International Conference on the Physics of Non-Crystalline Solids. Foz do Iguaçu, PR, Brazil , 06.09.-09.09.2009] R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion implantation * Silicate glasses * Metal nanoparticles * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2010

  9. ALICE A Large Ion Collider Experiment

    CERN Multimedia

    Mager, M; Rohr, D M; Suljic, M; Miskowiec, D C; Donigus, B; Mercado-perez, J; Lohner, D; Bertelsen, H; Kox, S; Cheynis, B; Sambyal, S S; Usai, G; Agnello, M; Toscano, L; Miake, Y; Inaba, M; Maldonado cervantes, I A; Fernandez tellez, A; Kulibaba, V; Zinovjev, G; Martynov, Y; Usenko, E; Pshenichnov, I; Nikolaev, S; Vasiliev, A; Vinogradov, A; Moukhanova, T; Vasilyev, A; Kozlov, Y; Voloshin, K; Kiselev, S; Kirilko, Y; Lyublev, E; Kondratyeva, N; Gameiro munhoz, M; Alarcon do passo suaide, A; Lagana fernandes, C; Carlin filho, N; Yin, Z; Zhu, J; Luo, J; Pikna, M; Bombara, M; Pastircak, B; Marangio, G; Gianotti, P; Muccifora, V; Sputowska, I A; Ilkiv, I; Christiansen, P; Dodokhov, V; Yurevich, V; Fedunov, A; Malakhov, A; Efremov, A; Feofilov, G; Vinogradov, L; Asryan, A; Kovalenko, V; Piyarathna, D; Myers, C J; Martashvili, I; Oh, H; Cherney, M G; D'erasmo, G; Wagner, V; Smakal, R; Sartorelli, G; Xaplanteris karampatsos, L; Mlynarz, J; Murray, C J; Oh, S; Becker, B; Zbroszczyk, H P; Feldkamp, L; Pappalardo, G; Khlebnikov, A; Basmanov, V; Punin, V; Demanov, V; Naseer, M A; Gotovac, S; Zgura, S I; Yang, H; Vernet, R; Son, C; Shtejer diaz, K; Hwang, S; Alfaro molina, J R; Jahnke, C; Richter, M R; Garcia-solis, E J; Hitchcock, T M; Bazo alba, J L; Utrobicic, A; Brun, R; Divia, R; Hillemanns, H; Schukraft, J; Riedler, P; Eulisse, G; Von haller, B; Kushpil, V; Ivanov, M; Malzacher, P; Schweda, K O; Renfordt, R A E; Reygers, K J; Pachmayer, Y C; Gaardhoeje, J J; Bearden, I G; Porteboeuf, S J; Borel, H; Pereira da costa, H D A; Faivre, J; Germain, M; Schutz, Y R; Delagrange, H; Batigne, G; Stocco, D; Estienne, M D; Bergognon, A A E; Zoccarato, Y D; Jones, P G; Levai, P; Bencedi, G; Khan, M M; Mahapatra, D P; Ghosh, P; Das, T K; Cicalo, C; De falco, A; Mazzoni, A M; Cerello, P; De marco, N; Riccati, L; Saavedra san martin, O; Paic, G; Ovchynnyk, V; Karavicheva, T; Kucheryaeva, M; Skuratovskiy, O; Mal kevich, D; Bogdanov, A; Pereira, L G; Cai, X; Zhu, X; Wang, M; Kar, S; Fan, F; Sitar, B; Cerny, V; Aggarwal, M M; Bianchi, N; Torii, H; Hori, Y; Tsuji, T; Herrera corral, G A; Kowalski, M; Rybicki, A; Deloff, A; Petrovici, A; Nomokonov, P; Parfenov, A; Koshurnikov, E; Shahaliyev, E; Rogochaya, E; Kondratev, V; Oreshkina, N; Tarasov, A; Norenberg, M; Bodnya, E; Bogolyubskiy, M; Symons, T; Blanco, F; Madagodahettige don, D M; Umaka, E N; Schaefer, B; De pasquale, S; Fusco girard, M; Kim, J; Jeon, H; Nandi, B K; Kumar, J; Sarkar - sinha, T; Arcelli, S; Scapparone, E; Shevel, A; Nikulin, V; Komkov, B; Voloshin, S; Hille, P T; Kannan, S; Dainese, A; Matynia, R M; Dabala, L B; Zimmermann, M B; Vinogradov, Y; Vikhlyantsev, O; Telnov, A; Tumkin, A; Van leeuwen, M; Erdal, H A; Keidel, R; Rui, R; Yeo, I; Vilakazi, Z; Klay, J L; Boswell, B D; Lindenstruth, V; Tveter, T S; Batzing, P C; Breitner, T G; Sahoo, R; Roy, A; Musa, L; Perini, D; Vande vyvre, P; Fuchs, U; Oberegger, M; Aglieri rinella, G; Salgueiro domingues da silva, R M; Kalweit, A P; Greco, V; Bellini, F; Bond, P M; Mohammadi, N; Marin, A M; Glassel, P; Schicker, R M; Staley, F M; Castillo castellanos, J E; Furget, C; Real, J; Martino, J F; Evans, D; Sahu, P K; Sahu, S K; Ahammed, Z; Saini, J; Bala, R; Gupta, R; Di bari, D; Biasotto, M; Nappi, G; Esumi, S; Sano, M; Roehrich, D; Lonne, P; Drakin, Y; Manko, V; Nikulin, S; Yushmanov, I; Kozlov, K; Kerbikov, B; Stavinskiy, A; Sultanov, R; Raniwala, R; Zhou, D; Zhu, H; Meres, M; Kralik, I; Parmar, S; Rizzi, V; Orlandi, A; Lea, R; Kuijer, P G; Figiel, J; Gorlich, L M; Shabratova, G; Lobanov, V; Zaporozhets, S; Ivanov, A; Iglovikov, V; Ochirov, A; Petrov, V; Jacobs, P M; De gruttola, D; Corsi, F; Varma, R; Nania, R; Wilkinson, J J; Samsonov, V; Pruneau, C A; Caines, H L; Aronsson, T; Adare, A M; Zwick, S M; Fearick, R W; Ostrowski, P K; Kulasinski, K; Heine, N; Wilk, A; Ilkaev, R; Ilkaeva, L; Pavlov, V; Mikhaylyukov, K; Rybin, A; Naumov, N; Mudnic, E; Cortese, P; Listratenko, O; Stan, I; Nooren, G; Song, J; Krawutschke, T; Kim, S Y; Hwang, D S; Lee, S H; Leon monzon, I; Vorobyev, I; Skaali, B; Wikne, J; Dordic, O; Yan, Y; Mazumder, R; Shahoyan, R; Kluge, A; Pellegrino, F; Safarik, K; Tauro, A; Foka, P; Frankenfeld, U M; Masciocchi, S; Schwarz, K E; Bailhache, R M; Anguelov, V; Hansen, A; Vulpescu, B; Baldisseri, A; Aphecetche, L B; Berenyi, D; Sahoo, S; Nayak, T K; Muhuri, S; Patra, R N; Adhya, S P; Potukuchi, B; Masoni, A; Scomparin, E; Beole, S; Mizuno, S; Enyo, H; Cuautle flores, E; Gonzalez zamora, P; Djuvsland, O; Altinpinar, S; Wagner, B; Fehlker, D; Velure, A; Potin, S; Kurepin, A; Ryabinkin, E; Kiselev, I; Pestov, Y; Hayrapetyan, A; Manukyan, N; Lutz, J; Belikov, I; Roy, C S; Takahashi, J; Araujo silva figueredo, M; Tang, S; Szarka, I; Kapusta, S; Hasko, J; Putis, M; Sandor, L; Vrlakova, J; Das, S; Hayashi, S; Van rijn, A J; Siemiarczuk, T; Petrovici, M; Petris, M; Stenlund, E A; Malinina, L; Fateev, O; Kolozhvari, A; Altsybeev, I; Sadovskiy, S; Soloviev, A; Ploskon, M A; Mayes, B W; Sorensen, S P; Mazer, J A; Awes, T; Virgili, T; Pagano, P; Krus, M; Sett, P; Bhatt, H; Sinha, B; Khan, P; Antonioli, P; Scioli, G; Sakaguchi, H; Volkov, S; Khanzadeev, A; Malaev, M; Lisa, M A; Loggins, V R; Schuster, T R; Scharenberg, R P; Turrisi, R; Debski, P R; Oleniacz, J; Westerhoff, U; Yanovskiy, V; Domrachev, S; Smirnova, Y; Zimmermann, S; Veldhoen, M; Van der maarel, J; Kileng, B; Seo, J; Lopez torres, E; Camerini, P; Jang, H J; Buthelezi, E Z; Suleymanov, M K O; Belmont moreno, E; Zhao, C; Perales, M; Kobdaj, C; Spyropoulou-stassinaki, M; Roukoutakis, F; Keil, M; Morsch, A; Rademakers, A; Soos, C; Zampolli, C; Grigoras, C; Chibante barroso, V M; Schuchmann, S; Grigoras, A G; Lafuente mazuecos, A; Wegrzynek, A T; Bielcikova, J; Kushpil, S; Braun-munzinger, P; Andronic, A; Zimmermann, A; Rosnet, P; Ramillien barret, V; Lopez, X B; Arbor, N; Erazmus, B E; Pichot, P; Pillot, P; Grossiord, J; Boldizsar, L; Khan, S; Puddu, G; Marras, D; Siddhanta, S; Costanza, S; Botta, E; Gallio, M; Masera, M; Simonetti, L; Prino, F; Oppedisano, C; Vargas trevino, A D; Nystrand, J I; Ullaland, K; Haaland, O S; Huang, M; Naumov, S; Zinovjev, M; Trubnikov, V; Alkin, A; Ivanytskyi, O; Guber, F; Karavichev, O; Nyanin, A; Sibiryak, Y; Peresunko, D Y; Patarakin, O; Aleksandrov, D; Blau, D; Yasnopolskiy, S; Chumakov, M; Vetlitskiy, I; Nedosekin, A; Selivanov, A; Okorokov, V; Grigoryan, A; Papikyan, V; Kuhn, C C; Wan, R; Cajko, F; Siska, M; Mares, J; Zavada, P; Ceballos sanchez, C; Reolon, A R; Gunji, T; Snellings, R; Mayer, C; Klusek-gawenda, M J; Schiaua, C C; Andrei, C; Herghelegiu, A I; Soegaard, C; Panebrattsev, Y; Penev, V; Efimov, L; Zanevskiy, Y; Vechernin, V; Zarochentsev, A; Kolevatov, R; Agapov, A; Polishchuk, B; Nattrass, C; Anticic, T; Kwon, Y; Kim, M; Moon, T; Seger, J E; Petran, M; Sahoo, B; Das bose, L; Hushnud, H; Hatzifotiadou, D; Shigaki, K; Jha, D M; Murray, S; Badala, A; Putevskoy, S; Shapovalova, E; Haiduc, M; Mitu, C M; Mischke, A; Grelli, A; Hetland, K F; Rachevski, A; Menchaca-rocha, A A; De cuveland, J; Hutter, D; Langhammer, M; Dahms, T; Watkins, E P; Gago medina, A M; Planinic, M; Riegler, W; Telesca, A; Knichel, M L; Lazaridis, L; Ferencei, J; Martin, N A; Appelshaeuser, H; Heckel, S T; Windelband, B S; Nielsen, B S; Chojnacki, M; Baldit, A; Manso, F; Crochet, P; Espagnon, B; Uras, A; Lietava, R; Lemmon, R C; Agocs, A G; Viyogi, Y; Pal, S K; Singhal, V; Khan, S A; Alam, S N; Rodriguez cahuantzi, M; Maslov, M; Kurepin, A; Ippolitov, M; Lebedev, V; Tsvetkov, A; Klimov, A; Agafonov, G; Martemiyanov, A; Loginov, V; Kononov, S; Hnatic, M; Kalinak, P; Trzaska, W H; Raha, S; Canoa roman, V; Cruz albino, R; Botje, M; Gladysz-dziadus, E; Marszal, T; Oskarsson, A N E; Otterlund, I; Tydesjo, H; Ljunggren, H M; Vodopyanov, A; Akichine, P; Kuznetsov, A; Vedeneyev, V; Naumenko, P; Bilov, N; Rogalev, R; Evdokimov, S; Braidot, E; Bellwied, R; De caro, A; Kang, J H; Gorbunov, Y; Lee, J; Pachr, M; Dash, S; Roy, P K; Cifarelli, L; Laurenti, G; Margotti, A; Sugitate, T; Ivanov, V; Zhalov, M; Salzwedel, J S N; Pavlinov, A; Harris, J W; Caballero orduna, D; Fiore, E M; Pluta, J M; Kisiel, A R; Wrobel, D; Klein-boesing, C; Grimaldi, A; Zhitnik, A; Nazarenko, S; Zavyalov, N; Miroshnikov, D; Kuryakin, A; Vyushin, A; Mamonov, A; Vickovic, L; Niculescu, M; Fragiacomo, E; Ahn, S U; Ahn, S; Foertsch, S V; Brown, C R; Lovhoiden, G; Harton, A V; Khosonthongkee, K; Langoy, R; Schmidt, H R; Betev, L; Buncic, P; Di mauro, A; Martinengo, P; Gargiulo, C; Grosse-oetringhaus, J F; Costa, F; Baltasar dos santos pedrosa, F; Laudi, E; Adamova, D; Lippmann, C; Schmidt, C J; Book, J H; Grajcarek, R; Christensen, C H; Dupieux, P; Bastid, N; Rakotozafindrabe, A M; Conesa balbastre, G; Martinez-garcia, G; Suire, C P; Ducroux, L; Tieulent, R N; Jusko, A; Barnafoldi, G G; Pochybova, S; Hussain, T; Dubey, A K; Acharya, S; Gupta, A; Ricci, R A; Meddi, F; Vercellin, E; Chujo, T; Watanabe, K; Onishi, H; Akiba, Y; Vergara limon, S; Tejeda munoz, G; Skjerdal, K; Svistunov, S; Reshetin, A; Maevskaya, A; Antonenko, V; Mishustin, N; Meleshko, E; Korsheninnikov, A; Balygin, K; Zagreev, B; Akindinov, A; Mikhaylov, K; Gushchin, O; Grigoryev, V; Gulkanyan, H; Sanchez castro, X; Peretti pezzi, R; Oliveira da silva, A C; Harmanova, Z; Vokal, S; Beitlerova, A; Rak, J; Ghosh, S K; Bhati, A K; Spiriti, E; Ronchetti, F; Casanova diaz, A O; Kuzmin, N; Melkumov, G; Zinchenko, A; Shklovskaya, A; Bunzarov, Z I; Chernenko, S; Rogachevskiy, O; Toulina, T; Kompaniets, M; Titov, A; Kharlov, Y; Dantsevich, G; Stolpovskiy, M; Porter, R J; Datskova, O V; Kim, D S; Jung, W W; Kim, H; Bielcik, J; Pospisil, V; Cepila, J; Das, D; Williams, C; Pesci, A; Roshchin, E; Grounds, A; Humanic, T; Steinpreis, M D; Yaldo, C G; Smirnov, N; Heinz, M T; Connors, M E; Barile, F; Lunardon, M; Orzan, G; Wielanek, D H; Servais, E L J; Patecki, M; Passfeld, A; Zhelezov, S; Morkin, A; Zabelin, O; Hobbs, D A; Gul, M; Ramello, L; Van den brink, A; Bertens, R A; Lodato, D F; Haque, M R; Kim, E J; Coccetti, F; Margagliotti, G V; Rauf, A W; Sandoval, A; Berger, M E; Munzer, R H; Qvigstad, H; Lindal, S; Cervantes jr, M; Kebschull, U W; Engel, H; Karasu uysal, A; Lien, J A; Hess, B A; Calvo villar, E; Augustinus, A; Carena, W; Chochula, P; Chapeland, S; Dobrin, A F; Reidt, F; Bock, F; Festanti, A; Galdames perez, A; Sumbera, M; Averbeck, R P; Garabatos cuadrado, J; Reichelt, P S; Marquard, M; Stachel, J; Wang, Y; Boggild, H; Gulbrandsen, K H; Hansen, J C; Charvet, J F; Shabetai, A; Hadjidakis, C M; Krivda, M; Vertesi, R; Mitra, J; Altini, V; Ferretti, A; Gagliardi, M; Sakata, D; Niida, T; Martinez hernandez, M I; Yang, S; Karpechev, E; Veselovskiy, A; Konevskikh, A; Finogeev, D; Fokin, S; Karadzhev, K; Kucheryaev, Y; Plotnikov, V; Ryabinin, M; Golubev, A; Kaplin, V; Ter-minasyan, A; Abramyan, A; Raniwala, S; Hippolyte, B; Strmen, P; Krivan, F; Kalliokoski, T E A; Chang, B; De cataldo, G; Paticchio, V; Fantoni, A; Gomez jimenez, R; Christakoglou, P; Cyz, A; Wilk, G A; Kurashvili, P; Pop, A; Arefiev, V; Batyunya, B; Lioubochits, V; Zryuev, V; Sokolov, M; Patalakha, D; Pinsky, L; Timmins, A R; Petracek, V; Krelina, M; Chattopadhyay, S; Basile, M; Falchieri, D; Miftakhov, N; Garner, R M; Konyushikhin, M; Joseph, N; Srivastava, B K; Cleymans, J W A; Dietel, T; Soramel, F; Pawlak, T J; Kucinski, M; Janik, M A; Surma, K D; Wessels, J P; Riggi, F; Ivanov, A; Selin, I; Budnikov, D; Filchagin, S; Sitta, M; Gheata, M; Danu, A; Peitzmann, T; Reicher, M; Helstrup, H; Subasi, M; Mathis, A M; Nilsson, M S; Rist, J A S; Jena, C; Lara martinez, C E; Vasileiou, M

    2002-01-01

    %title\\\\ \\\\ALICE is a general-purpose heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 750~physicists and $\\sim$70 institutions in 27 countries.\\\\ \\\\The detector is designed to cope with the highest particle multiplicities anticipated for Pb-Pb reactions (dN/dy~$\\approx$~8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and p-nucleus), which provide reference data for the nucleus-nucleus collisions.\\\\ \\\\ALICE consists of a central part, which measures event-by-event hadrons, electrons and photons, and a forward spectrometer to measure muons. The central part, which covers polar angles from 45$^{0} $ to 135$^{0} $ ($\\mid \\eta \\mid $ < 0.9) over the full azimuth, is embedded in the large L3 solenoidal mag...

  10. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  11. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  12. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  13. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  14. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  15. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  16. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  17. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  18. Beam dynamics problems for next generation linear colliders

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1990-01-01

    The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)

  19. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Toyoda, Noriaki; Matsuo, Jiro

    2008-01-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  20. Beam-beam instability driven by wakefield effects in linear colliders

    CERN Document Server

    Brinkmann, R; Schulte, Daniel

    2002-01-01

    The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.

  1. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  2. KEK plans for a linear collider R ampersand D

    International Nuclear Information System (INIS)

    Horikoshi, G.; Kimura, Y.; Nishikawa, T.

    1989-01-01

    An overall R ampersand D activities of Japanese Linear Collider (JLC) is surveyed. The JLC is a conceptual plan of post TRISTAN projects in KEK. This is a large linear collider consisting of a pair of linear accelerators of 0.5 TeV each (for electron and positron), and a pair of damping rings. As a preliminary work, an R ampersand D group is promoting the Test Accelerator Facility (TAF) as a pilot plan. The TAF consists of a linear accelerator with an energy of 1.5 GeV and a damping ring, and will be used for the beam acceleration test with a high gradient of 100 MV/m. An R ampersand D on the high Tc superconducting thin film is also underway to investigate possible application to the RF accelerating structure for the superconducting linear collider. 11 refs., 7 figs., 1 tab

  3. 10th joint CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2015-01-01

    The CERN-Fermilab Hadron Collider Physics Summer Schools are targeted particularly at young postdocs and senior PhD students working towards the completion of ther thesis project, in both experimental High Energy Physics (HEP) and phenomenology.

  4. Collider detection of dark matter electromagnetic anapole moments

    Science.gov (United States)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  5. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  6. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  7. Lead Ions and Coulomb's Law at the LHC (CERN)

    Science.gov (United States)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  8. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  9. ColliderBit. A GAMBIT module for the calculation of high-energy collider observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Jackson, Paul; Murnane, Daniel; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders [NORDITA, Stockholm (Sweden); Putze, Antje [Universite de Savoie, LAPTh, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Sydney, NSW (Australia); Scott, Pat [Imperial College London, Blackett Laboratory, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Scanner Workgroup

    2017-11-15

    We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique toColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics. (orig.)

  10. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  11. Collider Physics

    OpenAIRE

    Zeppenfeld, D.

    1999-01-01

    These lectures are intended as a pedagogical introduction to physics at $e^+e^-$ and hadron colliders. A selection of processes is used to illustrate the strengths and capabilities of the different machines. The discussion includes $W$ pair production and chargino searches at $e^+e^-$ colliders, Drell-Yan events and the top quark search at the Tevatron, and Higgs searches at the LHC.

  12. 3D simulation of electron and ion transmission of GEM-based detectors

    Science.gov (United States)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  13. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    X. Shen

    2013-11-01

    Full Text Available Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC. At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  15. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  16. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  17. Status and plans of the Compact Linear Collider Study

    CERN Document Server

    Doebert, Steffen

    2016-01-01

    The Compact Linear Collider (CLIC) project is exploring the possibility of constructing a multiTeV linear electron-positron collider for high-energy frontier physics studies beyond the LHC era. The CLIC concept is based on high-gradient normal-conducting accelerating structures. The RF power for the acceleration of the colliding beams is produced by a two-beam acceleration scheme, where power is extracted from a high current drive beam that runs parallel with the main linac. The key ongoing studies involve accelerator parameter optimisation, technical studies and component development, alignment and stability, and include a number of system performance studies in test-facilities around the world. The CLIC physics potential and main detector issues, as well as possible implementation staging, are being studied in parallel. A summary of the progress and status of the corresponding studies will be given, as well as an outline of the preparation and work towards developing a CLIC implementation plan by 2018/19

  18. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  19. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  20. Luminosity geometric reduction factor from colliding bunches with different lengths

    Energy Technology Data Exchange (ETDEWEB)

    Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-29

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  1. Ion effects in future circular and linear accelerators

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1995-05-01

    In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes

  2. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  3. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  4. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1997-03-01

    During the period of the 50's and the 60's colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible

  5. The Large Hadron Collider: Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2000-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  6. The Large Hadron Collider Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2001-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  7. Progress report on the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Rees, J.

    1986-06-01

    The SLAC Linear Collider project (SLC) is reported as being near completion. The performance specifications are tabulated both for the initial form and for eventual goals. Various parts of the SLC are described and the status of their construction is reported, including the front end electron gun and booster, the linac, damping ring, positron source, SLC arcs, and conventional facilities. 5 refs., 12 figs

  8. R&D of a high-performance DIRC detector for a future electron-ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Staceu L. [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly at focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.

  9. R&D of a High-Performance DIRC Detector for a Future Electron-Ion Collider

    Science.gov (United States)

    Allison, Stacey Lee

    An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.

  10. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  11. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  12. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  13. Report of the Review Committee on the BNL colliding beam accelerator

    International Nuclear Information System (INIS)

    1983-01-01

    The Colliding Beam Accelerator (CBA) proposal by BNL for a pp collider of 400 GeV /times/ 400 GeV with a maximum luminosity /Brit pounds/ = 2 /times/ 10 33 was reviewed by a DOE team, including consultants, on April 11--15, 1983. No major flaws were found that would prevent, in principle, the proposed collider from reaching its design goals. BNL has made sufficient progress in their superconducting magnet RandD program that, although there is not yet a magnet of the CBA baseline design, the Committee believes the design can be achieved. However, to ensure prompt completion of the project, substantial RandD needs to be carried out in short order, particularly on the timely and cost-effective production of magnets, reliability of quench protection, and determination of cryogenic heat loads

  14. Experimental investigations of hydrogen cluster ions

    International Nuclear Information System (INIS)

    Lumig, H.A. van.

    1978-01-01

    Experiments to obtain information about the structure and stability of small hydrogen cluster ions have been performed. Attenuation and fragmentation measurements are presented of hydrogen cluster ions colliding with nitrogen, argon, hydrogen and helium over fixed energy ranges. The total collision and differential fragmentation cross sections are tabulated. (C.F.)

  15. The road towards the international linear collider: Higgs, top ...

    Indian Academy of Sciences (India)

    is the next major project in the field of high-energy physics [1]. This has ... It will therefore take data several years after the start of the large hadron collider (LHC). .... the automation of 2 → 3 processes at the one-loop level in the SM and the.

  16. Tribological properties of nc-TiC/a-C:H coatings prepared by magnetron sputtering at low and high ion bombardment of the growing film

    Czech Academy of Sciences Publication Activity Database

    Souček, P.; Schmidtová, T.; Bursíková, V.; Vašina, P.; Pei, Y.; De Hos, J. Th. M.; Caha, O.; Peřina, Vratislav; Mikšová, Romana; Malinský, Petr

    2014-01-01

    Roč. 241, FEB (2014), s. 64-73 ISSN 0257-8972 R&D Projects: GA MŠk(XE) LM2011019; GA ČR(CZ) GD104/09/H080 Institutional support: RVO:61389005 Keywords : nanocomposites * magnetron sputtering * Titanium carbide * ion flux * friction * wear Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.998, year: 2014

  17. The NA36 time projection chamber: An interim report on a TPC designed for a relativistic heavy ion experiment

    International Nuclear Information System (INIS)

    Diebold, G.E.

    1987-01-01

    Since its conception in the early 1970s, the Time Projection Chamber (TPC) has found application in several areas of particle physics ranging from e + e - collider experiments to rare decay studies of lepton nonconservation. A new and promising area of application for the TPC is the study of relativistic heavy ion collisions (RHIC). Presented here is an interim report on the first TPC for this field of physics, the NA36 TPC, being developed by Berkeley (LBL) for RHIC at the CERN SPS. Emphasis is placed on the operational and design considerations implemented to optimize the performance of the NA36 TPC in the study of central rapidity strange baryons produced in RHIC. The NA36 TPC volume is rectangular with an endcap area 0.5 m x 1.0 m and a maximum drift distance of 0.5 m. The drift volume is filled with Ar-CH 4 (9%) at one atmosphere. A total of 6400 channels of time digitizing electronics instrument 66% of the endcap in a wedge shaped area matched to fixed target kinematics. 6 refs., 5 figs

  18. Tevatron Collider physics

    International Nuclear Information System (INIS)

    Eichten, E.J.

    1990-02-01

    The physics of hadron colliders is briefly reviewed. Issues for further study are presented. Particular attention is given to the physics opportunities for a high luminosity (≥ 100 pb -1 /experiment/run) Upgrade of the Tevatron Collider. 25 refs., 10 figs., 2 tabs

  19. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  20. LHC Report: a record start for LHC ion operation

    CERN Multimedia

    Jan Uythoven for the LHC Team

    2011-01-01

    After the technical stop, the LHC switched over to ion operation, colliding lead-ions on lead-ions. The recovery from the technical stop was very smooth, and records for ion luminosity were set during the first days of ion operation.   The LHC technical stop ended on the evening of Friday, 11 November. The recovery from the technical stop was extremely smooth, and already that same evening ion beams were circulating in the LHC. ‘Stable beams’ were declared the same night, with 2 x 2 bunches of ions circulating in the LHC, allowing the experiments to have their first look at ion collisions this year. However, the next step-up in intensity – colliding 170 x 170 bunches – was postponed due to a vacuum problem in the PS accelerator, so the collisions on Sunday, 13 November were confined to 9 x 9 bunches. The vacuum problem was solved, and on the night of Monday, 14 November, trains of 24 lead bunches were injected into the LHC and 170 x 170 bunches were brough...

  1. Making quark matter at brook haven's new collider

    International Nuclear Information System (INIS)

    Jones, P.

    2002-01-01

    Quarks are believed to come in 6 flavours, only the lightest of which, the up and down quarks, are found in protons and neutrons. Isolated quarks have never been observed. As quarks are brought closer together, the force between them decreases dramatically, vanishing as the separation becomes very small. This suggests that quarks may become unbound if the density of quarks could be increased by squeezing a nucleus. The nucleus would have melted their constituent quarks, now free to roam the extended volume of the compressed nucleus. This situation would make a significant change in the structure of matter corresponding to a change of phase, rather like the transition from solid to liquid, but in this case from quark confined matter, to a quark gluon plasma (QGP). This new state of matter is thought to have been the natural phase of matter until 10 micro-seconds after the big-bang, and also to exist today in the core of neutron stars. Calculations show that the energy density needed to observe the phase transition is around 1 GeV/fm 3 , approximately 8 times that of normal nuclear matter. Attempts to recreate QGP have been underway at the relativistic heavy ion collider (RHIC) and at the CERN by colliding heavy-ion beams at the maximal energy possible. Between 4000 and 5000 charged particles are produced in the most violent events. The experimental challenge is to establish the existence of QGP from all this wealth of data. (A.C.)

  2. From the CERN web: Collide@CERN, Fermilab neutrinos and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Ruth Jarman and Joe Gerhardt. (Photo: Matthias H. Risse). Collide@CERN Ars Electronica Award goes to “Semiconductor” 10 August – Collide@CERN Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, are this year’s recipients of the Collide@CERN Ars Electronica Award. In the coming months, they will begin a two-month residency at CERN.  Continue to read…     Illustration: Fermilab/Sandbox Studio.   Fermilab experiment sees neutrinos change over 500 miles 7 August - Fermilab press release Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great p...

  3. Physics at the FCC-hh, a 100 TeV pp collider

    CERN Document Server

    2017-01-01

    A 100 TeV pp collider is under consideration, by the high-energy physics community, as an important step for the future development of our field, following the completion of the LHC and High-luminosity LHC physics programmes. In particular, CERN is considering 100 TeV pp collisions as the key target of a Future Circular Collider facility, built around a 100 km tunnel and designed to deliver pp, e+e- and ep collisions, in addition to a programme with heavy ion beams and with the injector complex. CERN is coordinating an international study tasked with the completion, by the end of 2018, of a Conceptual Design Report (CDR) for this facility. This document presents the first results of the assessment of the physics potential of the hadronic part of this research programme (FCC-hh).

  4. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  5. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  6. Long-range beam-beam experiments in the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Calaga, R; Fischer, W; Milas, N; Robert-Demolaize, G

    2014-01-01

    Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work

  7. Materials Modification Under Ion Irradiation: JANNUS Project

    International Nuclear Information System (INIS)

    Serruys, Y.; Trocellier, P.; Ruault, M.-O.; Henry, S.; Kaietasov, O.; Trouslard, Ph.

    2004-01-01

    JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM

  8. Measurement of the H3Λ lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Alford, J.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2018-05-01

    An improved measurement of the H3Λ lifetime is presented. In this paper, the mesonic decay modes H3Λ→3He + π- and H3Λ→d +p +π- are used to reconstruct the H3Λ from Au+Au collision data collected by the STAR collaboration at Relativistic Heavy Ion Collider (RHIC). A minimum χ2 estimation is used to determine the lifetime of τ = 142-21+24(stat .) ±29 (syst .) ps. This lifetime is about 50% shorter than the lifetime τ =263 ±2 ps of a free Λ , indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R . (3He+π-)/(B.R . (3He+π-)+B.R . (d +p +π-)) = 0.32 ±0.05 (stat .) ±0.08 (syst .) . Our ratio result favors the assignment J (H3Λ) =1/2 over J (H3Λ) =3/2 . These measurements will help to constrain models of hyperon-baryon interactions.

  9. Process of establishing JHP project

    International Nuclear Information System (INIS)

    Ishihara, Masayasu

    2013-01-01

    Institute for Nuclear Study, University of Tokyo was a Japanese central research institute as regards to nuclear physics, high energy physics, and cosmic ray physics. After the foundations of National Laboratory for High Energy Physics, KEK, and Institute for Cosmic Ray Research, University of Tokyo, in early 1970s, the nuclear physics community worked out so-called NUMATRON project, which involved building a large heavy-ion synchrotron. It was, however, not successful in competition with TRISTAN project which was proposed by KEK to build a 30 GeV electron-positron collider. Alternative project of the nuclear physics community was so-called JHP (Japanese Hadron Project), to build 1 GeV proton linac in KEK site in collaboration with KEK, which included that the Institute for Nuclear Study should be consolidated to KEK leaving from The University of Tokyo. The reorganized KEK proposed in collaboration with JAEA, Japan Atomic Energy Agency, to build a big proton accelerator facility in JAEA site. This plan was realized as J-PARC, Japanese Proton Accelerator Research Complex, operating 50 GeV proton synchrotron. (author)

  10. Design of the muon collider lattice: Present status

    International Nuclear Information System (INIS)

    Garren, A.; Courant, E.; Gallardo, J.

    1996-05-01

    The last component of a muon collider facility, as presently envisioned, is a colliding-beam storage ring. Design studies on various problems for this ring have been in progress over the past year. In this paper we discuss the current status of the design. The projected muon currents require very low beta values at the IP, β* = 3 mm, in order to achieve the design luminosity of L = 10 35 cm -2 s -1 . The beta values in the final-focus quadrupoles are roughly 400 km. To cancel the corresponding chromaticities, sextupole schemes for local correction have been included in the optics of the experimental insertion. The hour-glass effect constraints the bunch length to be comparable too. To obtain such short bunches with reasonable rf voltage requires a very small value of the momentum compaction a, which can be obtained by using flexible momentum compaction (FMC) modules in the arcs. A preliminary design of a complete collider ring has now been made; it uses an experimental insertion and arc modules as well as a utility insertion. The layout of this ring is shown schematically, and its parameters are summarized. Though some engineering features are unrealistic, and the beam performance needs some improvement, we believe that this study can serve as the basis for a workable collider design. The remaining sections of the paper will describe the lattice, show beam behaviour, and discuss future design studies

  11. A Large Hadron Electron Collider at CERN, Physics, Machine, Detector

    CERN Document Server

    Adolphson, C

    2011-01-01

    The physics programme and the design are described of a new electron-hadron collider, the LHeC, in which electrons of $60$ to possibly $140$\\,GeV collide with LHC protons of $7000$\\,GeV. With an $ep$ design luminosity of about $10^{33}$\\,cm$^{-2}$s$^{-1}$, the Large Hadron Electron Collider exceeds the integrated luminosity collected at HERA by two orders of magnitude and the kinematic range by a factor of twenty in the four-momentum squared, $Q^2$, and in the inverse Bjorken $x$. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering (DIS) measurements. These are projected to solve a variety of fundamental questions in strong and electroweak interactions. The LHeC thus becomes the world's cleanest high resolution microscope, designed to continue the path of deep inelastic lepton-hadron scattering into unknown areas of physics and kinematics. The physics ...

  12. CLIC: Physics potential of a high-energy e+e- collider

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  13. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  14. The CARE project (Coordinated Accelerator Research in Europe)

    International Nuclear Information System (INIS)

    Napoly, Olivier

    2006-01-01

    CARE, an ambitious and coordinated project of accelerator research and developments oriented towards High Energy Physics projects, has been launched in January 2004 by the main European laboratories and the European Commission with the 6th Framework Programme. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the plans of the four main Joint Research Activities and report on the results and progress obtained so far. The CARE project also includes three adjacent Networking Activities whose main goal is to organize a forum of discussions and to provide the strategic plans in the fields of the Linear Collider, intense Neutrino Beams, and future Hadron Colliders

  15. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  16. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  17. Simulation studies for a high resolution time projection chamber at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Muennich, A.

    2007-03-26

    The International Linear Collider (ILC) is planned to be the next large accelerator. The ILC will be able to perform high precision measurements only possible at the clean environment of electron positron collisions. In order to reach this high accuracy, the requirements for the detector performance are challenging. Several detector concepts are currently under study. The understanding of the detector and its performance will be crucial to extract the desired physics results from the data. To optimise the detector design, simulation studies are needed. Simulation packages like GEANT4 allow to model the detector geometry and simulate the energy deposit in the different materials. However, the detector response taking into account the transportation of the produced charge to the readout devices and the effects ofthe readout electronics cannot be described in detail. These processes in the detector will change the measured position of the energy deposit relative to the point of origin. The determination of this detector response is the task of detailed simulation studies, which have to be carried out for each subdetector. A high resolution Time Projection Chamber (TPC) with gas amplification based on micro pattern gas detectors, is one of the options for the main tracking system at the ILC. In the present thesis a detailed simulation tool to study the performance of a TPC was developed. Its goal is to find the optimal settings to reach an excellent momentum and spatial resolution. After an introduction to the present status of particle physics and the ILC project with special focus on the TPC as central tracker, the simulation framework is presented. The basic simulation methods and implemented processes are introduced. Within this stand-alone simulation framework each electron produced by primary ionisation is transferred through the gas volume and amplified using Gas Electron Multipliers (GEMs). The output format of the simulation is identical to the raw data from a

  18. Fluctuations of charge separation perpendicular to the event plane and local parity violation in root S-NN=200 GeV Au + Au collisions at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Vértési, Robert

    2013-01-01

    Roč. 88, č. 6 (2013), č. článku 064911. ISSN 2469-9985 R&D Projects: GA MŠk LA09013 Institutional support: RVO:61389005 Keywords : HOT QCD * CONSERVATION * COLLISIONS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.881, year: 2013

  19. A comparison of the structural changes and optical properties of LiNbO3, Al2O3 and ZnO after Er+ ion implantation

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Pupíková, Hana; Nekvindová, P.; Cajzl, J.; Švecová, B.; Oswald, Jiří; Wilhelm, R. A.; Kolitsch, A.

    2014-01-01

    Roč. 331, JUL (2014), s. 182-186 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : Er ion implantation * crystals * depth profiles * RBS * RBS channelling * photoluminescence Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  20. A large superconducting accelerator project. International linear collider (ILC). Introduction

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2013-01-01

    The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)

  1. Highly charged ions at rest: The HITRAP project at GSI

    International Nuclear Information System (INIS)

    Herfurth, F.; Beier, T.; Dahl, L.; Eliseev, S.; Heinz, S.; Kester, O.; Kluge, H.-J.; Kozhuharov, C.; Maero, G.; Quint, W.

    2005-01-01

    A decelerator will be installed at GSI in order to provide and study bare heavy nuclei or heavy nuclei with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of an IH and RFQ structure. Finally, they are injected into a Penning trap where the ions are cooled to 4 K. From here, the ions can be transferred in a quasi dc or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project as well as planned key experiments

  2. "Towards a Future Linear Collider" and "The Linear Collider Studies at CERN"

    CERN Document Server

    CERN. Geneva

    2010-01-01

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  3. GEM Detectors in the Experiments at e+e- Colliders in BINP

    CERN Document Server

    Maltsev, T V

    2017-01-01

    Micro-pattern gaseous detectors possess a high spatial resolution in tens micron scale together with high rate capability up to 107 cm-2s-1. In addition, they have all advantages of gaseous detectors, such as relatively low costs per unit area, the possibility to equip a large area as well as a high uniformity. Cascaded Gas Electron Multiplier (GEM) based detectors are used in the collider experiments at Budker Institute of Nuclear Physics (BINP), and they are being developed for a number of new projects. In this article the review of GEM based detectors for the tagging system of the KEDR experiment at the VEPP-4M collider and for the DEUTERON facility at the VEPP-3 storage ring is presented. The GEM detector application of the CMD-3 detector upgrade at the VEPP-2000 collider and the Super τ Factory detector are discussed.

  4. Micro vertex detector design for collider geometries

    International Nuclear Information System (INIS)

    Atkinson, M.; Crennell, D.; Fisher, C.M.; Hughes, P.; Kurtz, N.

    1984-05-01

    Previously the analysis of fixed target jet events using a scintillating optical fibre target to provide a projection of the topology on the plane transverse to the event axis has been considered. It was argued that this transverse plane projection is optimal for the detection of charm or beauty particle decay vertices. The idea is generalised to a jet analysis in a collider geometry particularly when associated with a high Psub(perpendicular to) or missing Esub(T) trigger. This report proposes a simple arrangement of fibres to give high precision track elements in the transverse plane projection coupled with a fast read-out capability. The principle physics aim of the design is to provide a tag for selecting top quark jets by detecting a beauty flavoured particle in the jet. (U.K.)

  5. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  6. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  7. Mega-science accelerator projects in China and their impact on economy

    International Nuclear Information System (INIS)

    Zhang Chuang

    2012-01-01

    Along with the rapid development of national economy in China, a number of mega-science projects have been or being constructed. In respect to the large accelerator-based projects, the Beijing Electron-Positron Colliders (BEPC) and its upgrading project BEPCⅡ, the Hefei Light Source (HLS), the Heavy Ion Research Facility in Lanzhou (HIRFL) and its Cooling Storage Rings (HIRFL-CSR) and the Shanghai Synchrotron Radiation Facility (SSRF) were successfully constructed and put into operation. The Beijing Radioactive Ion Facility (BRIF) and the China Spallation Neutron Source (CSNS) are under construction. A particle accelerator is an integration of many HI-tech components. In order to reach the scientific goal of an accelerator project, a great deal new technologies need to be developed during its construction and operation and thus speed up technology development and this will positively impact on the economy. In this paper, the mega-science accelerator projects are briefly described and applications of accelerators in the economy are reviewed. The paper emphasizes spin-off of the accelerator technology developed during R and D and construction of the projects. Approaches of collaboration between academia and industry are discussed. With some examples, the benefits experienced in the laboratory-industry collaboration and approach of its economic compact are illustrated. (author)

  8. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  9. The development of colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices

  10. Development and test of ion emitter modules for the projects ASPOC/CLUSTER (8th project year) and EQUATOR-S (4th project year). Final report

    International Nuclear Information System (INIS)

    Fehringer, H.M.; Ruedenauer, F.G.; Steiger, W.

    1997-02-01

    Not only was the failure of flight V001 of the newly developed ARIANE-V rocket a disaster for the European space industry and a drawback in the highly competitive launcher business, with the loss of its payload, ESA's 4 scientific CLUSTER satellites, also the work and expectations of hundreds of scientists and engineers were buried in the swamps of French Guyana. The Austrian experiment ASPOC, for which ion emitters have been developed under the contract reported here, was one of the 12 instruments onboard. In a meeting following the launch failure ESA's Science Policy Committee (SPC) decided to immediately rebuild one CLUSTER satellite and use the instrument spare models as the payload. This new mission was called PHOENIX. Furthermore, the SPC initiated studies to look for options of a CLUSTER reflight. The final decision about the future of the CLUSTER project is now due in February 1997. Since ASPOC has been lost, this report only very shortly deals with the work done up to the launch date. More important are two aspects: First, the ion emitters, the product which has been developed within this long term project, are of such high quality that they survived both the explosion of the rocket and the subsequent free fall from 3.6 km height. Ten ion emitters have been recovered from the debris and all of them were still working well. Second, new applications both in the scientific and in the commercial area have been found for the indium ion sources. Under an ESA contract their potential use as ion thrusters has recently successfully been studied. A further contract now has been placed for the development of a prototype ion thruster. Furthermore, the indium ion source has been selected as the primary ion emitter for the time of flight mass spectrometer COSIMA, a key instrument of the ROSETTA mission. Concerning EQUATOR-S, a new set of ion emitter modules has to be built, as those originally foreseen for EQUATOR-S are now being used for PHOENIX. The respective

  11. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  12. Probing two-photon decay widths of mesons at energies available at the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Bertulani, C. A.

    2009-01-01

    Meson production cross sections in ultraperipheral relativistic heavy ion collisions at the CERN Large Hadron Collider are revisited. The relevance of meson models and of exotic QCD states is discussed. This study includes states that have not been considered before in the literature.

  13. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  14. Dedicating Fermilab's Collider

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    It was a bold move to have a fullscale dedication ceremony for the new proton-antiproton Collider at the Fermilab Tevatron on 13 October, two days before the first collisions were seen. However the particles dutifully behaved as required, and over the following weekend the Collider delivered its goods at a total energy of 1600 GeV, significantly boosting the world record for laboratory collisions.

  15. Opportunities with top quarks at future circular colliders

    CERN Document Server

    Fuks, Benjamin

    2014-01-01

    We describe various studies relevant for top physics at future circular collider projects currently under discussion. We show how highly-massive top-antitop systems produced in proton-proton collisions at a center-of-mass energy of 100 TeV could be observed and employed for constraining top dipole moments, investigate the reach of future proton-proton and electron-positron machines to top flavor-changing neutral interactions, and discuss top parton densities.

  16. Towards the International Linear Collider

    International Nuclear Information System (INIS)

    Lopez-Fernandez, Ricardo

    2006-01-01

    The broad physics potential of e+e- linear colliders was recognized by the high energy physics community right after the end of LEP in 2000. In 2007, the Large Hadron Collider (LHC) now under construction at CERN will obtain its first collisions. The LHC, colliding protons with protons at 14 TeV, will discover a standard model Higgs boson over the full potential mass range, and should be sensitive to new physics into the several TeV range. The program for the Linear Collider (LC) will be set in the context of the discoveries made at the LHC. All the proposals for a Linear Collider will extend the discoveries and provide a wealth of measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. For the mexican groups is the right time to join such an effort

  17. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  18. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  19. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  20. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 1, Executive summary

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.; Saylor, W.W.

    1987-12-01

    The Heavy-Ion Fusion Systems Assessment (HIFSA) was conducted with the specific objective of evaluating the prospects of using induction-linac heavy-ion accelerators to generate economical electrical power from Inertial Confinement Fusion (ICF). Cost/performance models of the major fusion power plant systems were used to identify promising areas in parameter space. Resulting cost-of-electricity projections for a plant size of 1 GWe are comparable to those from other fusion system studies, some of which were for much larger power plants. These favorable projections maintain over an unusually large domain of parameter space but depend especially on making large cost savings for the accelerator by using higher charge-to-mass ratio ions than assumed previously. The feasibility of realizing such savings has been shown by (1) experiments demonstrating transport stability better than anticipated for space-charge-dominated beams, and (2) theoretical predictions that the final transport and pulse compression in reactor-chamber environments will be sufficiently resistant to streaming instabilities to allow successful propagation of neutralized beams to the target. Results of the HIFSA study already have had a significant impact on the heavy-ion induction accelerator R and D program, especially in selection of the charge-state objectives. Also, the study should enhance the credibility of induction linacs as ICF drivers

  1. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  2. Heavy Ion Physics at LHC

    CERN Document Server

    Valenti, G.

    2002-01-01

    The study of heavy ion interactions constitutes an important part of the experimental program outlined for the Large Hadron Collider under construction at CERN and expected to be operational by 2006. ALICE 1 is the single detector having the capabilities to explore at the same time most of the characteristics of high energy heavy ion interactions. Specific studies of jet quenching and quarkonia production, essentially related to µ detection are also planned by CMS 2 .

  3. The future e+e- colliders

    International Nuclear Information System (INIS)

    Voss, G.A.

    1990-01-01

    At present, the highest energy e + e - colliders are the SLC and LEP. In this paper their future improvement programs for increasing luminosity and/or energy, and the use of longitudinally polarized beams at the interaction point (IP) are discussed. An e + e - collider in the SSC tunnel does not seem to be an attractive option, on both technical and economical grounds, and with LEP, circular colliders have reached the sensible limit of size and cost. Linear colliders which have, in principle, no high energy limit, must overcome a new set of technical problems having to do with beam power limitations, emittance control, superstrong focusing at the IP, strong bunch-bunch interactions at the IP and related backgrounds

  4. Little band at big accelerators: Heavy ion physics from AGS to LHC

    International Nuclear Information System (INIS)

    Schukraft, J.

    2001-01-01

    The field of ultra-relativistic heavy ion physics, which started some 10 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, has entering today a new era with the recent (July 2000) start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider LHC. This overview, which is the combined write-up of talks given at this conference [1] and in [2], will sketch a rough picture of the heavy ion program at current and future machines and concentrate on a few important topics, in particular the question if current results show any of the signs predicted for the phase transition between normal hadronic matter and the Quark-Gluon Plasma

  5. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  6. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  7. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  8. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  9. Measurement of elliptic flow of light nuclei at root s(NN)=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2016-01-01

    Roč. 94, č. 3 (2016), s. 034908 ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR experiment * RHIC * azimuthal anisotropy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.820, year: 2016

  10. A study of the structural properties of GaN implanted by various rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Mikulics, M.; Wilhelm, R. A.

    2013-01-01

    Roč. 307, č. 7 (2013), s. 446-451 ISSN 0168-583X. [18th International Conference on Ion Beam Modifications of Materials (IBMM). Qingdao, 02.09.2012-07.09.2012] R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : rare earth implantation * GaN * depth profiles * RBS * Raman spectroscopy * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.186, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168583X13000955

  11. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  12. Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant

    International Nuclear Information System (INIS)

    CHARLES, NASH

    2004-01-01

    The River Protection Project - Hanford Tank Waste Treatment and Immobilization Plant will use cesium ion exchange to remove 137Cs from Low Activity Waste down to 0.3 Ci/m3 in the Immobilized LAW, ILAW product. The project baseline for cesium ion exchange is the elutable SuperLig, R, 644, SL-644, resin registered trademark of IBC Advanced Technologies, Inc., American Fork, UT or the Department of Energy approved equivalent. SL-644 is solely available through IBC Advanced Technologies. To provide an alternative to this sole-source resin supply, the RPP--WTP initiated a three-stage process for selection and qualification of an alternative ion exchange resin for cesium removal in the RPPWTP. It was recommended that resorcinol formaldehyde RF be pursued as a potential alternative to SL-644

  13. Department of Energy assessment of the Large Hadron Collider

    International Nuclear Information System (INIS)

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee's charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ''Yellow Book,'' cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members' considerable experience

  14. Collider Physics an Experimental Introduction

    International Nuclear Information System (INIS)

    Elvezio Pagliarone, Carmine

    2011-01-01

    This paper reviews shortly a small part of the contents of a set of lectures, presented at the XIV International School of Particles and Fields in Morelia, state of Michoacan, Mexico, during November 2010. The main goal of those lectures was to introduce students to some of the basic ideas and tools required for experimental and phenomenological analysis of collider data. In particular, after an introduction to the scientific motivations, that drives the construction of powerful accelerator complexes, and the need of reaching high center of mass energies and luminosities, some basic concept about collider particle detectors will be discussed. A status about the present running colliders and collider experiments as well as future plans and research and development is also given.

  15. Radiation protection at the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Potter, K.M.; Hoefert, M.; Stevenson, G.R.

    1996-01-01

    After a brief description of the Large Hadron Collider (LHC), which will produce 7 TeV on 7 TeV proton collisions, some of the radiological questions it raises will be discussed. The machine will be built in the 27 km circumference ring-tunnel of an existing collider at CERN. It aims to achieve collision rates of 10 9 per second in two of its high-energy particle detectors. This requires two high-intensity beams of more than 10 14 protons each. Shielding, access control and activation in addition to the high power in the proton-proton collisions must be taken into account. The detectors and local electronics of the particle physics experiments, which will surround these collisions, will have to be radiation resistant. Some of the environmental issues raised by the project will be discussed. (author)

  16. SLAC linear collider and a few ideas on future linear colliders

    International Nuclear Information System (INIS)

    Loew, G.A.

    1984-04-01

    This paper comes in two parts. The first part is a progress report on the SLAC Linear Collider (SLC) with emphasis on those systems which are of special interest to linear accelerator designers; it sets the stage for a number of contributed papers on specific topics which are also presented at this conference. The second part presents some ideas which are of interest to the design of future linear colliders of higher energies

  17. Application of quasi-optical approach to construct RF power supply for TeV linear colliders

    International Nuclear Information System (INIS)

    Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.

    1995-01-01

    An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))

  18. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    Engelen, J.

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly

  19. Broader Impacts of the International Linear Collider

    International Nuclear Information System (INIS)

    Bardeen, M.; Fermilab; Ruchti, R.; NSF, Wash., D.C.; Notre Dame U.

    2005-01-01

    Large-scale scientific endeavors such as the International Linear Collider Project can have a lasting impact on education and outreach to our society. The ILC will provide a discovery platform for frontier physical science and it will also provide a discovery platform for broader impacts and social science. The importance of Broader Impacts of Science in general and the ILC in particular are described. Additionally, a synopsis of education and outreach activities carried out as an integral part of the Snowmass ILC Workshop is provided

  20. sPHENIX: The next generation heavy ion detector at RHIC

    Science.gov (United States)

    Campbell, Sarah; sPHENIX Collaboration

    2017-04-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its coupling strength and temperature dependence, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This is possible with a full acceptance, |η| superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX is going to perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC’s. This overlap is going to facilitate a better understanding of the role of temperature, density and parton virtuality in QGP dynamics and, specifically, jet quenching. This paper focuses on key future measurements and the current state of the sPHENIX project.

  1. Track distortion in a micromegas based large prototype of a Time Projection Chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Bhattacharya, Deb Sankar; Majumdar, Nayana; Sarkar, S.; Bhattacharya, S.; Mukhopadhyay, Supratik; Bhattacharya, P.; Attie, D.; Colas, P.; Ganjour, S.; Bhattacharya, Aparajita

    2016-01-01

    The principal particle tracker at the International Linear Collider (ILC) is planned to be a large Time Projection Chamber (TPC) where different Micro Pattern Gaseous Detector (MPGDs) candidate as the gaseous amplifier. A Micromegas (MM) based TPC can meet the ILC requirement of continuous and precise pattern recognition. Seven MM modules, working as the end-plate of a Large Prototype TPC (LPTPC) installed at DESY, have been tested with a 5 GeV electron beam. Due to the grounded peripheral frame of the MM modules, at low drift, the electric field lines near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces ExB effect

  2. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  3. Future Circular Collider study week 2017

    CERN Document Server

    2017-01-01

    The annual meetings of the worldwide Future Circular Collider study (FCC) are major international events that review the progress in every domain which is relevant to develop feasible concepts for a next generation frontier particle accelerate based high-energy physics research infrastructure. This 3rd meeting is jointly organised by CERN and DESY. It is also the annual meeting of the EuroCirCol EC Horizon 2020 Research and Innovation Action project. Previous events took place in Washington and Rome. In 2017 the FCC Week will take place in Berlin, Germany between May 29 and June 2.

  4. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  5. NOVOSIBIRSK/STANFORD: colliding linac beams

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Plans to use colliding beams from linear accelerators are being considered at Novosibirsk and Stanford. The VLEPP scheme proposed for Novosibirsk and the Stanford single pass collider scheme are described. (W.D.L.).

  6. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  7. 4. topical workshop on proton-antiproton collider physics

    International Nuclear Information System (INIS)

    Haenni, H.; Schacher, J.

    1984-01-01

    The most exciting topic at this Workshop was clearly the experimental hint for new unexpected phenomena, reported by the UA1 and UA2 Collaborations: At the CERN SPS Collider (vs = 540 GeV), a few events were observed with high missing transverse energy in association with an isolated electromagnetic cluster or one or more hard jets (UA1) or an isolated electron and one or two hard jets (UA2). Due to the enhanced data sample, the discovery of the intermediate vector bosons W and Z in 1983 was undoubtedly confirmed, and the nice agreement of their properties with the predictions of the electroweak theory was shown. In addition, many new results on experimental and theoretical jet physics were presented. The Tevatron Collider project and its planned experiments at Fermilab were discussed, and there were contributions about the possible future developments in theory (compositeness, supersymmetry) as well as in experimental high energy physics (Supercollider, Juratron). See hints under the relevant topics. (orig./HSI)

  8. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  9. Challenges for MSSM Higgs searches at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela S.; /Fermilab; Menon, A.; /Argonne /Chicago U., EFI; Wagner, C.E.M.; /Argonne /Chicago U., EFI /KICP, Chicago /Chicago U.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising. On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.

  10. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  11. The RHIC polarized H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A., E-mail: zelenski@bnl.gov; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H{sup −} ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H{sup −} ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  12. The NICA Project at JINR Dubna

    Directory of Open Access Journals (Sweden)

    Kekelidze V.

    2014-04-01

    Full Text Available New scientific program is proposed at the Joint Institute for Nuclear Research (JINR in Dubna aimed at study of hot and dense baryonic matter in the wide energy range from 2 GeV/amu to √sNN = 11 GeV, and investigation of the nucleon spin structure with the maximum polarized protons and deuterons energy in the c.m. 27 GeV (for protons. To implement this program the development of JINR’s accelerator facility in high energy physics has started. This facility is based on the existing superconducting synchrotron - Nuclotron. The program foresees both experiments at beams extracted from the Nuclotron, and construction of an ion collider - the Nuclotron-based Ion Collider fAcility (NICA.

  13. TeV e+e- linear colliders

    International Nuclear Information System (INIS)

    Le Duff, J.

    1987-12-01

    The basic philosophy and performance and technical constraints of linear e + e - colliders at TeV energies are summarized. Collider luminosity, pinch effects due to beam interaction, beam-beam bremsstrahlung, and typical parameters for an e + e - linear collider are discussed. Accelerating structures, HF power sources, electron guns, positron production, and storage rings are considered [fr

  14. The SLAC linear collider

    International Nuclear Information System (INIS)

    Richter, B.

    1985-01-01

    A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built

  15. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  16. Jet Tomography in Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    2003-01-01

    We review recent calculations of the probability that a hard parton radiates an additional energy fraction due to scattering in spatially extended matter, and we discuss their application to the suppression of leading hadron spectra in heavy ion collisions at collider energies.

  17. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  18. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  19. Scattering of W and Z bosons at high-energy lepton colliders

    International Nuclear Information System (INIS)

    Fleper, Christian; Kilian, Wolfgang; Reuter, Juergen; Sekulla, Marco

    2016-07-01

    We present a new study of quasi-elastic W and Z scattering processes in high-energy e"+e"- collisions, based on and extrapolating the low-energy effective theory which extends the Standard Model with a 125 GeV Higgs boson. Besides parameterizing deviations in terms of the dimension-8 operators that arise in the effective theory, we also study simplified models of new physics in W/Z scattering in terms of scalar and tensor resonance multiplets. The high-energy asymptotics of all models is regulated by a universal unitarization procedure. This enables us to provide benchmark scenarios which can be meaningfully evaluated off-shell and in exclusive event samples, and to determine the sensitivity of an e"+e"- collider to the model parameters. We analyze the longitudinal vector boson scattering modes, where we optimize the cuts for the fiducial cross section for different collider scenarios. Here, we choose energy stages of 1.0, 1.4 and 3 TeV, as motivated by the extendability of the ILC project and the staging scenario of the CLIC project.

  20. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-10-20

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  1. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  2. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  3. Ion channeling study of lattice distortions in chromium-doped SrTiO3 crystals

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Trepakov, Vladimír; Jastrabík, Lubomír

    2013-01-01

    Roč. 55, č. 7 (2013), s. 1431-1437 ISSN 1063-7834 R&D Projects: GA ČR(CZ) GAP107/11/1856; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/1941 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion channeling * lattice distortions * SrTiO3 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 0.782, year: 2013 http://link.springer.com/article/10.1134%2FS1063783413070202

  4. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  5. Report From the International Linear Collider Technical Review Committee

    International Nuclear Information System (INIS)

    Loew, Gregory A.

    2003-01-01

    The International Linear Collider Technical Review Committee (ILC-TRC), formed in 1994, was reconvened in February 2001 by the International Committee for Future Accelerators (ICFA) to assess the current technical status of all electron-positron linear collider designs at hand in the world: TESLA, JLC-C, JLC-X/NLC and CLIC. The ILC-TRC worked for exactly two years and submitted its report to ICFA in February 2003. This paper presents the motivation behind the study, the charge to the committee and its organization, a table of machine parameters for 500 GeV c.m. energy and later upgrades to higher energies, the methodology used to assess the designs, and a ranked list of R and D tasks still deemed necessary between now and the time any one of the projects is selected by the HEP community and begins construction. Possible future developments are briefly discussed

  6. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  7. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  8. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    International Nuclear Information System (INIS)

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4π tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC

  9. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  10. High Momentum Resolution tracking In a Linear Collider

    CERN Document Server

    Ljunggren, M; Oskarsson, A

    2011-01-01

    The work in this thesis has been made within the LCTPC-collaboration, an international collaboration for studying the technical aspects af a possible tracking detector at a linear collider. The collaboration has built a prototype Time Projection Chamber (TPC) for testing the properties of dierent readout structures. A TPC is a tracking detector consisting of a gas lled drift volume placed in a solenoidal magnetic eld where the readout is made using a segmented plane of so called pads. When a char...

  11. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  12. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  13. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  14. R&D status of linear collider technology at KEK

    Science.gov (United States)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  15. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  16. Multibunch operation in the Tevatron Collider

    International Nuclear Information System (INIS)

    Holt, J.A.; Finley, D.A.; Bharadwaj, V.

    1993-05-01

    The Tevatron Collider at Fermilab is the world's highest energy hadron collider, colliding protons with antiprotons at a center of mass energy of 1800 GeV. At present six proton bunches collide with six antiproton bunches to generate luminosities of up to 9 x 10 30 cm -2 s -1 . It is estimated that to reach luminosities significantly greater than 10 31 cm -2 s -1 while minimizing the number of interactions per crossing, the number of bunches will have to be increased. Thirty-six bunch operation looks like the most promising plan. This paper looks at the strategies for increasing the number of particle bunches, the new hardware that needs to be designed and changes to the operating mode in filling the Tevatron. An interactive program which simulates the filling of the Tevatron collider is also presented. The time scale for multibunch operation and progress towards running greater than six bunches is given in this paper

  17. Progress on $e^{+}e^{-}$ linear colliders

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Siemann, Peter

    2002-01-01

    Physics issues. The physics program will be reviewed for e+e- linear colliders in the TeV energy range. At these prospective facilities central issues of particle physics can be addressed, the problem of mass, unification and structure of space-time. In this context the two lectures will focus on analyses of the Higgs mechanism, supersymmetry and extra space dimensions. Moreover, high-precision studies of the top-quark and the gauge boson sector will be discussed. Combined with LHC results, a comprehensive picture can be developed of physics at the electroweak scale and beyond. Designs and technologies (R. Siemann - 29, 30, 31 May) The physics and technologies of high energy linear colliders will be reviewed. Fundamental concepts of linear colliders will be introduced. They will be discussed in: the context of the Stanford Linear Collider where many ideas changed and new ones were developed in response to operational experience. the requirements for future linear colliders. The different approaches for reac...

  18. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  19. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    International Nuclear Information System (INIS)

    Terzic, Balsa; Zhang, Yuhong

    2010-01-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  20. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  1. Physics at Hadronic Colliders (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  2. Physics at Hadronic Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  3. Physics at Hadronic Colliders (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  4. Physics at Hadronic Colliders (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  5. Advanced Superconducting Technology for Global Science The Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organisation for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology - high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system - to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2.s-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling ...

  6. Adaptation of lessons learned from the Eurotunnel Project and CDM magnet production to super collider main ring installation

    International Nuclear Information System (INIS)

    Belding, J.; Di Domenico, P.; Gillin, J.; Hahn, W.; Naventi, R.; Nielsen, M.; Seely, M.; Hopkins, J.; Patterson, L.R.

    1994-01-01

    This paper will present preliminary findings from the Phase I Collider Installation contract studies performed by the Bechtel/General Dynamics/Belding Team related to the installation of technical systems for the SSC main ring north and south arcs. Specific focus is given to the adaptation of lessons learned during construction of the Eurotunnel, including equipment and personnel logistics and transportation. The incorporation of Collider Dipole Magnet manufacturing techniques and process methodologies as related to the handling and interconnection of main ring components is also discussed

  7. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  8. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1993-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL's Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development

  9. Controllable fabrication of amorphous Si layer by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vorlíček, Vladimír; Dejneka, Alexandr; Chvostová, Dagmar; Jäger, Aleš; Vacík, Jiří; Jastrabík, Lubomír; Naramoto, H.; Narumi, K.

    2013-01-01

    Roč. 98, SI (2013), s. 49-55 ISSN 0042-207X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : energetic cluster s * silicon * surface modification * amorphization * nanostructure * Raman scattering * ion channeling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.426, year: 2013 http://ac.els-cdn.com/S0042207X13001759/1-s2.0-S0042207X13001759-main.pdf?_tid=04e9c946-21dd-11e3-b076-00000aacb361&acdnat=1379672070_859355b2850a09ac74bc8ff413e35dda

  10. DEPFET active pixel detectors for a future linear $e^+e^-$ collider

    CERN Document Server

    Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

    2013-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  11. Dark matter and colliders searches in the MSSM

    International Nuclear Information System (INIS)

    Mambrini, Y.; Nezri, E.

    2005-07-01

    We study the complementarity between dark matter searches (direct detection, neutrino, gamma and positrons indirect detection) and accelerators facilities (the CERN LHC, and a √(s) = 1 TeV e + e - linear collider) in the framework of the minimal supersymmetric standard model (MSSM). We show how non-universality in the scalar and gaugino sector can affect the experimental prospectives. The future experiments will cover a large part of the parameter space of the low energy MSSM respecting WMAP constraints on the dark matter density of neutralino, but there still exist some regions beyond reach of detection for some extreme (fine tuned) values of the parameters. Whereas the focus point (FP) region characterized by heavy scalars will be more easily probed by dark matter searches projects due to the nature of the neutralino, the region with heavy gaugino and light sfermions will be more accessible by collider experiments. Deeper informations on both supersymmetry and astrophysics hypothesis can thus be obtained by correlation of the different signals or absence of signal. (orig.)

  12. International Workshop on Linear Colliders 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  13. Estimates of Fermilab Tevatron collider performance

    International Nuclear Information System (INIS)

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex

  14. Strings and superstrings. Electron linear colliders

    International Nuclear Information System (INIS)

    Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.

    1989-01-01

    Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr

  15. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  16. Prospects for next-generation e+e- linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: ''Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 --10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs

  17. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  18. Infrastructure for Detector Research and Development towards the International Collider

    CERN Document Server

    Aguilar, J.; Fiutowski, T.; Idzik, M.; Kulis, Sz.; Przyborowski, D.; Swientek, K.; Bamberger, A.; Kohli, M.; Lupberger, M.; Renz, U.; Schumacher, M.; Zwerger, Andreas; Calderone, A.; Cussans, D.G.; Heath, H.F.; Mandry, S.; Page, R.F.; Velthuis, J.J.; Attie, D.; Calvet, D.; Colas, P.; Coppolani, X.; Degerli, Y.; Delagnes, E.; Gelin, M.; Giomataris, I.; Lutz, P.; Orsini, F.; Rialot, M.; Senee, F.; Wang, W.; Alozy, J.; Apostolakis, J.; Aspell, P.; Bergsma, F.; Campbell, M.; Formenti, F.; Santos, H.Franca; Garcia, E.Garcia; de Gaspari, M.; Giudice, P.A.; Grefe, Ch.; Grichine, V.; Hauschild, M.; Ivantchenko, V.; Kehrli, A.; Kloukinas, K.; Linssen, L.; Cudie, X.Llopart; Marchioro, A.; Musa, L.; Ribon, A.; Trampitsch, G.; Uzhinskiy, V.; Anduze, M.; Beyer, E.; Bonnemaison, A.; Boudry, V.; Brient, J.C.; Cauchois, A.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Jauffret, C.; Jeans, D.; Karar, A.; Mathieu, A.; de Freitas, P.Mora; Musat, G.; Rouge, A.; Ruan, M.; Vanel, J.C.; Videau, H.; Besson, A.; de Masi, G.Claus.R.; Doziere, G.; Dulinski, W.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Morel, F.; Valin, I.; Winter, M.; Bonis, J.; Callier, S.; Cornebise, P.; Dulucq, F.; Giannelli, M.Faucci; Fleury, J.; Guilhem, G.; Martin-Chassard, G.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Benyamna, M.; Bonnard, J.; Carloganu, C.; Fehr, F.; Gay, P.; Mannen, S.; Royer, L.; Charpy, A.; Da Silva, W.; David, J.; Dhellot, M.; Imbault, D.; Ghislain, P.; Kapusta, F.; Pham, T.Hung; Savoy-Navarro, A.; Sefri, R.; Dzahini, D.; Giraud, J.; Grondin, D.; Hostachy, J.Y.; Morin, L.; Bassignana, D.; Pellegrini, G.; Lozano, M.; Quirion, D.; Fernandez, M.; Jaramillo, R.; Munoz, F.J.; Vila, I.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Aplin, S.; Bachynska, O.; Behnke, T.; Behr, J.; Dehmelt, K.; Engels, J.; Gadow, K.; Gaede, F.; Garutti, E.; Gottlicher, P.; Gregor, I.M.; Haas, T.; Henschel, H.; Koetz, U.; Lange, W.; Libov, V.; Lohmann, W.; Lutz, B.; Mnich, J.; Muhl, C.; Ohlerich, M.; Potylitsina-Kube, N.; Prahl, V.; Reinecke, M.; Roloff, P.; Rosemann, Ch.; Rubinski, Igor; Schade, P.; Schuwalov, S.; Sefkow, F.; Terwort, M.; Volkenborn, R.; Kalliopuska, J.; Mehtaelae, P.; Orava, R.; van Remortel, N.; Cvach, J.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Haensel, S.; Irmler, C.; Kiesenhofer, W.; Krammer, M.; Valentan, M.; Piemontese, L.; Cotta-Ramusino, A.; Bulgheroni, A.; Jastrzab, M.; Caccia, M.; Re, V.; Ratti, L.; Traversi, G.; Dewulf, J.P.; Janssen, X.; De Lentdecker, G.; Yang, Y.; Bryngemark, L.; Christiansen, P.; Gross, P.; Jonsson, L.; Ljunggren, M.; Lundberg, B.; Mjornmark, U.; Oskarsson, A.; Richert, T.; Stenlund, E.; Osterman, L.; Rummel, S.; Richter, R.; Andricek, L.; Ninkovich, J.; Koffmane, Ch.; Moser, H.G.; Boisvert, V.; Green, B.; Green, M.G.; Misiejuk, A.; Wu, T.; Bilevych, Y.; Carballo, V.M.Blanco; Chefdeville, M.; de Nooij, L.; Fransen, M.; Hartjes, F.; van der Graaf, H.; Timmermans, J.; Abramowicz, H.; Ben-Hamu, Y.; Jikhleb, I.; Kananov, S.; Levy, A.; Levy, I.; Sadeh, I.; Schwartz, R.; Stern, A.; Goodrick, M.J.; Hommels, L.B.A.; Ward, R.Shaw.D.R.; Daniluk, W.; Kielar, E.; Kotula, J.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.; Bailey, D.S.; Kelly, M.; Eigen, G.; Brezina, Ch.; Desch, K.; Furletova, J.; Kaminski, J.; Killenberg, M.; Kockner, F.; Krautscheid, T.; Kruger, H.; Reuen, L.; Wienemann, P.; Zimmermann, R.; Zimmermann, S.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Corrin, E.; Haas, D.; Pohl, M.; Diener, R.; Fischer, P.; Peric, I.; Kaukher, A.; Schafer, O.; Schroder, H.; Wurth, R.; Zarnecki, A.F.

    2012-01-01

    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.

  19. CLIC e+e- Linear Collider Studies

    CERN Document Server

    Dannheim, Dominik; Linssen, Lucie; Schulte, Daniel; Simon, Frank; Stapnes, Steinar; Toge, Nobukazu; Weerts, Harry; Wells, James

    2012-01-01

    This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a \\sim125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up t...

  20. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings