WorldWideScience

Sample records for iodine sulfur process

  1. Experiments of HI decomposition in Iodine-sulfur process

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2006-02-01

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H 2 O) at atmospheric pressure. Almost pure H 2 O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H 2 O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg

  2. Experiments of HI decomposition in Iodine-sulfur process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2006-02-15

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H{sub 2}O) at atmospheric pressure. Almost pure H{sub 2}O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H{sub 2}O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg.

  3. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  4. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  5. Analysis and optimal process development of the iodine-Sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Lee, Byung Jin

    2009-02-01

    Hydrogen is expected to be a main energy vector for the future society. Among many thermo-chemical water splitting technologies for mass production of hydrogen, Iodine-Sulfur (I-S) cycle is considered to be the most promising one. Originated in the 1980s by General Atomics in the United States, the I-S cycle utilizes high temperature heat from energy sources such as nuclear reactors. Despite its high viability relative to many other options, lots of technical challenges need to be resolved until it can practically contribute to the mass production of hydrogen. In the present work, based on the experimental data available from previous works and discussions collected through the literature survey, the optimal operating conditions were proposed for the Bunsen reaction, considering the key concerns of the I-S cycle: i.e., the liquid-liquid (L-L) phase separation performance, the water distributions between the sulfuric acid and poly-hydroiodic acid (HI x ) phases, the side reactions, and the operating cost due to the excess iodine and water. All the available experimental data were combined together, and a series of parametric studies were done to find out any trends among parameters. The optimal operating point is determined as 4 mol of excess iodine and 11 mol of excess water in the stoichiometry at temperature of 330K, while the allowable window ranges between 4∼6 mol for excess iodine, 11∼13 moles for excess water, and 330∼350K for temperature. As for the distribution of excess water after the Bunsen reaction and L-L phase separation, 5 mol moves to the sulfuric acid phase and 6∼8 mol to the HI x phase. By controlling the operation within this window, it should be possible to avoid the side reaction and iodine solidification, to increase the HI concentration well above the azeotrope in the HI x section, and to minimize the operating cost caused by the excess iodine and water. With the optimized Bunsen reaction process to yield an over-azeotropic HI liquid

  6. Global warming potential of the sulfur-iodine process using life cycle assessment methodology

    International Nuclear Information System (INIS)

    Lattin, William C.; Utgikar, Vivek P.

    2009-01-01

    A life cycle assessment (LCA) of one proposed method of hydrogen production - thermochemical water-splitting using the sulfur-iodine cycle couple with a very high-temperature nuclear reactor - is presented in this paper. Thermochemical water-splitting theoretically offers a higher overall efficiency than high-temperature electrolysis of water because heat from the nuclear reactor is provided directly to the hydrogen generation process, instead of using the intermediate step of generating electricity. The primary heat source for the S-I cycle is an advanced nuclear reactor operating at temperatures corresponding to those required by the sulfur-iodine process. This LCA examines the environmental impact of the combined advanced nuclear and hydrogen generation plants and focuses on quantifying the emissions of carbon dioxide per kilogram of hydrogen produced. The results are presented in terms of global warming potential (GWP). The GWP of the system is 2500 g carbon dioxide-equivalent (CO 2 -eq) per kilogram of hydrogen produced. The GWP of this process is approximately one-sixth of that for hydrogen production by steam reforming of natural gas, and is comparable to producing hydrogen from wind- or hydro-electric conventional electrolysis. (author)

  7. Hydrogen iodide processing section in a thermochemical water-splitting iodine-sulfur process using a multistage hydrogen iodide decomposer

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sakaba, Nariaki; Imai, Yoshiyuki; Kubo, Shinji; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Kato, Ryoma

    2009-01-01

    A multistage hydrogen iodide (HI) decomposer (repetition of HI decomposition reaction and removal of product iodine by a HIx solution) in a thermochemical water-splitting iodine-sulfur process for hydrogen production using high-temperature heat from the high-temperature gas-cooled reactor was numerically evaluated, especially in terms of the flow rate of undecomposed HI and product iodine at the outlet of the decomposer, in order to reduce the total heat transfer area of heat exchangers for the recycle of undecomposed HI and to eliminate components for the separation. A suitable configuration of the multistage HI decomposer was countercurrent rather than concurrent, and the HIx solution from an electro-electro dialysis at a low temperature was a favorable feed condition for the multistage HI decomposer. The flow rate of undecomposed HI and product iodine at the outlet of the multistage HI decomposer was significantly lower than that of the conventional HI decomposer, because the conversion was increased, and HI and iodine were removed by the HIx solution. Based on this result, an alternative HI processing section using the multistage HI decomposer and eliminating some recuperators, coolers, and components for the separation was proposed and evaluated. The total heat transfer area of heat exchangers in the proposed HI processing section could be reduced to less than about 1/2 that in the conventional HI processing section. (author)

  8. A pilot test plan of the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro

    2004-01-01

    Research and development (R and D) of hydrogen production systems using high-temperature gas-cooled reactors (HTGR) are being conducted by the Japan Atomic Research Institute (JAERI). To develop the systems, superior hydrogen production methods are essential. The thermochemical hydrogen production cycle, the IS (iodine-sulfur) process, is a prospective candidate, in which heat supplied by HTGR can be consumed for the thermal driving load. With this attractive feature, JAERI will conduct pilot-scale tests, aiming to establish technical bases for practical plant designs using HTGR. The hydrogen will be produced at a maximum rate of 30 m 3 /h, continuously using high-temperature helium gas supplied by a helium gas loop, with an electric heater of about 400 kW. The plant will employ an advanced hydroiodic acid-processing device for efficient hydrogen production, and the usefulness of the device was confirmed from mass and heat balance analysis. Through design works and the hydrogen production tests, valuable data for construction and operation will be acquired to evaluate detailed process performance for practical systems. After completing the pilot-scale tests, JAERI will move onto the next R and D step, which will be demonstrations of the IS process to which heat is supplied from a high-temperature engineering test reactor (HTTR)

  9. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  10. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2010-02-15

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H{sub 2}O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I{sub 2}/H{sub 2}SO{sub 4} in the feed increased from 2 to 4, the molar ratio of HI/(HI+H{sub 2}O) in the HI{sub x} phase improved from 0.157 to 0.22, which

  11. Experimental studies on optimal process of the iodine-sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2010-02-01

    For nuclear hydrogen production, we selected Iodine-Sulfur (I-S) cycle as the most promising one by screening process among 115 thermo-chemical water splitting technologies. We developed a thermo-physical model for the hydrogen-iodide (HI) VLE and decomposition behavior in the iodine-sulfur (IS) cycle to improve the conventional I-S cycle suggested by GA. Neumann's modified NRTL model was improved by correcting an unphysical assumption for the non-randomness parameter, and using the two-step equilibrium approach for the HI decomposition modeling. However, the parameters of the model were decided through regression with the 271 sets of existing experimental data: the accuracy of the model should be improved by more experimental data over all operating ranges, especially, in the high temperature and high pressure regions. To obtain the data of those regions, an autoclave for high temperature and high pressure was designed and manufactured. Various materials and surface coating technologies were investigated for preventing corrosion from acids. However, we have currently failed to overcome the corrosion problems with highly corrosive acids at a high temperature and high pressure. We experimentally validated that azeotropic constraint between acid and H 2 O undermined the total efficiency of the I-S cycle. As mentioned above, the conventional I-S cycle suffers from low thermal efficiency and highly corrosive streams. To alleviate these problems, we have proposed the optimal operating conditions for the Bunsen reaction and devised a new KAIST flowsheet that produces highly enriched HI through spontaneous L-L phase separation and simple flash processes under low pressure. A series of phase separation experiments were performed to validate the new flowsheet and extend its feasibility. When the molar ratio of I 2 /H 2 SO 4 in the feed increased from 2 to 4, the molar ratio of HI/(HI+H 2 O) in the HI x phase improved from 0.157 to 0.22, which is high enough to generate

  12. Influence of material choice on cost estimation of some key components of the Sulfur Iodine thermochemical process

    International Nuclear Information System (INIS)

    Gilardi, T.; Rodriguez, G.; Gomez, A.; Leybros, J.; Borgard, J.M.; Carles, P.; Anzieu, P.

    2006-01-01

    In the frame of the preliminary design of an sulfur/iodine thermochemical plant coupled with a 600 MWth Helium cooled High Temperature Reactor, CEA has pre-designed all the components of the I/S plant and has started to the cost estimation of all the key components with some industrial cost evaluation methods proposed by CHAUVEL or PETER and TIMMERHAUS. The purpose of the paper is to present the strong influence of material choice on final cost estimation of these key components by comparing price with standard material (steel) and the most appropriate material selected to support the strong corrosion involved by several chemical reactions of the I/S process. These results reinforce the fact that material selection must be done with the best accuracy and that it will be a key factor in the global economy of these plant investment. (authors)

  13. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  14. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  15. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  16. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  17. Bifunctional Characteristics of Al2O3 supported Ni in the HI Decomposition of Sulfur-Iodine Process

    Directory of Open Access Journals (Sweden)

    Park Chu-Sik

    2016-01-01

    Full Text Available The Sulfur-Iodine process is in need of catalytic reactor for HI decomposition because the HI decomposition reaction rate is very slow. Nickel as an alternative catalyst for platinum was investigated in this study. Al2O3 supported Ni catalysts were prepared by impregnation method. Ni amounts loaded over Al2O3 were in the range of 0.1~20 wt. %. HI decompositions were carried out in the temperature range of 573 ~ 773 K using the fixed-bed quartz reactor. The difference of catalysts before and after the reaction was analyzed using BET, CO/H2 chemisorption, XRD, XRF and SEM. It was confirmed by XRD and SEM-EDX analysis that Ni was converted to NiI2 during the HI decomposition. Catalyst deactivation due to the formation of NiI2 leads to a reduction of HI conversion. Although Ni of catalyst converted to NiI2, HI decomposition with low loading (up to 3 wt. % catalyst showed a little decrease of HI conversion. However, with more than 5 wt. % catalyst, the initial HI conversion was considerably decreased. In the particular case of 20 wt. %, the initial conversion was increased close to 60 %, which is higher than 20 % as an equilibrium conversion at 723 K. These results showed that Ni had not only a catalytic function for HI decomposition, but also function as a sorbent to absorb I2 produced from HI.

  18. Novel separation process of gaseous mixture of SO2 and O2 with ionic liquid for hydrogen production in thermochemical sulfur-iodine water splitting cycle

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Gong, Gyeong Taek; Yoo, Kye Sang; Kim, Honggon; Lee, Byoung Gwon; Ahn, Byoung Sung; Jung, Kwang Deog; Lee, Ki Yong; Song, Kwang Ho

    2007-01-01

    Sulfur-Iodine cycle is the most promising thermochemical cycle for water splitting to produce hydrogen which can replace the fossil fuels in the future. As a sub-cycle in the thermochemical Sulfur-Iodine water splitting cycle, sulfuric acid (H 2 SO 4 ) decomposes into oxygen (O 2 ) and sulfur dioxide (SO 2 ) which should be separated for the recycle of SO 2 into the sulfuric acid generation reaction (Bunsen Reaction). In this study, absorption and desorption process of SO 2 by ionic liquid which is useful for the recycle of SO 2 into sulfuric acid generation reaction after sulfuric acid decomposition in the thermochemical Sulfur-Iodine cycle is investigated. At first, the operability as an absorbent for the SO 2 absorption and desorption at high temperature without the volatilization of absorbents which is not suitable for the recycle of absorbent-free SO 2 after the absorption process. The temperature range of operability is determined by TGA and DTA analysis. Most of ionic liquids investigated are applicable at high temperature desorption without volatility around 300 deg. C except [BMIm] Cl, and [BMIm] OAc which show the decomposition of ionic liquids. To evaluate the capability of SO 2 absorption, each ionic liquid is located in the absorption tube and gaseous SO 2 is bubbled into the ionic liquid. During the bubbling, the weight of the system is measured and converted into the absorbed SO 2 amount at each temperature controlled by the heater. Saturated amounts of absorbed SO 2 by ionic liquids at 50 deg. C are presented. The effect of anions for the SO 2 absorption capability is shown in the order of Cl, OAc, MeSO 3 , BF 4 , MeSO 4 , PF 6 , and HSO 4 when they are combined with [BMIm] cation. [BMIm]Cl has the largest amount of SO 2 absorbed which can be the most promising absorbent; however, from the point of operability at high temperature which includes desorption process, [BMIm]Cl is vulnerable to high temperature around 250 deg. C based on the TGA

  19. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  20. Bunsen Reaction using a HIx Solution (HI-I2-H2O with Countercurrent Flow for Sulfur-Iodine Hydrogen Production Process

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Sub

    2016-01-01

    Full Text Available In the sulfur-iodine hydrogen production process, the Bunsen reaction is a crucial section because of the linkage with the H2SO4 and HI decomposition sections. The HIx solution (HI-I2-H2O mixture was fed to the Bunsen reaction section as a reactant from the HI decomposition section. In this study, the Bunsen reaction using the HIx solution with countercurrent flow was performed. The production rate of HIx phase solution increased while that of H2SO4 phase solution was maintained constant when increasing the flow rate of HIx solution. As the SO2 flow rate increased, the production rates of H2SO4 and HIx phase solutions increased. The amount of resultant H2SO4 phase was very lower than that of resultant HIx phase under the conditions examined in this study.

  1. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  2. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  3. Sulfur-Iodine Integrated Lab Scale Experiment Development

    Energy Technology Data Exchange (ETDEWEB)

    Russ, Ben

    2011-05-27

    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  4. Sulfur-Iodine Integrated Lab Scale Experiment Development

    International Nuclear Information System (INIS)

    Russ, Ben

    2011-01-01

    The sulfur-iodine (SI) cycle was determined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  5. Composition of atmospheric precipitation. II. Sulfur, chloride, iodine compounds. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E

    1952-01-01

    Atmospheric precipitation invariably contains insoluble substances of different origin. A large scale study was conducted to determine the content of sulfur, chloride, and iodine in rainwater from various places around the world. The origin of these elements in rainwater is discussed. Several meteorological factors influence the Cl-content of rainwater. They include: rainfall, wind direction and wind strength, altitude, and seasonal variation.

  6. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  7. Status of the INERI sulfur-iodine integrated-loop experiment

    International Nuclear Information System (INIS)

    Pickard, P.; Carles, Ph.; Buckingham, R.; Russ, B.; Besenbruch, G.

    2007-01-01

    The Sulfur-Iodine (S-I) thermochemical water-splitting cycle has been studied as a potential source of hydrogen on a large scale. Coupled to a nuclear reactor, an S-I hydrogen plant could efficiently produce hydrogen without greenhouse gas emissions. In the S-I cycle, iodine and sulfur dioxide are combined with water to create two immiscible acid phases - a light sulfuric acid phase, and a heavy hydriodic acid phase. The sulfuric acid phase is decomposed at temperatures near 850 C degrees, and the resulting sulfur dioxide is recycled back into the process. The hydriodic acid in the lower phase is separated from excess water and iodine, and is then decomposed into the product hydrogen and iodine. The water and iodine from these steps are also recycled. In an International Nuclear Energy Research Initiative (INERI) project supported by the US DOE Office of Nuclear Energy, Sandia National Labs (SNL) has teamed with Cea in France, and industrial partner General Atomics (GA) to construct and operate a closed-loop device for demonstration of hydrogen production by the S-I process. Previous work in Japan has demonstrated continuous closed-loop operation of the S-I cycle for up to one week using glass components at atmospheric pressure. This work will aim for operation under process conditions expected at the pilot plant-level and beyond pressures up to 20 bar using engineering materials of construction. Staff at Cea is responsible for the acid-generation step, known as the Bunsen reaction. SNL is handling the sulfuric acid decomposition step, and GA is providing equipment for decomposing hydriodic acid into the product hydrogen. All parties are assembling equipment at the GA site in San Diego, California. Operation of the closed-loop device is expected to commence in the second half of calendar year 2007. This paper will summarize project goals, work done to date, current status, and scheduled future work on the INERI S-I Integrated-Loop Experiment. (authors)

  8. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  9. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy; Analisis economico de la produccion de hidrogeno mediante el proceso termoquimico yodo-azufre con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano S, C.; Francois L, J. L., E-mail: cuausos@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  10. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L.

    2009-10-01

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  11. Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview

    International Nuclear Information System (INIS)

    Vitart, X.; Le Duigou, A.; Carles, P.

    2006-01-01

    The sulfur-iodine thermo-chemical cycle is considered to be one of the most promising routes for massive hydrogen production, using high temperature heat from a Generation IV VHTR. We propose here a brief overview of the main questions raised by this cycle, along with the general lines of French CEA's program

  12. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  13. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, Xavier; Carles, Philippe; Anzieu, Pascal

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (author)

  14. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, X.; Carles, P.; Anzieu, P.

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (authors)

  15. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  16. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  17. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  18. Iodine

    Science.gov (United States)

    ... Health Information Supplement Fact Sheets Frequently Asked Questions Making Decisions What you Need To Know About Supplements Dietary ... mild iodine deficiency and of iodine supplements on cognitive ... breasts. It mainly affects women of reproductive age but can also occur ...

  19. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kui, E-mail: likui9606@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhao, Yaolin, E-mail: zhaoyaolin@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Peng, E-mail: zp32@qq.com [Sino Shaanxi Nuclear Industry Group, Xi’an 710100 (China); He, Chaohui, E-mail: hechaohui@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Deng, Jia, E-mail: djkokocase@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Shujiang, E-mail: dingsj@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Weiqun, E-mail: shiwq@ihep.ac.cn [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-30

    Highlights: • Metal surface sites of (001)-S surface of chalcopyrite show significant chemical affinity to iodide and iodate. • The energetically favorable active site is copper for iodide adsorption and iron for iodate adsorption, respectively. • Iodate undergoes a dissociative adsorption on the copper site of chalcopyrite surface. - Abstract: The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one I−O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d{sub 5/2} peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S{sup 2−} ion of chalcopyrite.

  20. Research and development on process components for hydrogen production. (1) Test-fabrication of sulfuric acid transfer pump

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Terada, Atsuhiko; Hino, Ryutaro; Kubo, Shinji; Onuki, Kaoru; Watanabe, Yutaka

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments to the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solutions of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components have been the crucial subjects of process development. This paper concerns the sulfuric acid transfer pump. The development has been implemented of a pump for transporting concentrated sulfuric acid at temperatures of higher than 300degC and at elevated pressure. Recent progress of these activities will be reported. (author)

  1. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  2. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  3. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  4. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  5. Iodine

    Science.gov (United States)

    ... leg ulcers and reduce the chance of a future infection. Conjunctivitis (pinkeye). Research suggests that using eye ... National Institute of Medicine has set Adequate Intake (AI) of iodine for infants: 0 to 6 months, ...

  6. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  7. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  8. Effect of processing on iodine content of some selected plants food ...

    African Journals Online (AJOL)

    Effect of processing on iodine content of some selected plants food was investigated. Results show significant reduction (p < 0.05) in the iodine content of the processed food compared with the raw forms. The iodine value of 658.60 ± 17.2 ìg/100g observed in raw edible portion of Discorea rotundata was significantly higher ...

  9. Process for retention of iodine and aerosols during containment venting

    International Nuclear Information System (INIS)

    Eckardt, B.; Betz, R.; Greger, G.U.; Werner, K.D.

    1990-05-01

    A process for retention of the majority of aerosols and iodine during containment venting was optimized. For this purpose, sections of a two-stage process comprising a venturi scrubber and a metal-fiber filter demister were tested under containment venting conditions assumed to prevail during a hypothetical core - melt accident and optimized with a view to achieving high decontamination factors and loading capacity while minimizing the size of the process. The loading and retention tests performed in a scrubber operating pressure range between 1 and 10 bar, at temperatures from 50 to 200degC (also boiling pools) and in air and steam atmospheres. Under these unfavorable conditions for aerosol retention, the retention efficiencies were determined at various flow rates with soluble and non-soluble aerosols as well as gaseous iodine. The retention efficiencies for BaSO 4 , uranine and SnO 2 aerosols were determined to be 99.95% to 99.99% for venturi scrubbers with metal-fiber filter demister. The retention efficiency for elemental iodine was determined to be ≥99% including revolatization effects over a 24-hour operating period. The high loading capacity of the venturi scrubber unit was verified after process modifications with various aerosols. The use of full-scale process section together with the best possible simulation of containment venting conditions by the test parameters ensured that the results can be transferred to real venting equipment. The aim of ensuring the retention of the majority of the aerosol-borne activity and of elemental iodine activity and minimizing the process size was clearly achieved and verified by means of this optimized venting equipment under an extremely wide range of hypothetical core-melt accident conditions. (orig.) With 17 refs., 3 tabs., 35 annexes [de

  10. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    Science.gov (United States)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  11. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  12. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  13. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  14. Equipment and obtention process of phosphorus-32 starting from sulfur-32

    International Nuclear Information System (INIS)

    Alanis M, J.

    2004-12-01

    In the National Institute of Nuclear Research, it is the Radioisotopes Production plant, which covers in the area of the medicine 70% approximately of the national market and it exports to some countries of Latin America (Technetium-99, iodine-131, Sm-153 among other). At the moment the plant has modern facilities and certified with the ISO-9001-2000 standard, this, gives trust to the clients as for the quality of its products. Besides the production of radioisotopes dedicated for the medical area, the work of the plant tends to be more enlarged every time, producing new radioisotopes not only but with medical purposes but also industrial and agricultural ones, such it is the case of the production of Phosphorus-32 ( 32 P) that has applications with medical, industrial and in the agriculture purposes. The investigation studies from the prime matter (sulfur-32), sulfur purification, sulfur irradiation in the nuclear reactor and the obtaining process of 32 P in a prototype, its took us to design and to build the obtaining process from 32 P to more high level, which is presented in this work. To be able to select the obtaining method of 32 P that is presented it was necessary to study the methods that have been developed in the world, later on it was selected the way that is presented. In that way the physical and chemical properties of the sulfur were studied which is used as prime matter, the interest nuclear reaction was also studied to carry out the production of 32 P by means of the realization of mathematical calculations of irradiation of the sulfur in TRIGA Mark lll nuclear reactor. Once the sulfur is irradiated, it is necessary to carry out the radiochemical separation of the 32 P produced from the sulfur, for this, it was necessary to carry out experimental tests of this separation, later on it was developed a prototype where it was carried out this separation and finally it was developed the final equipment of production of 32 P mainly composed of three

  15. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition; Uso de analisis probabilistico de seguridad para el diseno de sistemas de mitigacion de emergencia en planta productora de hidrogeno con tecnologia azufre-iodo, Seccion II: descomposicion de acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L. [Facultad de Ingenieria, Departamento de Sistemas Energeticos, UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)], e-mail: iqalexmdz@yahoo.com.mx

    2009-10-15

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  16. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  17. Rapid determination of trace phosphorus, sulfur, chlorine, bromine and iodine by energy dispersive X-ray fluorescence analysis with monochromatic excitations

    International Nuclear Information System (INIS)

    Wakisaka, Tatsushi; Morita, Naoki; Hirabayashi, Tadashi; Nakahara, Taketoshi

    1998-01-01

    A useful and rapid procedure is described for the determination of trace phosphorus, sulfur, chlorine, bromine, and iodine by means of an energy dispersive X-ray fluorescence spectrometer (EDXRF) with monochromatic excitations. Using monochromatic excitations, the detection limits for phosphorus, sulfur, chlorine (Cr-Kα, 5.41 keV), bromine (Mo-Kα, 17.44 keV), and iodine (W-continuum, 40 keV) were found to be 4.6, 1.7, 0.7, 0.09 and 0.5 μg g -1 , respectively. The relative standard deviations in five replicate measurements were 0.9-1.3%. The proposed method was applied to the direct determination of sulfur in the NIST Residual Fuel Oil, and others. The results obtained by the proposed method were in good agreement with the certified values. Bromine in a seawater sample, as well as iodine and bromine in a brine sample were determined by the proposed method. The obtained results were in good agreement with those obtained by ion chromatography. (author)

  18. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  19. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  20. New treating processes for sulfur-containing natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Kislenko, N.; Aphanasiev, A.; Nabokov, S.; Ismailova, H. [VNIIGAS, Moscow (Russian Federation)

    1996-12-31

    The traditional method of removing H{sub 2}S from sour natural gases is first to treat the gas with a solvent and then to recover the H{sub 2}S from the sour stream in a Claus plant. This method recovers up to 97% of the sulfur when a three-stage Claus unit is employed. Amine/Claus units have operating difficulties for small sulfur capacities (up to 5 tons/day) because the operation of the fired equipment (reaction furnace) is much more difficult. Therefore, for small scale sulfur recovery plants redox processes which exhibit a significant reduction in investment and operating costs are normally used. Many different factors influence the choice of gas desulfurization technology--composition and gas flow, environmental sulfur recovery requirements and CO{sub 2}/H{sub 2}S ratio.

  1. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  2. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  3. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  4. Process for obtaining a distillation product free from sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1920-06-12

    A process is described of obtaining from shale a hydrocarbon product free from sulfur, by distillation, consisting in mixing with the shale a portion of mineral oil and metallic debris, such as turnings and drillings, heating the mixture in a rotary drum and recovering and condensing the vapors distilled.

  5. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  6. Effect of processing on iodine content of some selected plants food

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... indicate that processing significantly reduces iodine content of food products, hence consideration must be .... ground levels as well as processing technology and ... on the influence of household preparations and proces-.

  7. Processing method and device for iodine adsorbing material

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiga, Reiko.

    1997-01-01

    An iodine adsorbing material adsorbing silver compounds is reacted with a reducing gas, so that the silver compounds are converted to metal silver and stored. Then, the silver compounds are not melted or recrystallized even under a highly humid condition, accordingly, peeling of the adsorbed materials from a carrier can be prevented, and the iodine adsorbing material can be stored stably. Since the device is disposed in an off gas line for discharging off gases from a nuclear power facility, the iodine adsorbing material formed by depositing silver halides to the carrier is contained, and a reducing or oxidizing gas is supplied to the vessel as required, and silver halides can be converted to metal silver or the metal silver can be returned to silver halide. (T.M.)

  8. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  9. The effect of preliminary processing and different methods of cooking on the iodine content and selected antioxidative properties of carrot (Daucus carota L. biofortified with (potassium iodine

    Directory of Open Access Journals (Sweden)

    Kapusta-Duch Joanna

    2017-06-01

    Full Text Available Carrot is a vegetable that contains many nutrients and has strong antioxidant activity as well as pro-health potential. The level of bioactive compounds is strongly connected with the production chain. The thermal treatment of food products induces several biological, physical and chemical changes. In this study, changes in the levels of iodine, total carotenoids, total polyphenols as well as the antioxidant activity of unpeeled and peeled controls and carrots biofortified with (potassium iodine (KJ during cultivation due to the cooking and steaming process were investigated. The use of thermal processes resulted in a lower concentration of iodine in the roots of the control as well as in carrots biofortified with (potassium iodine. In addition, peeling carrots caused higher losses of this trace element in the control and the biofortified carrots cooked or steamed for various times. In this study, a significant growth of the total carotenoids in peeled carrots biofortified with (potassium iodine and of the total polyphenols in unpeeled carrots biofortified with (potassium iodine under the influence of the cooking and steaming processes was observed compared with raw peeled and unpeeled biofortified carrots, respectively. Antioxidant activity significantly increased in the unpeeled and peeled carrots biofortified with (potassium iodine under all thermal treatments in comparison with the raw unpeeled and peeled biofortified carrots.

  10. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  11. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    Science.gov (United States)

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Putting to point the production process of iodine-131 by dry distillation (Preoperational tests)

    International Nuclear Information System (INIS)

    Alanis M, J.

    2002-12-01

    With the purpose of putting to point the process of production of 131 I, one of the objectives of carrying out the realization of operational tests of the production process of iodine-131, it was of verifying the operation of each one of the following components: heating systems, vacuum system, mechanical system and peripheral equipment that are part of the production process of iodine-131, another of the objectives, was settling down the optimal parameters that were applied in each process during the obtaining of iodine-131, it is necessary to point out that this objective is very important, since the components of the equipment are new and its behavior during the process is different to the equipment where its were carried out the experimental studies. (Author)

  13. Production of adsorbent from palm shell for radioactive iodine scrubbing process

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Ku Halim Ku Hamid; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Abdul Halim Badaruddin; Mohammad Nizammudin Abd Aziz; Muhd Ridwan Abdul Rahim

    2010-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic of year 2004, Malaysia produced 40 million tones per year of biomass which 30 million tones of biomass originated from the oil palm industries. Therefore, the biomass waste such as palm kernel shell can be used to produce granular adsorbent for radioactive materials. For that reason, a newly system, called Rocking Kiln - Fluidized Bed (RK - FB) was developed to utilize large amount of the biomass to produce high value added product. Charcoal or chemically produced activated carbon could be produced by using the kiln. Washing process was introduced to remove particles, minerals and volatile matters from charcoal produced and then would create more surface area in the adsorbent by creating more active sites. In this research, the adsorbent produced was used to scrub iodine 131. In nuclear power reactor, iodine isotope 131 is produced during nuclear fission, and this elementary radioactive iodine may pollute exhaust air streams that could cause thyroid cancer. For removal of radioactive iodine, normally a potassium iodide - impregnated activated carbon (KI - AC) is used. Thus, a process will be developed to produce KI - AC and this product will be used to calculate the efficiency to remove the radioactive iodine 131.The results obtain show that adsorbent produced has a high potential to be used in radioactive adsorbing and likely more economics. This paper will elaborate further the experimental set-up of in Kiln - Fluidized Bed (RK - FB), adsorbent quality and radioactive scrubbing process. (author)

  14. Process for removing a mixture containing iodine and alkyl iodine compounds from a gas phase or aqueous solution with ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H; Mizuuchi, A; Yokoyama, F

    1968-10-04

    Iodine and alkyl iodine compounds are removed from a gas phase or aqueous solution containing salts, iodine and iodine compounds, such as the ambient gas in a reactor, if an accident should occur. The process comprises contacting the phase or solution: (a) with a hydrogen type strongly acidic cationic exchange resin, (b) with an anionic exchange resin containing quarternary ammonium and (c) with an anionic exchange resin containing free basic type tertiary amine, in this order or by reversing the order of the two anionic exchange resins. Although no problems arise in the liquid phase reaction, the ion-exchange resins in the gas phase reaction are desired in the moist state in order to stable maintain the migration speed of the materials to be removed regardless of the relative humidity of the amibent gas. In example I, Amberlite IRA-900 of 200 mm thickness as the lowermost bed, Amberlite IRA93 of 200 mm thickness as the middle bed and Amberlite 200 of 200 mm thickness as the uppermost bed were filled respectively, in a methacrylate resin cylinder with an inner diameter of 25 mm. A solution containing 15.9 mg/1 of iodine, 41.2 mg/1 of methyl iodide and 550 mg/1 of sodium carbonate flows at a rate of 15 liter/hr downward through the beds. As a result of testing, no iodine, iodine ions, iodic acid ions and methyl iodine were detected. The amount of water the beds could treat was 60 times the total quantity of the filled resins.

  15. Mitigation of release of volatile iodine species during severe reactor accidents - a novel reliable process of safety technology

    International Nuclear Information System (INIS)

    Guentay, S.; Bruchertseifer, H.

    2010-01-01

    In severe accidents, a significant risk for public health may be generated as a result of release of the gaseous iodine species into the environment through the containment leaks or containment venting filter systems with low retention efficiency. The elemental iodine and volatile organic iodides are the main gaseous iodine species in the containment. Potential release of large quantities of gaseous elemental iodine from the reactor coolant system or its radiolytic generation in the containment sump constitute the key source of gaseous elemental iodine in containment atmosphere. Iodine paint reactions as well as the reaction of iodine with organic residuals in sump water are the main mechanisms for the generation of high volatile organic iodides in the containment. Although very much desired, significant research activities conducted in 70's unfortunately did not create any technically feasible solution to mitigate iodine release into the environment under prevailing conditions. Development of a process leading to a fast, comprehensive and reliable retention of volatile iodine species in aqueous solution with an aim to implement for the severe accident management applications has been subject of a research project in the recent years at Paul Scherrer Institut. The process developed utilizes simultaneous use of two customary technical chemical additives in an aqueous solution. The results of the experimental program have demonstrated a fast and reliable destruction of high volatile organic iodine species and fast reduction of elemental iodine into iodide ions in aqueous solutions and an efficient mitigation of the re-formation of gaseous iodine from iodide ions. Investigations covered a broad range of anticipated severe accident conditions in the containment. The project additionally focused on possible application of the process to existing containment venting filter systems, specifically as a passive add-on for back-fitting. This paper describes the process

  16. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Asakai, Toshiaki, E-mail: t-asakai@aist.go.jp [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Hioki, Akiharu [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2011-03-09

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  17. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  18. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  19. Design and cost of the sulfuric acid decomposition reactor for the sulfur based hydrogen processes - HTR2008-58009

    International Nuclear Information System (INIS)

    Hu, T. Y.; Connolly, S. M.; Lahoda, E. J.; Kriel, W.

    2008-01-01

    The key interface component between the reactor and chemical systems for the sulfuric acid based processes to make hydrogen is the sulfuric acid decomposition reactor. The materials issues for the decomposition reactor are severe since sulfuric acid must be heated, vaporized and decomposed. SiC has been identified and proven by others to be an acceptable material. However, SiC has a significant design issue when it must be interfaced with metals for connection to the remainder of the process. Westinghouse has developed a design utilizing SiC for the high temperature portions of the reactor that are in contact with the sulfuric acid and polymeric coated steel for low temperature portions. This design is expected to have a reasonable cost for an operating lifetime of 20 years. It can be readily maintained in the field, and is transportable by truck (maximum OD is 4.5 meters). This paper summarizes the detailed engineering design of the Westinghouse Decomposition Reactor and the decomposition reactor's capital cost. (authors)

  20. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  1. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  2. Improvements in iodine and ruthenium removal from advanced liquid processing system

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  3. Improved monitoring procedure for Iodine -131 in radiochemical process laboratory

    International Nuclear Information System (INIS)

    Singh, Pratap; Yadav, R.K.B.; Anilkumar, S.; Gopalakrishnan, R.K.; Chakraborty, S.

    2016-01-01

    Radiation Hazard Control Unit at Isotope wing provides radiological safety support and advises for safe processing and production of radiopharmaceuticals. Tellurium Oxide (TeO 2 ), irradiated in a nuclear reactor, is processed in a process laboratory for separating 131 I using dry distillation technique. The workplace environment is being assessed for airborne radioactivity using installed Static Air Samplers (SASs). SASs contains two filter media (glass fibre and charcoal impregnated paper) to collect airborne 131 I radioactivity and laboratory air sampled at 50 litres per minutes (lpm). Personal Air Sampler (PAS) consists of three types of filters viz. a glass fibre, charcoal impregnated paper and cartridges containing activated charcoal granules. Three combinations were studied at a sampling rate of 5 lpm

  4. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    Science.gov (United States)

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  5. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  6. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  7. [Progress of sulfur fumigation and modern processing technology of Chinese traditional medicines].

    Science.gov (United States)

    Lu, Tu-Lin; Shan, Xin; Li, Lin; Mao, Chun-Qin; Ji, De; Yin, Fang-Zhou; Lang, Yong-Ying

    2014-08-01

    Infestation, moldy and other phenomenon in the processing and storage of Chinese herbal medicines is a problem that faced in the production of Chinese traditional medicine. The low productivity of traditional processing methods can not guarantee the quality of Chinese herbal medicines. Sulfur fumigation is the first choice of grassroots to process the Chinese herbal medicine with its low cost and easy operation. Sulfur fumigation can solve some problems in the processing and storage of Chinese herbal medicines, but modern pharmacological studies show that long-term use of Chinese traditional medicine which is fumigated by sulfur can cause some serious harm to human liver, kidney and other organs. This paper conducts a review about the application history of sulfur fumigation, its influence to the quality of Chinese herbal medicines as well as domestic and foreign limits to sulfur quantity, and a brief introduction of the status of modern processing technologies in the processing of food and some Chinese herbal medicines, the problems ex- isting in the Chinese herbal medicines processing, which can provide a reference basis for the further research, development and application of investigating alternative technologies of sulfur fumigation.

  8. Equipment and obtention process of phosphorus-32 starting from sulfur-32; Equipo y proceso de obtencion de fosforo-32 a partir del azufre-32

    Energy Technology Data Exchange (ETDEWEB)

    Alanis M, J. [ININ, Departamento de Materiales Radiactivos, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-12-15

    In the National Institute of Nuclear Research, it is the Radioisotopes Production plant, which covers in the area of the medicine 70% approximately of the national market and it exports to some countries of Latin America (Technetium-99, iodine-131, Sm-153 among other). At the moment the plant has modern facilities and certified with the ISO-9001-2000 standard, this, gives trust to the clients as for the quality of its products. Besides the production of radioisotopes dedicated for the medical area, the work of the plant tends to be more enlarged every time, producing new radioisotopes not only but with medical purposes but also industrial and agricultural ones, such it is the case of the production of Phosphorus-32 ({sup 32}P) that has applications with medical, industrial and in the agriculture purposes. The investigation studies from the prime matter (sulfur-32), sulfur purification, sulfur irradiation in the nuclear reactor and the obtaining process of {sup 32}P in a prototype, its took us to design and to build the obtaining process from {sup 32}P to more high level, which is presented in this work. To be able to select the obtaining method of {sup 32} P that is presented it was necessary to study the methods that have been developed in the world, later on it was selected the way that is presented. In that way the physical and chemical properties of the sulfur were studied which is used as prime matter, the interest nuclear reaction was also studied to carry out the production of {sup 32}P by means of the realization of mathematical calculations of irradiation of the sulfur in TRIGA Mark lll nuclear reactor. Once the sulfur is irradiated, it is necessary to carry out the radiochemical separation of the {sup 32}P produced from the sulfur, for this, it was necessary to carry out experimental tests of this separation, later on it was developed a prototype where it was carried out this separation and finally it was developed the final equipment of production of

  9. Process for recovery of sulfur from acid gases

    Science.gov (United States)

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  10. The iodine reactivity; La reactivite de l'iode

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies dealing with: the {sup 129}I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  11. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  12. Elucidating the iodine stress corrosion cracking (SCC) process for zircaloy tubing

    International Nuclear Information System (INIS)

    Nagai, M.; Shimada, S.; Nishimura, S.; Amano, K.

    1984-01-01

    Several experimental investigations were made to enhance understanding of the iodine stress corrosion cracking (SCC) process for Zircaloy: (1) oxide penetration process, (2) crack initiation process, and (3) crack propagation process. Concerning the effect of the oxide layer produced by conventional steam-autoclaving, no significant difference was found between results for autoclaved and as-pickled samples. Tests with 15 species of metal iodides revealed that only those metal iodides which react thermodynamically with zirconium to produce zirconium tetraiodide (ZrI 4 ) caused SCC of Zircaloy. Detailed SEM examinations were made on the SCC fracture surface of irradiated specimens. The crack propagation rate was expressed with a da/dt=C Ksup(n) type equation by combining results of tests and calculations with a finite element method. (author)

  13. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    Science.gov (United States)

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  15. Iodine Deficiency

    Science.gov (United States)

    ... Fax/Phone Home » Iodine Deficiency Leer en Español Iodine Deficiency Iodine is an element that is needed ... world’s population remains at risk for iodine deficiency. Iodine Deficiency FAQs WHAT IS THE THYROID GLAND? The ...

  16. Iodine Intake through Processed Food: Case Studies from Egypt, Indonesia, the Philippines, the Russian Federation and Ukraine, 2010–2015

    Science.gov (United States)

    Knowles, Jacky; Shehata, Magdy; Gerasimov, Gregory; Bimo, Bimo; Cavenagh, Bettina; Maramag, Cherry C.; Otico, Edward; Izwardy, Doddy; Spohrer, Rebecca; Garrett, Greg S.

    2017-01-01

    The current performance indicator for universal salt iodisation (USI) is the percentage of households using adequately iodised salt. However, the proportion of dietary salt from household salt is decreasing with the increase in consumption of processed foods and condiments globally. This paper reports on case studies supported by the Global Alliance for Improved Nutrition (GAIN)-UNICEF USI Partnership Project to investigate processed food industry use of adequately iodised salt in contrasting national contexts. Studies were conducted in Egypt, Indonesia, the Philippines, the Russian Federation, and Ukraine. In all cases, the potential iodine intake from iodised salt in selected food products was modelled according to the formula: quantity of salt per unit of food product × minimum regulated iodine level of salt at production × average daily per capita consumption of the product. The percent of adult recommended nutrient intake for iodine potentially provided by the average daily intake of bread and frequently consumed foods and condiments was from 10% to 80% at the individual product level. The potential contribution to iodine intake from the use of iodised salt in the processed food industry is of growing significance. National USI strategies should encourage co-operative industry engagement and include regulatory monitoring of iodised salt use in the food industry in order to achieve optimal population iodine status. PMID:28933750

  17. Iodine Intake through Processed Food: Case Studies from Egypt, Indonesia, the Philippines, the Russian Federation and Ukraine, 2010-2015.

    Science.gov (United States)

    Knowles, Jacky; van der Haar, Frits; Shehata, Magdy; Gerasimov, Gregory; Bimo, Bimo; Cavenagh, Bettina; Maramag, Cherry C; Otico, Edward; Izwardy, Doddy; Spohrer, Rebecca; Garrett, Greg S

    2017-07-26

    The current performance indicator for universal salt iodisation (USI) is the percentage of households using adequately iodised salt. However, the proportion of dietary salt from household salt is decreasing with the increase in consumption of processed foods and condiments globally. This paper reports on case studies supported by the Global Alliance for Improved Nutrition (GAIN)-UNICEF USI Partnership Project to investigate processed food industry use of adequately iodised salt in contrasting national contexts. Studies were conducted in Egypt, Indonesia, the Philippines, the Russian Federation, and Ukraine. In all cases, the potential iodine intake from iodised salt in selected food products was modelled according to the formula: quantity of salt per unit of food product × minimum regulated iodine level of salt at production × average daily per capita consumption of the product. The percent of adult recommended nutrient intake for iodine potentially provided by the average daily intake of bread and frequently consumed foods and condiments was from 10% to 80% at the individual product level. The potential contribution to iodine intake from the use of iodised salt in the processed food industry is of growing significance. National USI strategies should encourage co-operative industry engagement and include regulatory monitoring of iodised salt use in the food industry in order to achieve optimal population iodine status.

  18. Process and device for liquid organic waste processing by sulfuric mineralization

    International Nuclear Information System (INIS)

    Aspart, A.; Gillet, B.; Lours, S.; Guillaume, B.

    1990-01-01

    In a chemical reactor containing sulfuric acid are introduced the liquid waste and nitric acid at a controlled flow rate for carbonization of the waste and oxidation of carbon on sulfur dioxide, formed during carbonization, regenerating simultaneously sulfuric acid. Optical density of the liquid is monitored to stop liquid waste feeding above a set-point. The liquid waste can be an organic solvent such as TBP [fr

  19. Process for the impromptu preparation of a radio-iodine-labelled injectable fatty acid and the preparation of iodinated derivatives suitable for the application of this process

    International Nuclear Information System (INIS)

    Bardy, Andre; Comet, Michel; Coornaert, Sabine; Mathieu, J.P.; Riche, Francoise; Vidal, Michel.

    1983-01-01

    The radioiodine-labelled fatty acid is prepared by reaction of a fatty acid, bromated or iodinated in the #betta# position, with an aqueous solution of radioactive iodide at pH 7 in the presence of carrier iodide. The labelled product obtained is suspended in a buffer solution at pH 9 then dissolved in human serum albumin for injection purposes. The iodinated derivatives used as starting products may be obtained by condensation of a bromated fatty acid and an acetylene alcohol [fr

  20. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  1. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    Schmidt, Roland; Tsang, Albert; Cross, Joe; Summers, Clinton; Kornosky, Bob

    2008-01-01

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO 2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO 2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  3. Desulfurization of organic sulfur from lignite by an electron transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. for Chemical Engineering

    2006-10-15

    This study is an attempt to desulfurize organic sulfur from lignite samples with ferrocyanide ion as the electron transferring agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the lignite samples has been investigated. The desulfurization process has been found to be continuous and gradually increases with increase of temperature from 298 to 368 K. The particle size has no significant impact on sulfur removal from the lignite samples. Particle size has no profound impact on the amount of sulfur removal. The desulfurization reaction has been found to be dependent on the concentration of potassium ferrocyanide. Gradual increase in the concentration of potassium ferrocyanide raised the magnitude of desulfurization, but at a higher concentration, the variation is not significant.

  4. PROPOSAL FOR THE IMPLEMENTATION OF SPRAY DRYING IN THE ACTIVATION PROCESS OF BENTONITE WITH SULFURIC ACID

    OpenAIRE

    Romero, P.; Otiniano, M.

    2014-01-01

    The present work propose the replacement of the three stages of the activation process of bentonite with sulfuric acid by the only stage spray drying. El presente trabajo propone reemplazar tres etapas del proceso de activación de la bentonita con ácido sulfúrico por una sola etapa, la del secado por atomización.

  5. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  6. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  7. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  8. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Electrochemical Investigation of The Catalytical Processes During Sulfuric Acid Production

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petrushina, Irina; Berg, Rolf W.

    1995-01-01

    The electrochemical behavior of molten K2S2O7 and its mixtures with V2O5 [2–20 mole percent (m/o) V2O5] was studiedat 440°C in argon, by using cyclic voltammetry on a gold electrode. The effect of the addition of sulfate and lithium ions onthe electrochemical processes in the molten potassium...

  10. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  11. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid

    OpenAIRE

    Konstantinos Hatzilyberis; Theopisti Lymperopoulou; Lamprini-Areti Tsakanika; Klaus-Michael Ochsenkühn; Paraskevas Georgiou; Nikolaos Defteraios; Fotios Tsopelas; Maria Ochsenkühn-Petropoulou

    2018-01-01

    Aiming at the industrial scale development of a Scandium (Sc)-selective leaching process of Bauxite Residue (BR), a set of process design aspects has been investigated. The interpretation of experimental data for Sc leaching yield, with sulfuric acid as the leaching solvent, has shown significant impact from acid feed concentration, mixing time, liquid to solids ratio (L/S), and number of cycles of leachate re-usage onto fresh BR. The thin film diffusion model, as the fundamental theory for l...

  12. Sulfur oxides and nitrogen oxides gas treating process

    International Nuclear Information System (INIS)

    Forbes, J. T.

    1985-01-01

    A process is disclosed for treating particle-containing gas streams by removing particles and gaseous atmospheric pollutants. Parallel passage contactors are utilized to remove the gaseous pollutants. The minimum required gas flow rate for effective operation of these contactors is maintained by recycling a variable amount of low temperature gas which has been passed through a particle removal zone. The recycled gas is reheated by heat exchange against a portion of the treated gas

  13. An efficient hybrid sulfur process using PEM electrolysis with a bayonet decomposition reactor - HTR2008-58207

    International Nuclear Information System (INIS)

    Gorensek, M. B.; Summers, W. A.; Lahoda, E. J.; Bolthrunis, C. O.; Greyvenstein, R.

    2008-01-01

    The Hybrid Sulfur (HyS) Process is being developed to produce hydrogen by water-splitting using heat from advanced nuclear reactors. It has the potential for high efficiency and competitive hydrogen production cost, and has been demonstrated at a laboratory scale. As a two-step process, the HyS is one of the simplest thermochemical cycles. The sulfuric acid decomposition reaction is common to all sulfur cycles, including the Sulfur-Iodine (SI) cycle. What distinguishes the HyS Process from the other sulfur cycles is the use of sulfur dioxide (SO 2 ) to depolarize the anode of a water electrolyzer. The two critical HyS Process components are the SO 2 - depolarized electrolyzer (SDE), and the high-temperature decomposition reactor. A proton exchange membrane (PEM)- type SDE and a silicon carbide bayonet-type high-temperature decomposition reactor are being developed for DOE's Nuclear Hydrogen Initiative (NHI) by Savannah River National Laboratory (SRNL) and by Sandia National Laboratories (SNL), respectively. The ultimate goal of the NHI-sponsored work is to couple the SDE and the reactor in an integrated laboratory scale experiment to prove the technical readiness of the HyS cycle for the NGNP demonstration. This paper describes the flowsheet that is being prepared to combine these two components into a viable process and presents the latest performance projections and economics for a HyS Process coupled to a PBMR heat source. The basic flowsheet for this process has been described elsewhere [4]. It requires an acid concentration section because the SDE product, which is limited to no more than 50% H 2 SO 4 by cell voltage considerations, is too dilute to be fed directly to the bayonet, which needs at least 65% H 2 SO 4 in the feed for acceptable performance. Optimization involved trade-offs between decomposition reaction and acid concentration heat requirements. The PBMR heat source can split its heat output between the decomposition reaction and either steam

  14. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    International Nuclear Information System (INIS)

    Devisme, F.; Juvenelle, A.; Touron, E.

    2001-01-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of 129 I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L -1 ) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  15. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Devisme, F.; Juvenelle, A.; Touron, E. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN/DRCP, 30 - Marcoule (France)

    2001-07-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of {sup 129}I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L{sup -1}) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  16. Development plan of austenitic Fe and Ni based alloys with improved corrosion resistance to sulfuric acid and HI fluids of industrial processes

    International Nuclear Information System (INIS)

    Hirota, Noriaki; Iwatsuki, Jin; Imai, Yoshiyuki; Yan, Xing L.

    2017-12-01

    In this study, austenitic Fe based alloys and Ni based alloys was developed as candidate structural materials for equipment operated in sulfuric acid and hydrogen iodide (HI) environment, which exists in various industrial processes including iodine-sulfur (IS) hydrogen production process and geothermal power generation process. The objectives of the study are to achieve the corrosion resistance performance sufficient under the working condition of these processes and to overcome the practical scale-up difficulty of the ceramic (SiC) material that is presently used in the processes due to the manufacturing size limitation of the ceramic. The chemical composition development plan for the austenitic Fe based alloys is threefold: reinforcement of matrix by addition of Cu and Ta, strength compensation of the surface film by addition of Si and Ti, and prevention of peeling of surface oxide by addition of rare earth elements. Because addition of Cu and Si is known to reduce the ductility of the material and thus manufacturability of the component, it is important to determine the allowable amount of each element to be added. On the other hand, the chemical composition development plan for the Ni based alloys is reinforcement of matrix by addition of Mo, W and Ta, strength compensation of the surface film by addition of Ti, and prevention of peeling of surface oxide by addition of rare earth elements. In particular, the addition of Mo and W to the Ni based alloy is expected to be effective in preventing dimensional deviation of structures from increasing during heating and cooling of process equipment. Various material specimens will be fabricated based on the above chemical composition development plans and tests on these specimens will then be carried out to confirm the corrosion resistance performance under the fluid conditions simulating each industrial process. (author)

  17. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  18. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  19. Uranium extraction process in a sulfuric medium by means of liquid emulsified membranes

    International Nuclear Information System (INIS)

    Monteillet, A.

    1985-02-01

    Uranium ore processing, after leaching by sulfuric acid, by liquid-liquid extraction is a rather heavy process, not suitable for small deposits. Extraction by emulsions was suggested. In this process the leachate is contacted with an oil in water type emulsion, a liquid organic membrane is formed by the continuous phase. Uranium complexes diffuse through the liquid membrane towards the dispersed aqueous phase of the emulsion (stripping solution). Uranium is recovered by breaking the emulsion. Are successively studied: development of stable emulsions, influence of emulsion composition on uranium transfer kinetics, transfer mechanisms through the membrane and modelling of kinetics data obtained in the experimental study [fr

  20. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected.

  1. The chemical behaviour of iodine-129 in the process of radwaste conditioning

    International Nuclear Information System (INIS)

    Schon, T.

    1993-11-01

    During radwaste reprocessing, elemental I-129 may almost completely be transferred to the dissolver off-gas stream. The AC 6120 adsorbent, consisting of high-heated, amorphous silicic acid impregnated with silver nitrate, proved to be particularly efficient for removing the iodine from the off-gas. In a gas-solid reaction, the elemental iodine is converted into solid silver iodide and silver iodate. The reaction's stoichiometry depends on the loading temperature, with temperatures between 30 and 80 C resulting in a ratio of five between the reaction products of AgI and AgIO 3 , while with temperatures higher than that, up to 150 C, the ratio is three. For assessing the acceptability of the iodine-bearing AC 6120 as a waste product to be emplaced in a salt rock repository, the ratio of the reaction products is one of the main criteria. The products solubility and its complexation reactions with chloride-bearing brines are two other important criteria, especially with a view to the not completely hypothetical accident type of 'water ingress into the salt cavern'. Leaching experiments have shown that in this event, between 30 and over 60% of the waste product's iodine inventory would be leached out within only seven days. Thus AC 6120 is not a candidate adsorbent for immobilization of iodine 129 in a waste product. (orig./HP) [de

  2. Radionuclide Basics: Iodine

    Science.gov (United States)

    ... Centers Radiation Protection Contact Us Share Radionuclide Basics: Iodine Iodine (chemical symbol I) is a chemical element. ... in the environment Iodine sources Iodine and health Iodine in the Environment All 37 isotopes of iodine ...

  3. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Kilic, Adem [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Calimlioglu, Beste; Toker, Yasemin [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey)

    2013-11-15

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased <50 μg/L when the influent Cr(VI) was ≤5 mg/L. -- Abstract: This study aims at evaluating simultaneous chromate and nitrate reduction using sulfur-based mixotrophic denitrification process in a column reactor packed with elemental sulfur and activated carbon. The reactor was supplemented with methanol at C/N ratio of 1.33 or 2. Almost complete denitrification was achieved at influent NO{sub 3}{sup −}–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO{sub 3}{sup −}–N/(L.d) when the bioreactor was fed with 75 mg/L NO{sub 3}{sup −}–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed.

  4. Catalytic processing of high-sulfur fuels for distributed hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Ramasamy, Karthik; Huang, Cunping; T-Raissi, Ali [Central Florida Univ., FL (United States)

    2010-07-01

    In this work, the development of a new on-demand hydrogen production technology is reported. In this process, a liquid hydrocarbon fuel (e.g., high-S diesel) is first catalytically pre-reformed to shorter chain gaseous hydrocarbons (predominantly, C{sub 1}-C{sub 3}) before being directed to the steam reformer, where it is converted to syngas and then to high-purity hydrogen. In the pre-reformer, most sulfurous species present in the fuel are catalytically converted to H{sub 2}S. In the desulfurization unit, H{sub 2}S is scrubbed and converted to H{sub 2} and elemental sulfur. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes Fe(II)/Fe(III)-containing aqueous phase scrubber coupled with an electrolyzer. The integrated pre-reformer/scrubber/electrolyzer unit operated successfully on high-S diesel fuel for more than 100 hours meeting the required desulfurization target of >95 % sulfur removal. (orig.)

  5. Effect of absorbing impurities on the accuracy of the optical method for the detection of the iodine-containing substances resulting from the processing of waste nuclear fuel

    Science.gov (United States)

    Kireev, S. V.; Simanovsky, I. G.; Shnyrev, S. L.

    2010-12-01

    The study is aimed at an increase in the accuracy of the optical method for the detection of the iodine-containing substances in technological liquids resulting form the processing of the waste nuclear fuel. It is demonstrated that the accuracy can be increased owing to the measurements at various combinations of wavelengths depending on the concentrations of impurities that are contained in the sample under study and absorb in the spectral range used for the detection of the iodine-containing substances.

  6. Iodine filters in nuclear installations

    International Nuclear Information System (INIS)

    Wilhelm, J.G.

    1982-01-01

    The present report discusses the significance for environmental exposure of the iodine released with the gaseous effluents of nuclear power stations and reprocessing plants in relation to releases of other airborne radionuclides. Iodine filtration processes are described. The release pathways and the composition of airborne fission product iodine mixtures and their bearing on environmental exposure are discussed on the basis of measured fission product iodine emissions. The sorbents which can be used for iodine filtration, their removal efficiencies and range of applications are dealt with in detail. The particular conditions governing iodine removal, which are determined by the various gaseous iodine species, are illustrated on the basis of experimentally determined retention profiles. Particular attention is given to the limitations imposed by temperature, humidity, radiation and filter poisoning. The types of filter normally used are described, their advantages and drawbacks discussed, the principles underlying their design are outlined and the sources of error indicated. The methods normally applied to test the efficiency of various iodine sorbents are described and assessed. Operating experience with iodine filters, gathered from surveillance periods of many years, is supplemented by a large number of test results and the findings of extensive experiments. Possible ways of prolonging the permissible service lives of iodine filters are discussed and information is given on protective measures. The various iodine removal processes applied in reprocessing plants are described and compared with reference to efficiency and cost. The latest developments in filter technology in reprocessing plants are briefly outlined

  7. Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanbo; Luo, Dongmei, E-mail: dmluo@scu.edu.cn; Zhang, Zhao; Liang, Bin; Yuan, Xizhi; Fu, Li

    2016-06-15

    The existing forms of sulfur in hydrolysis process of titanyl sulfate solution were studied. Also the effects of sulfur on crystal structure, crystallite size and crystal phase transition of the hydrated titanium dioxide(TiO{sub 2}·H{sub 2}O) and titanium dioxide (TiO{sub 2}) were conducted. The analysis and methods of thermogravimetric-differential scanning calorimet (TG-DSC), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectra and Raman spectroscopy were employed to characterize. The results indicated that the sulfur was present in the form of SO{sub 4}{sup 2−} ions in the hydrolysate of titanyl sulfate solution, and a portion of SO{sub 4}{sup 2−} ions were combined on the surface of hydrated titanium dioxide by chemical adsorption in the forms of inorganic chelating bidentate coordination and covalent sulfate coordination, the residual SO{sub 4}{sup 2−} ions were adsorbed on the surface of hydrated titanium dioxide by physical adsorption. The chemical adsorption of SO{sub 4}{sup 2−} ions were conducive to the formation and stabilization of anatase, which changed the crystal structure, and hindered the transformation of the anatase into rutile. The results of Raman spectroscopy showed that the sulfur was dissociated in the forms of SO{sub 4}{sup 2−} and HSO{sub 4}{sup −} ions during the hydrolysis of titanyl sulfate solution. The characteristic peak at 1004 cm{sup −1} corresponding to a new complex has been observed, which was composed of SO{sub 4}{sup 2−} and hydrated titanium complex ions through the bonding on the surface. In basis of the above experimental results, the hydrolysis process of titanyl sulfate solution was illustrated from the microstructure with 3D atlas. - Highlights: • The SO{sub 4}{sup 2−} ions exist in TiO{sub 2}·H{sub 2}O by chemical and physical adsorption. • The SO{sub 4}{sup 2−} ions are conducive to the formation and

  8. Study and make sulfur dioxide treatment equipment for degradation process of fine silicate zircon ore by sulfuric acid

    International Nuclear Information System (INIS)

    Cao Dinh Thanh; Le Xuan Thu; Tran Van Hoa; Pham Kim Thoa

    2003-01-01

    The against absorbent method was researched by research group to solve the above issue. This method was carried out by adsorbent lime-milk agent on the buffer of porous material with diameter D=9 cm and height H=1.2 m. The main parameters were gained: absorbent effect reached 98% with lime-milk concentration of 14% in water, against air flow speed of 0.7 m/s and lime-milk output of 0.45 liter/minute. Base on the above main researched parameter, the SO 2 treatment equipment system by sulfuric acid was worked out with the scale of 0.5 ton/batch/day; absorbent tower diameter D=0.47 m, buffer height H=3.5 m and expenditure of 33.2 kg CaO/ton of zircon silicate. (author)

  9. Electrochemistry of iodine

    Energy Technology Data Exchange (ETDEWEB)

    Yaraliev, Ya.A. (AN Azerbajdzhanskoj SSR, Baku. Inst. Neorganicheskoj i Fizicheskoj Khimii)

    1982-06-01

    The review is devoted to investigations into oxidation-reduction processes in different systems including iodine. The data on adsorption of iodine on metals are discussed; the connection between the nature of iodine adsorption and the mechanism of its electrode reactions is considered. The metals studied can be placed in the following series taking into account the degree of I sorption on them: Cd approximately Tl < Sn approximately Pb < Ga < Bi < Hg < Co approximately Ni < Fe < Ag approximately Rh approximately Pd approximately Ir < Pt. The data are given of standard and equilibrium potentials in iodine systems. Electric oxidation and electric reduction of iodide ions is investigated using the methods of Faraday impedance and rectification, methods of voltamperometry and oscillopolarography, rotating disc electrode, chronopotentiometry. Anode and cathode processes of oxidation-reduction reactions in I/sup -//IO/sub 3//sup -/, I/sub 2//IO/sub 3//sup -/ and I/sub 2//I/sup +/ systems are analyzed.

  10. Separation and retention of iodine

    International Nuclear Information System (INIS)

    Thomas, T.R.

    1976-01-01

    Caustic and mercuric nitrate scrubbers have been used for iodine recovery from process offgas, but they exhibit low decontamination factors for organic iodide removal and produce liquid wastes that are unsuitable for final storage. The Iodox process gives high decontamination factors for both organic iodides and elemental iodine. The liquid waste can be evaporated to a solid or concentrated and fixed in cement. Efficient separation and retention of gaseous iodine species can be obtained with silver-loaded adsorbents. The waste is a dry solid easily handled and stored. Adsorbents containing cheaper metals appear to have lower iodine-loading capacities and may be unsuitable for bulk iodine removal from process offgas because of the large amounts of solid waste that would be generated. A potential method for regenerationg and recycling silver-loaded adsorbents is being evaluated. In conjunction with the regeneration, lead-exchanged zeolite is used as a secondary adsorbent for the final fixation and storage of the iodine

  11. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  12. Iodinated bleomycin

    International Nuclear Information System (INIS)

    Lunghi, F.; Riva, P.; Assone, F.; Villa, M.; Plassic, G.

    1978-01-01

    Bleomycin was labelled with iodine-131 by the iodine monochloride method. Iodination did not alter the chemical and chromatographic features and ''in vitro'' stability studies on freeze-dried 131 I-Bleomycin having a specific activity of 1 mCi/mg, stored at different temperatures, showed no appreciable variation of the free-iodine content. Tissue distribution of 131 I-Bleomycin has been evaluated in tumor bearing rats. Patients have been injected with 0.5-1.0 mCi of 131 I-Bleomycin corresponding to a maximum of 1.5 mg. No adverse reactions have been observed. Total body scans have been performed at 2, 6, 24 and 48 hours after injection. The iodinated Bleomycin was rapidly distributed and cleared from the body and showed an early uptake in the neoplastic tissue. A diagnostic accuracy of 90% has been observed in malignant deseases, while no false positive results have been, at the moment, recorded. (author)

  13. Characterization of iodine species in the marine aerosol:to understand their roles in particle formation processes

    Institute of Scientific and Technical Information of China (English)

    Hongwei Chen; Rolf Brandt; Rolf Bandur; Thorsten Hoffmann

    2006-01-01

    In this contribution,iodine chemistry in the Marine Boundary Layer(MBL)is introduced.A series of methodologies for the measurements of iodine species in the gas and particle phases of the coastal atmosphere has been developed.Iodine species in the gas phase in real air samples has been determined in two field campaigns at the west coast of Ireland,indicating that gaseous iodo-hydrocarbons and elemental iodine are the precursors of new particle formation.Particulate iodine speciation from the same measurement campaigns show that the non-water-soluble iodine compounds are the main iodine species during the marine particle formation.A seaweed-chamber experiment was performed,indicating that gaseous I2 is one of the important precursors that lead to new particle formation in the presence of solar light in the ambient air at the coastal tidal area.

  14. Study and methodology development for quality control in the production process of iodine-125 radioactive sealed sources applied to brachytherapy

    International Nuclear Information System (INIS)

    Moura, Joao Augusto

    2009-01-01

    Today cancer is the second cause of death by disease in several countries, including Brazil. Excluding skin cancer, prostate cancer is the most incident in the population. Prostate tumor can be treated by several ways, including brachytherapy, which consists in introducing sealed radioactive sources (Iodine - 125 seeds) inside the tumor. The target region of treatment receives a high radiation dose, but healthy neighbor tissues receive a significantly reduced radiation dose. The seed is made of a welding sealed titanium capsule, 0.8 mm external diameter and 4.5 mm length, enclosing a 0.5 mm diameter silver wire with Iodine-125 adsorbed. After welded, the seeds have to be submitted to a leak test to prevent any radioactive material release. The aims of this work were: (a) the study of the different leakage test methods applied to radioactive seeds and recommended by the ISO 997820, (b) the choice of the appropriate method and (c) the flowchart determination of the process to be used during the seeds production. The essays exceeded the standards with the use of ultra-sound during immersion and the corresponding benefits to leakage detection. Best results were obtained with the immersion in distilled water at 20 degree C for 24 hours and distilled water at 70 degree C for 30 minutes. These methods will be used during seed production. The process flowchart has all the phases of the leakage tests according to the sequence determined in the experiments. (author)

  15. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham.

    Science.gov (United States)

    Kim, Ji-Han; Ju, Min-Gu; Yeon, Su-Jung; Hong, Go-Eun; Park, WooJoon; Lee, Chi-Ho

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (pham (pham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham.

  17. Electrolytic technique for the chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    Wei, Tsong-Yang; Hsieh, Jung-Chun.

    1992-01-01

    An electrolyzer with an ion-exchange membrane as the separator has been used to study the electrolytic redox reaction of Ce 4+ / Ce 3+ in sulfuric acid solution, which is a reagent for predismantling system decontamination. Influencing factors such as current density, cerium concentration, acidity, electrolyte flow rate, membrane type and electrode material were studied experimentally. The results indicate that the redox can be achieved with high conversion even as the cerium concentration is below 0.005 M. However, the current efficiency strongly depends on the cerium concentration. In addition, the acid content and the electrolyte flow rate show little influence on the redox reaction. Both cation and anion membrane are feasible for this process. Therefore, the operation conditions are widely applicable. Moreover, two different electrode materials, platinized titanium meshes and graphite, were used. The results show that the platinized titanium meshes is preferable to the graphite for higher current efficiency. (author)

  18. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    Science.gov (United States)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  19. Iodine poisoning

    Science.gov (United States)

    ... Iodine is also used during the production of methamphetamine. Note: This list may not be all inclusive. ... breathing machine (ventilator) Blood and urine tests Chest x-ray EKG (electrocardiogram, or heart tracing) Fluids through a ...

  20. The effect of the sulfur concentration on the phase transformation from the mixed CuO-Bi{sub 2}O{sub 3} system to Cu{sub 3}BiS{sub 3} during the sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijian; Jin, Xin; Yuan, Chenchen; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2016-12-15

    Highlights: • Cu{sub 3}BiS{sub 3} thin films were creatively fabricated by sulfurizing metal oxide precursor. • The phase transformation mechanism during the sulfurization process was studied. • The reason why the excess S restrained the formation of Cu{sub 3}BiS{sub 3} was discussed. • The effect of temperature on film morphology and bandgap was studied. - Abstract: The ternary semiconductor Cu{sub 3}BiS{sub 3}, as a promising light-absorber material for thin film solar cells, was creatively synthesized by sulfurizing the mixed metal oxides precursor film deposited by spin-coating chemical solution method. Two kinds of sulfurization techniques were introduced to study the effect of the sulfur concentration on the phase formation for the pure Cu{sub 3}BiS{sub 3}. It was found that Cu-poor S-rich phases such as Cu{sub 3}Bi{sub 3}S{sub 7} and Cu{sub 4}Bi{sub 4}S{sub 9} were easily generated at high S concentration and then can transform to Cu{sub 3}BiS{sub 3} phase by a simple desulphurization process, which means the sulfur concentration had a significant influence on the formation of Cu{sub 3}BiS{sub 3} during the sulfurization process. The probable transformation mechanism from the mixed metal oxides to the pure Cu{sub 3}BiS{sub 3} phase during the sulfurization process was studied in detail through the XRD analysis and thermodynamic calculation. In addition, the electrical properties were characterized by Hall measurement and the effects of sulfurization temperature on the phase transformation, morphology and optical band gap of the absorber layer were also studied in detail.

  1. Process for treating the dialyzed spent liquor from sulphonic acid containing sulfur minerals or tar oils or ammonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, E A

    1936-08-09

    Process for working up the dialyzate from sulfonic acid, sulfur-containing mineral or tar oils, or their ammonium salts, characterized by the combination of known steps, in the dialyzate being reacted with alkaline-earth oxide, hydroxide, or carbonate, and the resulting slightly soluble sulfate being filtered off and evaporated if necessary.

  2. Obtention process of phosphorus 32 starting from commercial sulfur and design and construction of the radiochemical separation prototype

    International Nuclear Information System (INIS)

    Duarte A, C.; Alanis M, J.; Gutierrez R, C.

    2002-01-01

    In this work an obtention process of phosphorus 32 ( 32 P) in orthophosphoric acid form (H 3 32 PO 4 ) is described starting from commercial sulfur. Also the design and construction of the experimental prototype used in the radiochemical separation and their results in three tests carried out is reported. (Author)

  3. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  4. Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. I.; Homoki, Z. T. [Uzhgorod National University (Ukraine); Kalyuzhnaya, A. G.; Shchedrin, A. I. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2011-03-15

    A kinetic model of the processes occurring in the plasma of a high-power low-pressure gas-discharge lamp is presented, and the output characteristics of the lamp are described. The lamp is excited by a longitudinal glow discharge and emits the I{sub 2}(D Prime -A Prime ) 342-nm and XeI(B-X) 253-nm bands and the 206.2-nm spectral line of atomic iodine. When the emitter operates in a sealed-off mode on the p(He): p(Xe): p(I{sub 2}) = 400: 120: (100-200) Pa mixture, the fractions of the UV radiation power of iodine atoms, exciplex molecules of xenon iodide, and iodine molecules comprise 55, 10, and 35%, respectively. At the optimal partial pressure, the maximum total radiation power of the lamp reaches 37 W, the energy efficiency being about 15%.

  5. Iodine in diet

    Science.gov (United States)

    Diet - iodine ... Many months of iodine deficiency in a person's diet may cause goiter or hypothyroidism . Without enough iodine, ... and older children. Getting enough iodine in the diet may prevent a form of physical and intellectual ...

  6. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Awakura, Y; Hirato, T [Kyoto University, Kyoto (Japan)

    1997-02-01

    Studies are conducted to develop a new wet method for copper concentrates to replace the conventional dry smelting method for the settlement of problems involving the processing of impurities for environmental protection. A specimen of pyrites polycrystals is subjected to leaching at 80 {degree}C in a strongly acidic cupric solution. Findings are that the element sulfur generated in this process does not impede leaching and only approximately 4% of the sulfur is oxidized into sulfur ions; that the presence of more than 2g/liter of bromide ions produced during bromine-aid leaching of gold changes the structure of sulfur for the inhibition of leaching; that circulation of a bromine-containing leaching liquid is not desired since even a small amount of approximately 0.02mol/liter inhibits the leaching rate. Controlled potential electrolysis is performed for the anode in an acid solution containing CuCl, NaCl, and NaBr, for the observation of oxidation/reduction potentials predicted by Nernst`s equation. It is then disclosed that bromine is more effective than chlorine in gold leaching and that the solution potential during leaching agent regeneration enables the monitoring of solution constitution. 2 refs.

  8. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  9. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    OpenAIRE

    Krivtsova, Nadezhda Igorevna; Tataurshikov, A.; Kotkova, Elena

    2016-01-01

    Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  10. Optimization of low sulfur jerusalem artichoke juice for fossil fuels biodesulfurization process

    OpenAIRE

    Silva, Tiago P.; Paixão, Susana M.; Roseiro, J. Carlos; Alves, Luís Manuel

    2013-01-01

    Most of the world’s energy is generated from the burning of fossil fuels such as oil and its derivatives. When burnt, these fuels release into the atmosphere volatile organic compounds, sulfur as sulfur dioxide (SO2) and the fine particulate matter of metal sulfates. These are pollutants which can be responsible for bronchial irritation, asthma attacks, cardio-pulmonary diseases and lung cancer mortality, and they also contribute for the occurrence of acid rains and the increase of the hole i...

  11. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  12. Effect of iodine solutions on polyaniline films

    International Nuclear Information System (INIS)

    Ayad, M.M.; Amer, W.A.; Stejskal, J.

    2009-01-01

    Polyaniline (PANI) emeraldine-base films have been exposed to iodine solutions. The interaction between the films and the iodine solution was studied using the quartz-crystal microbalance (QCM) technique and the UV-visible absorption spectroscopy. The iodine-treated film of emeraldine base was subjected to dedoping process using 0.1 M ammonia solution. The resulting film was exposed again to the previously used iodine solution. Iodine was found to play multiple roles: the ring-iodination of PANI film, the oxidation of PANI to pernigraniline base, and iodine doping to PANI salt. A sensor based on PANI-coated electrode of QCM was developed to monitor the presence of iodine in solution.

  13. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  14. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Science.gov (United States)

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  15. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  16. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  18. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  19. Effect of Sulfur Application on Spinach Phytoremedaiton Process of Cadmium in Contaminated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Ali Kasraian

    2012-07-01

    Full Text Available Recently, cadmium (Cd concentration has increased in croplands through sewage sludge and phosphorous fertilizers application. On the other hand, some special methods, like phytoremedation, were introduced in order to decrease soil contamination hazard. Calcium carbonate plays an important role in Cd solubility in highly calcareous soils. Sulfurs oxidation, by dissolving Cd carbonate fraction, may improve phytoremediation efficiency. An experiment was conducted to study the effects of S application (equivalent to 0, 2, 4 and 6 Mg S ha-1 on Diethylene Triamine Pentaacetic Acid  (DTPA extractable Cd and also on Cd uptake and extraction by spinach (Spinacea oleracea L. in calcareous soils which were contaminated by 40mg Cd kg-1. To ensure biological S oxidation, all S-treated samples were inoculated by Thiobacillus spp. and incubated for 50 days. The soil pH, EC and soluble sulfate were affected by S application and it clearly showed that S oxidation process was occurred in Cd treated soils. The most significant change for pH and sulfate were observed at 4 Mg S ha-1 and for electrical conductivity (EC of soil it occurred at 6Mg S ha-1. Application of S had no effect on DTPA extractable Cd in soils whereas; its concentration increased 73.55% in average in plant tissue. Plant dry matter decreased significantly (about 63 percent following Cd application. Although the highest rate of S oxidation was observed at 4 and 6 Mg S ha-1 tٰٰٰhe maximum Cd extraction (2.5µg Cd pot-1 was observed at 2 Mg S ha-1 . This may be due to adverse effect of Cd toxicity and increase of soluble salt resulted by S oxidation in higher level of S application.

  20. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  1. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Luo, Guang-Qian; Hu, Hong-Yun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Qiang; Yang, Jia-Kuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Hong, E-mail: hyao@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NH{sub 3}, SO{sub 2}, H{sub 2}S and COS are emitted during different sludge conditioning processes. Black-Right-Pointing-Pointer H{sub 2}S and SO{sub 2} generation increase in the acidic environment created by H{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer Fenton peroxidation facilitates the formation of COS. Black-Right-Pointing-Pointer CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. Black-Right-Pointing-Pointer CaO leads to the conversion of free ammonia or protonated amine to volatile NH{sub 3}. - Abstract: Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH{sub 3}), sulfur dioxide (SO{sub 2}), hydrogen sulfide (H{sub 2}S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO{sub 2} and H{sub 2}S emissions in the H{sub 2}SO{sub 4} conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant

  2. Iodine removing means

    International Nuclear Information System (INIS)

    Takeshima, Masaki.

    1975-01-01

    Object: To employ exhaust gas from an incinerator to effect regeneration of an adsorbent such as active carbon which has adsorbed a radioactive gas such as iodine contained in the ventilating system exhaust gas of a boiling water reactor power plant. Structure: Radioactive exhaust gas such as iodine, xenon and krypton is led to an active carbon adsorbing means for removal through adsorption. When the adsorbing function of the active carbon adsorption means is reduced, the exhaust gas discharged from the incinerator is cooled down to 300 0 C and then caused to flow into the active carbon layer, and after depriving it of sulfur dioxide gas, oxides of nitrogen, daughter nuclides resulting from attenuation of radioactive gas and so forth, these being adsorbed by the carbon active layer, it is led again to the incinerator, whereby the radioactivity accompanying the regenerated gas is sealed as ash within the incinerator. Further, similarly accompanying fine active carbon particles and the like are utilized as a heat source for the incinerator. (Kamimura, M.)

  3. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  4. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  5. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  6. Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Jungwirth, Karel; Kalal, M.; Krása, Josef; Krouský, Eduard; Kubeš, P.; Margarone, Daniele; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Rosinski, M.; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Velyhan, Andriy; Wolowski, J.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 463-471 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser plasma * non-linear processes * magnetic self-focusing * pinching Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  7. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reduction of FFA in jatropha curcas oil via sequential direct-ultrasonic irradiation and dosage of methanol/sulfuric acid catalyst mixture on esterification process

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Ji, Dar-Ren; Wang, Yi-Yu; Yen, Yue-Quen; Chang, Ching-Yuan

    2014-01-01

    Highlights: • Ultrasonic irradiation (UI) can auto-induce temperature rise. • Esterification at higher temperature (T) by UI offers greater reduction of acid value. • Sequential UI and catalyst dosing enhance esterification conversion efficiency (η). • UR of jatropha oil at higher T results in less water content on ester as product. • A 99.35% of η is achievable via sequential UI and dosing of 5 mL per dose. - Abstract: Production of jatropha-ester (JO-ester) from jatropha oil (JO) under sequential direct-ultrasonic irradiation (UI) with auto-induced temperature rise followed by adding a mixture of methanol/sulfuric-acid catalyst (M/C) dose between high temperature intervals was studied. Comparisons with various doses of 5, 10, 16.6 and 25 mL at different temperature intervals of 108.9–120 °C, 100–120 °C, 85–120 °C and 75–120 °C respectively were performed. System parameters examined include: esterification times (t E ) for UI, settling time (t S ) after esterification and temperature (T). Properties of acid value (AV), iodine value (IV), kinematic viscosity (kV), density (ρ LO ) and water content (m w ) of JO and JO-ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. An η of 99.35% was obtained at temperature interval of 108.9–120 °C with 5 mL per dose for 20 doses and t E of 167.39 min (denoted as Process U 120-5 ), which is slightly higher than η of 98.87% at temperature interval of 75–120 °C with 25 mL per dose for 4 doses and t E of 108.79 min (noted as Process U 120-25 ). The JO-ester obtained via sequential UI with adding doses of 5 mL possess AV of 0.24 mg KOH/g, IV of 124.77 g I 2 /100 g, kV of 9.89 mm 2 /s, ρ LO of 901.73 kg/m 3 and m w of 0.3 wt.% showing that sequential UI and dose at higher temperature interval can give higher reduction of AV compared with 36.56 mg KOH/g of original oil. The effects of t S and t E on AV are of minor and moderate importance

  9. Geochemical Cycling of Iodine Species in Soils

    International Nuclear Information System (INIS)

    Hu, Q.; Moran, J.E.; Blackwood, V.

    2007-01-01

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine in soils is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the content and speciation of stable iodine in representative surface soils, and sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at numerous nuclear facilities in the United States, where anthropogenic 129 I from prior nuclear fuel processing activities poses an environmental risk. The surface soil samples were chosen for their geographic locations (e.g., near the ocean or nuclear facilities) and for their differing physico-chemical characteristics (organic matter, texture, etc). Extracted solutions were analyzed by IC and ICP-MS methods to determine iodine concentrations and to examine iodine speciation (iodide, iodate, and organic iodine). In natural soils, iodine is mostly (nearly 90% of total iodine) present as organic species, while inorganic iodine becomes important (up to 50%) only in sediments with low organic matter. Results from laboratory column studies, aimed at examining transport of different iodine species, showed much greater retardation of 4-iodoaniline than iodide or iodate. Careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. In addition to speciation, input concentration and residence time effects will influence the biogeochemical cycling of anthropogenic 129I deposited on surface soils

  10. Iodine and Pregnancy

    OpenAIRE

    Yarrington, Christina; Pearce, Elizabeth N.

    2011-01-01

    Iodine is a necessary element for the production of thyroid hormone. We will review the impact of dietary iodine status on thyroid function in pregnancy. We will discuss iodine metabolism, homeostasis, and nutritional recommendations for pregnancy. We will also discuss the possible effects of environmental contaminants on iodine utilization in pregnant women.

  11. Iodine intake in Denmark

    International Nuclear Information System (INIS)

    Pedersen, K.M.; Noehr, S.B.; Laurberg, P.

    1997-01-01

    Iodine deficiency with a high frequency of goitre and, in severely affected areas, cretinism is common in some areas of the world. In Denmark the iodine intake as evaluated by urinary iodine excretion has been at a stable low level for many years, except for the part of the population now taking iodine supplementation as part of vitamin/mineral preparations. The iodine intake is lowest in the western part to the country where an epidemiological study of elderly subjects has demonstrated a high frequency of goitre and hyperthyroidism in women. This supports the suggestion of a controlled moderate increase in iodine intake via an iodine supplementation program. (au) 40 refs

  12. Iodine intake in Ireland

    International Nuclear Information System (INIS)

    Smith, P.P.A.; Hetherton, A.M.; O'Carroll, D.; Smith, D.F.; O'Halloran, M.J.; O'Donovan, D.K.

    1988-01-01

    A study of urinary iodine excretion and thyroid gland uptake of radioactive iodine 131 I was undertaken in the Dublin area with a view to providing data on the current iodine status in Ireland. A mean urinary iodine excretion of 118±82μg/gram creatinine (Median 96) obtained from 821 subjects attending general hospital outpatient clinics in the Dublin area in 1987, while excluding severe iodine deficiency in this particular cohort, obscured the fact that 250 (30%) had iodine excretion values ≤70 μ/g creatinine, a value approximating to the minimum daily iodine requirement. The results provide sufficient evidence of sporadic iodine deficiency to justify a more widespread study of the iodine status of the Irish population with a view to making recommendations on the possible need for iodine prophylaxis

  13. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Guerrero, A.; Lopez, F. A.; Perez, C.; Alguacil, F. J.

    2012-11-01

    Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS) technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete samples with very high mercury content (up to 30 % w/w). Different UNE and RILEM standard test methods were applied, such as capillary water absorption, low pressure water permeability, alkali/acid resistance, salt mist aging, freeze-thaw resistance and fire performance. The samples exhibited no capillarity and their resistance in both alkaline and acid media was very high. They also showed good resistance to very aggressive environments such as spray salt mist, freeze-thaw and dry-wet. The fire hazard of samples at low heat output was negligible. (Author)

  15. Spectrophotometric study of the protonation processes of some indole derivatives in sulfuric acid

    Directory of Open Access Journals (Sweden)

    GORAN M. STOJKOVIC

    1999-12-01

    Full Text Available The protonation of 3-methylindole, D-tryptophan, 3-formylindole, 3-acetylindole and indolyl-2-carboxylic acid in sulfuric acid media was studied by UV spectro-scopy. The measurement of the absorbance at four selected wavelengths enabled the calculation of the corresponding molar absorptivities. The results were used to calculate the pKa value of the protonated form of the indole derivatives by the Hammett Method. The Hammett postulate (the slope of the plot log [c(BH+/c(B] vs. H should be equal to 1 was tested. The dissociation constants and solvent parameter m* were also obtained by applying the Excess Acidity Method. The position of the additional protons in the protonated compounds is discussed.

  16. Hygienic assessment of radioactive iodine isotopes

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1987-01-01

    Sources of radioactive iodine isotopes and their biological significance depending on the way of intake are discussed. The degree of food contamination by radioactive iodine as well as products, which serve as the source of its intake into the human body, and results of their processing are considered. The danger of radioactive iodine intake by different groups of population as well as thyroid irradiation effects are discussed. Description of activities, directed to the human body protection against radioactive iodine and assessment of these protection measures efficiency is presented

  17. Consuming iodine enriched eggs to solve the iodine deficiency endemic for remote areas in Thailand

    Directory of Open Access Journals (Sweden)

    Teeyapant Punthip

    2010-12-01

    Full Text Available Abstract Background Evidence showed that the occurrence of iodine deficiency endemic areas has been found in every provinces of Thailand. Thus, a new pilot programme for elimination of iodine deficiency endemic areas at the community level was designed in 2008 by integrating the concept of Sufficient Economic life style with the iodine biofortification of nutrients for community consumption. Methods A model of community hen egg farm was selected at an iodine deficiency endemic area in North Eastern part of Thailand. The process for the preparation of high content iodine enriched hen food was demonstrated to the farm owner with technical transfer in order to ensure the sustainability in the long term for the community. The iodine content of the produced iodine enriched hen eggs were determined and the iodine status of volunteers who consumed the iodine enriched hen eggs were monitored by using urine iodine excretion before and after the implement of iodine enrichment in the model farm. Results The content of iodine in eggs from the model farm were 93.57 μg per egg for the weight of 55 - 60 g egg and 97.76 μg for the weight of 60 - 65 g egg. The biological active iodo-organic compounds in eggs were tested by determination of the base-line urine iodine of the volunteer villagers before and after consuming a hard boiled iodine enriched egg per volunteer at breakfast for five days continuous period in 59 volunteers of Ban Kew village, and 65 volunteers of Ban Nong Nok Kean village. The median base-line urine iodine level of the volunteers in these two villages before consuming eggs were 7.00 and 7.04 μg/dL respectively. After consuming iodine enriched eggs, the median urine iodine were raised to the optimal level at 20.76 μg/dL for Ban Kew and 13.95 μg/dL for Ban Nong Nok Kean. Conclusions The strategic programme for iodine enrichment in the food chain with biological iodo-organic compound from animal origins can be an alternative method to

  18. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Science.gov (United States)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  19. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T; Noguchi, F; Takasu, T; Ito, H [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1997-02-01

    In the refining process for the production of copper from pyrites, heat treatment is carried out in a neutral atmosphere so that part of the sulphur will be collected in the form of simple sulfur and that pyrites naturally low in reactivity will be made active. A basic study is also conducted of a very high speed electrolytic method. The chemical aspects of pyrites which are various in composition (mainly CuFeS2) are clarified by X-ray diffraction, and then is subjected to heat-treatment in a 773K-1073K argon atmosphere. There is a decrease in the amount of sulfur at a temperatures not lower than 973K. The X-ray main diffraction line splits for the emergence of some lower angle diffraction lines. The specimen is then subjected to a leach test in a copper chloride base liquor, to disclose that leachability grows remarkably higher in the presence of a great change in the X-ray diffraction lattice constant. An experiment follows in which an electrolyte is allowed to flow at a high speed for accelerating the rate of electrolytic refining in an effort to prevent the passivation of anode and deposition of dendrite on the cathode that is apt to occur when the current density is high. Passivation is prevented when the flow rate is 10m/min or higher in the vicinity of the anode surface for the formation of a smooth electrodeposited surface. 2 refs., 2 figs., 2 tabs.

  20. Putting to point the production process of iodine-131 by dry distillation (Preoperational tests); Puesta a punto el proceso de produccion de yodo-131 por destilacion seca (Pruebas preoperacionales)

    Energy Technology Data Exchange (ETDEWEB)

    Alanis M, J. [ININ, Departamento de Materiales Radiactivos, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-12-15

    With the purpose of putting to point the process of production of {sup 131}I, one of the objectives of carrying out the realization of operational tests of the production process of iodine-131, it was of verifying the operation of each one of the following components: heating systems, vacuum system, mechanical system and peripheral equipment that are part of the production process of iodine-131, another of the objectives, was settling down the optimal parameters that were applied in each process during the obtaining of iodine-131, it is necessary to point out that this objective is very important, since the components of the equipment are new and its behavior during the process is different to the equipment where its were carried out the experimental studies. (Author)

  1. Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S){sub 2} solar cells fabricated by two-step sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, JungYup; Nam, Junggyu; Kim, Dongseop; Lee, Dongho, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [Photovoltaic Development Team, Energy Storage Business Division, Samsung SDI, Cheonan-si 331-300 (Korea, Republic of); Kim, GeeYeong; Jo, William [Department of Physics and New and Renewable Energy Research Center, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kang, Yoonmook, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-11-09

    Cu(In,Ga)(Se,S){sub 2} (CIGSS) absorber layers were fabricated by using a modified two-stage sputter and a sequential selenization/sulfurization method, and the sulfurization process is changed from one-step to two-step. The two-step sulfurization was controlled with two different H{sub 2}S gas concentrations during the sulfurization treatment. This two-step process yielded remarkable improvements in the efficiency (+0.7%), open circuit voltage (+14 mV), short circuit current (+0.23 mA/cm{sup 2}), and fill factor (+0.21%) of a CIGSS device with 30 × 30 cm{sup 2} in size, owing to the good passivation at the grain boundary surface, uniform material composition among the grain boundaries, and modified depth profile of Ga and S. The deterioration of the P/N junction quality was prevented by the optimized S content in the CIGSS absorber layer. The effects of the passivation quality at the grain boundary surface, the material uniformity, the compositional depth profiles, the microstructure, and the electrical characteristics were examined by Kelvin probe force microscopy, X-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and current-voltage curves, respectively. The two-step sulfurization process is experimentally found to be useful for obtaining good surface conditions and, enhancing the efficiency, for the mass production of large CIGSS modules.

  2. Radioactive Iodine Treatment for Hyperthyroidism

    Science.gov (United States)

    ... Balance › Radioactive Iodine for Hyperthyroidism Fact Sheet Radioactive Iodine for Hyperthyroidism April, 2012 Download PDFs English Zulu ... prepare for RAI or surgery. How does radioactive iodine treatment work? Iodine is important for making thyroid ...

  3. Iodine and thyroid function

    Directory of Open Access Journals (Sweden)

    Hye Rim Chung

    2014-03-01

    Full Text Available Severe iodine deficiency causes hypothyroidism that results in impaired somatic growth and motor development in children. Mild and moderate iodine deficiencies cause multifocal autonomous growth of thyroid, which results in thyrotoxicosis. On the other hand, iodine excess is associated with the development of hypothyroidism and thyroid autoimmunity. In areas of iodine deficiency, a sudden increase in iodine intake is associated with transient hyperthyroidism. Recent studies demonstrated that long-term thyroid function of subjects who experienced both iodine deficiency and iodine excess during childhood tended to be abnormal despite optimization of their current iodine intake. Iodine status in the Korean Peninsula is very unique because people in the Republic of Korea have been shown to have predominantly excessive iodine levels, whereas the Democratic People's Republic of Korea is known to be an iodine-deficient area. Further research is warranted to verify the optimal ranges of iodine intake and to clarify the effects of iodine intake on thyroid disorders in the Korean Peninsula.

  4. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review

    International Nuclear Information System (INIS)

    Ghosh, Shiladitya; Dairkee, Umme Kulsoom; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2017-01-01

    Highlights: • Food processing wastes/wastewaters are potential feedstocks for PNSB-bioH_2 systems. • Several bottlenecks exist in efficient usage of food processing wastes/wastewaters by PNSBs. • Pretreatment of feedstocks is a challenging issue. • Genetic modification significantly enhances the H_2 outcome of PNSBs. • Food waste/wastewater - PNSB is a sustainable combination for production of H_2. - Abstract: Purple non-sulfur bacteria (PNSB) mediated production of biohydrogen utilizing solid food waste and food processing wastewater possess enormous potential to be implemented as an ideal “green energy technology”. This paper reviews the current state-of-the-art utilization of solid wastes and wastewaters of several food and beverage processing industries in photofermentative H_2 production systems. Detailed accounts of the complex composition of various solid food wastes and food processing wastewaters along with the pretreatments used for enhancement of H_2 production by PNSBs have been presented. Factors like compositional complexity, presence of inhibitory compounds and resistance to light penetration are identified as the prime bottlenecks hindering the efficient utilization of food waste and wastewaters in photofermentative H_2 production. Genetic manipulation of the PNSBs to overcome the inherent metabolic complications has been discussed as a probable amelioration strategy for enhancement of H_2 yield. Based on profound discussions the scopes for upgradation of the photofermentative biohydrogen systems using food waste/wastewater have been highlighted and recommended for the overall enhancement of the sustainability of the processes.

  5. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  6. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  7. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 129I Moessbauer spectroscopic study of several n-σ charge-transfer complexes of iodine with thioethers

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Matsuyama, Tomochika; Maeda, Yutaka

    1986-01-01

    129 I Moessbauer studies have been made of n-σ charge-transfer complexes of iodine with thioethers, such as thiane, 1,4-oxathiane, and 1,4-dithiane. The spectra of these complexes consist of two sets of quadrupole octets, corresponding to the bridging and terminal iodine atoms. The transferred charges from the thioethers are localized on the terminal iodine atoms, and the bridging iodine atoms have slightly positive charges. This result can be well explained in terms of a covalent bond between the sulfur and bridging iodine atoms or the MO treatment of a delocalized three-center four-electron bonding. The contributions of the dative structure to the ground state are estimated to be 36, 28, and 24 % for thiane-iodine, 1,4-oxathiane-iodine, and 1,4-dithiane-iodine respectively. The nature of the charge-transfer bond is discussed in comparison with amine-iodine complexes. (author)

  9. The kinetic study of oxidation of iodine by hydrogen peroxide

    International Nuclear Information System (INIS)

    Cantrel, L.; Chopin, J.

    1996-01-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40 o C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H + ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I 2 ], [IO 3 - ], [H 2 O 2 ] and [H + ]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs

  10. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  11. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  12. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  13. Management modes for iodine-129

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.

    1984-01-01

    This study completes a two-stage programme, supported by the Commission of the European Communities, on management modes for iodine-129. The models for the radiological assessment of iodine-129 management modes have been reviewed and, where necessary, revised, and a generic radiological assessment has been carried out using these models. Cost benefit analysis has been demonstrated for a variety of iodine-129 management modes; for a wide range of assumptions, the costs of abatement of atmospheric discharges would be outweighed by the radiological benefits. The cost benefit analysis thus complements and confirms the preliminary conclusion of the previous study: iodine-129 should be trapped to a large extent from the off-gases of a large reprocessing plant and disposed of by other suitable means, in order to ensure that all exposures from this radionuclide are as low as reasonably achievable. Once the major fraction of the iodine-129 throughput of a reprocessing plant has been trapped from the dissolver off-gases, there are unlikely to be strong radiation protection incentives either for further trapping from the dissolver off-gases or for trapping from the vessel off-gases. In a generic study it is not possible to state an optimum choice of process(es) for abatement of atmospheric discharges of iodine-129. This choice must be determined by assessments in the specific context of a particular reprocessing plant, its site, the waste disposal routes that are actually available, and also in the wider context of the management plans for all radioactive wastes at the plant in question

  14. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    International Nuclear Information System (INIS)

    Norman, J.C.; Sell, N.J.; Ciriacks, J.C.

    1990-01-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia

  15. Linde Rectiscol{reg_sign} process. The most economic and experienced wash process for removal of sulfur compounds and CO{sub 2} from gasification gases

    Energy Technology Data Exchange (ETDEWEB)

    Kaballo, H.-P.; Kerestceciogly, U. [Linde AG, Hoellriegelskreuth (Germany). Linde Engineering Division

    2006-07-01

    The Recitsol{reg_sign} wash process is a well-proven process for the removal of H{sub 2}S/COS and CO{sub 2} from coal, asphalt, pitch or oil derived synthesis gas. It is a physical gas wash system using methanol as solvent at operating temperatures below water freezing point, to produce a synthesis gas with less than 0.1 vppm of total sulfur. The CO{sub 2} content can be adjusted in a range from several mol-percent down to a few ppm, as is required by the specified application. Its main advantages are the use of cheap and readily available methanol as solvent, the very flexible process configuration, and rather low utility consumption figures compared with other wash processes, like PEGE based process or chemical washes. A modern concept of a Rectisol{reg_sign} unit is described, to treat shifted and un-shifted gases in just one plant: shifted gas was used for hydrotreating in a refinery. Unshifted gas was used as fuel gas for power generation in an IGCC. CO{sub 2} of the unshifted feed gas was removed only partly, because the remaining CO{sub 2} was fed as inert gas together with the fuel gas to an IGCC. All sulfur compounds of both feed gases were concentrated in one single stream with a high H{sub 2}S concentration. Impurities like NH{sub 3}, HCN or metal carbonyls were eliminated nearly quantitatively. 4 refs., 4 figs., 3 tabs.

  16. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides

    International Nuclear Information System (INIS)

    Barrachina, M.; Villar, M. A.

    1965-01-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs

  17. Iodination of phenol

    International Nuclear Information System (INIS)

    Christiansen, J.V.; Feldthus, A.; Carlsen, L.

    1990-01-01

    Phenol is iodinated in aqueous solution at pH 5 (acetate buffer) by elemental iodine or, if the iodine is present as iodide, enzymatically controlled by peroxidases. Generally mono-, di- and triiodophenols are obtained, the overall product composition being virtually identical for the two iodination modes. However, there is a tendency to a higher para to ortho ratio for the enzymatically controlled reaction. The mutual ratios of the single iodophenols depends on the initial concentration ratio between phenol and the iodinating species. The first step in the iodination leads preferentially to substitution in the ortho position rather than in the para position in contract to e.g. the corresponding bromination. The relative rates of the competive reactions in the combined iodination scheme has been derived. (author) 2 tabs., 3 ills., 15 refs

  18. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  19. Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    Directory of Open Access Journals (Sweden)

    Shokri Saeid

    2015-01-01

    Full Text Available An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR was developed and the effects of integrating Vector Quantization (VQ with Principle Component Analysis (PCA were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR was better than (PCA-SVR in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995 in comparison with investigated models.

  20. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  1. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Lopez, F. A.; Alguacil, F. J.; Padilla, I.; Guerrero, A.

    2012-11-01

    European Directives consider mercury a priority hazardous substance due to its adverse effects on human health and the environment. In response to environmental concerns, a microencapsulation process has been developed within the European LIFE program as a long-term storage option for mercury. This process leads to the obtainment of a stable concrete-like sulfur matrix that allows the immobilization of mercury. The final product, in the form of a solid block containing up to 30 % Hg, exhibits excellent mechanical properties (compressive strength 53-61MPa and flexural strength 7-10 MPa), low porosity (0.57 % PHe), very low total pore volume (0.63x10-2 cm{sup 3} g{sup -}1), and extremely low permeability (coefficient of water absorption by capillarity 0.07 g cm{sup -}2). Toxicity characteristic leaching tests reveal a mercury concentration in leachates well below the 0.2 mg L{sup -}1 set out in US EPA Land Disposal Restrictions (LDRs). The values of mercury vapor emissions of final products were lower than those of cinnabar and meta cinnabar. (Author)

  2. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    Directory of Open Access Journals (Sweden)

    López-Delgado, A.

    2012-02-01

    Full Text Available Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete samples with very high mercury content (up to 30 % w/w. Different UNE and RILEM standard test methods were applied, such as capillary water absorption, low pressure water permeability, alkali/acid resistance, salt mist aging, freeze-thaw resistance and fire performance. The samples exhibited no capillarity and their resistance in both alkaline and acid media was very high. They also showed good resistance to very aggressive environments such as spray salt mist, freeze-thaw and dry-wet. The fire hazard of samples at low heat output was negligible.

    Dentro del Programa Europeo LIFE, se ha desarrollado un proceso de microencapsulación de mercurio liquido, utilizando la tecnología de estabilización/solidificación con azufre polimérico (SPSS. Como resultado se ha obtenido un material estable tipo concreto que permite la inmovilización de mercurio y su almacenamiento a largo plazo. La descripción del proceso y la caracterización de los materiales obtenidos, denominados concretos Hg-S, se detallan en la Parte I. El presente trabajo, Parte II, incluye los resultados de los diferentes ensayos realizados para determinar la durabilidad de las muestras de concreto Hg-S con un contenido de mercurio de hasta el 30 %. Se han utilizado diferentes métodos de ensayo estándar, UNE y RILEM, para determinar propiedades como la absorción de agua por capilaridad, la permeabilidad de agua a baja presión, la resistencia a álcali y ácido, el comportamiento en

  3. Iodine and microbial interactions in an organic soil

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Hawkins, J.L.

    1995-01-01

    Iodine-129 in groundwater discharging from a geological disposal vault could accumulate in wetlands by chemical sorption onto low pH, highly organic solid surfaces or by direct or indirect microbial processes. Previous work indicated that saturation of anion sorption sites, microbial toxicity, or swamping of the I reduction/oxidation reaction decreased the retention of a wetland sphagnum for iodine with increased iodine porewater concentrations. Bog water and peat of an iodine-rich bog were studied to elucidate the role of micro-organisms in the retention and accumulation of iodine in a temperate wetland. (author)

  4. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  5. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process.

    Science.gov (United States)

    Ghorbel, L; Coudert, L; Gilbert, Y; Mercier, G; Blais, J F

    2016-10-01

    This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

  6. Energy Harvesting, Electrode Processes and the Partitioning and Speciation of Solid Phase Iron and Sulfur in Marine Sediments

    National Research Council Canada - National Science Library

    Reimers, Clare

    2003-01-01

    .... Sediment, pore water and electrode surface analyses indicated that electricity product ion is coupled to the oxidation of dissolved and solid-phase forms of reduced sulfur supplied from the sediments...

  7. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  8. Development of chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Tachikawa, Enzo

    1988-01-01

    The electrolytic regeneration of Ce 4+ from Ce 3+ , which is required to achieve a high decontamination factor (DF) in this process, has been investigated. A calculating model was derived for the regenerating current required during the decontamination as a function of dissolution rate of crud, corrosion rate (R c ), current efficiency (η e ) and characteristics of decontamination loop. From the above calculation, it was found that the current was mainly governed by R c and η e . A condition to obtain a high DF at low R c and high η e has been found experimentally by use of a mixture of Ce 3+ at the ratio of Ce 4+ /Ce 3+ = 0.1 ∼ 0.2. The desired values to be η e ≥ 80 % at above 50 A/m 2 was obtained under the flow rate above 300 cm/min and Ce 3+ concentration above 10 x 10 -3 M at 60 deg C using the dual-cylindrical type cell. The current efficiency was also investigated with cells of various geometries. The present decontamination process has been proposed as a system decontamination process, which is essentially a single-step decontamination process for Cr-rich oxides. (author)

  9. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    Science.gov (United States)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Transition processes in solid-phase electrochemical systems including sulfur-containing components

    International Nuclear Information System (INIS)

    Arkhipova, N.V.; Mikhajlova, A.M.; Seryanov, Yu.V.

    2005-01-01

    Transition processes in direct-contact systems Li/Sb 2 S 3 and Li/Sb 2 S 5 are studied. As shown by potentiodynamic voltammetry, an Li 3 SbS 3 interphase is the most probable product of the cathodic reduction at direct-contact interfaces. At certain polarizations and current densities, under potentiodynamic and galvanostatic conditions, the main current-producing processes that lead to the formation of the Li 3 SbS 3 interphase compete with passivating cathodic reactions which occur via the mechanism of monolayer adsorption and result in the formation of an Li 2 S product which blocks grains of the lithium thiostibnite interphase. Effective transfer coefficients of passivating reactions are twice those of the main current-producing cathodic reactions [ru

  11. Iodine deficiency and iodine excess in Jiangsu Province, China

    NARCIS (Netherlands)

    Zhao, J.

    2001-01-01

    Keywords:
    iodine deficiency, iodine excess, endemic goiter, drinking water, iodine intake, thyroid function, thyroid size, iodized salt, iodized oil, IQ, physical development, hearing capacity, epidemiology, meta-analysis, IDD, randomized trial, intervention, USA, Bangladesh,

  12. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition.

    Science.gov (United States)

    Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki

    2006-11-01

    Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.

  13. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Science.gov (United States)

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  14. Solar hydrogen project - Thermochemical process design

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Ng, L.F.; Rao, M.S.M.; Wu, S.F.; Zoschak, R.J.

    1984-08-01

    The thermochemical decomposition of water using solar energy offers an elegant way of combining solar and chemical technologies to produce a high quality fuel. The DOE has sponsored Foster Wheeler to develop a process design for a solar water-splitting process based on the sulfuric acid/iodine cycle. The study has centered around the design of a sulfuric acid decomposition reactor and the central receiver. Materials' properties impose severe constraints upon the design of decomposition reactor. In this paper, the constraints imposed on the design are specified and a reactor and receiver design is presented together with a preliminary design of the balance of plant.

  15. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  16. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  17. Apparatus for eliminating radioactive iodine from off-gases in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kondo, Yoshikazu; Kurihara, Koichi.

    1983-01-01

    Purpose: To improve the eliminating efficiency of an iodine eliminating apparatus using a dry process. Constitution: A hydrogen iodide conversion device and an organic iodine decomposing device are disposed prior to and subsequent to an adsorption tower using adsorbents for the removal of the iodine in a processing gas line through which radioactive iodine containing gases are passed. Elementary iodine and organic iodine can be eliminated by such simple devices. In the case of the dry processing by using the adsorbents, those adsorbents incorporated with inexpensive metal such as lead and copper can be used for the removal of the organic iodine and the radioactive iodine-adsorbing material can be processed as wastes, whereby iodine can effectively be eliminated at a reduced cost. (Moriyama, K.)

  18. Iodine deficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S M [Pakistan Council for Science and Technology, Islamabad (Pakistan)

    1994-12-31

    Iodine deficiency (IDD) is one of the common problem in the diet. Iodine deficiency as prevalence of goiter in population occurs in the mountainous areas. There is consensus that 800 million people are at risk of IDD from living in iodine deficient area and 190 million from goiter. Very high prevalence of IDD in different parts of the world are striking. It has generally observed that in iodine-deficient areas about 50% are affected with goiter, 1-5% from cretinsim and 20% from impaired mental and/or mortor function. (A.B.).

  19. Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-07-02

    Benzene, toluene and xylene (BTX) are present as contaminants in the H 2S gas stream entering a Claus furnace. The exhaust gases from the furnace enter catalytic units, where BTX form soot particles. These particles clog and deactivate the catalysts. A solution to this problem is BTX oxidation before the gases enter catalyst beds. This work presents a theoretical investigation on benzene oxidation by SO2. Density functional theory is used to develop a detailed mechanism for phenyl radical -SO2 interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond breakage, leading to the release of SO. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO2 is observed. The reaction rate constants are also evaluated to facilitate process simulations. © 2014 American Chemical Society.

  20. The distribution and transformations of iodine in the environment

    International Nuclear Information System (INIS)

    Whitehead, D.C.

    1984-01-01

    Iodine in the atmosphere is derived largely from seawater. It is probable that the biological production of methyl iodide is important in this transfer. Subsequent photolytic dissociation and oxidation of the methyl iodide, together with other inputs, with partial sorption of the products by aerosols, results in the atmospheric iodine being distributed between various gaseous and particulate forms. Atmospheric iodine is the major source of the iodine in soils, and the process of enrichment continues throughout soil formation and development until ultimately an equilibrium concentration is attained. The atmosphere is also a direct source of iodine for plants, and in some situations may be more important than the soil. Iodine may be lost from soils by leaching, volatilization, and removal in crops. The amounts of iodine reported in groundwaters, and in rivers and lakes remote from human activity, suggest that some leaching of iodine is widespread. Increased amounts of iodine occur in rivers receiving effluent from sewage works. Milk and milk products are now major dietary sources of iodine because their content is often increased by concentrate feedingstuffs supplemented with iodine and/or by the use in dairies of iodophor detergents and sterilants. (author)

  1. Iodine uptake and distribution in horticultural and fruit tree species

    Directory of Open Access Journals (Sweden)

    Alessandra Caffagni

    2012-07-01

    Full Text Available Iodine is an essential microelement for humans and iodine deficiency disorder (IDD is one of the most widespread nutrient-deficiency diseases in the world. Iodine biofortification of plants provides an attractive opportunity to increase iodine intake in humans and to prevent and control IDD. This study was conducted to investigate the iodine uptake and accumulation in edible portion of two fruit trees: plum and nectarine, and two horticultural crops: tomato and potato. Two type of iodine treatments (soil and foliar spray application, and, for fresh market tomato, two production systems (open field and greenhouse hydroponic culture were tested. The distribution of iodine in potato stem and leaves, and in plum tree fruits, leaves, and branches was investigated. Iodine content of potato tubers after postharvest storage and processing (cooking, and iodine content of nectarine fruits after postharvest storage and processing (peeling were also determined. Differences in iodine accumulation were observed among the four crops, between applications, and between production systems. In open field, the maximum iodine content ranged from 9.5 and 14.3 μg 100 g−1 for plum and nectarine fruit, to 89.4 and 144.0 μg 100 g−1 for potato tuber and tomato fruit, respectively. These results showed that nectarine and plum tree accumulated significantly lower amounts of iodine in their edible tissues, in comparison with potato and tomato. The experiments also indicated hydroponic culture as the most efficient system for iodine uptake in tomato, since its fresh fruits accumulated up to 2423 μg 100 g−1 of iodine. Iodine was stored mainly in the leaves, in all species investigated. Only a small portion of iodine was moved to plum tree branches and fruits, and to potato stems and tubers. No differences in iodine content after fruit peeling was observed. A significant increase in iodine content of potato was observed after baking, whereas a significant decrease was

  2. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  3. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  4. Present status of iodine research at IPSN

    Energy Technology Data Exchange (ETDEWEB)

    Bardelay, J [IPSN/DPEA/SEAC (France)

    1996-12-01

    Since several years, IPSN has conducted an effort in order to evaluate the release of radioactive iodine in case of hypothetical severe accident in a realistic manner. This source-term evaluation is performed with IODE code which is a module of the EXCADRE system of codes. This code is validated against: -analytical experiments: in these experiments, IPSN studies radiolytic effects and chemical processes in the sump, organic formation, mass transfer, effect of spray (CARAIDAS experiment), - the CAIMAN semi global experiment; this experiment will allow to study the phenomena linked to iodine behavior under representative containment geometry in the presence of painted surfaces and global irradiation, - the PHEBUS FP program. The paper consists to describe succinctly the current status of IODE and the various experiments for its validation. In case of hypothetical severe accident iodine can induce important perturbations of human organism. The effects are principally radiological, in particular on the thyroid. At short term, radioactive iodine is the most important contributor for the sanitary risk. It represents 55% of effective dose and 92% of thyroid dose at 10 km in case of controlled rejects with current assumptions. This is the reason why it must be actively studied. In France, the safety evaluations are performed with mechanistic codes or lumped parameter codes like EXCADRE which contains a module devoted to iodine studies: IODINE. The objective of the French experimental program on iodine is to understand and quantify important phenomena in order to put kinetic parameters in IODE module. The experiments can be classified in analytical experiments, the semi-global experiment CAIMAN which takes into account different phenomena studied in analytical experiments and the global experiment PHEBUS PF, not only devoted to iodine behavior study. In the following text we will present the needs of IODINE code and these different experiments. (author).

  5. Present status of iodine research at IPSN

    International Nuclear Information System (INIS)

    Bardelay, J.

    1996-01-01

    Since several years, IPSN has conducted an effort in order to evaluate the release of radioactive iodine in case of hypothetical severe accident in a realistic manner. This source-term evaluation is performed with IODE code which is a module of the EXCADRE system of codes. This code is validated against: -analytical experiments: in these experiments, IPSN studies radiolytic effects and chemical processes in the sump, organic formation, mass transfer, effect of spray (CARAIDAS experiment), - the CAIMAN semi global experiment; this experiment will allow to study the phenomena linked to iodine behavior under representative containment geometry in the presence of painted surfaces and global irradiation, - the PHEBUS FP program. The paper consists to describe succinctly the current status of IODE and the various experiments for its validation. In case of hypothetical severe accident iodine can induce important perturbations of human organism. The effects are principally radiological, in particular on the thyroid. At short term, radioactive iodine is the most important contributor for the sanitary risk. It represents 55% of effective dose and 92% of thyroid dose at 10 km in case of controlled rejects with current assumptions. This is the reason why it must be actively studied. In France, the safety evaluations are performed with mechanistic codes or lumped parameter codes like EXCADRE which contains a module devoted to iodine studies: IODINE. The objective of the French experimental program on iodine is to understand and quantify important phenomena in order to put kinetic parameters in IODE module. The experiments can be classified in analytical experiments, the semi-global experiment CAIMAN which takes into account different phenomena studied in analytical experiments and the global experiment PHEBUS PF, not only devoted to iodine behavior study. In the following text we will present the needs of IODINE code and these different experiments. (author)

  6. Petrographic and isotopic evidence for late-stage processes in sulfuric acid caves of the Guadalupe Mountains, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Palmer Arthur N.

    2012-07-01

    Full Text Available Caves of the Guadalupe Mountains have experienced many modifications since their final phase of sulfuric acid speleogenesis several million years ago. Petrographic and geochemical data reveal details of the change from H2SO4 to CO2-dominated reactions. The H2SO4 dissolution front acquired a coating of replacement gypsum with local pockets of anhydrite and by-products of altered clay, including Fe-Mn oxides. Alteration of bedrock beneath the gypsum produced a white micritized rind with small negative shifts in δ13C and δ18O. Solution basins contain records of the earliest post-speleogenetic processes: corroded bedrock, residual anhydrite, Fe-Mn oxides from fluctuating pH and Eh, mammillary calcite, and dolomitization. Later meteoric water removed or recrystallized much of the gypsum and early micrite, and replaced some gypsum with calcite. Mammillary crusts demonstrate fluctuating groundwater, with calcite layers interrupted by films of Fe-Mn oxides precipitated during periodic inflow of anoxic water. Condensation moisture (from local evaporation absorbs CO2 from cave air, corroding earlier features and lowering their δ13C and δ18O. Drips of condensation water deposit minerals mainly by evaporation, which increases δ18O in the speleothems while δ13C remains nearly constant. By forcing calcite precipitation, evaporation raises the Mg content of remaining water and subsequent precipitates. Dolomite (both primary and replacive is abundant. In areas of low air circulation, water on and within carbonate speleothems equilibrates with cave-air CO2, causing minerals to recrystallize with glassy textures. Fluorite on young evaporative speleothems suggests a recent release of deep-source HF gas and absorption by droplets of condensation water.

  7. Long-term migration of iodine in sedimentary rocks based on iodine speciation and 129I/127I ratio

    Science.gov (United States)

    Togo, Y.; Takahashi, Y.; Amano, Y.; Matsuzaki, H.; Suzuki, Y.; Muramatsu, Y.; Iwatsuki, T.

    2012-12-01

    showed that iodine in rock was a mixture of organic and inorganic iodine. According to iodine and carbon mapping in micrometer scale, iodine was accumulated locally and correlated with carbon, suggesting that iodine existed as organic iodine. The 129I/127I isotope ratios in groundwater were lower than those in rocks and almost constant at various depths, demonstrating that iodine in groundwater was released from layers deeper than co-existing rocks. According to these results, migration of iodine in this area can be expected as follows. (i) During sedimentation of Wk and Kt Fms, iodine was accumulated as organic iodine in siliceous sediments. (ii) Iodine was released as I- from the layers deeper than Wk Fm during diagenetic processes. Subsequently, iodine rich groundwater was distributed to Wk and Kt Fms due to the compaction of the layers. (iii) During uplift and denudation processes, both iodine and chlorine were diluted by meteoric water from the surface. Iodine distribution coefficient (Kd = [I concentration in rock]/[I concentration in groundwater]) of Kt Fm is higher than that in Wk Fm. Diatomaceous mudstones might be more effective than siliceous mudstones as natural barrier for 129I released from deep underground radioactive waste repository. This suggestion should be reinforced by laboratory experiments in future studies.

  8. Marine geochemistry of iodine

    International Nuclear Information System (INIS)

    Kennedy, H.; Elderfield, H.

    1985-01-01

    Iodine has long been classified as a biophilic element with analyses showing that iodine is strongly enriched, relative to seawater concentrations in both plankton and particulate matter and that the concentration of iodine found in surface sediments is still further enriched relative to that found in the sedimenting particulate matter. The extent of enrichment of iodine relative to carbon in deep sea surface sediments has been shown to depend on the carbon accumulation rate. Iodine decomposition rates have been calculated and are shown to vary with the sedimentation rate in the same manner as has been shown for organic carbon. Vertical profiles of total dissolved iodine, iodate and iodide in interstitial waters of sediments from the north east Atlantic are characterised by three zones of reaction as identified by changes in the concentration of iodate and iodide. These reaction zones represent (i) iodide production (ii) iodide oxidation and (iii) iodate reduction. Pore water and solid phase iodine profiles from cores containing turbidite units have shown that iodine, released to pore waters as iodide during the oxidation of the organic matter, has been scavenged after diffusing upwards into a less reducing region of the sediment. (author)

  9. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed

  10. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  11. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    Science.gov (United States)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  12. Iodine leaflets in chapter D5 'Distribution of iodine pills'

    International Nuclear Information System (INIS)

    1981-01-01

    Jodine leaflet A will be distributed together with iodine pills in a nuclear disaster. Iodine leaflet B is suitable for informing the public in advance. Iodine leaflet C informs physicians in a scientific way on the benefits and risk of iodine pills. (orig./HP) [de

  13. Iodine generator for reclaimed water purification

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H. (Inventor)

    1977-01-01

    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser.

  14. Is placental iodine content related to dietary iodine intake?

    LENUS (Irish Health Repository)

    Burns, R

    2011-08-01

    Delivery of iodine to the foetus depends not only on maternal dietary iodine intake but also on the presence of a functioning placental transport system. A role for the placenta as an iodine storage organ has been suggested, and this study compares the iodine content of placentas from women giving birth at term in Ireland and Iran, areas with median urinary iodine of 79 and 206 μg\\/l respectively.

  15. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of sulfur dioxide and sulfuric acid on the physiological-biochemical processes in the leaves of plants. [Acer negundo; Betula verrucosa

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Suslova, V S

    1967-01-01

    In the vicinity of copper-smelting plants, the boxelder (Acer negundo) had an injury rate of 5-10% of a period of years, the European white birch (Betula verrucosa), 60-100%. During the 1st stages of the action of H2SO4 and SO2 on the boxelder, observations were made of an active rise in reducing substances, but in the birch there was intensification of oxidative processes. The discovery of a peak of intensification of oxidative activity after stopping peroxidase activity is explained by the activation of cytochrome oxidase and other oxidative systems. It is suggested that H2SO4 affects the oxidation-reduction conditions in the plants not only through the change in pH of the medium but also biochemically. H2SO4 and SO2 exert similar effects on plants in trials: there is very rapid inactivation of catalase and unique behavior of peroxidase. 8 references, 5 figures.

  17. FY1995 development of novel processes for copper concentrates without producing sulfuric acid; 1995 nendo hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To develop a novel process for copper concentrates which includes leaching of copper with acidic cupric chloride solutions, aiming at the recovery of sulfur in its elemental form, and leaching of gold from the residue with dissolved bromine. The effect of bromide ions on the leaching of chalcopyrite with 1.0 mol dm{sup -3} CuCl{sub 2} has been investigated at 353 K, and it was found that bromide ions have no influence on the leaching rate and the morphology of elemental sulfur deposited on the surface of chalcopyrite. Dissolved bromine has trivial effects on the morphology and oxidation of porous elemental sulfur covering the residue. However, the dissolved bromine even at 0.02 mol dm-3 depresses the leaching rate of chalcopyrite significantly. Electrotechnical oxidation of cuprous ions, chloride ions and bromide ions in the solution has examined to understand the regeneration of leachant, and it was found that these ions are oxidized simultaneously on the anode surface under the condition of galvanostatic electrolysis, but these oxidants diffuse toward the bulk of solution and react with their reductants. Thus the redox potential of the solution increases gradually showing the temporary stagnation in potential for oxidation of Cu{sup +}, Br{sup -} and Cl{sup -} ions respectively. (NEDO)

  18. Iodine in meat in Macedonia

    International Nuclear Information System (INIS)

    Bogdanov, Bogdan; Gonev, Mihajlo; Tadzher, Isak

    2000-01-01

    Iodine deficiency in Macedonia still persists in a mild form. In 1999 the iodination of salt rose to 20 m gr iodine in Kg salt. The consumption of salt diminished after the last war from 20-30 gr salt per day to 10-20 gr salt daily. This shows that the problem of the elimination of iodine deficiency is being vigorously tackled. Since 1956 the iodine in salt in Macedonia rose to 10 m gr KI/Kg salt. The content of iodine in the Macedonian diet seems to be important. The amount of iodine in milk, eggs and bread is low as found by the investigation of MANU. The content of iodine in meat is low, compared to British meat is 10 times lower. The average iodine content in Macedonian meat is 95.15 micro gr per Kg, whereas in British meat it is 850-1510 micro gr iodine per k gr meat. (Original)

  19. The kinetic study of oxidation of iodine by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L [Institut de Protection et de Surete Nucleaire, IPNS, CEN Cadarache, Saint Paul lez Durance (France); Chopin, J [Laboratoire d` Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40{sup o}C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H{sup +} ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I{sub 2}], [IO{sub 3}{sup -}], [H{sub 2}O{sub 2}] and [H{sup +}]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs.

  20. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  1. Degradation of Iodinated Contrast Media in Aquatic Environment by Means of UV, UV/TiO2 Process, and by Activated Sludge.

    Science.gov (United States)

    Borowska, Ewa; Felis, Ewa; Żabczyński, Sebastian

    Iodinated contrast media (ICM), which are used for radiological visualization of human tissue and cardiovascular system, are poorly biodegradable; hence, new methods of their removal are sought. In this study, the effectiveness of selected X-ray ICM removal by means of UV and UV/TiO 2 pretreatment processes from synthetic hospital wastewater was demonstrated. The following compounds were investigated: iodipamide, iohexol, and diatrizoate. The experiments were as follows: (i) estimated susceptibility of the ICM to decay by UV radiation in different aquatic matrices, (ii) determined an optimal retention time of hospital wastewater in the UV reactor, (iii) determined optimum TiO 2 concentration to improve the effectiveness of the UV pretreatment, and (iv) investigated removal of ICM by combination of the photochemical and biological treatment methods. The quantum yields of selected ICM decay in deionized water (pH = 7.0) were established as 0.006, 0.004, and 0.029 for iohexol, diatrizoate, and iodipamide, respectively. Furthermore, the experiments revealed that diatrizoate and iohexol removal in the UV/TiO 2 process is more efficient than in UV process alone. For diatrizoate, the removal efficiency equaled to 40 and 30 %, respectively, and for iohexol, the efficiency was 38 and 27 %, respectively. No significant increase in iodipamide removal in UV and UV/TiO 2 processes was observed (29 and 28 %, respectively). However, highest removal efficiency was demonstrated in synthetic hospital wastewater with the combined photochemical and biological treatment method. The removal of diatrizoate and iohexol increased to at least 90 %, and for iodipamide, to at least 50 %.

  2. Controversies in urinary iodine determinations

    OpenAIRE

    Soldin, Offie Porat

    2002-01-01

    Iodine deficiency (ID) is associated with increased prevalence of goiter, increased risk for neurodevelopmental disorders, and is the world’s leading cause of intellectual deficits. Iodine nutritional status of a population is assessed by measurements of urinary iodine concentrations which are also used to define, indicate, survey and monitor iodine deficiency and consequently its treatment. Several methods are available for urinary iodine determination. Discussed here are some of the limitat...

  3. Iodine Gas Trapping using Granular Porous Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  4. Iodine Gas Trapping using Granular Porous Bismuth

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  5. Study on the Influence of Sulfur Fumigation on Chemical ...

    African Journals Online (AJOL)

    Purpose: To study the influence of different sulfur fumigation time and ... after sulfur fumigation though sulfur fumigation time and dosage were at low levels – 2 h ... Conclusion: Sulfur fumigation is not a desirable method for field processing of ...

  6. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  7. Experience of iodine removal in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Kikuchi, K.; Komori, Y.; Takeda, K.

    1985-01-01

    In the Tokai reprocessing plant about 170 ton of irradiated fuels have been processed since the beginning of hot operations in 1977. There was no effective equipment for iodine removal from the off-gas except for alkaline scrubbers when the plant construction was completed. In order to reduce the iodine discharge to the atmosphere, silver-exchanged zeolite (AgX) filters were installed additionally in 1979 and 1980, and they have been effective. However, those decontamination factors (DFs) were not as high as expected, and increasing the reprocessing amount of spent fuels it became necessary to lower the iodine discharge to the atmosphere. Therefore, other iodine removal equipment is planned to be installed in the plant. Concerning these investigations and development of iodine removal techniques, the iodine concentration of actual off-gases was measured and useful data were obtained

  8. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  9. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  10. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  11. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  12. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of materials

    Directory of Open Access Journals (Sweden)

    López-Delgado, A.

    2012-02-01

    Full Text Available European Directives consider mercury a priority hazardous substance due to its adverse effects on human health and the environment. In response to environmental concerns, a microencapsulation process has been developed within the European LIFE program as a long-term storage option for mercury. This process leads to the obtainment of a stable concrete-like sulfur matrix that allows the immobilization of mercury. The final product, in the form of a solid block containing up to 30 % Hg, exhibits excellent mechanical properties (compressive strength 53-61MPa and flexural strength 7-10 MPa, low porosity (0.57 % PHe, very low total pore volume (0.63x10-2 cm3 g-1, and extremely low permeability (coefficient of water absorption by capillarity 0.07 g cm-2. Toxicity characteristic leaching tests reveal a mercury concentration in leachates well below the 0.2 mg L-1 set out in US EPA Land Disposal Restrictions (LDRs. The values of mercury vapor emissions of final products were lower than those of cinnabar and metacinnabar.

    Resumen Las Directivas Europeas consideran al mercurio una sustancia de peligrosidad prioritaria debido a sus efectos adversos sobre la salud humana y sobre el medio ambiente. En respuesta a estas preocupaciones ambientales, y dentro del Programa Europeo LIFE, se ha desarrollado un proceso de microencapsulación como una opción al almacenamiento a largo plazo del mercurio. Con este proceso se obtiene un material estable, tipo concreto, de matriz de azufre que permite la inmovilización del mercurio. El producto final, en forma de un bloque sólido, contiene hasta un 30 % de Hg, presenta excelentes propiedades mecánicas (resistencia a la compresión 53-61 MPa, y a la flexión 7-10 MPa, baja porosidad (0,57 % PHe, muy bajo volumen total de poro (0,63 x 10-2 cm3 g-1 y una permeabilidad extremadamente baja (coeficiente de absorción de

  13. Novel biotransformation process of podophyllotoxin to 4 β-sulfur-substituted podophyllum derivates with anti-tumor activity by Penicillium purpurogenum Y.J. Tang.

    Science.gov (United States)

    Bai, J-K; Zhao, W; Li, H-M; Tang, Y-J

    2012-01-01

    According to the structure-function relationship of podophyllotoxin (PTOX) and its analogue of 4'- demethylepipodophyllotoxin (DMEP), the 4 β-substitution of sulfur-containing heterocyclic compounds with a carbon-sulfur bond at 4 position of PTOX or DMEP is an essential modification direction for improving the anti-tumor activity. So, four novel 4 β-sulfursubstituted podophyllum derivatives (i.e., 4β -(1,2,4-triazole-3-yl)sulfanyl-4-deoxy-podophyllotoxin (4-MT-PTOX), 4β-(1,3,4- thiadiazole-2-yl)sulfanyl-4-deoxy-podophyllotoxin (4-MTD-PTOX), 4β-(1,2,4-triazole-3-yl)sulfanyl-4-deoxy-4' -demethylepipodophyllotoxin (4-MT-DMEP), and 4β-(1,3,4-thiadiazole-2-yl)sulfanyl-4-deoxy-4'-demethylepipodophyllotoxin (4-MTD-DMEP)) were designed and then successfully biosynthesized in this work. In the novel sulfur-substituted biotransformation processes, PTOX and DMEP was linked with sulfur-containing compounds (i.e., 3-mercapto-1,2,4-triazole (MT) and 2-mercapto-1,3,4-thiadiazole (MTD)) at 4 position of cycloparaffin to produce 4-MT-PTOX (1), 4-MTD-PTOX (2), 4-MT-DMEP (3), and 4-MTD-DMEP (4) by Penicillium purpurogenum Y.J. Tang, respectively, which was screened out from Diphylleia sinensis Li (Hubei, China). All the novel compounds exhibited promising in vitro bioactivity, especially 4-MT-PTOX (1). Compared with etoposide (i.e., a 50 % effective concentration [EC(50)] of 25.72, 167.97, and 1.15 M), the EC(50) values of 4-MT-PTOX (1) against tumor cell line BGC-823, A549 and HepG2 (i.e., 0.28, 0.76, and 0.42 M) were significantly improved by 91, 221 and 2.73 times, respectively. Moreover, the EC(50) value of 4-MT-PTOX (1) against the normal human cell line HK-2 (i.e., 182.4 μM) was 19 times higher than that of etoposide (i.e., 9.17 μM). Based on the rational design, four novel 4 β-sulfur-substituted podophyllum derivatives with superior in vitro anti-tumor activity were obtained for the first time. The correctness of structure-function relationship and rational drug

  14. A Possibility for Construction of an Iodine Cleaning System Based on Doping for π-Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto

    2011-05-01

    Full Text Available An iodine accumulation method using polyaniline (PANI and a textile composite is proposed. PANI/pulp paper sheets prepared by a paper making technique are suitable for iodine adsorption, because of good processability. The PANI-based paper sheets can be applied for iodine cleanup as air filters, water filters, and floorcloth. This concept may lead to a development of an iodine cleaning machine or iodine shield cloth based on π-conjugated polymer composites. In-situ vapor phase doping of iodine, observation of surface images, and IR measurements are carried out to examine iodine doping function for the PANI/pulp paper sheets.

  15. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  16. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  17. Iodine deficiency and thyroid disorders.

    Science.gov (United States)

    Zimmermann, Michael B; Boelaert, Kristien

    2015-04-01

    Iodine deficiency early in life impairs cognition and growth, but iodine status is also a key determinant of thyroid disorders in adults. Severe iodine deficiency causes goitre and hypothyroidism because, despite an increase in thyroid activity to maximise iodine uptake and recycling in this setting, iodine concentrations are still too low to enable production of thyroid hormone. In mild-to-moderate iodine deficiency, increased thyroid activity can compensate for low iodine intake and maintain euthyroidism in most individuals, but at a price: chronic thyroid stimulation results in an increase in the prevalence of toxic nodular goitre and hyperthyroidism in populations. This high prevalence of nodular autonomy usually results in a further increase in the prevalence of hyperthyroidism if iodine intake is subsequently increased by salt iodisation. However, this increase is transient because iodine sufficiency normalises thyroid activity which, in the long term, reduces nodular autonomy. Increased iodine intake in an iodine-deficient population is associated with a small increase in the prevalence of subclinical hypothyroidism and thyroid autoimmunity; whether these increases are also transient is unclear. Variations in population iodine intake do not affect risk for Graves' disease or thyroid cancer, but correction of iodine deficiency might shift thyroid cancer subtypes toward less malignant forms. Thus, optimisation of population iodine intake is an important component of preventive health care to reduce the prevalence of thyroid disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  19. Recovery and storage method for radioactive iodine by vacuum freeze-drying

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ouchi, Hitoshi; Suzuki, Toru.

    1990-01-01

    After scrubbing off-gas formed in a re-processing process for spent nuclear fuels, scrubbing liquids after use are subjected, as they are or with addition of additives, to a precipitating treatment. Then, liquid wastes containing radioactive iodine was subjected to freeze-drying treatment by freeze-drying under vacuum to recover radioactive iodine as iodine compounds. Off-gas scrubbing is conducted by using a sodium hydroxide solution and copper or silver ions may be added as additives in the precipitating treatment. Recovered iodine compounds containing radioactive iodine are solidified, either directly or after formulating into a composition of naturally existing iodine-containing ores by means of high pressure pressing into ores. This can prevent radioactive iodine 1 29I of long half-decay time from diffusing into the circumference and store the radioactive iodine stably for a long period of time. (T.M.)

  20. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants

    NARCIS (Netherlands)

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C

    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity

  1. Iodine and human health, the role of environmental geochemistry and diet, a review

    International Nuclear Information System (INIS)

    Fuge, Ron; Johnson, Christopher C.

    2015-01-01

    Iodine is an essential element in the human diet and a deficiency can lead to a number of health outcomes collectively termed iodine deficiency disorders (IDD). The geochemistry of iodine is dominated by its volatility with volatilisation of organo-iodine compounds and elemental iodine from biological and non-biological sources in the oceans being a major component of its global cycle. As a result of the dominant oceanic source, iodine is strongly enriched in near-coastal soils, however, the major zone of marine influence generally stretches to only 50–80 km inland and terrestrial sources of volatilised iodine, from wetlands, soils and plants are also an important aspect of its global geochemical cycle. Iodine in soils is strongly bound with transfer factors from soil to plants being generally small and as a consequence there is only limited uptake of iodine through the plant root system. It is likely that uptake of atmospheric iodine by the aerial parts of plants is an essential process and, along with iodine deposited on plant surfaces, is a major source for grazing animals. Human intake of iodine is mainly from food with some populations also obtaining appreciable quantities of iodine from drinking water. Plant-derived dietary iodine is generally insufficient as evidenced from the low dietary iodine of strict vegan diets. Seafood provides major iodine-rich dietary items but other inputs are mainly from adventitious sources, such as the use of iodised salt and from dairy produce, which is a rich source mainly due to cattle-feed being fortified with iodine, and to the use of iodine-containing sterilants in the dairy industry. While the distribution and geochemistry of iodine are reflected in the global distribution of IDD, the recent upsurge of IDD in developed countries would seem to reflect changes in diet. - Highlights: • Iodine is an ultra-trace element in the lithosphere. • Volatilisation from marine and terrestrial sources is vital in iodine's global

  2. Quantification of iodine in porous hydroxyapatite matrices for application as radioactive sources in brachytherapy

    OpenAIRE

    Lacerda, Kássio André; Lameiras, Fernando Soares; Silva, Viviane Viana

    2007-01-01

    In this study, non-radioactive iodine was incorporated in two types of biodegradable hydroxyapatite-based porous matrices (HA and HACL) through impregnation process from sodium iodine aqueous solutions with varying concentrations (0.5 and 1.0 mol/L) . The results revealed that both systems presented a high capacity of incorporating iodine into their matrices. The quantity of incorporated iodine was measured through Neutron Activation Analysis (NAA). The porous ceramic matrices based on hydrox...

  3. Multicurie, transportable, integrally shielded 123Xe → 123I generator and processing system for high-purity iodine-123 production

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Thibeau, H.L.; Goodart, C.E.; Little, F.E.; Navarro, N.J.; Hartnett, D.E.

    1985-01-01

    An integrally shielded 123 Xe → 123 I generator system has been designed and tested under production conditions for its suitability as a multicurie handling device from which to produce radiopharmaceutical-quality high-purity no-carrier-added (NCA) 123 I. The 123 Xe → 123 I generator system is expected to provide an alternative to current techniques and to increase the availability and reliability of high-purity 123 I made via the 127 I(p,5n) 123 Xe → 123 I nuclear reaction. The generator system is based on the Crocker Nuclear Laboratory's continuous-flow production system which has been operating since 1974 for the multicurie production of 123 I. The generator system, which consists of an integrally shielded xenon trap and separate loading and processing apparatuses, is simple and reliable to operate, can be adapted to computerized control, and provides a safe working environment for the repeated handling of multicurie amounts of Xe-I radioactivities

  4. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  5. Volatilization of iodine from vegetation

    International Nuclear Information System (INIS)

    Amiro, B.D.; Johnston, F.L.

    1989-01-01

    Gaseous emissions of iodine were measured from bean plant foliage. A gamma-emitting iodine tracer, Na 125 I, was taken up by the plants from a hydroponic growth medium and released to a cuvette atmosphere. The dynamics of the flux were studied using a flow-through gamma detector. The relationship between leaf radioactive tracer activity and growth-medium activity was linear, as was the relationship between the iodine flux and both leaf and growth-medium activity. Iodine flux and leaf conductance to water responded similarly to changes in light levels, suggesting that the stomata may partially control the flux. The flux was inhibited by aeration of the hydroponic growth media, and we postulate that methylation causes the iodine flux. Iodine emissions from living vegetation probably contribute < 0.1% to the stable iodine concentration in the atmosphere above terrestrial areas. However, this pathway may be a direct route for radioactive iodine transport from contaminated soils to the atmosphere. (author)

  6. Radioactive iodine intake through foodstuff

    International Nuclear Information System (INIS)

    Omomo, Yoichiro

    1974-01-01

    The transition of radioactive iodine to human bodies is affected by the amount of coexisting stable iodine. The intake of stable iodine through foodstuffs was studied from the stand point of I) discussion of the literature which states the approximate amounts of stable iodine contained in environmental materials, and II) the authors' research on the consumption of foodstuffs. For example, the amounts of iodine intake of fishermen living in Kuji-cho (Ibaragi Prefecture) was estimated from I and II, and was revealed as 2704p. The national average iodine intake was about 800p indicating that the former estimated value was remarkably high. Eighty Four per cent of the 2.7 mg iodine intake was taken from marine products, indicating that marine products are important sources of iodine supply. (Tsukamoto, Y.)

  7. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures aragonite veins in metabasalt and siltstone clasts within the serpentinite flows have ??18O = 16.7-24.5???, consistent with the serpentinizing fluids at temperatures <250 ??C. ??13C values of 0.1-2.5??? suggest a source in subducting carbonate sediments. The ??34S values of sulfide in serpentinites on Conical Seamount (-6.7??? to 9.8???) result from metasomatism through variable reduction of aqueous sulfate (??34S = 14???) derived from slab sediments. Despite sulfur metasomatism, serpentinites have low sulfur contents (generally < 164 ppm) that reflect the highly depleted nature of the mantle wedge. The serpentinites are mostly enriched in 34S (median ??34Ssulfide = 4.5???), consistent with a 34S

  8. Control of radio-iodine at the German reprocessing plant WAK during operation and after shutdown

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Kuhn, K.D. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    During 20 years of operation 207 metric tons of oxide fuel from nuclear power reactors with 19 kg of iodine-129 had been reprocessed in the WAK plant near Karlsruhe. In January 1991 the WAK Plant was shut down. During operation iodine releases of the plant as well as the iodine distribution over the liquid and gaseous process streams had been determined. Most of the iodine is evolved into the dissolver off-gas in volatile form. The remainder is dispersed over many aqueous, organic and especially gaseous process and waste streams. After shut down of the plant in January 1991, iodine measurements in the off-gas streams have been continued up to now. Whereas the iodine-129 concentration in the dissolver off-gas dropped during six months after shutdown by three orders of magnitude, the iodine concentrations in the vessel ventilation system of the PUREX process and the cell vent system decreased only by a factor of 10 during the same period. Iodine-129 releases of the liquid high active waste storage tanks did not decrease distinctly. The removal efficiencies of the silver impregnated iodine filters in the different off-gas streams of the WAK plant depend on the iodine concentration in the off-gas. The reason of the observed dependence of the DF on the iodine-129 concentration might be due to the presence of organic iodine compounds which are difficult to remove. 13 refs., 3 figs.

  9. R and D thermochemical I-S process at JAERI

    International Nuclear Information System (INIS)

    Onuki, K.; Kubo, S.; Nakajima, H.; Higashi, S.; Kasahara, S.; Ishiyama, S.; Okuda, H.

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted a study on the thermochemical water-splitting process of the iodine-sulfur family (IS process). In the IS process, water will react with iodine and sulfur dioxide to produce hydrogen iodide and sulfuric acid, which are then decomposed thermally to produce hydrogen and oxygen. High temperature nuclear heat, mainly supplied by a High Temperature Gas-cooled Reactor (HTGR), is used to drive the endothermic decomposition of sulfuric acid. JAERI has demonstrated the feasibility of the water-splitting hydrogen production process by carrying out laboratory-scale experiments in which combined operation of fundamental reactions and separations using the IS process was performed continuously. At present, the hydrogen production test is continuing, using a scaled-up glass apparatus. Corrosion-resistant materials for constructing a large-scale plant and process improvements by introducing advanced separation techniques, such as membrane separation, are under study. Future R and D items are discussed based on the present activities. (author)

  10. Seaweed tablet: a natural source of iodine

    International Nuclear Information System (INIS)

    Briones, Annabelle V.; Ambal, Wilhelmina O.; Monroyo, Evangelina C.; Bonifacio, Teresita S.; Sison, Fe M.

    1997-01-01

    Species of seaweeds namely: Halymenia durvillaei, Laurencia flexilis and Sargassum gigantifolium were processed into dried form and formulated as tablet. Prior to tablet formulation, the seaweeds were assayed for iodine and trace elements. The seaweeds that exhibited significance values of iodine and trace elements were further analyzed for the presence of heavy metals followed by acute oral toxicity test (LD 50 ). Among the seaweeds evaluated, H. durvilaei was found to contain high level of iodine (0.255% w/w) and magnesium (1.65% w/w) with sufficient amount of zinc (25.69 ppm) and phosporous (11.68 ppm). Analysis of heavy metals showed minute amount of mercury (0.0055 ppm), cadmium (0.67 ppm) and lead (1.80 ppm). The median lethal dose (LD 50 ) of H. durvillaei administered orally in Swiss male mice is 119.1489 ± 4.9873 g/kg. Tablet formulation was based on the U.S. recommended daily allowance of 0.15 mg. of iodine per adult and children. The final product was comparable to imported Kelp pills (available in the local market) in terms of physical properties and iodine content. (Author)

  11. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  12. Mock iodine-125 radiation source

    International Nuclear Information System (INIS)

    Coffey, D.L.

    1976-01-01

    An intimate mixture of americium-241 and iodine-129 provides an energy spectrum that reliably simulates the spectrum of iodine-125 in a well-type detector. As such, it may be used as a long-lived standard to calibrate instruments such as well scintillation spectrometers in which measurements are to be made involving iodine-125

  13. Prospects of the high power iodine laser

    International Nuclear Information System (INIS)

    Hohla, K.; Brederlow, G.; Fill, E.; Volk, R.; Witte, K.J.

    1976-09-01

    The characteristic properties of the iodine laser (gaseous laser substance, photolytic pump mechanism, variable stimulated emission cross-section) made it possible in a relatively short time to generate ns pulses in the kJ range. The Asterix II and III iodine laser systems at IPP are working successfully, and the question arises what prospects are afforded for further iodine laser development. What are the problems that have to be clarified in order to build 10 or 100 kJ systems for laser fusion experiments. According to our experience these can be classified as follows: 1) Short pulse generation and contrast ratio, 2) pulse shaping in a high-gain laser and amplification in the coherent time range, 3) non-linear properties at high intensities, 4) scalable pumping schemes and chemical processes. (orig./WL) [de

  14. Micromethod of Iodine Measurement in Vrine

    Directory of Open Access Journals (Sweden)

    M Arbuzova

    2007-06-01

    Full Text Available Iodine concentration in urine is the direct quantity indicator of the current consumption of iodine in the population. The most widespread method of determination of iodine in urine is cerium-arsenic method with preliminary processing samples of urine using the solution ammonium persulfate. The purpose of work was to develop updating of the given method for reduction of the formation of toxic products of the reaction. Described method has good characteristics (the limit of the detection of this method 11 ug/l, CV < 10 %, the coefficient of the correlation with reference method 0.99, the amount of toxic substances formed during reaction decreases in 3 times, the cost price of research is reduced owing to reduction of the volume of reagents and water.

  15. Mysterious iodine-overabundance in Antarctic meteorites

    Science.gov (United States)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed.

  16. Mysterious iodine-overabundance in Antarctic meteorites

    International Nuclear Information System (INIS)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed

  17. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Song, J.S.

    2009-01-01

    This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility

  18. Method for solidification of radioactive iodine-containing solid wastes

    International Nuclear Information System (INIS)

    Ozawa, Yoshihiro; Funabashi, Kiyomi; Uetake, Naoto.

    1987-01-01

    Purpose: To process radioactive iodine containing solid wastes as non-leaching solidified wastes with no risk of iodine release. Method: It has been known for the thermal stability of CuI, PbI 2 or adsorbents containing the same that they do not release iodine in an inert gas atmosphere or in a reducing atmosphere at a temperature lower than 480 deg C. In view of the above, adsorbents containing iodine in the chemical form of CuI or PbI 2 , or CuI or powdery PbI 2 per se are sealed and solidified into low melting glass at a temperature of lower than 480 deg C at which no iodine release occurs in a non-oxidative atmosphere. Since the products are vitrified wastes, they scarcely show leaching property and are excellent in durability and stability. (Takahashi, M.)

  19. Iodine in soil

    International Nuclear Information System (INIS)

    Johanson, Karl Johan

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of 129 I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added 129 I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of 129 I in the vertical profile of soil - usually most of the 129 I in the upper layer - which also results in large variations in the 129 I uptake to plants

  20. Iodine in soil

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  1. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge

    International Nuclear Information System (INIS)

    Wang You; Huang Yaqin; Wang Weikun; Huang Chongjun; Yu Zhongbao; Zhang, Hao; Sun Jing; Wang Anbang; Yuan Keguo

    2009-01-01

    The structural change of the porous sulfur cathode using gelatin as a binder was studied by means of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The original sulfur cathode exhibited a homogenous distribution of sulfur, carbon and pores. During the discharge process, the pores and elemental sulfur disappeared gradually. However, those changes were reversed and elemental sulfur was reformed after the charge process, which improved the electrochemical performance of lithium-sulfur batteries.

  2. Evaluation of Iodine Bioavailability in Seaweed Using in Vitro Methods.

    Science.gov (United States)

    Domínguez-González, M Raquel; Chiocchetti, Gabriela M; Herbello-Hermelo, Paloma; Vélez, Dinoraz; Devesa, Vicenta; Bermejo-Barrera, Pilar

    2017-09-27

    Due to the high levels of iodine present in seaweed, the ingestion of a large amount of this type of food can produce excessive intake of iodine. However, the food after ingestion undergoes different chemistry and physical processes that can modify the amount of iodine that reaches the systemic circulation (bioavailability). Studies on the bioavailability of iodine from food are scarce and indicate that the bioavailable amount is generally lower than ingested. Iodine in vitro bioavailability estimation from different commercialized seaweed has been studied using different in vitro approaches (solubility, dialyzability, and transport and uptake by intestinal cells). Results indicate that iodine is available after gastrointestinal digestion for absorption (bioaccessibility: 49-82%), kombu being the seaweed with the highest bioaccessibility. The incorporation of dialysis cell cultures to elucidate bioavailability modifies the estimation of the amount of iodine that may reach the systemic circulation (dialysis, 5-28%; cell culture, ≤3%). The paper discusses advantages and drawbacks of these methodologies for iodine bioavailability in seaweed.

  3. Co-60 gamma radiation assisted diffusion of iodine in polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, N.L.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune, Maharashtra 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune, Maharashtra 411007 (India)

    2010-09-15

    Thin films of polypropylene having dimensions 50 mm x 15 mm x 350 {mu}m were immersed in 1 N iodine solution and then irradiated with Co-60 gamma radiation for the periods of 48, 96 and 144 h at the doses varying from 14.4 to 43.2 kGy. The films were also kept immersed in iodine solution for similar periods but without irradiation. Furthermore, the films were also directly-irradiated with Co-60 gamma radiation for similar periods and doses. The radiation-iodinated, plain-iodinated and directly-irradiated samples were characterized by using various techniques such as weight gain EDS, SEM, FTIR, UV-visible spectroscopy, contact angle and XRD. Weight gain, EDS and SEM collectively reveal that gamma irradiation enhances iodine intake in polypropylene. FTIR, EDS and contact angle measurements indicate that presence of iodine during irradiation resists radiation induced carbonylation of polypropylene. FTIR also shows presence of HOI (Hypoiodous acid) species instead of expected C-I bonds. UV-visible analysis unambiguously shows that presence of iodine enhances radiation induced band gap reduction process of polypropylene. XRD indicates that iodine decreases the crystallinity of polypropylene.

  4. Iodine-129 separation and determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Bate, L.C.; Stokely, J.R.

    1982-01-01

    This paper describes a method for analysis of iodine-129 in fission product mixtures originating from fuel reprocessing studies and low-level wastes. The method utilizes conventional iodine valence adjustment and solvent extraction techniques to chemically separate iodine-129 from most fission products. The iodine-129 is determined by neutron irradiation and measurement of the 12.4 hour iodine-130 produced by the neutron capture reaction. Special techniques were devised for neutron irradiation of iodine-129 samples in the pneumatic tube irradiation facilities at the High Flux Isotope (HFIR) and Oak Ridge Research (ORR) Reactors. Chemically separated iodine-129 is adsorbed on an anion exchange resin column made from an irradiation container. The loaded resin is then irradiated in either of the pneumatic facilities to produce iodine-130. Sensitivity of the analysis with the HFIR facility (flux: 5x10 14 n/cm 2 /s) and a 100 second irradiation time is approximately 0.03 nanograms. Samples up to 250 ml in volume can be easily processed. (author)

  5. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures arc lavas. ?? 2006 Elsevier B.V. All rights reserved.

  6. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  7. Volatile suppressing method for radioactive iodine

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Haruguchi, Keiko.

    1997-01-01

    In the present invention, a metal plate is disposed above the pool water surface of a suppression chamber disposed to a reactor container in order to reduce evaporation of radioactive iodine released from a suppression pool. A metal plate is disposed above the pool water surface of the suppression chamber disposed to the reactor container. In addition, a metal plate is disposed around the space connecting a bent tube extending from a dry well to underwater of suppression pool water and a gas bent tube extending from the suppression chamber to an emergency gas processing system. Spray water is supplied for cooling the suppression chamber d as a means for cooling the metal plate. Then, among iodine released to the suppression chamber, elemental iodine liberated from the pool water is deposited on the surface of the metal plate, and the amount of iodine to be flown into and processed by an emergency gas processing system or a filter bent system can be reduced. (T.M.)

  8. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [Department of Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Kroll, Martina; Dyke, Jason V.; Ohira, Shin-Ichi; Dias, Rukshan A.; Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-03-15

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which {approx} 150 {mu}g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: Black-Right-Pointing-Pointer Estimated infant exposures to perchlorate were, on a {mu}g/kg basis, {approx} 5 Multiplication-Sign higher than those of mothers. Black-Right-Pointing-Pointer Daily supplements are less effective than iodized salt in providing iodine to lactating women. Black-Right-Pointing-Pointer Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  9. Gaseous release of radioactive iodine from decaying plants. I. Release following foliar and root uptake

    International Nuclear Information System (INIS)

    Saas, Arsene; Grauby, Andre

    1975-12-01

    Iodine uptake by plants is a significant link in the contamination of the food chain. Long half-live iodine was studied considering foliar and root uptake, loss by rain scavenging, residue decay or outgassing in order to assess two aspects of the problem: the importance of outgassing and the effect of the route of transfer on iodine losses. It appeared that iodine release was a function of the vegetal type, there were differences according to the pattern of absorption (via leaf or root) and the processes of iodine release were usually related to biochemical mechanisms [fr

  10. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    International Nuclear Information System (INIS)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  11. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow

  12. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  13. Improved iodine and tritium control in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; Schmieder, H.; Roesch, W.; Weirich, F.

    1981-01-01

    During spent fuel processing, iodine and tritium are distributed in many aqueous, organic and gaseous process streams, which complicates their control. Small modifications of conventional purex flow sheets, compatible with processing in the headend and the first extraction cycle are necessary to confine the iodine and the tritium to smaller plant areas. The plant area connected to the dissolver off-gas (DOG) system is suited to confine the iodine and the plant area connected to the first aqueous cycle is suited to confine the tritium. A more clear and convenient iodine and tritium control will be achieved. Relevant process steps have been studied on a lab or a pilot plant scale using I-123 and H-3 tracer

  14. Iodine Status in Pregnant & Breastfeeding Women

    DEFF Research Database (Denmark)

    Andersen, Stine Linding

    Iodine is required for the synthesis of thyroid hormones, which are crucial regulator of early brain development. The source of iodine in the fetus and the breastfed infant is maternal iodine, and adequate iodine intake in pregnant and breastfeeding is of major concern. Severe iodine deficiency can...... cause irreversible brain damage, whereas the consequences of mild to moderate iodine deficiency are less clear. Denmark was previously iodine deficient with regional differences (mild iodine deficiency in East Denmark and moderate iodine deficiency in West Denmark), and also pregnant and breastfeeding...... women suffered from iodine deficiency. A mandatory iodine fortification of household salt and salt used for commercial production of bread was introduced in Denmark in the year 2000. The PhD thesis investigates intake of iodine supplements and urinary iodine status in Danish pregnant and breastfeeding...

  15. Primary circuit iodine model addition to IMPAIR-3

    Energy Technology Data Exchange (ETDEWEB)

    Osetek, D J; Louie, D L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S; Cripps, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.

  16. The speciation of iodine in the environment

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1986-01-01

    The speciation of iodine in the environment is discussed under the following topics: (i) sea surface to atmosphere, (ii) chemistry in bulk seawater, (iii) iodine in rocks, (iv) iodine in soils, (v) iodine in plants and (vi) iodine in solidified wastes. (author)

  17. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  18. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  19. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  20. Hyperthyroidism and radioactive iodine

    International Nuclear Information System (INIS)

    Corstens, F.H.M.

    1980-01-01

    The study details the results of treatment of patients with hyperthyroidism using a combination of fractionated low doses radioactive iodine and anthithyroid drug therapy. The patients studied were treated according to this regimen after August 1968 and all reached euthyroidism before March 1979. None of the patients had been treated with radioactive iodine prior to the start of the protocol. A subgroup of the patients had received an unsuccessfull course with antithyroid drug therapy and, or, surgical therapy before the start of the protocol. Patients who had never been treated for hyperthyroidism were given antithyroid drug therapy for at least 6 months in an attempt to reach euthryroidism without the use of 131 I therapy. Therefore, all patients had experienced a course of unsuccessfull therapy prior to the start of the treatment protocol using combined fractionated low doses of 131 I and antithyroid drug therapy. (Auth.)

  1. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  2. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  3. Sulfur gained from flue gas, a demonstration unit of the Wellman-Lord process annexed to a black coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H

    1977-12-16

    Details of reducing air pollution by desulfurization of flue gases are presented. The demonstration unit is annexed to a 115 MW block at the Gary power plant in Indiana, USA. A second unit is being installed at the larger coal power plant in San Juan, New Mexico. The Wellman-Lord technology achieves a higher than 90% desulfurization of industrial waste gases. The technology is based on washing the gases with sodium sulfide. The resulting concentrated sulfur dioxide gas is used for pure sulfur and sulfuric acid production. Sodium sulfate is another commercial by-product obtained from the sodium sulfide regeneration cycle. Chemical details and the technological flow sheet are discussed. Electricity production costs in the power plants due to desulfurization of waste gases will increase by an estimated 15%. Advantages, in addition to reducing air pollution and marketing sulfur products, are also seen in the absence of sulfur containing wastes for disposal. (In German)

  4. Iodine immobilization in apatites

    International Nuclear Information System (INIS)

    Audubert, F.; Lartigue, J.E.

    2000-01-01

    In the context of a scientific program on long-lived radionuclide conditioning, a matrix for iodine 129 immobilization has been studied. A lead vanado-phosphate apatite was prepared from the melt of lead vanado-phosphate Pb 3 (VO 4 ) 1.6 (PO 4 ) 0.4 and lead iodide PbI 2 in stoichiometric proportions by calcination at 700 deg. C during 3 hours. Natural sintering of this apatite is not possible because the product decomposition occurs at 400 deg. C. Reactive sintering is the solution. The principle depends on the coating of lead iodide with lead vanado-phosphate. Lead vanado-phosphate coating is used as iodo-apatite reactant and as dense covering to confine iodine during synthesis. So the best condition to immobilize iodine during iodo-apatite synthesis is a reactive sintering at 700 deg. C under 25 MPa. We obtained an iodo-apatite surrounded with dense lead vanadate. Leaching behaviour of the matrix synthesized by solid-solid reaction is under progress in order to determine chemical durability, basic mechanisms of the iodo-apatite alteration and kinetic rate law. Iodo-apatite dissolution rates were pH and temperature dependent. We obtained a rate of 2.5 10 -3 g.m -2 .d -1 at 90 deg. C in initially de-ionised water. (authors)

  5. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  6. Obtention process of phosphorus 32 starting from commercial sulfur and design and construction of the radiochemical separation prototype; Proceso de obtencion de fosforo-32 a partir de azufre comercial y diseno y construccion del prototipo de separacion radioquimica

    Energy Technology Data Exchange (ETDEWEB)

    Duarte A, C.; Alanis M, J.; Gutierrez R, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work an obtention process of phosphorus 32 ({sup 32} P) in orthophosphoric acid form (H{sub 3}{sup 32}PO{sub 4}) is described starting from commercial sulfur. Also the design and construction of the experimental prototype used in the radiochemical separation and their results in three tests carried out is reported. (Author)

  7. Immobilization of iodine in concrete

    International Nuclear Information System (INIS)

    Clark, W.E.; Thompson, C.T.

    1977-01-01

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3 to 20 wt percent iodine as Ba(IO 3 ) 2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO 3 ) 2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. 10 claims, 2 figures

  8. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    Science.gov (United States)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  9. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  10. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  12. Image processing and machine learning techniques to automate diagnosis of Lugol's iodine cervigrams for a low-cost point-of-care digital colposcope

    Science.gov (United States)

    Asiedu, Mercy Nyamewaa; Simhal, Anish; Lam, Christopher T.; Mueller, Jenna; Chaudhary, Usamah; Schmitt, John W.; Sapiro, Guillermo; Ramanujam, Nimmi

    2018-02-01

    The world health organization recommends visual inspection with acetic acid (VIA) and/or Lugol's Iodine (VILI) for cervical cancer screening in low-resource settings. Human interpretation of diagnostic indicators for visual inspection is qualitative, subjective, and has high inter-observer discordance, which could lead both to adverse outcomes for the patient and unnecessary follow-ups. In this work, we a simple method for automatic feature extraction and classification for Lugol's Iodine cervigrams acquired with a low-cost, miniature, digital colposcope. Algorithms to preprocess expert physician-labelled cervigrams and to extract simple but powerful color-based features are introduced. The features are used to train a support vector machine model to classify cervigrams based on expert physician labels. The selected framework achieved a sensitivity, specificity, and accuracy of 89.2%, 66.7% and 80.6% with majority diagnosis of the expert physicians in discriminating cervical intraepithelial neoplasia (CIN +) relative to normal tissues. The proposed classifier also achieved an area under the curve of 84 when trained with majority diagnosis of the expert physicians. The results suggest that utilizing simple color-based features may enable unbiased automation of VILI cervigrams, opening the door to a full system of low-cost data acquisition complemented with automatic interpretation.

  13. Radioactive Iodine (I-131) Therapy for Hyperthyroidism

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Radioactive Iodine (I-131) Therapy Radioiodine therapy is a nuclear ... thyroid cancer. When a small dose of radioactive iodine I-131 (an isotope of iodine that emits ...

  14. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  15. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  16. Introduction to Test Facility for Iodine Retention in Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jaehoon; An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In many countries the implementation of FCVS's is under discussion to mitigate fission product release not only in the short-term but also in the long-term view. To verify the performance of FCVS, the large-scaled tests have been performed such as advanced containment experiments (ACE), the iodine and aerosol retention rate test facility (JAVA), etc. The elemental and organic iodides are the main gaseous iodine species in the containment atmosphere. For the iodine retention, experimental programs have confirmed the existence of gaseous organic iodine in some cases in higher concentrations than for gaseous molecular iodine (I{sub 2}). The Reaction of Methyl iodide (CH{sub 3}I) with surfaces and the removal by containment filters and scrubbers is less efficient in comparison to molecular iodine. In the recent years, an experimental and analytical work has been conducted at the Paul Scherrer Institute (PSI) to develop a process leading to a fast, comprehensive and reliable retention of volatile iodine species in aqueous solutions. New FCVS test facility to verify the performance of FCVS is designed and under construction. The iodine retention tests are planned with elemental iodine or with organic iodide loaded carrier gas consisting of pure non-condensable gas, pure steam and of typical mixtures of non-condensable gas/steam. This paper introduces the iodine generation and measurement system for the iodine retention test of FCVS. In severe accidents elemental and organic iodides are the main gaseous iodine species in the containment atmosphere. Release of the gaseous species in sufficient quantities from containment to environment generates a risk for public health. The filtered containment venting systems (FCVS) can considerably reduce the leakage of radioactive materials to the environment. New integral test facility is prepared to verify a performance of the FCVS. The test facility consists of a test vessel, thermal-hydraulic, and aerosol/iodine generation and

  17. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A. Ch.

    1982-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase. (author)

  18. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A.C.

    1984-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase

  19. Models of iodine behavior in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1992-10-01

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents.

  20. Models of iodine behavior in reactor containments

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1992-10-01

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents

  1. The study on the lidar's detection limit for Iodine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-lyul; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A powerful and reliable tool for range-resolved remote sensing of gas concentrations that has proven its capabilities in a variety of studies is the differential absorption lidar (DIAL). Differential absorption lidar (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. DIAL can measure air pollutant concentrations with a high spatial resolution by adopting two laser systems with different degrees of absorption between the two different wavelengths. The absorption of the reference wavelength is very weak, while the absorption of the other wavelength is very strong. In this paper, we measured the limit of detection capability of our designed DIAL system. The DIAL measurements were performed using a target iodine cell in the laboratory. We confirmed that the concentration of iodine gas ratio increased after the laser passed through the iodine cell. The system of DIAL(Differential Absorption Lidar) was effective to detect the iodine gas. We obtained the signals from the iodine target cell and the lidar signal from the iodine target cell was proportional to frequency locking ratios.

  2. The Status of Iodine Nutrition and Iodine Deficiency Disorders ...

    African Journals Online (AJOL)

    Background: Iodine deficiency disorders are serious public health problems in Ethiopia. The aim of this study was to measure the prevalence and severity of iodine deficiency disorders among school children in Metekel Zone. Methods: A cross-sectional school based descriptive study was conducted between February 2011 ...

  3. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Modelling the chemistry of iodine

    International Nuclear Information System (INIS)

    Paquette, J.

    1989-01-01

    We have assembled a kinetic model, based on elementary chemical reactions, that describes the chemical behaviour of iodine in aqueous solution as a function of time and various parameters such as pH, concentration and radiation field. The model is conceptually divided into six section: aqueous iodine chemistry, aqueous organic iodide chemistry, water radiolysis, radiolysis of iodine solutions, radiolysis of organic iodide solutions and mass transfer. The model indicates that, in the absence of a radiation field, the rate of production of volatile iodine species is controlled by the rate of oxidation of the iodide ion. The volatile iodine species are dominated by organic iodides if organic impurities are present. The single most important parameter controlling iodine volatility is the pH of the solution; high pH values tend to minimize iodine volatility. In the presence of a radiation field, the volatility of iodine is controlled by the radiation-induced oxidation of the iodide ion. Again, iodine volatility is dominated by organic iodides if organic impurities are present. High pH values minimize iodine volatility. A sensitivity analysis has been performed on some sections of the model to identify reactions to which the volatility of iodine is most sensitive. In the absence of a radiation field, the volatility is most sensitive, first, to the rate of oxidation of the iodide ion, and, second, to the rate of mass transfer of volatile species between the aqueous and the gaseous phases. This approach should be useful in identifying reactions for which accurate rate constants are required and in decreasing the complexity of the model. 37 refs

  5. Preparation of Sulfur-Free Exfoliated Graphite by a Two-Step Intercalation Process and Its Application for Adsorption of Oils

    Directory of Open Access Journals (Sweden)

    Jun He

    2017-01-01

    Full Text Available The sulfur-free exfoliated graphite (EG was prepared by a two-step chemical oxidation process, using natural flake graphite (NFG as the precursor. The first chemical intercalation process was carried out at a temperature of 30°C for 50 min, with the optimum addition of NFG, potassium permanganate, and perchloric acid in a weight ratio of 1 : 0.4 : 10.56. Then, in the secondary intercalation step, dipotassium phosphate was employed as the intercalating agent to further increase the exfoliated volume (EV of EG. NFG, graphite intercalation compound (GIC, and EG were characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, X-ray diffractometer (XRD, Fourier transform infrared spectrometer (FTIR, BET surface area, and porosity analyzer. Also, the uptakes of crude oil, diesel oil, and gasoline by EG were determined. Results show that perchloric acid and hydrogen phosphate are validated to enter into the interlayer of graphite flake. The obtained EG possesses a large exfoliated volume (EV and has an excellent affinity to oils; thus, the material has rapid adsorption rates and high adsorption capacities for crude oil, diesel oil, and gasoline.

  6. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  7. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  8. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  9. Separation of iodine from mercury containing scrubbing solutions

    Science.gov (United States)

    Burger, Leland L.; Scheele, Randall D.

    1979-01-01

    Radioactive iodines can be recovered from a nitric acid scrub solution containing mercuric nitrate by passing a current through the scrub solution to react the iodine with the mercuric nitrate to form mercuric iodate which precipitates out. The mercuric iodate can then be reacted to recover the radioiodine for further processing into a form suitable for long-term storage and to recover the mercury for recycling.

  10. Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere

    International Nuclear Information System (INIS)

    Burger, L.L.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate the radiological dose impact that Hanford Site operations may have made on the local and regional population. This impact is estimated by examining operations involving radioactive materials that were conducted at the Hanford Site from the startup of the first reactor in 1944 to the present. HEDR Project work is divided among several technical tasks. One of these tasks, Source Terms, is designed to develop quantitative estimates of all significant emissions of radionuclides by Hanford Site operations since 1944. Radiation doses can be estimated from these emissions by accounting for specific radionuclide transport conditions and population demography. This document provides technical information to assist in the evaluation of iodine releases. 115 refs., 5 figs., 3 tabs

  11. Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate the radiological dose impact that Hanford Site operations may have made on the local and regional population. This impact is estimated by examining operations involving radioactive materials that were conducted at the Hanford Site from the startup of the first reactor in 1944 to the present. HEDR Project work is divided among several technical tasks. One of these tasks, Source Terms, is designed to develop quantitative estimates of all significant emissions of radionuclides by Hanford Site operations since 1944. Radiation doses can be estimated from these emissions by accounting for specific radionuclide transport conditions and population demography. This document provides technical information to assist in the evaluation of iodine releases. 115 refs., 5 figs., 3 tabs.

  12. Sulfur (32S, 33S, 34S, 36S) and oxygen (16O, 17O, 18O) isotopi primary sulfate produced from combustion processes

    International Nuclear Information System (INIS)

    Lee, C.C.W.; Savarino, J.; Thiemens, M.H.; Cachier, H.

    2002-01-01

    The recent discovery of an anomalous enrichment in 17 O isotope in atmospheric sulfate has opened a new way to investigate the oxidation pathways of sulfur in the atmosphere. From laboratory investigations, it has been suggested that the wet oxidation of sulfur in rain droplets was responsible for the excess 17 O. In order to confirm this theory, sulfur and oxygen isotope ratios of different primary sulfates produced during fossil fuel combustion have been investigated and are reported. None of these samples exhibits any anomalous oxygen or sulfur isotopic content, as compared to urban sulfate aerosols. These results, in agreement with the laboratory investigations, reinforce the idea of an aqueous origin for the oxygen-17 anomaly found in tropospheric sulfates

  13. Volatilization of iodine from vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Amiro, B D; Johnston, F L [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

    1989-01-01

    Gaseous emissions of iodine were measured from bean plant foliage. A gamma-emitting iodine tracer, Na {sup 125}I, was taken up by the plants from a hydroponic growth medium and released to a cuvette atmosphere. The dynamics of the flux were studied using a flow-through gamma detector. The relationship between leaf radioactive tracer activity and growth-medium activity was linear, as was the relationship between the iodine flux and both leaf and growth-medium activity. Iodine flux and leaf conductance to water responded similarly to changes in light levels, suggesting that the stomata may partially control the flux. The flux was inhibited by aeration of the hydroponic growth media, and we postulate that methylation causes the iodine flux. Iodine emissions from living vegetation probably contribute < 0.1% to the stable iodine concentration in the atmosphere above terrestrial areas. However, this pathway may be a direct route for radioactive iodine transport from contaminated soils to the atmosphere. (author).

  14. Iodine metabolism and food needs

    International Nuclear Information System (INIS)

    Mornex, R.

    1992-01-01

    Iodine is an element that is necessary for the growth and mental development of a child and for the maintenance of the activity of all cells at all ages. In this article, the author recalls the iodine sources, its metabolism and the food needs and contributions

  15. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  16. Process and equipment for the detection of impurities like salted water and sulfur contained in a multiphase fluid by nuclear techniques

    International Nuclear Information System (INIS)

    Arnold, D.M.; Paap, H.J.

    1981-01-01

    A technique for detecting impurities, like sulfur and salted water, in petroleum refineries is described. The fluid is bombarded with fast neutrons which are showed down and then captured producing gamma spectra. Analysis of the spectra indicates the relative presence of sulfur, hydrogen and chlorine. The gas/liquid ratio of the fluid can also be calculated. An apparatus making use of this technique is also described [fr

  17. Experimental and analytical studies of iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool

    International Nuclear Information System (INIS)

    Miyahara, S.; Sagawa, N.; Shimoyama, K.

    1996-01-01

    . Measured DFs are described as a function of the time and the iodine concentration. To clarify the process of the iodine mass transfer in a xenon-iodine mixed gas bubble rising through the liquid sodium pool, the mass transfer is analyzed on the basis of a diffusion model applied to the first short stage just after the bubble generation and a convection model applied to the successive stage. In the diffusion model, production of sodium iodide aerosols and generation of the heat caused by the chemical reaction of iodine vapor and sodium vapor are taken into account in addition to the diffusion of vapor and aerosols and the heat conduction in a static spherical bubble. The diffusion of aerosols is composed of Brownian motion, thermophoresis and diffusiophoresis. In the convection model, the analysis is made for aerosol settling caused by inertial deposition, sedimentation and Brownian motion in an internal flow induced by a spherical cap bubble rising. Increase in the initial iodine concentration in the bubble is shown to enlarge the temperature difference across a region between the reaction front and the bubble surface and enhance a contribution of thermophoresis to the aerosol diffusion through the region. The DF obtained from the calculation describes well a rapid increase at the first stage and a slow increase in the successive Period, which are seen in measured DFs, and suggests the breakup of the original bubble during rising through the pool. (author)

  18. Breastfeeding and maternal and infant iodine nutrition.

    Science.gov (United States)

    Azizi, Fereidoun; Smyth, Peter

    2009-05-01

    The aim of this review is to explore information available regarding iodine secretion in milk, both mothers and infants iodine nutrition during breastfeeding and to make recommendations for appropriate iodine supplementation during lactation. MEDLINE was queried for studies between 1960 and 2007 that included lactation and breastfeeding with iodine and iodine deficiency. Studies were selected if they studied (i) Secretion of iodine in breast milk; (ii) breastfeeding and iodine nutrition; (iii) factors affecting maternal iodine metabolism and (iv) recommendations for iodine supplementation during breastfeeding. Thirty-six articles met the selection criteria. The iodine content of breast milk varies with dietary iodine intake, being lowest in areas of iodine deficiency with high prevalence of goitre. Milk iodine levels are correspondingly higher when programs of iodine prophylaxis such as salt iodization or administration of iodized oil have been introduced. The small iodine pool of the neonatal thyroid turns over very rapidly and is highly sensitive to variations in dietary iodine intake. Expression of the sodium iodide symporter is up-regulated in the lactating mammary gland which results in preferential uptake of iodide. In areas of iodine sufficiency breast milk iodine concentration should be in the range of 100-150 microg/dl. Studies from France, Germany, Belgium, Sweden, Spain, Italy, Denmark, Thailand and Zaire have shown breast milk concentrations of nutrition. The current WHO/ICCIDD/UNICEF recommendation for daily iodine intake (250 microg for lactating mothers) has been selected to ensure that iodine deficiency dose not occur in the postpartum period and that the iodine content of the milk is sufficient for the infant's iodine requirement.

  19. Novel method of producing radioactive iodine

    International Nuclear Information System (INIS)

    Shikata, E.; Amano, H.

    1976-01-01

    Radioactive iodine(I-131) is easily obtained by heating, at a temperature ranging from 600 0 C to 650 0 C, a tellurium oxide intermediate which was obtained by heating telluric acid or tellurium trioxide at a temperature from about 400 0 C to 560 0 C and was irradited with a neutron flux. Thus, pure I-131 is obtained without the complicated operations required in a conventional process for separation and/or purification of the product. 4 claims

  20. Ionic flotation of complexing oxyanions. Thermodynamics of uranyl complexation in a sulfuric medium. Definition of selectivity conditions of the process

    International Nuclear Information System (INIS)

    Bouzat, G.

    1987-01-01

    Oxyanion ionic flotation process with dodecylamine hydrochloride as collector is studied by investigation of flotation and filtration recovery curves, suspension turbidity, conductimetric measurements, and solubility of ionic species. The process is controlled by chemical reactions of precipitation and by adsorption of surfactant confering hydrophobic or hydrophilic surface properties to the solid phase respectively when one or two monolayers of surfactant are successively adsorbed. Equilibrium constants (in terms of activity) of the uranium (VI) complexation with sulphate oxyanions are calculated through Raman spectroscopic study of uranyl sulphate aqueous solutions. The complexation results in a shift of the symmetrical stretching vibration band of U0 2 to low wavenumbers and an increase of their cross section. The solubility curves of ionic species in the precipitation of uranyl -sulphate complexes by dodecylamine hydrochloride are modelled. The knowledge of solubility products, activity coefficients of the species and critical micellar concentration of the surfactant allow the modelling of flotation recovery curves. Temperature and collector structure modifications are studied in terms of optimization parameters and uranium extraction of mine drainage water is processed. Residual concentration of surfactant is considerably lowered by adsorption on montmorillonite

  1. Chemistry and mass transport of iodine in containment

    International Nuclear Information System (INIS)

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Shockley, W.E.; Daish, S.R.

    1988-01-01

    TRENDS is a computer code for modeling behavior of iodine in containment. It tracks both chemical and physical changes and features such as calculation of radiation dose rates in water pools , radiolysis effects, hydrolysis, and deposition/revaporization on aerosols and structural surfaces. Every attempt has been made to account for all significant processes. Reaction rate constants for iodine hydrolysis and radiolysis were obtained by a variable algorithm that gives values closely modeling experimental data. TRENDS output provides the distribution of iodine in containment and release from containment as a function of time during a severe accident sequence. Initial calculations with TRENDS have shown that the amount of volatile iodine released from containment is sensitive to the value of the liquid-gas (evaporation) mass transport coefficient for I 2 . 7 refs., 4 figs., 3 tabs

  2. Study on gold concentrate leaching by iodine-iodide

    Science.gov (United States)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  3. Radioanalytical studies of iodine behaviour in the environment

    International Nuclear Information System (INIS)

    Evans, G.J.; Hammad, K.A.

    1995-01-01

    The behaviour of iodine in the environment is of interest both in relation to radioecology and human nutrition. Radiochemical techniques were used to evaluate various aspects of the behaviour of iodine in the environment. The natural iodine content of plant, water and soil samples collected from three sites was determined using preconcentration neutron activation analysis (PNAA). The effect of initial chemical speciation on the distribution of iodine between various soils, sediments and waters was evaluated using I-131 tracer. Iodide was found to adsorb more extensively than iodate, although four most of the solid/water systems examined, a substantial portion of the iodate was slowly reduced to iodide. Experiments involving gamma irradiation suggest that much of the sorption of iodide and reduction of iodate involved microbial processes. Distribution coefficients measured using I-131 were comparable with values based on the natural I-127 content. (author) 18 refs.; 5 tabs

  4. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  5. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    Science.gov (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  6. Determination of iodine 129 in vegetables using neutron activation analysis

    International Nuclear Information System (INIS)

    Quintana, Eduardo E.; Thyssen, Sandra M.; Bruno, Hector A.

    1999-01-01

    The developed methodology allows the determination of iodine 129 in vegetables, using neutron activation analysis. The chemical treatment removes the interferences present in these matrixes, as well as the bromine 82 originated in the activation process. The experimental method for the determination of iodine 129 by neutron activation analysis involves five steps: 1- digestion by alkaline fusion; 2- pre-irradiation purification of iodine 129 by distillation followed by solvent extraction, and adsorption on activated charcoal by distillation; 3- neutron irradiation; 4- post-irradiation purification of iodine 130 by distillation followed by solvent extraction; 5- gamma spectrometry. A chemical recovery of 95 % is obtained in the distillations, measured using iodine 131 as tracer. The whole process recovery is within 70 % and 85 %. The detection limit is 2 mBq/kg of sample, but several factors affect this value, such as type of vegetable, natural iodine concentration, irradiation time and neutron flux. The methodology developed is applied at environmental surveillance with safeguards proposes, in the detection of undeclared reprocessing of irradiated fuel. (authors)

  7. Iodine removal in containment filtered venting system during nuclear accident

    International Nuclear Information System (INIS)

    Bera, Subrata; Deo, Anuj Kumar; Nagrale, D.B.; Paul, U.K.; Prasad, M.; Gaikwad, A.J.

    2015-01-01

    Post Fukushima nuclear accident, containment filtered venting system is being introduced in Indian nuclear power plant to strengthen the defense in depth safety barrier by depressurizing the containment building along with minimization of radioactivity release to environment during a severe accident. Radioactive iodine is one of the major contributors to radiation dose during early release phase of a severe accident. Physical and Chemical form of iodine and iodine bearing compounds includes particulates, elemental and organic. In the most efficient design of CFVS, wet scrubbing mechanism has been employed through use of venture scrubber. The Iodine removal process in wet scrubber involves two processes: chemical reaction in highly alkaline aqueous solution and impingement of particulates with water droplets produced in the venturi nozzle. In this paper, venturi has been modeled using the Calvert model. The variation of efficiency has been estimated for the different particle sizes. The impact of the shape parameter of log-normal distribution on the amount of scrubbed iodine has also been assessed. Release phase wise the scrubbed amount of iodine in the venturi based CFVS system has been estimated for a typical BWR. (author)

  8. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. Relationship between corrosion and the biological sulfur cycle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.I.; Pope, R.K.

    2000-04-01

    Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking, and stress-oriented hydrogen-induced cracking of susceptible metals and alloys. Even though the metabolic by-products of the biological sulfur cycle are extremely corrosive, there are no correlations between numbers and types of sulfur-related organisms and the probability or rate of corrosion, Determination of specific mechanisms for corrosion caused by microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by the variety of potential metabolic-energy sources and by-products; the coexistence of reduced and oxidized sulfur species; competing reactions with inorganic and organic compounds; and the versatility and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the environment. The complete sulfur cycle of oxidation and reduction reactions can take place in macroenvironments, including sewers and polluted harbors, or within the microenvironment of biofilms. In this review, reactions of sulfur and sulfur compounds resulting in corrosion were discussed in the context of environmental processes important to corrosion.

  10. Desulfurization of organic sulfur from a subbituminous coal by electron-transfer process with K{sub 4}(Fe(CN){sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Dipu Borah [Pragjyotika J College, Titabar (India). Department of Chemistry

    2006-02-01

    The desulfurization reaction involving direct electron transfer from potassium ferrocyanide, K{sub 4}(Fe(CN){sub 6}), successfully removed organic sulfur from a subbituminous coal. The temperature variation of desulfurization revealed that increase of temperature enhanced the level of sulfur removal. Moreover, the desulfurization reaction was found to be dependent on the concentration of K{sub 4}(Fe(CN){sub 6}). Gradual increase in the concentration of K{sub 4}(Fe(CN){sub 6}) raised the magnitude of desulfurization, but at higher concentration the variation was not significant. The removal of organic sulfur from unoxidized coal slightly increased with reduced particle size. Desulfurization from oxidized coals (prepared by aerial oxidation) revealed a higher level of sulfur removal in comparison to unoxidized coal. Highest desulfurization of 36.4 wt % was obtained at 90{sup o}C and 0.1 M concentration of K{sub 4}(Fe(CN){sub 6}) in the 100-mesh size oxidized coal prepared at 200{sup o}C. Model sulfur compound study revealed that aliphatic types of sulfur compounds are primarily responsible for desulfurization. Because of higher stability, thiophene and condensed thiophene-type of compounds perhaps remained unaffected by the electron-transfer agent. Infrared study revealed the formation of oxidized sulfur compounds (sulfoxide, sulfone, sulfonic acid, etc.) in the oxidized coals. The desulfurization reaction in different systems is well-represented by the pseudo-first-order kinetic model. Application of the transition state theory indicated that the desulfurization reaction proceeds with the absorption of heat (endothermic reaction) and is nonspontaneous in nature. 53 refs., 6 figs., 3 tabs.

  11. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R; Kuhn, M; Petzold, A; Schroeder, F; Schumann, U [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S [Mainz Univ. (Germany); Hagen, D; Whitefield, Ph [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J [Stockholm Univ. (Sweden)

    1998-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  12. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R.; Kuhn, M.; Petzold, A.; Schroeder, F.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D. [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S. [Mainz Univ. (Germany); Hagen, D.; Whitefield, Ph. [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J. [Stockholm Univ. (Sweden)

    1997-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  13. Effectiveness and risks of stable iodine prophylaxis

    International Nuclear Information System (INIS)

    Waight, P.J.

    1995-01-01

    The factors upon which the efficacy of stable iodine prophylaxis depends are reviewed, with particular reference to the dose of stable iodine, the timing of the dose, the influence of dietary iodine and the impact of the other prospective actions. The risks of stable iodine ingestion are estimated, and their application to the principle of Justification in outlined. (Author)

  14. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides; Estudio de los productos de fision de periodo corto. Separacion de los radionuclidos de fision del yodo y del xenon

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M; Villar, M A

    1965-07-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs.

  15. Iodine in the environment revisited

    International Nuclear Information System (INIS)

    Christiansen, J.V.; Carlsen, L.

    1989-05-01

    The report gives an overview of the environmental cycle of iodine, especially focusing on the possible reactions being responsible for the retention of iodine in the terrestrial environment. During the last two decades evidence for the presence of iodine in soil as organically bound has been presented. The major part of inorganic iodine in the terrestrial environment will, under physical and chemical conditions normally prevailing, exist as iodide. No evidence for a direct reaction between iodide and organic material has been presented, whereas strong support for the engagement of microbial activity in the formation of organic iodine compounds in soil has been obtained. Incorporation of iodine in humic substances as a result of enzymatic catalysis, involving an enzyme of the perozidase group apperas reasonable. It is concluded that microbiological activity involving extracellular enzymes most probably is responsible for the possible retention of iodine in the terrestrial environment. It is suggested that these reactions in detail should be studied experimentally. (author) 3 tabs., 2 ills., 51 refs

  16. Formulation and development of a methodology for selecting desulfurization processes, applicable to diluted sulfurous emissions from copper. Preparation of the engineering for a draft project using electron beam process, selected with this methodology

    International Nuclear Information System (INIS)

    Aros M, Patricia.

    1997-01-01

    A comparative study of clean desulfurization technologies was prepared. Sulfur abatement processes from S O 2 gas streams were analyzed in 21 processes grouped into 8 different types. Since there are a large number of potentially applicable processes, this thesis presents a process selection methodology based on a technical/economic analysis series, which produces a ranking by scores. Visual Basic 3.0 software was used to develop the program, which can be installed in any computer and uses Windows 95. Based on these results in Chilean Nuclear Energy Commission decided to present a draft project for electron beam technology. The full design and calculation for the humidifying and cooling tower was prepared together with the design of the remaining equipment for size, in order to estimate probable costs. The pre-feasibility evaluation determined that the process would generate profits, when the selling price of ammonium sulfate - which is a byproduct of the process that is used as fertilizer - is above US$ 110/ton. The process cost is heavily influenced by the capital cost of storage facilities, since a long term supply for ammonia reagent is needed. This product is imported in Chile and it is currently an expensive reagent. (author). 33 app., 7 tabs

  17. Participation of oxidized sulfur center in intramolecular free radical processes in the model organic compounds of biological importance

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    2004-01-01

    The pathogenesis of neurodegenerative diseases such as prion diseases (Creutzfeldt-Jacob disease) and Alzheimer's disease is strongly associated with the presence of β-amyloid peptide (βA) and prion protein (hPrP) in the brain tissue. Both macromolecules contain methionine (Met) residues. Their presence seems to be responsible for unique redox properties of βA and hPrP. These residues may undergo relatively easy autooxidation and/or metal-catalysed oxidation. The presented studies were focused on the potential function of Met residues as antioxidants or pro-oxidants and on their role in radical-mediated oxidation of peptides and proteins. The role of S-, O-, N- and C-centered radicals generated in various oligopeptides containing Met and relevant model compounds has been examined in detail with respect to formation of 2c-3e bonds, redox processes, fragmentation and their mutual interconversion. In order to achieve these goals several experimental radiation, photochemical, and molecular modelling methods were applied. The experimental and molecular modelling results show significant influence of functional neighbouring groups and conformational flexibility of a peptide backbone on the oxidative reduction pathway in oligopeptides containing single and multiple Met residues. The results presented here allow for better understanding of the known propensities of βA and hPrP to reduce transition metals and to form reactive oxygen species and free radicals. (author)

  18. Iodine deficiency and nutrition in Scandinavia

    DEFF Research Database (Denmark)

    Manousou, Sofia; Dahl, Lisbeth; Heinsbaek Thuesen, Betina

    2017-01-01

    Iodine nutrition is a result of geological conditions, iodine fortification and monitoring strategies within a country together with the dietary habits of the population. This review summarizes the basis for the current iodine situation in the Scandinavian countries in order to identify gaps...... strategies have been used in Scandinavia to improve iodine nutrition. The major source of iodine is iodized salt in Sweden and from milk and dairy products in Norway. In Denmark, drinking water, milk, dairy products and iodized salt used in commercial production of bread are the important sources of iodine....... The current iodine status in Scandinavia is not optimal and action is ongoing to increase iodination in Denmark, where there is mild iodine deficiency in the general population. Data from all three countries indicate insufficient iodine nutrition during pregnancy and there is a need for data from children...

  19. Iodine excretion in school children in Copenhagen

    DEFF Research Database (Denmark)

    Rasmussen, Lone B.; Kirkegaard-Klitbo, Ditte Marie; Laurberg, Peter

    2016-01-01

    INTRODUCTION: Studies of dietary habits show a high iodine intake in children in Denmark. Iodine excretion in children has not previously been assessed. Iodine excretion in adults is below the recommended threshold, and it is therefore being discussed to increase the fortification level. The main...... objective of this study was to assess iodine excretion in children living in Copenhagen to establish whether a moderate increase in iodine fortification would lead to excess iodine intake in this group. METHODS: Children in first and fifth grade were recruited through schools in Copenhagen. In total, 244...... children de-ivered a urine sample. Urine samples were analysed for iodine and creatinine, and the results were expressed as urinary iodine concentration (UIC) and as estimated 24-h iodine excretion. Iodine excretion in children was also compared with that of adults living in the same area, investigated...

  20. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Guo, Wei; Xie, Xianjun; Zhang, Liping; Liu, Yaqing; Kong, Shuqiong

    2014-01-01

    Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM–PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L{sup −1} with 47% of samples exceeding its drinking water level of 150 μg L{sup −1} as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L{sup −1} were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine. - Highlights: • Iodine species in groundwater was studied from Datong basin, northern China. • Weakly alkaline environment favors the accumulation of iodine in groundwater. • Iodate is the major species of iodine in groundwater from Datong

  1. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  2. Iodine isotopes and radiation safety

    International Nuclear Information System (INIS)

    Styro, B.; Nedvekajte, T.; Filistovich, V.

    1992-01-01

    Methods of concentration determination of stable and radioactive iodine isotopes in the Earth's different geospheres are described. Iodine isotopes concentration data, chemical forms and transformations as well as their exchange among separate geospheres of their global biochemical circulation (ocean, atmosphere, lithosphere and biosphere) are presented. Information on iodine isotopes as after-effects of nuclear installations accident (in particular, the Chernobyl accident) is generalized. The book is intended for scientists and practical workers in ecology and radioactivity protection and for a students of physics. 442 refs.; 82 figs.; 36 tabs

  3. Effect of Fly Ash Fortification in the Manufacture Process of Making Concrete towards Characteristics of Concrete in Sulfuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Asep Handaya Saputra

    2015-12-01

    Full Text Available Fly ash is a silica or alumino silica material that can be used as a constituent of cement in the concrete manufacturing process. Utilization of fly ash aims to improve durability and minimize the reduction of concrete’s compressive strength exposed to an acidic environment, which can be achieved through the pozzolanic reaction of fly ash with Ca(OH within concrete. The reduced content of Ca(OH through pozzolanic reaction will minimize the tendency of ettringite formation (compounds that cause deterioration and decrease the compressive strength of concrete. In order to determine the relation between fly ash replenishment into concrete with concrete’s characteristics (compressive strength and durability under acidic environment, the research is conducted by varying the fly ash composition ranging from 0%, 5%, 25%, 50%, up to 75%, and the concentration of H22SO solution as an immersion medium ranging from 0%, 5%, 10%, up to 15% (v/v. The research is carried out by immersing the concrete samples for 4 days in H4 solution with various concentrations. Characterization of concrete’s durability and compressive strength is reviewed from the concrete’s weight loss percentage and reduction of concrete’s compressive strength percentage after immersion. Based on the research results, for each variation of H2SO concentration used, the minimum concrete’s weight loss percentage (maximum durability and the minimum reduction of concrete’s compressive strength percentage is found in the use of fly ash by 75%. For each concentration variations of H42SO solution as an immersion medium ranging from 5%, 10%, up to 15% (v/v, the minimum concrete’s weight loss percentage was 0.47%, 0.87%, 1.28% (respectively, whilst the minimum reduction of concrete’s compressive strength percentage was 5.71%, 14.29%, 17.14% (respectively. It was concluded that the use of fly ash can improve the durability and minimize the reduction of compressive strength of concrete

  4. Radiochemistry of iodine

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, M.; Kleinberg, J.

    1977-09-01

    The preparation of isotopes of the element, with selected procedures for its determination in or separation from various media is described along with the separating of iodine species from each other. Each part of the introductory section is referenced separately from the remainder of the monograph. For the preparative and analytical sections there is an extensive, indexed bibliography which was developed from the indexes of Volumes 19 to 30 inclusive (1965-1974) of Nuclear Science Abstracts (NSA). From these indexes the NSA abstracts of possible pertinent references were selected for examination and a choice was made of those references which were to be included in the bibliography. The bibliography has both primary and secondary references. Although the monograph does not cover hot atom chemistry, the kinetics of exchange reactions, decay schemes, or physiological applications, papers in these areas were examined as possible sources of useful preparative and analytical procedures. (JRD)

  5. Radiochemistry of iodine

    International Nuclear Information System (INIS)

    Kahn, M.; Kleinberg, J.

    1977-09-01

    The preparation of isotopes of the element, with selected procedures for its determination in or separation from various media is described along with the separating of iodine species from each other. Each part of the introductory section is referenced separately from the remainder of the monograph. For the preparative and analytical sections there is an extensive, indexed bibliography which was developed from the indexes of Volumes 19 to 30 inclusive (1965-1974) of Nuclear Science Abstracts (NSA). From these indexes the NSA abstracts of possible pertinent references were selected for examination and a choice was made of those references which were to be included in the bibliography. The bibliography has both primary and secondary references. Although the monograph does not cover hot atom chemistry, the kinetics of exchange reactions, decay schemes, or physiological applications, papers in these areas were examined as possible sources of useful preparative and analytical procedures

  6. Current iodinated contrast media

    International Nuclear Information System (INIS)

    Stacul, F.

    2001-01-01

    The number of scientific papers on iodinated contrast media is declining. Indeed, comparative trials between high-osmolality and low-osmolality agents largely showed the higher safety and tolerability of the latter, and this is no longer a matter of discussion. Only financial constraints could prevent a total conversion to low-osmolality agents. Research comparing low-osmolality (nonionic monomers, ionic dimer) and iso-osmolality contrast media (nonionic dimers) are still ongoing. Both classes of nonionic compounds proved safer than the ionic dimer. The relative merits of nonionic monomers and nonionic dimers are a matter for debate, and criteria for a selective use of different agents for different procedures could be discussed. (orig.)

  7. Characterization of iodinated adrenomedullin derivatives suitable for lung nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yan; Letourneau, Myriam; Chatenet, David [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada); Dupuis, Jocelyn [Research Center, Montreal Heart Institute, Montreal, Qc (Canada); Department of Medicine, University of Montreal, Montreal, Qc (Canada); Fournier, Alain, E-mail: alain.fournier@iaf.inrs.ca [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada)

    2011-08-15

    Introduction: We have recently demonstrated the effectiveness of 99m-technetium adrenomedullin (AM) as a new molecular lung imaging agent that could provide significant advantages for the diagnosis and follow-up of disorders affecting the pulmonary circulation such as pulmonary embolism and pulmonary hypertension. Having the possibility to conjugate the targeting molecule with different radionuclides would offer more flexibility and potential advantages depending on clinical situations. Since various iodine isotopes are currently used in nuclear medicine and in pharmacological studies, we have evaluated which iodination method should be privileged in order to produce a good iodinated AM-derived nuclear medicine agent. Methods: Synthetic AM was labeled with iodine through chemical and lactoperoxidase oxidation methods. Position of the iodine atom on the peptide was determined by MALDI-TOF mass spectrometry analysis following cyanogen bromide cleavage and carboxypeptidase Y digestion. Binding affinity of iodinated AM analogues was evaluated by competition and saturation binding experiments on dog lung preparations. Results: In this study, we demonstrated that, upon lactoperoxidase oxidation, iodination occurred at Tyr{sup 1} and that this radioligand retained higher binding affinity and specificity over preparations obtained through chemical oxidation. Conclusions: These results emphasize the fact that even a small chemical modification, i.e. iodination, might deeply modify the pharmacological profile of a compound and support observations that the C-terminal tail of human AM plays an important role in the AM receptor binding process. Consequently, incorporation of a radionuclide to produce an AM-based nuclear medicine agent should privilege the N-terminus of the molecule.

  8. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  10. Design of sample analysis device for iodine adsorption efficiency test in NPPs

    International Nuclear Information System (INIS)

    Ji Jinnan

    2015-01-01

    In nuclear power plants, iodine adsorption efficiency test is used to check the iodine adsorption efficiency of the iodine adsorber. The iodine adsorption efficiency can be calculated through the analysis of the test sample, and thus to determine if the performance of the adsorber meets the requirement on the equipment operation and emission. Considering the process of test and actual demand, in this paper, a special device for the analysis of this kind of test sample is designed. The application shows that the device is with convenient operation and high reliability and accurate calculation, and improves the experiment efficiency and reduces the experiment risk. (author)

  11. Quantification of iodine in porous hydroxyapatite matrices for application as radioactive sources in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Kassio Andre; Lameiras, Fernando Soares [Centro de Desenvolvimento da Tecnologia Nuclear, (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silva, Viviane Viana [Centro de Desenvolvimento da Tecnologia Nuclear, (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Vale do Rio Verde de Tres Coracoes, MG (Brazil)

    2007-07-15

    In this study, non-radioactive iodine was incorporated in two types of biodegradable hydroxyapatite-based porous matrices (HA and HACL) through impregnation process from sodium iodine aqueous solutions with varying concentrations (0.5 and 1.0 mol/L) . The results revealed that both systems presented a high capacity of incorporating iodine into their matrices. The quantity of incorporated iodine was measured through Neutron Activation Analysis (NAA). The porous ceramic matrices based on hydroxyapatite demonstrated a great potential for uses in low dose rate (LDR) brachytherapy. (author)

  12. Immobilization of iodine in concrete

    Science.gov (United States)

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  13. Milk Iodine Content in Slovakia

    Directory of Open Access Journals (Sweden)

    I. Paulíková

    2008-01-01

    Full Text Available The aim of this work was to map actual iodine status and its seasonal differences in raw milk of dairy cows, sheep, and goats in various regions of Slovakia. Iodine concentrations were determined in 457 samples of raw milk from dairy cows, 78 samples of sheep, and 16 samples of goat milk collected in various regions of Slovakia from 2002 to 2007. Among all the 457 samples of bovine milk, iodine content below 50 μg l-1 was recorded in 114 samples (24.94%; 294 samples (64.33% ranged between 50 and 200 μg l-1; 19 samples (4.16% from 200 to 500 μg l-1; 17 samples (3.72% between 500 and 1 000 μg l-1, and 13 samples (2.85% showed iodine concentrations over 1 000 μg l-1. regional concentrations showed the highest values in the Western, then Middle and Eastern Slovakia, and the lowest values in Northern Slovakia (p p -1 in 49 sheep (62.8% and in 6 goats below 60 μg l-1 (37.5%, which are indicative of iodine deficiency. When comparing seasonal differences, sheep and goat milk had higher iodine content during the winter feeding period, however, in dairy cows we recorded the opposite ratio. Except for goat milk (p < 0.01 the seasonal differences were not significant.

  14. Measurement of Iodine-129 concentration in environmental water samples around Fukushima area - Role of river system in the global iodine cycle

    Science.gov (United States)

    Matsuzaki, Hiroyuki; Tokuyama, Hironori; Miyake, Yasuto; Honda, Maki; Yamagata, Takeyasu; Muramatsu, Yasuyuki

    2013-04-01

    According to Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, vast amount of radioactive nuclides including radioactive iodine were spilled out into the environment. There is no question about that detailed observation of distribution of radioactive nuclides and evaluation of the radiation exposure of residents is extremely important. On the other hand, from the view of an elemental dynamics in the environment, this event can be considered as a spike of the radioactive isotope. It is also the case for the iodine. A rare isotope Iodine-129 was widely distributed in a very short time by the FDNPP accident. Iodine-129 directly landing on the soil surface had been trapped in the upper layer of the soil and the depth profile should indicate the migration in and the interaction with the soil. If Iodine-129 was trapped in the woods, it seems to take rather longer time to landing on the ground. Either way, a certain portion of the Iodine-129 should be moving downward and finally washed out by the groundwater or river with a certain rate and transported into the sea. The concentration of Iodine-129 in environmental water samples taken from rivers and ponds are considered to reflect the iodine transportation process by the fluvial system. For the detailed discussion of the role of the fluvial system in the global iodine cycle, Iodine-129 concentration of various water samples collected from Fukushima area was measured by means of Accelerator Mass Spectrometry. The results ranged from 3E06 atoms/L to 3E09 atoms/L. Samples from Abukuma area (South West of FDNPP) showed lower concentration. On the other hand, samples collected from North West part (Iitate village and Minami Soma region) showed higher concentration (more than 1E8 atoms/L). Delayed enhancement of Iodine-129 concentration over a year in river systems surrounded by woods was also observed which is considered to correspond to the delayed release from the woods.

  15. Total iodine quantification in fluids and tissues from iodine- or iodide-supplemented rats by ion chromatography following microwave-assisted digestion.

    Science.gov (United States)

    Delgado, Guadalupe; Muñoz-Torres, Carolina; Orozco-Esquivel, Teresa; Anguiano, Brenda; Aceves, Carmen

    2015-03-01

    Iodine is a crucial component of thyroid hormones, and several reports have shown that iodine per se is implicated in the physiopathology of other organs. Innovative ion chromatography detection following a four-step temperature ramp microwave digestion in 25-50 mM nitric acid was developed to measure total iodine in biological fluids and tissue samples from female Sprague-Dawley rats supplemented with 0.05% molecular iodine (I2) or 0.05% potassium iodide (I(-)) in drinking water. The reported method allows the measurement of total iodine with a limit of quantification of 13.7 μg L(-1), recoveries of 96.3-100.3%, and intra- and inter-assay variations, of 3.5% and 7.4% respectively. Analysis of biological fluids showed that after 48 hours, iodine-supplemented animals exhibited significantly higher levels of total iodine in both serum and urine compared with those supplemented with iodide. The half-life of iodine in serum and urine measured over the first 48 h showed similar patterns for both the I2 (7.89 and 7.76 hours) and I(-) (8.27 and 8.90 hours) supplements. Differential uptake patterns were observed in tissues after 6 days of supplements, with I(-) preferentially retained by thyroid, lactating mammary gland, and milk, and a slightly but significantly higher capture of I2 in pituitary, ovary, and virgin mammary gland. We developed a rapid, selective, and accurate digestion method to process fluid and tissue samples that permits reproducible measurements of total iodine by ion chromatography; iodine or iodide supplement show a similar serum and urine half-life, but organ-specific uptake depends on the chemical form of the iodine supplement.

  16. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

  17. Iodine filters in nuclear power stations

    International Nuclear Information System (INIS)

    Wilhelm, J.G.

    1977-04-01

    On the basis of calculated and recorded release rates of nuclear power plants, the significance of iodine releases in the invironmental impact relative to other nuclides is discussed. The release pathways for iodine in LWR-type reactors and the efficiency of various methods to lower the activity release are given. The airborne species of iodine are discussed with regard to their removal in iodine sorption filters and environmental impact. The technical status of iodine removal by means of iodine sorption filters is studied for normal operation and accident conditions in nuclear power stations on the basis of the data given in the relevant literature for the efficiency of a number of iodine sorption materials. The applicability of concepts for ventilation and containment and their influence on iodine filter systems are discussed. Design, structure, and testing of iodine sorption filters are treated in detail; recommendations for design are given, and failure sources are mentioned. (orig.) [de

  18. Iodine status in neonates in Denmark

    DEFF Research Database (Denmark)

    Nøhr, S B; Laurberg, Peter; Børlum, K G

    1994-01-01

    Iodine status of 147 neonates born in five different regions of Denmark was evaluated in relation to the iodine content of breast milk and iodine supplementation taken by the mother. Approximately two-thirds of the women had not received iodine supplementation. They had low iodine concentrations...... in breast milk and urinary iodine concentrations of the neonates at day 5 were low. The median values (milk/urine) were 33.6/31.7 micrograms/l (Randers 22/26, Ringkøbing 29/16, Aalborg 36/31. Arhus 54/41 and Copenhagen 55/59 micrograms/l). Higher values were found in the group where tablets containing...... iodine had been taken (milk/urine: 57.0/61.0 micrograms/l). In general, the values are low compared with internationally recommended levels. We suggest that mothers without autoimmune thyroid disease should receive iodine supplementation in the form of vitamin/mineral tablets containing iodine (150...

  19. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  20. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  1. Study of Iodine Prophylaxis Following Nuclear Accidents

    International Nuclear Information System (INIS)

    Sri Widayati; Tedjasari, R. S.; Elfida

    2007-01-01

    Study of iodine prophylaxis following nuclear accidents has been done. Giving stable iodine to a population exposed by I-131 is one of preventive action from internal radiation to the thyroid gland. Stable iodine could be given as Kl tablet in a range of dose of 30 mg/day to 130 mg/day. Improper giving of stable iodine could cause side effect to health, so then some factors should be considered i. e. dose estimation, age, dose of stable iodine to be given, duration of stable iodine prophylaxis and risk of health. (author)

  2. The radiotoxicology of iodine

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1981-01-01

    Thirty radioisotopes of iodine are known but only those with mass numbers from 123 to 135 are of major radiotoxicological interest. Exposure of animals or man to inorganic 131 I or 125 I may result in the induction of benign or malignant thyroid tumors or depression of thyroid function; Bq for Bq 125 I is less toxic than 131 I. However, the shorter lived radioiodines 132 I, 133 I, and 135 I appear to be 10 to 100 times more toxic than 131 I alone. Little information is available about the toxicity of radioiodine containing organic compounds. The DNA precursor, iododeoxyuridine when labelled with 125 I becomes incorporated into the cell nucleus and produces severe and often irreparable damage due to the emission of Auger electrons. The risk estimate for the induction of thyroid carcinoma or adenoma by inorganic 131 I is considered to be 10 to 20x10 -6 persons Gy -1 y -1 , but may be up to 100 times larger for persons exposed to mixtures of short-lived radioiodines. (author)

  3. Significance of iodine radioactive isotopes in the problem of radiation safety of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Malenchenko, A.F.; Mironov, V.P.

    1979-01-01

    The data on actual wastes of nuclear-power plants, environmental distribution and biological effects of iodine radioactive isotopes have been analyzed. Dose-response relationship is estimated as well as its significance for struma maligna development under ionizing radiation and the contribution of iodine radionuclides resulted from nuclear power engineering to this process

  4. Mechanisms of iodine release from iodoapatite in aqueous solution

    Science.gov (United States)

    Zhang, Z.; Wang, J.

    2017-12-01

    Immobilization of iodine-129 with waste forms in geological setting is challenging due to its extremely long half-life and high volatility in the environment. To evaluate the long-term performance of waste form, it is imperative to determine the release mechanism of iodine hosted in the waste form materials. This study investigated the iodine released from apatite structured waste form Pb9.85 (VO4)6 I1.7 to understand how diffusion and dissolution control the durability of apatite waste form. A standard semi-dynamic leach test was adopted in this study. Samples were exposed in fresh leachant periodically and the leachant was replaced after each interval. Each experiment was carried out in cap-sealed Teflon vessels under constant temperature (e.g. 90 °C). ICP-MS analysis on the reacted leachates shows that Pb and V were released constantly and congruently with the stoichiometric ratio of Pb/V. However, iodine release is incongruent and time dependent. The iodine release rate starts significantly higher than the corresponding stoichiometric value and gradually decreases, approaching the stoichiometric value. Therefore, a dual-mode mechanism is proposed to account for the iodine release from apatite, which is dominated by short-term diffusion and long-term dissolution processes. Additional tests show that the element release rates depend on a number of test parameters, including sample surface to solution volume ratio (m-1), interval (day), temperature (°C), and solution pH. This study provides a quantitative characterization of iodine release mechanism. The activation energy of iodine leaching 21±1.6 kJ/mol was obtained by varying the test temperature. At the test conditions of to neutral pH and 90 °C, the long-term iodine release rate 3.3 mg/(m2 • day) is projected by normalizing sample surface area to solution volume ratio (S/V) to 1.0 m-1 and interval to 1 day. These findings demonstrate i) the feasibility of our approach to quantify the release mechanism

  5. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  6. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  7. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    Science.gov (United States)

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio

  8. Iodine behaviour in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, L M.C.; Grindon, E; Handy, B J; Sutherland, L [NNC Ltd., Knutsford (United Kingdom); Bruns, W G; Sims, H E [AEA Technology, Harwell (United Kingdom); Dickinson, S [AEA Technology, Winfrith (United Kingdom); Hueber, C; Jacquemain, D [IPSN/CEA, Cadarache, Saint Paul-Lez-Durance (France)

    1996-12-01

    A description is given of analyses which identify which aspects of the modelling and data are most important in evaluating the release of radioactive iodine to the environment following a potential severe accident at a PWR and which identify the major uncertainties which affect that release. Three iodine codes are used namely INSPECT, IODE and IMPAIR, and their predictions are compared with those of the PSA code MAAP. INSPECT is a mechanistic code which models iodine behaviour in the aqueous aerosol, spray water and sump water, and the partitioning of volatile species between the aqueous phases and containment gas space. Organic iodine is not modelled. IODE and IMPAIR are semi-empirical codes which do not model iodine behaviour in the aqueous aerosol, but model organic iodine. The fault sequences addressed are based on analyses for the Sizewell `B` design. Two types of sequence have been analysed.: (a) those in which a major release of fission products from the primary circuit to the containment occur, e.g. a large LOCAS, (b) those where the release by-passes the containment, e.g. a leak into the auxiliary building. In the analysis of the LOCA sequences where the pH of the sump is controlled to be a value of 8 or greater, all three codes predict that the oxidation of iodine to produce gas phase species does not make a significant contribution to the source term due to leakage from the reactor building and that the latter is dominated by iodide in the aerosol. In the case where the pH of the sump is not controlled, it is found that the proportion of gas phase iodine increases significantly, although the cumulative leakage predicted by all three codes is not significantly different from that predicted by MAAP. The radiolytic production of nitric acid could be a major factor in determining the pH, and if the pH were reduced, the codes predict an increase in gas phase iodine species leaked from the containment. (author) 4 figs., 7 tabs., 13 refs.

  9. [Assessment of dietary iodine intake of population in non-high-iodine areas in China].

    Science.gov (United States)

    Song, Xiaoyu; Li, Fengqin; Liu, Zhaoping; He, Yuna; Sui, Haixia; Mao, Weifeng; Liu, Sana; Yan, Weixing; Li, Ning; Chen, Junshi

    2011-03-01

    To assess the potential risk of dietary iodine insufficiency of population in non-high-iodine areas (water iodine China. The dietary iodine intake of 13 age-sex population groups were estimated by combining the data of iodine intake from food, table salt and drinking water. Two conditions were considered: consuming iodized salt or non-iodized salt. The data of food and table salt consumption were derived from the Chinese National Nutrition and Health Survey in 2002. Water consumption was calculated as the recommended water intake. Iodine contents of food, table salt and water were calculated from China Food Composition Table and iodine surveillance data. Under the condition of consuming iodized salt, the average iodine intake of all population groups was higher than the Recommended Nutrient Intake (RNI), while the iodine intakes of individuals above Upper Limits (UL) and below RNI were 5.8% and 13.4% respectively, and the iodine intake of individuals lower than the Estimated Average Requirement (EAR) was 9.4% in adults above 18 years of age (including pregnant and lactating women). If non-iodized salt was consumed, the average iodine intake of most sex-age population groups was higher than RNI, but the iodine intake of 97.6% of individuals would be lower than RNI, while the iodine intake of 97.4% of adults would be lower than EAR. The contribution of iodine from table salt was much higher than that from drinking water and food in the condition of consuming iodized salt, while food was the predominant contributor of dietary iodine in the condition of consuming non-iodized salt. The health risk of iodine deficiency was higher than that of iodine excess in areas where water iodine was China, and the risk of iodine insufficiency was much higher if non-iodized salt was consumed. Iodized salt should be the main sources of dietary iodine intake for population in areas where water iodine was China.

  10. Urinary Iodine Concentrations Indicate Iodine Deficiency in Pregnant Thai Women but Iodine Sufficiency in Their School-Aged Children

    NARCIS (Netherlands)

    Gowachirapant, S.; Winichagoon, P.; Wyss, L.; Tong, B.; Baumgartner, J.; Boonstra, A.; Zimmermann, M.B.

    2009-01-01

    The median urinary iodine concentration (UI) in school-aged children is recommended for assessment of iodine nutrition in populations. If the median UI is adequate in school-aged children, it is usually assumed iodine intakes are also adequate in the remaining population, including pregnant women.

  11. Iodinated contrast media nephrotoxicity

    International Nuclear Information System (INIS)

    Meyrier, A.

    1994-01-01

    In the late seventies, iodinated contrast agents (ICA) were considered to be a major cause of acute iatrogenic renal failure. Over the last decade new contrast agents have been synthesized, nonionic and less hyperosmolar. The incidence of acute renal failure due to ICAs, varies from 3.7 to 70% of cases according to the series, with an average figure of 10.2%. The pathophysiology of ICA nephrotoxicity was mainly studied in laboratory animal models. Three main factors are involved in an inducing ICA-mediated decrease in glomerular filtration rate: reduction of the renal plasma flow, a direct cytotoxic effect on renal tubular cells and erythrocyte alteration leading to intra-renal sludge. Excluding dysglobulinemias with urinary excretion of immunoglobulin light chains, which represent a special case of maximum nephrotoxicity, 4 main risk factors of renal toxicity have been identified in nondiabetic subjects: previous renal failure with serum creatinine levels greater than 140 μmol per liter, extracellular dehydration, age over 60 and use of high doses of ICA and/or repeated ICA injections before serum creatinine levels return to baseline. Preventive measures for avoiding ICA nephrotoxicity are threefold: maintain or restore adequate hydration with saline infusion, stop NSAID treatment several days before ICA administration, and allow a 5 day interval before repeating contrast media injections. New, nonionic and moderately hyperosmolar contrast agents appear to be much less nephrotoxic than conventional ICAs in laboratory animals and in high-risk patients. It is advisable to select such contrast media for investigating high-risk patients. This approach was recently substantiated in well designed, randomized clinical studies which included more than 2 000 patients. (author)

  12. Experimental reproduction of iodine deficiency in cattle.

    Science.gov (United States)

    McCoy, M A; Smyth, J A; Ellis, W A; Arthur, J R; Kennedy, D G

    1997-11-22

    The role of iodine deficiency in stillbirth/perinatal weak calf syndrome was investigated in pregnant heifers. Five heifers were fed an iodine deficient diet (mean [sd] iodine concentration 0.06 [0.01] mg/kg dry matter [DM]) and six received an iodine sufficient diet (mean [sd] iodine concentration 1.45 [0.27] mg/kg DM). The diets consisted of wheat and soyabean meal with added minerals and vitamins (with or without iodine) and were fed to the heifers over the final four to five months of pregnancy. The iodine deficient diet produced clinicopathological changes and pathological changes in the thyroid glands of both the heifers and their offspring. However, all the calves in the iodine deficient group were born clinically normal.

  13. Thyroid disorders in mild iodine deficiency

    DEFF Research Database (Denmark)

    Laurberg, P; Nøhr, S B; Pedersen, K M

    2000-01-01

    Comparative epidemiologic studies in areas with low and high iodine intake and controlled studies of iodine supplementation have demonstrated that the major consequence of mild-to-moderate iodine deficiency for the health of the population is an extraordinarily high occurrence of hyperthyroidism...... endangered but the consequences of severe iodine deficiency for brain development are grave and a considerable safety margin is advisable. Moreover, a shift toward less malignant types of thyroid cancer and a lower radiation dose to the thyroid in case of nuclear fallout support that mild-to-moderate iodine...... deficiency should be corrected. However, there is evidence that a high iodine intake may be associated with more autoimmune hypothyroidism, and that Graves' disease may manifest at a younger age and be more difficult to treat. Hence, the iodine intake should be brought to a level at which iodine deficiency...

  14. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  15. Contrast induced hyperthyroidism due to iodine excess

    OpenAIRE

    Mushtaq, Usman; Price, Timothy; Laddipeerla, Narsing; Townsend, Amanda; Broadbridge, Vy

    2009-01-01

    Iodine induced hyperthyroidism is a thyrotoxic condition caused by exposure to excessive iodine. Historically this type of hyperthyroidism has been described in areas of iodine deficiency. With advances in medicine, iodine induced hyperthyroidism has been observed following the use of drugs containing iodine—for example, amiodarone, and contrast agents used in radiological imaging. In elderly patients it is frequently difficult to diagnose and control contrast related hyperthyroidism, as most...

  16. Formation and behaviour of organic iodine

    International Nuclear Information System (INIS)

    Zilliacus, R.; Koukkar, P.; Karjunen, T.; Sjoevall, H.

    2002-01-01

    The report presents experimental studies on the formation of organic iodine in severe reactor accidents. The analyses were performed to evaluate the amount of alkaline chemical needed for effective pH control of containment water during the accidents. The formation of organic iodine in solutions used in the filtered venting system and the absorption of iodine compounds in the solutions were studied. Experiments for the formation of organic iodine on painted surfaces were also performed. (au)

  17. Mineral resource of the month: iodine

    Science.gov (United States)

    Polyak, Désirée E.

    2009-01-01

    The article focuses on iodine, its benefits and adverse effects, and its production and consumption. It states that iodine is essential to humans for it produces thyroid hormones to nourish thyroid glands but excessive intake could cause goiter, hyperthyroidism or hypothyroidism. U.S. laws require salt iodization to help prevent diseases. Chile and Japan are the world's leading iodine producer while in the U.S. iodine is mined from deep well brines in northern Oklahoma.

  18. Iodine Prophylaxis and Nuclear Accidents

    International Nuclear Information System (INIS)

    Franic, Z.

    1998-01-01

    Iodine is a highly volatile element therefore being very mobile in the environment. It enters the metabolism of living organisms and is selectively taken up and concentrated in the thyroid gland. The plume (cloud-like formation) of radioactive material that might be released in the environment in the case of a serious nuclear accident, primarily consists of the radioactive isotopes of iodine. Among those, due to its decay properties, is the most important 131 I. The effective means of protecting the thyroid gland against exposure to radioactive iodine is an intake of stable iodine. Therefore, one of the central issues in the emergency planning is to determine whether and at which projected thyroid radiation dose stable iodine should be given to the population. The International Atomic Energy Agency (IAEA) set the generic optimized intervention value for iodine prophylaxis to 100 mGy of avertable committed dose to a thyroid.The prophylaxis is implemented by utilizing the pills of pills of potassium iodine (KI). The efficacy of KI in protecting the thyroid gland depends upon the time of intake relative to the start of exposure to radioactive iodine. The best results are obtained if KI is taken 1-2 hours before or immediately after the start of exposure. The recommended dosage, based upon the study performed by Il'in et.al. is 130 mg/day. KI should be taken at least three days after the acute exposure to radioiodine, to prevent accumulation in a thyroid gland of radioiodine excreted from the other compartments of the body. The largest epidemiological study on the effects of KI prophylaxis ever performed was the one in Poland after the Chernobyl accident. Stable iodine was given as single dose of KI solution to 10.5 million of children and 7 millions of adults. Among children no serious side effects were seen while only two adults (with previously recorded iodine sensitivity) had severe respiratory distresses. Polish experiences showed that rapid response to such

  19. Investigations concerning the exchange of iodine from non-volatile organic iodine compounds

    International Nuclear Information System (INIS)

    Psarros, N.; Duschner, H.; Molzahn, D.; Schmidt, L.; Heise, S.; Jungclas, H.; Brandt, R.; Patzelt, P.

    1990-10-01

    The iodine produced by nuclear fission is removed during the reprocessing of exhausted nuclear fuel elements by desorption achieving good decontamination factors. Nevertheless the further optimization of the process requires detailed information about the iodine speciation during fuel reprocessing, and about possible reactions. For the study of decomposition reactions of iodo-alcanes, which are built up during the fuel recycling process, we developed a method for the synthesis of labelled iodo-dodecane, which was used as tracer. In order to identify the iodo species in the organic phase of the reprocessing cycle we applied plasma desorption time-of-flight mass spectroscopy. The problem of the volatility of the iodo-compounds in the ultra vacuum of the mass spectrometer was overcome by derivatization of the iodo-alcanes with dithizon, which yielded non-volatile ionic alcyltetrazolium iodides. Beta-spectrometric analysis of the exhaust condensates collected from the organic phase of the WAK reprocessing cycle revealed beside iodine-129 the existence of a low-energetic beta emitter, which has yet to be identified. A literature survey on the topic was also performed. (orig.) With 42 refs., 9 figs [de

  20. Uptake mechanism for iodine species to black carbon.

    Science.gov (United States)

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  1. The importance of iodine nutrition during pregnancy.

    Science.gov (United States)

    Glinoer, Daniel

    2007-12-01

    To examine the importance of iodine nutrition during pregnancy. Review of existing literature of iodine in pregnancy. Population surveys and metabolic studies. Pregnant women. The main changes in thyroid function associated with pregnancy are due to an increase in hormone requirements that begin in the first trimester of gestation. This increase can only be met by a proportional increase in hormone production, something that depends directly upon the availability of iodine. When dietary iodine is lacking, an adequate physiological adaptation is difficult to achieve and is progressively replaced by pathological alterations that occur in parallel with the degree and duration of iodine deprivation. Iodine prophylaxis should be given systematically to women during pregnancy. In most public health programmes dealing with the correction of iodine deficiency disorders, iodised salt has been used as the preferred means to deliver iodine to households. Iodised salt, however, is not the ideal means of delivering iodine in the specific instances of pregnancy, breast-feeding and complementary feeding because of the need to limit salt intake during these periods. In European countries, presently it is proposed that iodine is given to pregnant women and breast-feeding mothers by systematically administering multivitamin tablets containing iodine in order to reach the recommended dietary allowance of 250 microg iodine day-1.

  2. Iodine in Enteral and Parenteral Nutrition

    NARCIS (Netherlands)

    Zimmermann, M.B.; Crill, C.M.

    2010-01-01

    Iodine deficiency (ID) has multiple adverse effects on growth and development due to inadequate thyroid hormone production. Methods for assessment of iodine nutrition in individuals include the urinary iodine concentration (UI), thyroid size and thyroid function tests. The UI measured in several

  3. Industrial system for producing iodine-123

    International Nuclear Information System (INIS)

    Brantley, J.C.

    1985-01-01

    An industrial system to produce iodine-123 required a complex set of steps involving new approaches by the Food and Drug Administration, difficult distribution procedures, and evidence from potential users that either very pure iodine-123 or inexpensive iodine-123 is needed. Industry has shown its willingness to invest in new radionuclides but needs strong evidence as to product potential to justify those investments

  4. Iodine excretion in school children in Copenhagen

    DEFF Research Database (Denmark)

    Rasmussen, Lone B; Kirkegaard-Klitbo, Ditte Marie; Laurberg, Peter

    2016-01-01

    INTRODUCTION: Studies of dietary habits show a high iodine intake in children in Denmark. Iodine excretion in children has not previously been assessed. Iodine excretion in adults is below the recommended threshold, and it is therefore being discussed to increase the fortification level. The main...

  5. MARGINAL IODINE DEFICIENCY EXACERBATES PERCHLORATE THYROID TOXICITY.

    Science.gov (United States)

    The environmental contaminant perchlorate disrupts thyroid homeostasis via inhibition of iodine uptake into the thyroid. This work tested whether iodine deficiency exacerbates the effects of perchlorate. Female 27 day-old LE rats were fed a custom iodine deficient diet with 0, 50...

  6. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  7. Chemical species of iodine in some seaweeds. Pt. 2. Iodine-bound biological macromolecules

    International Nuclear Information System (INIS)

    Xiaolin Hou; Chifang Chai; Xiaojun Yan

    2000-01-01

    The distribution of iodine in various biological macromolecules in Sargassum kjellmanianum was studied using neutron activation analysis combined with chemical and biochemical separation techniques. The results indicate that iodine is mainly bound with protein, part of iodine with pigment and polyphenol, and little with polysaccharides, such as algin, fucoidan and cellulose. This result is significant for the mechanism of enriching iodine of algae and utilization of alga iodine. (author)

  8. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  9. Biologically produced sulfur particles and polysulfide ions

    NARCIS (Netherlands)

    Kleinjan, W.E.

    2005-01-01

    This thesis deals with the effects of particles of biologically produced sulfur (or 'biosulfur') on a biotechnological process for the removal of hydrogen sulfide from gas streams. Particular emphasis is given to the role of polysulfide ions in such a process. These

  10. Thyroid iodide compartments and their implication in the rat thyroid iodine organification

    International Nuclear Information System (INIS)

    Bastiani, P.; Simon, C.

    1982-01-01

    To estimate the relative participation of transported and intrathyroidally generated iodide (internal iodide) in the iodination of newly synthesized and preexisting thyroglobulin (Tg) in the rat thyroid, the specific radioactivities (SRAs) of thyroid iodide, Tg, lysosomal iodine, and plasma hormones were followed for 92 h after radioactive iodide injection in intact or hypophysectomized rats. In control rats, the SRA of Tg and lysosomal iodine reached a maximum at 12 h. However, the SRA of lysosomal iodide was always smaller than that of Tg. In contrast, the SRA of hormonal iodide attained a maximum at 48 h. Thus, newly labeled iodine is endocytosed and mixed inside the lysosomes with older previously iodinated molecules; hormone secretion is mainly due to old labeled iodine (i.e. iodine with a high SRA from 48-96 h). These results are consistent with the presence of least two Tg compartments, with different turnover rates and hormone contents. On the other hand, in hypophysectomized rats, the SRA of Tg, lysosomes, and hormones showed only one maximum, at 24 h. Furthermore, the SRAs of Tg and lysosomes were similar at each time interval. It is inferred that in such rats, the old labeled iodine compartment is strongly reduced, and that inside the lysosomes, newly labeled iodine is predominant. Since in hypophysectomized rats, the recycling of iodide is abolished, it is concluded that in normal rats: 1) transported iodide is organified mainly by direct iodination of newly synthesized Tg, independently of TSH, and 2) internal iodide is organified mainly by delayed iodination of preexisting Tg, this process being TSH dependent

  11. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  12. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  13. Single and multiple ionization of sulfur atoms by electron impact

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1982-01-01

    Laboratory measurements of the cross sections for single, double, triple, and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV. The cross sections for single ionization of sulfur are measured relative to those of several elements whose absolute cross sections for single ionization are known. Cross sections for each multiple ionization process are then measured relative to those for single ionization. The configuration and operation of the apparatus for these measurements are described. The possible effects of excited sulfur reactants are examined, and the reported cross sections are felt to be characteristic of ground state sulfur atoms

  14. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  15. Biogeochemistry of iodine in aquatic and terrestrial systems

    International Nuclear Information System (INIS)

    Behrens, H.

    2006-01-01

    Full text: It was found that in surface water (rivers, lakes) iodide becomes to a large extent bound onto organic materials (mainly humic substances), the reaction being mediated by extracellular enzymes (peroxidases) which are provided by microbial activity. In soils and sediments also fixation of iodine on solid organic materials occurs by the same process. The reaction appears as a continuing iodination and simultaneous deiodination only in aerobic systems. When switching to anaerobic conditions, only the deiodination resumes resulting in a complete release of the organoiodine into dissolved iodide. (author)

  16. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  17. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  18. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  19. Transfer of gaseous iodine to Tradescantia

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Ohmomo, Yoichiro.

    1984-01-01

    Transfer rates of gaseous elemental iodine and methyliodide from atmosphere to Tradescantia were investigated in relation to supposed genetic mutation due to radioactive iodine released from nuclear facilities. The estimated transfer rate of elemental iodine to the young buds of Tradescantia, which was given as the ratio of iodine uptake rate per unit weight of the plant to the concentration of the element in the air, was approximately 7 x 10 -2 cm 3 /g.sec, about 30 to 40 times higher than that of methyliodide. The contribution of direct deposition of elemental iodine was suggested to be significant, although methyliodide was mainly absorbed by respiration through stomata of the plant. (author)

  20. Evaporation of iodine from nitric acid with the aid of peroxide

    International Nuclear Information System (INIS)

    Cathers, G.I.; Shipman, C.J.

    1975-01-01

    Traces of radioactive iodine with a concentration of 5 x 10 -4 M or less that remained in nitric acid solution after reprocessing of nuclear fuels can, without great apparatus effort, be distilled off as hydrogen iodide by continuous addition of hydrogen peroxide to the solution boiling at about 105 0 C to 1,15 0 C, and then be separated as elementary iodine. Starting from a 4 to 6 molecular nitric acid solution, the H 2 O 2 -concentration amounts to 0.012 percentage by weight and is kept at this level during the entire distillation process. The iodine concentration is also profitably kept at the level of the starting solution by adding non-radioactive iodine, since an isotopec exchange of radioactive iodine bound in organic impurities is advanced in that way. (UWI) [de

  1. IODINE CONCENTRATION IN SALT AT HOUSEHOLD AND RETAIL ...

    African Journals Online (AJOL)

    hi-tech

    2003-10-10

    Oct 10, 2003 ... of shop salt samples have iodine levels below the minimum standard set by the Quality and. Standard Authority of Ethiopia. ... process towards meeting the goal of IDD elimination. Universal salt iodization (USI) is .... study populations was Oromo accounting for 155(51.8%) and 10(30.3%) in the household ...

  2. Prevalence of vitamin a, zinc, iodine deficiency and anaemia among ...

    African Journals Online (AJOL)

    Children are the most nutritionally vulnerable group of society as children are dependants and they are also at a critical stage of the growing process. They need adequate vitamin A, zinc, iron and iodine for their development and school performance. Most often iron deficiency causes anaemia with resultant fatigue and low ...

  3. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  4. Dietary flavonoids and iodine Metabolism

    NARCIS (Netherlands)

    Elst, van der J.P.; Smit, J.W.A.; Romijn, H.A.; Heide, van der D.

    2003-01-01

    Flavonoids have inhibiting effects on the proliferation of cancer cells, including thyroidal ones. In the treatment of thyroid cancer the uptake of iodide is essential. Flavonoids are known to interfere with iodide organification ill vitro, and to cause goiter. The influence of flavonoids on iodine

  5. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  6. Thyroid disorders in mild iodine deficiency.

    Science.gov (United States)

    Laurberg, P; Nøhr, S B; Pedersen, K M; Hreidarsson, A B; Andersen, S; Bülow Pedersen, I; Knudsen, N; Perrild, H; Jørgensen, T; Ovesen, L

    2000-11-01

    Comparative epidemiologic studies in areas with low and high iodine intake and controlled studies of iodine supplementation have demonstrated that the major consequence of mild-to-moderate iodine deficiency for the health of the population is an extraordinarily high occurrence of hyperthyroidism in elderly subjects, especially women, with risk of cardiac arrhythmias, osteoporosis, and muscle wasting. The hyperthyroidism is caused by autonomous nodular growth and function of the thyroid gland and it is accompanied by a high frequency of goiter. Pregnant women and small children are not immediately endangered but the consequences of severe iodine deficiency for brain development are grave and a considerable safety margin is advisable. Moreover, a shift toward less malignant types of thyroid cancer and a lower radiation dose to the thyroid in case of nuclear fallout support that mild-to-moderate iodine deficiency should be corrected. However, there is evidence that a high iodine intake may be associated with more autoimmune hypothyroidism, and that Graves' disease may manifest at a younger age and be more difficult to treat. Hence, the iodine intake should be brought to a level at which iodine deficiency disorders are avoided but not higher. Iodine supplementation programs should aim at relatively uniform iodine intake, avoiding deficient or excessive iodine intake in subpopulations. To adopt such a strategy, surveillance programs are needed.

  7. Iodine tablets and a nuclear accident

    International Nuclear Information System (INIS)

    Paile, W.

    1992-01-01

    Radioactive iodine is one of the major substances released during severe nuclear accidents. Radioactive iodine is easily gasified, and if present in fallout it can enter the lungs, and thereby the circulatory system, with the inhalation of air. Once in a body, radioactive iodine accumulates in the thyroid and may result in tumours in the thyroid and, in extreme cases, impaired thyroid function. Accumulation of radioactive iodine can be prevented by taking non-radioactive, 'cold' iodine as tablets. Iodine tablets dilute the radioactive iodine that has entered the body. A dose of iodine also paralyses the thyroid temporarily by saturating its iodine-carrying capacity. To be useful iodine tablets should be taken immediately when a radioactive emission has occurred. If the tablets are taken too early or too late, they give little protection. Iodine tablets should not be taken just to be on the safe side, since their use may involve harmful side effects. Dosing instructions should also be followed with care. (orig.)

  8. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  9. Prophylactic iodine treatment in radiation protection

    International Nuclear Information System (INIS)

    Oberhausen, E.

    1980-01-01

    Prophylactic iodine treatment is to prevent accumulation of radioactive iodine in the thyroid. This is done by administering a large amount of stable iodine before uptake of radioactive iodine so that further accummulation of iodine in the thyroid will be impossible. This blocking effect should be as complete as possible. This is achieved by administering an initial dose of 200 mg potassium iodide. As the release of radioactive iodine may last several hours or even days; for this reason, maintenance doses of 100 mg potassium iodide should be administered in 8-hour intervals. The risk of prophylactiv iodine treatment is rather low; however, provocation of latent hyperthyreoses must be expected in, at the most, 0.2% of the exposed population. (orig./MG) [de

  10. Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide.

    Science.gov (United States)

    Norouzian, M A

    2011-02-01

    Relation between iodine (I) intake by lactating Holstein cows and iodine concentrations in raw and pasteurized milk were investigated. Four treatment groups with eight cows assigned to each treatment were fed a basal diet containing 0.534 mg I/kg alone or supplemented with potassium iodide at 2.5, 5 or 7.5 mg/kg in 7-week period. Iodine concentrations in raw milk increased with each increase in dietary I from 162.2 ng/ml for basal diet to 534.5, 559.8 and 607.5 ng/ml when 2.5, 5 and 7.5 mg/kg was fed as potassium iodide (P HTST) pasteurization process reduced I concentration. The mean iodine content found in the milk prior to heating processing was 466.0 ± 205.0 ng/ml, whereas for the processed milk this level was 349.5 ± 172.8 ng/ml. It was concluded that iodine supplementation above of NRC recommendation (0.5 mg/kg diet DM) resulted in significant increases in iodine concentrations in milk, although the effect of heating in HTST pasteurization process on iodine concentration was not negligible.

  11. Iodine status in neonates in Denmark: regional variations and dependency on maternal iodine supplementation

    DEFF Research Database (Denmark)

    Nøhr, S B; Laurberg, P; Børlum, K G

    1994-01-01

    Iodine status of 147 neonates born in five different regions of Denmark was evaluated in relation to the iodine content of breast milk and iodine supplementation taken by the mother. Approximately two-thirds of the women had not received iodine supplementation. They had low iodine concentrations...... in breast milk and urinary iodine concentrations of the neonates at day 5 were low. The median values (milk/urine) were 33.6/31.7 micrograms/l (Randers 22/26, Ringkøbing 29/16, Aalborg 36/31. Arhus 54/41 and Copenhagen 55/59 micrograms/l). Higher values were found in the group where tablets containing...... iodine had been taken (milk/urine: 57.0/61.0 micrograms/l). In general, the values are low compared with internationally recommended levels. We suggest that mothers without autoimmune thyroid disease should receive iodine supplementation in the form of vitamin/mineral tablets containing iodine (150...

  12. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  13. MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES

    NARCIS (Netherlands)

    DEWIT, R; VANDENENDE, FP; VANGEMERDEN, H

    A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur

  14. The retention of iodine in stainless steel sample lines

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G.J.; Deir, C. [Univ. of Toronto (Canada); Ball, J.M. [Whiteshell Laboratories, Pinawa (Canada)

    1995-02-01

    Following an accident in a multi-unit CANDU nuclear generating station, decontamination of air vented from containment would play a critical role in minimizing the release of iodine to the environment. The concentration of gas phase iodine in containment air would be measured using the post accident radiation monitoring system, requiring that air samples be passed through a considerable length of tubing to a remote location where the desired measurements could safely be made. A significant loss of iodine, due to adsorption on the sample line surfaces, could greatly distort the measurement. In this study, the retention of I{sub 2}(g) on stainless steel was evaluated in bench scale experiments in order to evaluate, and if possible minimise, the extent of any such line losses. Experiments at the University of Toronto were performed using 6 inch lengths of 1/4 inch stainless steel tubing. Air, containing I-131 labelled I{sub 2}(g), ranging in concentration from 10{sup {minus}10} to 10{sup {minus}6} mol/dm{sup 3} and relative humidity (:RH) from 20 to 90 %, was passed through tubing samples maintained at temperatures ranging from 25 to 90{degrees}C. Adsorption at low gas phase iodine concentrations differed substantially from that at higher concentrations. The rate of deposition was proportional to the gas phase concentration, giving support to the concept of a first order deposition velocity. The surface loading increased with increasing relative humidity, particularly at low RH values, while the deposition rate decreased with increasing temperature. Surface water on the steel may play an important role in the deposition process. The chemisorbed iodine was located primarily in areas of corrosion. Furthermore, water used to wash the steel contained Fe, Mn and iodine in the form of iodide, suggesting that I{sub 2} reacted to form metal iodides. The deposition of I{sub 2} was also found to depend on the initial surface condition.

  15. New Statistical Approach to Apportion Dietary Sources of Iodine Intake: Findings from Kenya, Senegal and India

    Directory of Open Access Journals (Sweden)

    Frits van der Haar

    2018-03-01

    Full Text Available Progress of national Universal Salt Iodization (USI strategies is typically assessed by household coverage of adequately iodized salt and median urinary iodine concentration (UIC in spot urine collections. However, household coverage does not inform on the iodized salt used in preparation of processed foods outside homes, nor does the total UIC reflect the portion of population iodine intake attributable to the USI strategy. This study used data from three population-representative surveys of women of reproductive age (WRA in Kenya, Senegal and India to develop and illustrate a new approach to apportion the population UIC levels by the principal dietary sources of iodine intake, namely native iodine, iodine in processed food salt and iodine in household salt. The technique requires measurement of urinary sodium concentrations (UNaC in the same spot urine samples collected for iodine status assessment. Taking into account the different complex survey designs of each survey, generalized linear regression (GLR analyses were performed in which the UIC data of WRA was set as the outcome variable that depends on their UNaC and household salt iodine (SI data as explanatory variables. Estimates of the UIC portions that correspond to iodine intake sources were calculated with use of the intercept and regression coefficients for the UNaC and SI variables in each country’s regression equation. GLR coefficients for UNaC and SI were significant in all country-specific models. Rural location did not show a significant association in any country when controlled for other explanatory variables. The estimated UIC portion from native dietary iodine intake in each country fell below the minimum threshold for iodine sufficiency. The UIC portion arising from processed food salt in Kenya was substantially higher than in Senegal and India, while the UIC portions from household salt use varied in accordance with the mean level of household SI content in the country

  16. New Statistical Approach to Apportion Dietary Sources of Iodine Intake: Findings from Kenya, Senegal and India

    Science.gov (United States)

    Knowles, Jacky; Bukania, Zipporah; Camara, Boubacar; Pandav, Chandrakant S.; Mwai, John Maina; Toure, Ndeye Khady; Yadav, Kapil

    2018-01-01

    Progress of national Universal Salt Iodization (USI) strategies is typically assessed by household coverage of adequately iodized salt and median urinary iodine concentration (UIC) in spot urine collections. However, household coverage does not inform on the iodized salt used in preparation of processed foods outside homes, nor does the total UIC reflect the portion of population iodine intake attributable to the USI strategy. This study used data from three population-representative surveys of women of reproductive age (WRA) in Kenya, Senegal and India to develop and illustrate a new approach to apportion the population UIC levels by the principal dietary sources of iodine intake, namely native iodine, iodine in processed food salt and iodine in household salt. The technique requires measurement of urinary sodium concentrations (UNaC) in the same spot urine samples collected for iodine status assessment. Taking into account the different complex survey designs of each survey, generalized linear regression (GLR) analyses were performed in which the UIC data of WRA was set as the outcome variable that depends on their UNaC and household salt iodine (SI) data as explanatory variables. Estimates of the UIC portions that correspond to iodine intake sources were calculated with use of the intercept and regression coefficients for the UNaC and SI variables in each country’s regression equation. GLR coefficients for UNaC and SI were significant in all country-specific models. Rural location did not show a significant association in any country when controlled for other explanatory variables. The estimated UIC portion from native dietary iodine intake in each country fell below the minimum threshold for iodine sufficiency. The UIC portion arising from processed food salt in Kenya was substantially higher than in Senegal and India, while the UIC portions from household salt use varied in accordance with the mean level of household SI content in the country surveys. The

  17. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  18. A Spectroscopic Method for Determining Free Iodine in Iodinated Fatty-Acid Esters

    Science.gov (United States)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2018-01-01

    It is shown that the concentration of free iodine in samples of iodinated fatty-acid esters can be measured using the electronic absorption spectra of their solutions in ethanol. The method proposed is rather simple in use and highly sensitive, allowing detection of presence of less than 10 ppm of free iodine in iodinated compounds. It is shown using the example of Lipiodol that this makes it possible to easily detect small amounts of free iodine in samples containing bound iodine in concentrations down to 40 wt %.

  19. Separation of iodine-131 from water using isotopic exchange with iodine-starch compound

    International Nuclear Information System (INIS)

    Ignatov, V.P.; Kolomejtseva, I.V.

    1990-01-01

    Conditions of iodine isotopic exchange with iodine-starch compound (ISC) were studied with the aim of compound utilizatoin for radioactive iodine separation from solution. It is shown that in pH range from 2 to 7 the degree of iodine extraction and coefficient of its distribution practically do not depend on pH, at pH>7 ISC destruction (decolorizing) starts and iodine extraction decreases. Rapid method of iodine separation from solution is suggested. The method can be used in radiochemical techniques. The degree of extraction equals 80 %, a higher degree of extraction can not be achieved owing to ISC formation peculiarities

  20. Development of the Log-in Process and the Operation Process for the VHTR-SI Process Dynamic Simulation Code

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2009-01-01

    The VHTR-SI process is a hydrogen production technique by using Sulfur and Iodine. The SI process for a hydrogen production uses a high temperature (about 950 .deg. C) of the He gas which is a cooling material for an energy sources. The Korea Atomic Energy Research Institute Dynamic Simulation Code (KAERI DySCo) is an integration application software that simulates the dynamic behavior of the VHTR-SI process. A dynamic modeling is used to express and model the behavior of the software system over time. The dynamic modeling deals with the control flow of system, the interaction of objects and the order of actions in view of a time and transition by using a sequence diagram and a state transition diagram. In this paper, we present an user log-in process and an operation process for the KAERI DySCo by using a sequence diagram and a state transition diagram

  1. Technetium and Iodine Getters to Improve Cast Stone Performance

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-19

    measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X-ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter

  2. Technetium and Iodine Getters to Improve Cast Stone Performance

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Serne, R. Jeffrey; Westsik, Joseph H.; Snyder, Michelle MV

    2014-07-01

    using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.

  3. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  4. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  5. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  6. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  7. Recovery of iodine as iodine-125 from biological materials prior to assay

    International Nuclear Information System (INIS)

    Jones, G.B.; Belling, G.B.; Buckley, R.A.

    1979-01-01

    In biological tissues iodine is usually present as iodoamino acids or iodoproteins. The organic material must be oxidised and the iodine converted into iodate prior to the final spectrophotometric determination. At parts per billion (10 9 ) levels, recoveries of added iodine are difficult to measure precisely as iodine can easily be lost from the sample and added inorganic iodine may not be recovered in the same proportions as the naturally occurring iodine. Iodine-125 provides a much more sensitive, specific and accurate means of testing the recovery of nanogram amounts of iodine from biological tissues and it can be incorporated into tissues in the naturally occurring compounds. Plants can be grown in a solution culture containing iodine-125 and animals can be injected with iodine-125 to provide tissues where naturally occurring iodine compounds are labelled with radioactive iodine. These tissues can be used to examine the recovery of iodine after oven drying, freeze drying, alkali ashing and acid digestion of the samples. Experimental details are given for spinach, tobacco, oats, cauliflower and thyroid. Results are given and discussed. (author)

  8. A phenomenological model for iodine stress corrosion cracking of zircaloy

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)

  9. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  10. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  11. A dynamic study on the sulfuric acid distillation column for VHTR-assisted hydrogen production systems

    International Nuclear Information System (INIS)

    Youngjoon, Shin; Heesung, Shin; Jiwoon, Jang; Kiyoung, Lee; Jonghwa, Chang

    2007-01-01

    The sulfur-iodine (SI) cycle and the Westinghouse sulfur hybrid cycle coupled to a very high temperature gas-cooled reactor (VHTR) are well known as a feasible technology to produce hydrogen. The concentration of the sulfuric acid solution and its decomposition are essential parts in both cycles. In this paper, the thermophysical properties which are the boiling point, latent heat, and the partial pressures of water, sulfuric acid, and sulfur trioxide have been correlated as a function of the sulfuric acid concentration for the H 2 SO 4 and H 2 O binary chemical system, based on the data in Perry's chemical engineers' hand-book and other experimental data. By using these thermophysical correlations, a dynamic analysis of a sulfuric acid distillation column has been performed to establish the column design requirements and its optimum operation condition. From the results of the dynamic analysis, an optimized column system is anticipated for a distillation column equipped with 2 ideal plates and a second plate feeding system from the bottom plate. The effects of the hold-up of the re-boiler and the reflux ratio from the top product stream on the elapsing time when the system progresses toward a steady state have been analyzed. (authors)

  12. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  13. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  14. New kinetic-spectrophotometric method for monitoring the concentration of iodine in river and city water samples.

    Science.gov (United States)

    Farmany, A; Khosravi, A; Abbasi, S; Cheraghi, J; Hushmandfar, R; Sobhanardakani, S; Noorizadeh, H; Mortazavi, S S

    2013-01-01

    A new kinetic method has been developed for the determination of iodine in water samples. The method is based on the catalytic effect of I(-) with the oxidation of Indigo Carmine (IC) by KBrO(3) in the sulfuric acid medium. The optimum conditions obtained are 0.16 M sulfuric acid, 1 × 10(-3) M of IC, 1 × 10(-2) M KBrO(3), reaction temperature of 35°C, and reaction time of 80 s at 612 nm. Under the optimized conditions, the method allowed the quantification of I(-) in a range of 12-375 ng/mL with a detection limit of 0.46 ng/mL. The method was applied to the determination of iodine in river and city water samples with the satisfactorily results.

  15. Nighttime atmospheric chemistry of iodine

    Science.gov (United States)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  16. New iodine filter pack design

    International Nuclear Information System (INIS)

    Blackbee, B.A.

    1977-10-01

    To enable Naval Emergency Monitoring Teams to fulfil their role in the field it was necessary to locate or design a replacement filter pack for the collection of radioactive iodine air samples. Collaboration with the Berkeley Laboratories of the Central Electricity Generating Board provided the necessary starting point for a suitable type of package. Further development by NGTE (West Drayton) yielded the improved filter pack which is the subject of this memorandum. (author)

  17. Radiolytic oxidation of iodine in the containment at high temperature and dose rate

    International Nuclear Information System (INIS)

    Guilbert, S.; Bosland, L.; Jacquemain, D.; Clement, B.; Andreo, F.; Ducros, G.; Dickinson, S.; Herranz, L.; Ball, J.

    2007-01-01

    Iodine Chemistry is one of the areas of top interest in the field of nuclear power plants (NPP) severe accidents studies. The strong radiological impact of iodine on man health and environment, mostly through its isotope I-131, has made it a key point to get an accurate prediction of the potential iodine release from the NPP containment to the environment in the low probable event of an accident leading to core melt. Released from the fuel as a gaseous form, iodine enters the containment in gaseous or particulate form and undergoes deposition processes that eventually take it to the containment surfaces and sump. Once in the sump, iodine, when present as soluble compounds, gets dissolved as non volatile iodide (I-). Nonetheless, in the presence of radiation and particularly in acidic sumps, iodine can be oxidized to volatile forms such as molecular iodine (I 2 ) and can escape from the sump to the containment atmosphere (sump radiolysis process), thus increasing its potential contribution to the iodine source term. Iodine sump radiolysis has been extensively studied experimentally in the past decades. Experiments have revealed that parameters such as pH, temperature and total iodine concentration have a large impact on iodine volatility. However, experimental data at elevated temperatures (> 80 O C) and elevated dose rates (> 1 kGy.h -1 ) anticipated in containment during a postulated severe accident are too scarce to provide for these relevant conditions an accurate determination of the volatile iodine fractions. Furthermore, some data were obtained from post-irradiation analysis and iodine concentration may be underestimated at the time of measurements compared with that during irradiation, due to post-irradiation reactions. To complete the existing database, the EPICUR program was launched by IRSN (Institut de Radioprotection et de Surete Nucleaire) and experiments have been performed in the frame of the International Source Term Program (ISTP) to provide on

  18. Iodine frequency references for space

    International Nuclear Information System (INIS)

    Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Oswald, Markus; Johann, Ulrich

    2017-01-01

    Optical frequency references are a key element for the realization of future space missions. They are needed for missions related to tests of fundamental physics, gravitational wave detection, Earth observation and navigation and ranging. In missions such as GRACE follow-on or LISA the optical frequency reference is used as light source for high-sensitivity inter-satellite distance metrology. While cavity-based systems are current baseline e.g. for LISA, frequency stabilization on a hyperfine transition in molecular iodine near 532 nm is a promising alternative. Due to its absolute frequency, iodine standards crucially simplify the initial spacecraft acquisition procedures. Current setups fulfill the GRACE-FO and LISA frequency stability requirements and are realized near Engineering Model level. We present the current status of our developments on Elegant Breadboard (EBB) and Engineering Model (EM) level taking into account specific design criteria for space compatibility such as compactness (size iodine spectroscopy EM: 38 × 18 × 10 cm 3 ) and robustness. Both setups achieved similar frequency stabilities of ∼ 1 · 10 −14 at an integration time of 1 s and below 5 · 10 −15 at integration times between 10 s and 1000 s. Furthermore, we present an even more compact design currently developed for a sounding rocket mission with launch in 2017. (paper)

  19. Iodine Absorption Cells Purity Testing

    Directory of Open Access Journals (Sweden)

    Jan Hrabina

    2017-01-01

    Full Text Available This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches.

  20. Iodine chemistry in a reactor regulation

    International Nuclear Information System (INIS)

    Powers, D.A.

    1996-01-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs

  1. Iodine chemistry in a reactor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D A [Nuclear Regulatory Commission, Washington, DC (United States). Advisory Committee on Reactor Safeguards

    1996-12-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs.

  2. Application of radiopharmaceuticals in iodine disorder studies

    International Nuclear Information System (INIS)

    Rajurkar, N.S.

    2015-01-01

    Iodine is an essential trace element and is of much interest in nutritional research. It is essential for the production of the hormones in the thyroid gland. However, deficiency or excess of iodine can cause disorders, commonly known as iodine disorders. Total quantity of iodine present in the body is 15-20 mg, mostly in thyroid gland and the safe and adequate intake of iodine is in the range of 50-200 μg.d -1 . Most of the iodine taken from food is accumulated in thyroid glands which plays a vital role in the well being as it controls growth and metabolism. In some people gland becomes over active (hyper thyroiditis) and in some people gland becomes sluggish (hypo thyroiditis). However, both the conditions are unhealthy and lead to serious consequences. The condition can be detected and treated with the help of radioiodine

  3. Criteria for safe working with iodine-125

    International Nuclear Information System (INIS)

    Linsley, G.S.

    1977-01-01

    Radio-immunoassay and other saturation assay tests involving the use of iodine-125 are finding wide application for the determination of hormone concentrations in biological fluids. In such tests, iodinations involving concentrations of a milli-curie per micro-litre are common. Iodine-125 presents a problem from the monitoring standpoint because of its low energy photon emission (27 and 35 keV). Iodine is preferentially taken up by the thyroid gland and work involving moderate amounts of radio-iodine may give rise to a significant hazard in an accident situation. The general precautions which should be taken in work with unsealed radioactive substances are briefly summarized, working limits for iodine-125 are identified, and methods of personal protection and monitoring in an emergency situation described. (author)

  4. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  5. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  6. Measurement of thyroid volume, iodine concentration and total iodine content by CT and its clinical significance

    International Nuclear Information System (INIS)

    Nakaji, Shunsuke; Imanishi, Yoshimasa; Okamoto, Kyouko; Shinagawa, Toshihito

    2007-01-01

    Recently, Imanishi et al have developed new CT software for quantitative in vivo measurement of thyroid iodine. Using a CT system with the software, we measured volume, iodine concentration and total iodine content of thyroids in 63 controls and 435 patients with various diffuse thyroid diseases and thyroid nodules. In controls, all of them showed no difference between the sexes. Although the iodine concentration of the thyroid showed no difference among children, adults and seniles, the volume and total iodine content of the thyroid appeared smaller in children and seniles than in adults. In addition, although the volume and iodine concentration of the thyroid had two peaks in distribution, the total iodine content had almost normal distribution. Normal range of volume, iodine concentration and total iodine content in adults were 5.2-15.5 cm 3 , 0.28831-0.85919 mg/cm 3 and 2.35-11.69 mg, respectively. In thyroid nodule, there is no significant difference in volume, iodine concentration and total iodine content between benign and malignant nodules. All nodules with iodine concentration of less than 0.00007 mg/cm 3 were benign. No thyroid was higher in iodine concentration than the normal range although the thyroid was lower in 78.7% of patients with diffuse thyroid diseases. In all thyroids with increasing iodine concentration and total iodine content in medication course, thyroidal symptoms and signs were uncontrollable by the medication. In 43.8% of patients with long-period systemic diseases, the thyroid showed abnormality in any of the three. We concluded that quantitative in vivo measurement of thyroid iodine by CT could assist the diagnosis of thyroid diseases and decision of therapeutic methods. (author)

  7. Anti-microbial and skin wound dressing application of molecular iodine nanoparticles

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Bharathi Babu, Divya; Jayakumar, Gomathi; Dhinakar Raj, Gopal

    2017-10-01

    In this study, iodine nanoparticles were synthesized without use of any stabilizer by a new co-precipitation process using polyvinyl pyrolidone, calcium lactate, disodium hydrogen phosphate and iodine solution as precursor and the reaction was catalyzed by sodium hydroxide. Ten mg of the synthesized nanoparticles killed 95% of bacteria and inhibited 90% of bio film formation. Assays on membrane disintegration activities of the nanoparticles indicated that these nanoparticles destroyed the extracellular membrane of the bacteria. The wound healing application evaluated using mice model showed that it was hastened by iodine nanoparticles.

  8. Dual energy CT iodine map for delineating inflammation of inflammatory arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Fukuda, Kunihiko [The Jikei University School of Medicine, Department of Radiology, Tokyo (Japan); Umezawa, Yoshinori; Asahina, Akihiko; Nakagawa, Hidemi [The Jikei University School of Medicine, Department of Dermatology, Tokyo (Japan); Furuya, Kazuhiro [The Jikei University School of Medicine, Division of Rheumatology Department of Internal Medicine, Tokyo (Japan)

    2017-12-15

    Iodine mapping is an image-processing technique used with dual-energy computed tomography (DECT) to improve iodine contrast resolution. CT, because of its high spatial resolution and thin slice reconstruction, is well suited to the evaluation of the peripheral joints. Recent developments in the treatment of inflammatory arthritis that require early diagnosis and precise therapeutic assessment encourage radiological evaluation. To facilitate such assessment, we describe DECT iodine mapping as a novel modality for evaluating rheumatoid arthritis and psoriatic arthritis of the hands and feet. (orig.)

  9. Equine goiter associated with excess dietary iodine.

    Science.gov (United States)

    Eroksuz, H; Eroksuz, Y; Ozer, H; Ceribasi, A O; Yaman, I; Ilhan, N

    2004-06-01

    Naturally occurring goiter cases are described in 2 newborn Arabian foals whose mares were supplemented with excess iodine during the final 24 w of the pregnancy. Six nursing foals and 2 mares were also affected clinically with thyroid hypertrophy. At least 12 times the maximum tolerable level of iodine supplementation was given, as the daily iodine intake for each mare was 299 mg. The prevalence of goiter cases was 2 and 9% in the mares and foals, respectively.

  10. Salivary gland dysfunction following radioactive iodine therapy

    International Nuclear Information System (INIS)

    Wiesenfeld, D.; Webster, G.; Cameron, F.; Ferguson, M.M.; MacFadyen, E.E.; MacFarlane, T.W.

    1983-01-01

    Radioactive iodine is used extensively for the treatment of thyrotoxicosis and thyroid carcinoma. Iodine is actively taken up by the salivary glands and, following its use, salivary dysfunction may result as a consequence of radiation damage. The literature is reviewed and a case is reported in which a patient presented with a significant increase in caries rate attributed to salivary dysfunction following radioactive iodine therapy for a thyroid carcinoma

  11. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  12. Estimation of iodine intake from various urinary iodine measurements in population studies

    DEFF Research Database (Denmark)

    Vejbjerg, P.; Knudsen, N.; Perrild, H.

    2009-01-01

    Background: Iodine intake is often measured by a surrogate measure, namely urine iodine excretion as almost all ingested iodine is excreted in the urine. However, the methods for urine collection and the reporting of the results vary. These methods, and their advantages and disadvantages, are con...

  13. Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Mercier-Bion, Florence; Barre, Nicole; Reiller, Pascal; Moulin, Valerie

    2006-01-01

    The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L-3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparable to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d(I-C) of 2.01(4)-2.04(9) angstrom, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) angstrom), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) angstrom). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electro-spray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study. (authors)

  14. 127I Moessbauer study of some oxygen bonded iodine(I) and iodine(III) complexes

    International Nuclear Information System (INIS)

    Bardhan, M.; Birchall, T.; Frampton, C.; Kapoor, P.

    1988-01-01

    127 I Moessbauer spectra have been recorded at 4.2 0 K for a series of oxygen bonded iodine(I) and iodine(III) complexes. The sign of the quadrupole coupling constant is dependant only on the primary arrangement of ligands about the central iodine nucleus whereas the magnitude and the asymmetry parameter are more sensitive to ligand electronegativity and type. (orig.)

  15. Iodine deficiency in pregnancy and the effects of maternal iodine supplementation on the offspring: a review

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    The World Health Organization (WHO) recently increased their recommended iodine intake during pregnancy from 200 to 250 µg/d and suggested that a median urinary iodine (UI) concentration of 150-249 µg/L indicates adequate iodine intake in pregnant women. Thyrotropin concentrations in blood collected

  16. Iodine requirements and the risks and benefits of correcting iodine deficiency in populations

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2008-01-01

    Iodine deficiency has multiple adverse effects on growth and development due to inadequate thyroid hormone production that are termed the iodine deficiency disorders (IDD). IDD remains the most common cause of preventable mental impairment worldwide. IDD assessment methods include urinary iodine

  17. Studies of iodine concentration in steel and transition metals

    International Nuclear Information System (INIS)

    Kormann, C.; Kozlowski, W.; Oleksi-Frenzel, J.; Nachtigall, K.; Neste, A. van; Welsh, M.; Titze-Zaeske, B.; Plieth, W.

    1990-01-01

    Radioactive iodine which originates from nuclear fuel reprocessing plants as a fission product and consists mainly of the radioactive isotopes 129 I, 131 I, and of the inactive 127 I, must be quantitatively adsorbed at the end of the process for the purpose of safe waste disposal. Inspite of using high-alloy austenitic chrome nickel steels, major corrosion effects were observed at tubes and containers of the PASSAT dissolver waste gas purifier. This research project serves to clarify the question in which parts of the installation iodine concentration is to be expected under certain conditions. Furthermore it serves to identify the redox state of iodine in the various installation components. For this purpose steel (1.4306esu and 1.4563N), zirconium and titanium were studied in nitric iodic media. With the objective of calculating iodine adsorption isotherms, the following methods were used to obtain qualitative and quantitative data: FTIR, ellipsometry, 131 I radiotracer method, cyclo-voltametry, closed circuit potential measurements, ion chromatography. (orig./DG) [de

  18. The development of advanced gas cooled reactor iodine adsorber systems

    International Nuclear Information System (INIS)

    Meddings, P.

    1986-01-01

    Advanced Gas Cooled Reactors (AGRs) are provided with plants to process the carbon dioxide coolant prior to its discharge to atmosphere. Included in these are beds of granular activated charcoal, contained within a suitable pressure vessel, through which the high pressure carbon dioxide is passed for the purpose of retaining iodine and iodine-containing compounds. Carry-over carbon dust from the adsorption beds was identified during active in-situ commissioning testing, radio-iodine being transported with the particulate material due to gross disturbance of the adsorber carbon bed and displacement of the vessel internals. The methods used to identify the causes of the problems and find solutions are described. A development programme for the Heysham-2 and Torness reactors iodine adsorber units was set up to identify a method of de-dusting granular charcoal and develop it for full-scale use, of assess the effect under conditions of high gas density of approach velocity on charcoal fines production and to establish the pressure drop characteristics of a packed granular bed and to develop an effective design of inlet gas diffuser manifold to ensure an acceptable velocity distribution. This has involved the construction of a small scale high pressure carbon dioxide rig and development of an air flow model. This work is described. (UK)

  19. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  20. Environmental aspects of the combustion of sulfur-bearing fuels

    International Nuclear Information System (INIS)

    Manowitz, B.; Lipfert, F.W.

    1990-01-01

    This paper describes the origins of sulfur in fossil fuels and the consequences of its release into the environment after combustion, with emphasis on the United States. Typical sulfur contents of fuels are given, together with fuel uses and the resulting air concentrations of sulfur air pollutants. Atmospheric transformation and pollutant removal processes are described, as they affect the pathways of sulfur through the environment. The environmental effects discussed include impacts on human health, degradation of materials, acidification of ecosystems, and effects on vegetation and atmospheric visibility. The paper concludes with a recommendation for the use of risk assessment to assess the need for regulations which may require the removal of sulfur from fuels or their combustion products

  1. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  2. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  3. Sulfur impacts on forest health in west-central Alberta

    International Nuclear Information System (INIS)

    Maynard, D.G.; Stadt, J.J.; Mallett, K.I.; Volney, W.J.A.

    1994-01-01

    A study was conducted to evaluate forest health and tree growth in relation to sulfur deposition in mature and immature lodgepole pine and mature trembling aspen. Soil samples were taken in forests near two sour gas processing plants in west-central Alberta. The soil sample sites were classified into high, medium and low deposition classes. The impact of sulfur deposition on soil and foliar chemistry, tree growth, and forest health was evaluated. The analysis of tree growth, using radial increments, revealed no impact associated with the sulfur deposition class. The only indicators of extensive sulfur impacts on major forest communities detected to date are elevated sulfur concentrations in the surface organic horizon and foliage, the proportion of healthy lodgepole pines, and a depression in the annual specific volume increment. No evidence of widespread forest decline has been found. 42 refs., 35 tabs., 29 figs

  4. Absorption spectrum of Iodine around 5915 A

    International Nuclear Information System (INIS)

    1990-01-01

    The iodine absorption spectrum around 5915 A is of interest for many authors especially the hyperfine structure of the iodine line. Lodine absorption spectrum was obtained due to the interaction of iodine vapour with dye laser [(R6G) (0.5A) scanning range around 5915 A] which is pumped by(Ar + )laser absorption spectrum. The decrease in the peak of the transmission line around 5915 A shows the signal futher decreased by heating the iodine cell. This analysis has been done using a monochromator

  5. Iodine-129 in thyroids of grazing animals

    International Nuclear Information System (INIS)

    Ballad, R.V.; Holman, D.W.; Hennecke, E.W.; Johnson, J.E.; Manuel, O.K.; Nicholson, L.M.

    1976-01-01

    A combination of neutron activation and mass spectrometry has been used to determine the concentrations of fissiogenic 129 I and stable 127 I in thyroids of grazing animals and in mineral iodine. The 129 I/ 127 I ratios are lowest in mineral iodine and in a given area lower in cow thyroids than in deer thyroids. Near saturation levels of mineral iodine in commercial feeds and salt licks may account for differences in the 129 I levels of cows and deer. Values of the 129 I/ 127 I ratio in deer appear to vary inversely with the iodine concentration of the thyroid. (author)

  6. Photochemistry of DNA containing iodinated cytosine

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, R O; Stafford, R S [Oak Ridge National Lab., TN (USA)

    1979-10-01

    Irradiation at 313 nm of compounds containing iodinated cytosine moieties results in the photolysis of iodine. Photolysis occurs with a quantum yield of 0.022-0.024 for 5-iododeoxycytidine and 5-iododeoxycytidine monophosphate, and 0.004-0.008 for iodinated DNA as well as for iodinated polycytidylate. Photodegradation of the cytosine moiety occurs when air is present during irradiation, presumably due to the reaction of oxygen with the cytosyl radical formed when iodine is lost. This oxygen promoted photodegradation destroys the cytosine chromophore and is complete in the monomers but occurs to only a limited extent in the polymers. In the absence of oxygen or in the presence of ethanol, photodegradation is prevented and the loss of iodine leads exclusively to the formation of the cytosine chromophore. In DNA, the loss of iodine is accompanied by the formation of sugar damage and/or chain breaks. As measured by sedimentation in alkaline sucrose gradients, approximately one break is made for every six iodines lost in denatured DNA. The frequency of chain breakage per iodine photolyzed is reduced 2-fold in renatured DNA. Analysis in neutral gradients suggests that half of the breaks observed in alkali are alkali-labile bonds. Both ethanol and cysteamine reduce the number of chain breaks in alkali by approximately 3-fold.

  7. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.

    2016-01-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  8. Iodine: It's Important in Patients that Require Parenteral Nutrition

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects on growth and development because of inadequate thyroid hormone production. Four methods are generally recommended for assessment of iodine nutrition: urinary iodine concentration, thyroid size, and blood concentrations of thyroid-stimulating hormone

  9. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Lichtenberg, Henning

    2008-07-01

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H 2 S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  10. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  11. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  12. Stakeholder reactions toward iodine biofortified foods. An application of protection motivation theory.

    Science.gov (United States)

    De Steur, Hans; Mogendi, Joseph Birundu; Wesana, Joshua; Makokha, Anselimo; Gellynck, Xavier

    2015-09-01

    To use Protection Motivation Theory (PMT) to evaluate stakeholders' intention to adopt iodine biofortified foods as an alternative means to improve children's iodine status and overall school performance. A survey was administered with 360 parents of primary school children and 40 school heads. Protection motivation is measured through matching the cognitive processes they use to evaluate iodine deficiency (threat appraisal), as well as iodine biofortified foods to reduce the threat (coping appraisal). Data were analyzed through Robust (Cluster) regression analysis. Gender had a significant effect on coping appraisal for school heads, while age, education, occupation, income, household size and knowledge were significant predictors of threat, coping appraisal and/or protection motivation intention among parents. Nevertheless, in the overall protection motivation model, only two coping factors, namely self-efficacy (parents) and response cost (school heads), influenced the intention to adopt iodine biofortified foods. School feeding programs incorporating iodine biofortification should strive to increase not only consumer knowledge about iodine but also its association to apparent deficiency disorders, boost self-efficacy and ensure that the costs incurred are not perceived as barriers of adoption. The insignificant threat appraisal effects lend support for targeting future communication on biofortification upon the strategies itself, rather than on the targeted micronutrient deficiency. PMT, and coping factors in particular, seem to be valuable in assessing intentions to adopt healthy foods. Nevertheless, research is needed to improve the impacts of threat appraisal factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda

    Science.gov (United States)

    Olum, Solomon; Gellynck, Xavier; Okello, Collins; Webale, Dominic; Odongo, Walter; Ongeng, Duncan

    2018-01-01

    Agronomic biofortification (i.e., the application of fertilizer to elevate micronutrient concentrations in staple crops) is a recent strategy recommended for controlling Iodine Deficiency Disorders (IDDs). However, its success inevitably depends on stakeholders’ appreciation and acceptance of it. By taking Northern Uganda as a case, this study aimed to capture and compare the perceptions of seven key stakeholder groups with respect to agronomic iodine biofortification. Therefore, we employed a SWOT (Strength, Weaknesses, Opportunities & Threats) analysis in combination with an Analytical Hierarchy Process (AHP). Findings show that stakeholders (n = 56) are generally positive about agronomic iodine biofortification in Uganda, as its strengths and opportunities outweighed weaknesses and threats. Cultural acceptance and effectiveness are considered the most important strengths while the high IDD prevalence rate and the availability of iodine deficient soils are key opportunities for further developing agronomic iodine biofortification. Environmental concerns about synthetic fertilizers as well as the time needed to supply iodine were considered crucial weaknesses. The limited use of fertilizer in Uganda was the main threat. While this study provides insight into important issues and priorities for iodine biofortification technology in Uganda, including differences in stakeholder views, the application of the SWOT-AHP method will guide future researchers and health planners conducting stakeholder analysis in similar domains. PMID:29587370

  14. Stakeholders' Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda.

    Science.gov (United States)

    Olum, Solomon; Gellynck, Xavier; Okello, Collins; Webale, Dominic; Odongo, Walter; Ongeng, Duncan; De Steur, Hans

    2018-03-24

    Agronomic biofortification (i.e., the application of fertilizer to elevate micronutrient concentrations in staple crops) is a recent strategy recommended for controlling Iodine Deficiency Disorders (IDDs). However, its success inevitably depends on stakeholders' appreciation and acceptance of it. By taking Northern Uganda as a case, this study aimed to capture and compare the perceptions of seven key stakeholder groups with respect to agronomic iodine biofortification. Therefore, we employed a SWOT (Strength, Weaknesses, Opportunities & Threats) analysis in combination with an Analytical Hierarchy Process (AHP). Findings show that stakeholders ( n = 56) are generally positive about agronomic iodine biofortification in Uganda, as its strengths and opportunities outweighed weaknesses and threats. Cultural acceptance and effectiveness are considered the most important strengths while the high IDD prevalence rate and the availability of iodine deficient soils are key opportunities for further developing agronomic iodine biofortification. Environmental concerns about synthetic fertilizers as well as the time needed to supply iodine were considered crucial weaknesses. The limited use of fertilizer in Uganda was the main threat. While this study provides insight into important issues and priorities for iodine biofortification technology in Uganda, including differences in stakeholder views, the application of the SWOT-AHP method will guide future researchers and health planners conducting stakeholder analysis in similar domains.

  15. Analysis of total iodine in soils of some agro-ecological zones of Ghana

    International Nuclear Information System (INIS)

    Kwakye, P.K.; Osei-Agyeman, K.; Frimpong, K.A.; Adams, A.B.; Okae-Anti, D.

    2004-10-01

    Iodine is beneficial in human nutrition and to a lesser extent in plant nutrition. Availability of this element in the soil is thought to be via ocean-atmosphere precipitation, iodine minerals and redistribution by vegetation, but very little is known about levels of iodine in Ghanaian soils. We analyzed for the content of total iodine alongside pH, organic carbon, total nitrogen, cation exchange capacity, sand, silt and clay in top soils of selected agro-ecological zones. These soils occur at various locations spanning from the coastline to the far interior. Variations in nutrient elements were attributed to diverse parent materials from which these soils originated and the complex interactions of organic matter, type of clay, acidity-alkalinity and leaching processes. The soils recorded low total iodine content of 0.08 - 3.92 μg g - 1. There was a decreasing trend of iodine from the coastal zone inwards in the order of 1.85, 0.84 and μg g - 1 for the coastal savanna, semi-deciduous rainforest and Guinea savanna agro-ecological zones respectively. Iodine very weakly negatively correlated with C and N and showed a moderate positive correlation with clay content and moderate negative correlations with pH and sand content. (author)

  16. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  17. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  18. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, B.S.

    1981-07-01

    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  19. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  20. Charge-changing processes of heavy ions in matter. Non-equilibrium charge state distribution of sulfur ions after carbon foil penetration

    International Nuclear Information System (INIS)

    Imai, Makoto; Shibata, Hiromi; Sataka, Masao; Sugai, Hiroyuki; Nishio, Katsuhisa; Sugiyama, Koji; Komaki, Ken-ichiro

    2005-01-01

    Charge state distributions of 2.0 MeV/u (64 MeV) sulfur ions of various initial charge states (6+, 10+, 11+, 13+) after passing through 0.9, 1.1, 1.5, 2.0, 3.0, 4.7, 6.9 and 10 μg/cm 2 carbon foils have been studied experimentally using the heavy ion spectrometer 'ENMA'. Measured charge state distributions do not flat off to establish equilibrium within the measured thickness, proving to be the first systematic measurement of non-equilibrium charge state distribution using solid target at this energy range. The mean charge states and their distribution widths almost saturate to 12.4 and 1.03, respectively, for all initial charge states examined. Calculation with ETACHA code, developed by Rozet et al. [Nucl. Instr. and Meth. B 107 (1996) 67], is employed, although the present impact energy is lower than the assumed energy region for this code. It was also confirmed that a certain portion of 16 O q+ (q=3, 4, 7) beam is included in 32 S q+ (q=6, 8, 14) beam provided from the Tandem Accelerator, which originates in the Negative Ion Source forming O 2 - . (author)