Photochromic crystalline systems mimicking bio-functions.
Uchida, Kingo; Nishimura, Ryo; Hatano, Eri; Mayama, Hiroyuki; Yokojima, Satoshi
2018-01-31
Photoresponsive crystalline systems mimicking bio-functions are prepared using photochromic diarylethenes. Upon UV irradiation to a diarylethene crystal, the self-aggregated and needle-shaped crystals of photogenerated colored closed-ring isomer were generated on the surface. The rough surface showed the superhydrophobic lotus effect. By controlling the heating procedures, UV irradiation processes, and molecular structural modification, rose-petal effects of wetting, anti-reflective moth eye effect, and double-roughness structure mimicking the surface of lotus leaf were observed. By changing the molecular structure, superhydrophilic surface mimicking snail shell was photogenerated. We also found a derivative to form hollow crystals by sublimation. The crystals showed photosalient effect and the photo-response similar to impatiens was observed after small beads were packed in the hollow. These photoresponsive functions are unique, and they demonstrate a macroscopic response by assembling microscopic molecular movement of light. In the future, such a molecular assembly system will be a promising candidate for fabricating photoresponsive architectures and soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D
2016-01-25
Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.
Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system.
Cacciarini, Martina; Skov, Anders B; Jevric, Martyn; Hansen, Anne S; Elm, Jonas; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Brøndsted Nielsen, Mogens
2015-05-11
One key challenge in the field of exploitation of solar energy is to store the energy and make it available on demand. One possibility is to use photochromic molecules that undergo light-induced isomerization to metastable isomers. Here we present efforts to develop solar thermal energy storage systems based on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch. New DHA derivatives with one electron-withdrawing cyano group at position 1 and one or two phenyl substituents in the five-membered ring were prepared by using different synthetic routes. In particular, a diastereoselective reductive removal of one cyano group from DHAs incorporating two cyano groups at position 1 turned out to be most effective. Quantum chemical calculations reveal that the structural modifications provide two benefits relative to DHAs with two cyano groups at position 1: 1) The DHA-VHF energy difference is increased (i.e., higher energy capacity of metastable VHF isomer); 2) the Gibbs free energy of activation is increased for the energy-releasing VHF to DHA back-reaction. In fact, experimentally, these new derivatives were so reluctant to undergo the back-reaction at room temperature that they practically behaved as DHA to VHF one-way switches. Although lifetimes of years are at first attractive, which offers the ultimate control of energy release, for a real device it must of course be possible to trigger the back-reaction, which calls for further iterations in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New frontiers in photochromism
Irie, Masahiro; Seki, Takahiro
2013-01-01
This book covers such classic topics in photochromism as color change, optical memory and optical switches, plus femtosecond laser experiments, light-driven mechanical motion, photocontrol of surface wettability, photocontrol of chiral properties and more.
Photochromic cross-link polymer for color changing and sensing surface
Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric
2016-12-01
Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.
Photochromic ultraviolet protective shield
Goudjil, Kamal
2000-10-01
Damage to the eye can result from unexpectedly low levels of light, particularly at the shorter wavelengths. UV emitting lasers such as Excimer (248 nm, 308 nm, 351 nm) and HeCd lasers (325 nm, 354 nm) are increasingly used in various applications including: medical, research (spectroscopy), stereolithography and semiconductor industries. Therefore, protection against harmful UV light is needed, but more importantly, development of a material that will react to detect the presence of UV light while completely protecting the wearer, is of great interest. Such materials have been developed with the use of lightweight clear plastics such as acrylics by incorporation of UV reactive photochromic compounds into a polymeric matrix.
Inverse problems in systems biology
International Nuclear Information System (INIS)
Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp
2009-01-01
Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)
Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard
2014-01-01
Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the
Photochromic properties of modified nanodiamonds
Venidiktova, O. V.; Valova, T. M.; Barachevsky, V. A.; Ait, A. O.; Lebedev-Stepanov, P. V.; Vul, A. Ya.; Koltsova, L. S.; Shienok, A. I.; Zaichenko, N. L.
2017-05-01
A functionalization of the surface of detonation nanodiamonds by photochromic spirocompounds from the classes of spiropyrans and spirooxazines has been carried out for the first time. A comparative study of the interaction of nanodiamonds with positive and negative potential is performed by the spectral-kinetic method, which shows the possibility of surface modification by only functionalized molecules of spirocompounds with the formation of surface proton complexes. This is confirmed by the hypsochromic shift of the absorption bands of the photoinduced merocyanine forms of adsorbed molecules of spirocompounds and by the decrease of the speed of their dark relaxation to the initial state in the presence of nanodiamonds with a negative potential.
Development and characterization of negative photochromic compounds
Ciapurin, Igor V.; Robu, Stephan V.; Rotari, Eugeniu V.; Korshak, Oleg Y.; Lessard, Roger A.
2002-06-01
We report a new photochromic composite polymer that was evaluated in conjunction with its potential applications for optical holographic recording in the whole visible spectral range. It consists of poly-N-epoxypropylcarbazole (PEPC) polymeric matrix with a nitro-brome-substituted spiropyran (BNSP) photochromic dye. The PEPC+BNSP films can be considered as negative photochromic recording media. They are colored in the initial state and bleached upon irradiation within the whole visible spectra. When we placed the bleached samples to the darkness, they slowly revert to the colored form. The real-time holographic recording procedure in PEPC+BNSP films was studied.
Function representation with circle inversion map systems
Boreland, Bryson; Kunze, Herb
2017-01-01
The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.
Mellerup, Soren K; Rao, Ying-Li; Amarne, Hazem; Wang, Suning
2016-09-02
Combining a three-coordinated boron (BMes2) moiety with a four-coordinated photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state reversible color switching in response to stimuli of light, heat, and fluoride ions. Thus, these hybrid diboron systems allow both convenient color tuning/switching of such photochromic systems, as well as visual fluoride sensing by color or fluorescent emission color change.
Photochromism and electrochemistry of a dithienylcyclopentene electroactive polymer
Wesenhagen, Philana; Areephong, Jetsuda; Fernández Landaluce, Tatiana; Heureux, Nicolas; Katsonis, Nathalie; Hjelm, Johan; Rudolf, Petra; Browne, Wesley R.; Feringa, Ben L.
2008-01-01
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution
Thermodynamic inversion origin of living systems
Kompanichenko, Vladimir N
2017-01-01
This book discusses the theory, general principles, and energy source conditions allowing for the emergence of life in planetary systems. The author examines the material conditions found in natural hydrothermal sites, the appropriate analogs of prebiotic environments on early Earth. He provides an overview of current laboratory experiments in prebiotic materials chemistry and substantiation of a new direction for the experiments in the origin of life field. Describes thermodynamic inversion and how it relates to the living cell; Examines the current direction of experiments on prebiotic materials chemistry; Introduces and substantiates necessary conditions for the emergence of life.
Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches.
Javed, Hina; Fatima, Kalsoom; Akhter, Zareen; Nadeem, Muhammad Arif; Siddiq, Muhammad; Iqbal, Azhar
2016-02-01
We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH 3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans - cis isomerization. The photo-induced trans - cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.
Exergy analysis of encapsulation of photochromic dye by spray drying
Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.
2017-10-01
Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.
The study of photochromic performance and photofatigue behavior of spirooxazine
Islam, Noor Zalikha Mohamed; Nazri, Shamsul Azrolsani Abdul Aziz; Nadir, Najiah; Zainuddin, Mat Tamizi
2017-12-01
Photochromism has been one of the successful photo-optic properties in the biomedical field especially regarding to ophthalmic applications. An experimental setup for kinetic behavior of 1,3,3-trimethylindolino-naphtospirooxazine (TINS) in polar solvent was carried out and the photochromism behavior based on UV irradiation from the perspective of irradiation power and duration time were observed. Photochromism stability showed that the photochrome exhibited active photochromism behavior properties and achieved maximum deep blue coloration at 6 % UV irradiation power. However, TINS experiences photo-fatigue on higher frequencies of UV light exposure at 85 min UV exposure. The relationship between photochromism fading property with a half-life of photochrome in the subjected polar environment was discussed from the basis of molecular collision theory.
Photochromic dye-sensitized solar cells
Directory of Open Access Journals (Sweden)
Noah M. Johnson
2015-11-01
Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.
Subwavelength nanopatterning of photochromic diarylethene films
Energy Technology Data Exchange (ETDEWEB)
Cantu, Precious; Brimhall, Nicole; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Andrew, Trisha L. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castagna, Rossella; Bertarelli, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' Giulio Natta' ' , Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology - PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy)
2012-04-30
The resolution of optical patterning is constrained by the far-field diffraction limit. In this letter, we describe an approach that exploits the unique photo- and electro-chemistry of diarylethene photochromic molecules to overcome this diffraction limit and achieve sub-wavelength nanopatterning.
Microwave-assisted synthesis of photochromic fulgides
Indian Academy of Sciences (India)
The oxazole and indole based heterocyclic photochromic fulgides were synthesized from their corresponding fulgenic acid derivatives by clay catalysed microwave irradiation methodology. Improved yields of fulgides were observed by the microwave irradiation method as compared other chemical methods employed so far ...
Inverse design methods for radiative transfer systems
International Nuclear Information System (INIS)
Daun, K.J.; Howell, J.R.
2005-01-01
Radiant enclosures used in industrial processes have traditionally been designed by trial-and-error, a technique that usually demands considerable time to find a solution of limited quality. As an alternative, designers have recently adopted optimization and inverse methodologies to solve design problems involving radiative transfer; the optimization methodology solves the inverse problem implicitly by transforming it into a multivariable minimization problem, while the inverse design methodology solves the problem explicitly using regularization. This paper presents the details of both methodologies, and demonstrates them by solving for the optimal heater settings in an industrially relevant radiant enclosure design problem
Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films
International Nuclear Information System (INIS)
Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun
2015-01-01
Graphical abstract: - Highlights: • We prepared silver/mental-oxide nanocomposite films by physical sputtering technology to investigate the environment-dependent photo-dissolution of silver nanoparticles. • We built up an airtight and in situ monitorable system to measure photochromism of different films in various atmospheres. • Silver nanoparticles were found to be more easily photo-dissolved on the n-type metal oxide films compared with that on the p-type one, conductor and insulator. • Oxygen and humidity were verified to accelerate the photochromism of silver nanoparticles. - Abstract: Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag + -ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.
Energy Technology Data Exchange (ETDEWEB)
Liu, Hu; Guo, Jixi [Key Laboratory of Material and Technology for Clean Energy, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang (China); Jia, Dianzeng, E-mail: jdz@xju.edu.cn [Key Laboratory of Material and Technology for Clean Energy, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang (China); Guo, Mingxi; Le, Fuhe; Liu, Lang; Wu, Dongling [Key Laboratory of Material and Technology for Clean Energy, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang (China); Li, Feng [State Laboratory of Surface and Interface Science and Technology, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan (China); University of Texas, M. D. Anderson Cancer Center, Houston, TX 77002 (United States)
2014-08-15
A novel solid-state reversible fluorescence photoswitching system (FPS) based on photochromism of photochromic pyrazolones has been developed by employing phosphor Sr{sub 2}P{sub 2}O{sub 7} co-doped with europium ion and chlorine ion (Sr{sub 2}P{sub 2}O{sub 7}–EC) and 1,3-diphenyl-4-(3-chlorobenzal)-5-hydroxypyrazole-4-phenylsemicarbazone (1a) as the fluorescence dye and the photochromic compound, respectively. With carefully selected components, the absorption band of the keto-form photochromic pyrazolones well overlaps with the emission peak of Sr{sub 2}P{sub 2}O{sub 7}–EC. The fluorescence emission intensity of Sr{sub 2}P{sub 2}O{sub 7}–EC is efficiently modulated by the photoisomerization of 1a with controlling the exposure time in the solid state. The fluorescence photoswitching system displayed high fluorescence quenching efficiency and remarkable fatigue resistance. It can be repeated 7 cycles without observable the changes of emission intensity. A fluorescence quenching efficiency can be achieved with a reversible colour change from white to yellow. - Graphical abstract: A novel fluorescence photoswitching system based on doping inorganic fluorescence dye into photochromic pyrazolones was constructed successfully. Its fluorescence emission could be efficiently modulated by the photoisomerization of pyrazolones. - Highlights: • A solid-state fluorescence photoswitching material was prepared. • Photoswitching is due to energy transfer between pyrazolone and fluorescence dye. • It exhibits excellent fluorescence contrast and fatigue resistance in the solid state.
Transparent nanostructured photochromic UV-blocking soft contact lenses.
Pek, Y Shona; Wu, Hong; Chow, Edwin Py; Ying, Jackie Y
2016-06-01
We aim to develop transparent UV-blocking photochromic soft contact lenses via polymerization of a bicontinuous nanoemulsion. Transparent nanostructured polymers were prepared by incorporating a polymerizable surfactant and thermal initiator together with water, monomers, UV blockers and photochromic dyes. The polymers were characterized using oxygen permeometer, tensile tester, electron microscope, UV spectrophotometer, corneal cell culture and testing in rabbits. The polymers have good oxygen permeability, water content, stiffness, strength and UV-blocking ability comparable to commercial UV-blocking soft contact lenses. Their response to UV light is comparable to photochromic spectacle lenses, particularly in reverse transition from colored to colorless state. They are nontoxic and nonleaching. Our photochromic UV-blocking contact lenses provide a novel alternative to photochromic spectacles.
Photoswitching in polymers with photochromic dipolar species
Czech Academy of Sciences Publication Activity Database
Toman, Petr; Nešpůrek, S.; Weiter, M.; Vala, M.; Sworakowski, J.; Bartkowiak, W.; Menšík, Miroslav
2007-01-01
Roč. 36, 3-4 (2007), s. 289-300 ISSN 1543-0537. [International Conference Erpos on Electrical and Related Properties of Organic Solids and Polymers /10./. Carges, 10.7.2005-15.7.2005] R&D Projects: GA AV ČR KJB1050301 Institutional research plan: CEZ:AV0Z40500505 Keywords : molecular switch * photochromism * conductivity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders http://www.oldcitypublishing.com/NLOQO/NLOQOabstracts/NLOQO36.3-4abstracts/NLOQOv36n3-4p289-300Toman.html
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism
Directory of Open Access Journals (Sweden)
Shuhei Inoue
2016-05-01
Full Text Available Photochromic nanoparticles of zinc-silicon oxide were synthesized using plasma enhanced chemical vapor deposition. These particles turned black upon irradiating with ultraviolet light. We investigated this phenomenon using density functional theory calculations. Silicon inclusions create trap levels and oxygen defects that reduce the ionization potential of ZnO. This forms a quantum potential between ZnO and zinc-silicon oxide, and the excited electron is stable. Because oxygen defects also increase the bond overlap population between the zinc atoms in a ZnO crystal, they introduce further defects and help in the formation of quantum potentials. Growth of a perfect crystal of ZnO prevents the formation of oxygen defects, which is not desirable for photochromism.
Directory of Open Access Journals (Sweden)
Apratim Majumder
2016-03-01
Full Text Available Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL, a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.
Measurement of liquid sheet using laser tagging method by photochromic dye
Rosli, Nurrina Binti; Amagai, Kenji
2014-12-01
Liquid atomization system has been extensively applied as the most significant process in many industrial fields. In the internal combustion engine, the combustion phenomenon is strongly influenced by the spray characteristics of the fuel given by the atomization process. In order to completely understand the whole atomization process, a detail investigation of relations between the liquid jet characteristics and the breakup phenomenon is required. In this study, a non-intrusive method called as laser tagging method by photochromic dye has been developed with aim to study the breakup process of liquid sheet in detail, covering from the behavior in film until disintegrated into ligament and droplets. The laser tagging method by photochromic dye is based on a shift in the absorption spectrum of photochromic dye molecules tagged by ultraviolet laser. The shift results a color change at the tagged region of liquid containing the dye. In this study, the motions of the dye traces were analyzed as the liquid surface velocity. As a result, liquid sheet was found to keep its velocity constantly in film before suddenly increase around broken point. However, it then decreased after broken into droplets. By forming a set of four points of dye traces on the liquid sheet, the change of relative position of the set enabled the measurement of deformation and rotational motion of the liquid sheet. As a result, the normal strain of the liquid sheet parallel to the flow direction depended on the flow behavior of ligament formation.
Radiative-conductive inverse problem for lumped parameter systems
International Nuclear Information System (INIS)
Alifanov, O M; Nenarokomov, A V; Gonzalez, V M
2008-01-01
The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.
Directory of Open Access Journals (Sweden)
José R. Galvão
2003-08-01
Full Text Available Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.
Inverse Problems in Systems Biology: A Critical Review.
Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola
2018-01-01
Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.
A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.
Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia
2016-01-18
A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications.
Solar Thermal Energy Storage in a Photochromic Macrocycle.
Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted
2016-07-25
The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for the preparation of photochromic insulating crystals
Abraham, Marvin M.; Boldu, Jose L.; Chen, Yok; Orera, Victor M.
1986-01-01
A method for preparing reversible-photochromic magnesium oxide (MgO) crystals. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater than 1000.degree. K. in a hydrogen atmosphere. Alternate irradiation with UV and visible light result in rejuvenation and bleaching of the amber coloration, respectively.
Inverse kinetics for subcritical systems with external neutron source
International Nuclear Information System (INIS)
Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando
2017-01-01
Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.
An Inverse Almost Ideal Demand System for Mussels in Europe
DEFF Research Database (Denmark)
Nguyen, Thong Tien
2012-01-01
This study used monthly data on ex-farm prices and quantities of mussels from five major mussel-producing countries in Europe to estimate a nonlinear Inverse Almost Ideal Demand System (IAIDS). The model specification fits well with monthly data from 2002-2008. Uncompensated own-price flexibilities...... for farmed mussels from Spain, France, Italy, and the Netherlands are inflexible, while demand for Denmark's wild stock mussels is flexible. Dutch mussels are deemed a luxury food, while preferences for mussels from other countries appear independent of the level of total expenditure (i.e., homothetic...... preferences). The results also show weak substitution relationships between mussels from these countries....
Effects of Photochromic Furan-Based Diarylethenes on Gold Nanoparticles Aggregation
Khodko, Alina; Kachalova, Nataliya; Scherbakov, Sergiy; Eremenko, Anna; Mukha, Iuliia
2017-04-01
The photochromic properties of furan-based diarylethenes and their interaction with citrate-capped gold nanoparticles were investigated by ultraviolet/visible absorption spectroscopy and transmission electron microscopy. We identified the optimal concentration of diarylethenes in water-ethanol mixture required for stability of colloidal systems. Nanoparticles coupled with diarylethene derivatives exhibit a new surface plasmon resonance band coming from their aggregation. We analyzed the effects of functional side-chain groups on aggregation process. These results can be considered as a basis for further designing of novel hybrid nanomaterials and optoelectronic elements.
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
Inverse bifurcation analysis: application to simple gene systems
Directory of Open Access Journals (Sweden)
Schuster Peter
2006-07-01
Full Text Available Abstract Background Bifurcation analysis has proven to be a powerful method for understanding the qualitative behavior of gene regulatory networks. In addition to the more traditional forward problem of determining the mapping from parameter space to the space of model behavior, the inverse problem of determining model parameters to result in certain desired properties of the bifurcation diagram provides an attractive methodology for addressing important biological problems. These include understanding how the robustness of qualitative behavior arises from system design as well as providing a way to engineer biological networks with qualitative properties. Results We demonstrate that certain inverse bifurcation problems of biological interest may be cast as optimization problems involving minimal distances of reference parameter sets to bifurcation manifolds. This formulation allows for an iterative solution procedure based on performing a sequence of eigen-system computations and one-parameter continuations of solutions, the latter being a standard capability in existing numerical bifurcation software. As applications of the proposed method, we show that the problem of maximizing regions of a given qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled and efficiently solved.
Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems
Directory of Open Access Journals (Sweden)
Makoto Yoshida
2009-01-01
Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Development of inverse-planning system for neutron capture therapy
International Nuclear Information System (INIS)
Kumada, Hiroaki; Yamamoto, Kazuyoshi; Maruo, Takeshi
2006-01-01
To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)
Inversion Approach For Thermal Data From A Convecting Hydrothermal System
Energy Technology Data Exchange (ETDEWEB)
Kasameyer, P.; Younker, L.; Hanson, J.
1985-01-01
Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.
Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.
2017-11-01
The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.
di Nunzio, Maria Rosaria; Romani, Aldo; Favaro, Gianna
2009-08-27
In this article, we report a study on the singlet and triplet excited-state properties of a spirooxazine (1,3-dihydro-3,3-dimethyl-1-isobutyl-6'-(2,3-dihydro-1H-indol-1-yl)spiro[2H-indole-2,3'-3H-naphtho[2,1-b][1,4]oxazine]). The singlet state of this molecule is photoreactive: upon UV light stimulation, it produces a colored merocyanine that thermally reverts to the starting compound. A double-way radiative relaxation path was found for singlet-state excitation. Experimental observations on the absorption and fluorescence spectra were in excellent agreement with TD-DFT calculations for the singlet state. The triplet state, which could not be directly populated by intersystem crossing from the singlet, when reached by energy transfer from a suitable sensitizer (camphorquinone), yielded the colored merocyanine with quantum yield close to unity. However, the donor/acceptor interaction also originated a new photochromic system as a consequence of the competition of hydrogen abstraction with energy transfer in the interplay of the sensitizer with the substrate. The newly produced photochrome was structurally, spectrally, and photochemically characterized. It exhibited excellent colorability in both directly excited and triplet-sensitized photoreactions by virtue of high photoreaction quantum yield and rather slow bleaching rate of the colored form but also underwent significant degradation in the presence of oxygen that led to the destruction of the photochromic functionality.
Mutoh, Katsuya; Nakagawa, Yuki; Sakamoto, Akira; Kobayashi, Yoichi; Abe, Jiro
2015-05-06
Stepwise two-photon processes not only have great potential for efficient light harvesting but also can provide valuable insights into novel photochemical sciences. Here we have designed a [2.2]paracyclophane-bridged bis(imidazole dimer), a molecule that is composed of two photochromic units and absorbs two photons in a stepwise manner. The absorption of the first photon leads to the formation of a short-lived biradical species (half-life = 88 ms at 298 K), while the absorption of the additional photon by the biradical species triggers a subsequent photochromic reaction to afford a long-lived quinoid species. The short-lived biradical species and the long-lived quinoid species display significantly different absorption spectra and rates of the thermal back-reaction. The stepwise two-photon excitation process in this photochromic system can be initiated even by incoherent continuous-wave light irradiation, indicating that this two-photon reaction is highly efficient. Our molecule based on the bridged bis(imidazole dimer) unit should be a good candidate for multiphoton-gated optical materials.
Inverse Flush Air Data System (FADS) for Real Time Simulations
Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan
2017-12-01
Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.
Energy Technology Data Exchange (ETDEWEB)
Choi, Dong Hoon; Ban, Si Young; Kim, Jae Hong [Kyunghee Univ., Suwon (Korea, Republic of)
2003-04-01
We synthesized three copolymers bearing photochromic spiropyran dye and chalcone moiety in the side chain for studying the dynamic properties of their photochromism. They contain methacrylate-spiropyran (MA-spiropyran) and methacrylate-chalcone) (MA-chalcone) with the different concentration. The photosensitivity of the newly synthesized copolymers was investigated by using UV-Vis absorption spectroscopy. We absorbed photodimerization and phtochromic behavior under UV irradiation at the same time. The effect of photocrosslink on the rate and stability of photochromism in three copolymers was considered in this study. This study might be helpful to design photochromic materials for irreversible optical memory by virtue of photocrosslinking reaction.
International Nuclear Information System (INIS)
Kinashi, K.
2017-01-01
Addressing the unitary management of personal exposure to radiation that workers can receive while working in nuclear-related facilities is a crucial issue in modern society. In particular, the management of personal exposure to radiation is a pressing global concern. Polymer-based composite film, fiber and nonwoven fabric consisting of a photochromic dye, and photostimulable phosphor (the name in this article is called as 'Photochromic dosimeter') have been developed for the detection of X-ray exposure doses. This article shows a mechanism for the photochromic dosimeter, a representative way of fabricating the film-, fiber-, and nonwoven fabric-type photochromic dosimeters and introduces their features. (author)
Light and pH tunable luminescence in a photochromic bisdiarylethene.
Ortica, Fausto; Cipolloni, Marco; Heynderickx, Arnault; Siri, Olivier; Favaro, Gianna
2012-05-01
In this work the luminescence of a bisdiarylethene, containing a benzobis(imidazole) core substituted with two aniline moieties, has been investigated. In previous research, it was found that both acidification and irradiation reversibly triggered colour changes of this compound, thus generating a multi-responsive acidichromic and photochromic system. Intense fluorescence emission, which was detected in several organic solvents, can be an additional light driven signal. In a dioxane/water (1 : 1, v/v) mixture, intensity and spectral position of luminescence have been found to drastically depend on the pH/H0 values of the solutions (pH 5/H0-2 range) due to subsequent protonations (four steps) as the acidity of the solution changes. Alternated irradiations with UV and visible light lead to a decrease and increase, respectively, of the fluorescence intensity, due to the photochromic reaction producing a non-fluorescent compound. Quantum yields and lifetimes of fluorescence were determined as a function of the acidity. The results indicate that protonation shifts the emission to the red and decreases its intensity. The possibility of tuning the colour and intensity of luminescence by both acidification and irradiation generates a multi-switchable "fluorochromic" material.
Sun, Bo; Hou, Qingxi; He, Zhibin; Liu, Zehua; Ni, Yonghao
2014-10-13
Nanocrystalline cellulose (CNC) as a renewable/sustainable material, has received much attention. Herein we studied CNC as carriers for a hydrophobic spirooxazine (SO)-based dye, 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3'-[3H]naphtha[2,1-b][1,4]oxazine], which may have potential applications in reversible memory photo-devices, textiles, photo-sensitive paper coatings, and inkjet printing inks. Due to the high cost and water-insolubility of this dye, it is desirable to improve its coloration efficiency and water-dispersibility. The experimental approach was to use CNC as carriers for the SO dye, thus obtaining a stable photochromic dye in aqueous systems. Transmission electron microscope (TEM) observation confirmed that the SO dye adsorbed on the surface of the CNC, which functioned as carriers for the photochromic dye. An impregnation process was adopted to anchor the dye onto cellulosic paper. It was found that the use of CNC resulted in a significant improvement in the SO coloration efficiency. The color stability and fatigue resistance were also studied. The use of CNC as carriers for a hydrophobic compound, its enhancement of associated properties, and its subsequent application were demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reconstruction dynamics of recorded holograms in photochromic glass.
Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B
2011-06-20
We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO₄ laser radiation (λ=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.
Photochromic switching of the DNA helicity induced by azobenzene derivatives
Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna
2016-06-01
The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.
Photochromic switching of the DNA helicity induced by azobenzene derivatives.
Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna
2016-06-24
The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.
DEFF Research Database (Denmark)
Li, Xiaoqiang; Lin, Lin; Kanjwal, Muzafar Ahmed
2012-01-01
sensitive to UV irradiation with absorption peaks at about 336nm and 567nm. Our hypothesis was that both photochromic nanofibers and photochromic living animal cells could be obtained by combining them with NOSP. To test the hypothesis, photochromic nanofibers were fabricated by electrospinning from various...
Carleman estimates and applications to inverse problems for hyperbolic systems
Bellassoued, Mourad
2017-01-01
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...
Polarization holographic optical recording of a new photochromic diarylethene
Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang
2008-12-01
A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.
Photochromism into nanosystems: towards lighting up the future nanoworld.
Wang, Ling; Li, Quan
2018-02-05
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems
Rubio, José de Jesús; Zamudio, Zizilia; Pacheco, Jaime; Mújica Vargas, Dante
2013-01-01
A proportional derivative controller with inverse dead-zone is proposed for the control of pendulum systems. The proposed method has the characteristic that the inverse dead-zone is cancelled with the pendulum dead-zone. Asymptotic stability of the proposed technique is guaranteed by the Lyapunov analysis. Simulations of two pendulum systems show the effectiveness of the proposed technique.
N-utilization in non-inversion tillage systems
DEFF Research Database (Denmark)
Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E
2011-01-01
clay kg−1. The tillage treatments were stubble cultivating to 8–10 cm or 3–4 cm, direct drilling, or ploughing to 20 cm. Five different fertilizer N treatments were included: 1:50% (0.50N), 2:75% (0.75N), 3:100% (1.00N), 4:125% (1.25N) of recommended N rates, respectively, and 5: application of 15...... by soil compaction in plots with non-inversion tillage. Applying some of the N allocation in autumn cannot be recommended for stimulation of growth of winter cereals or winter oilseed rape with either non-inversion tillage or ploughing...
Higashino, Asuka; Mizuno, Misao; Mizutani, Yasuhisa
2016-04-07
Dronpa is a novel photochromic fluorescent protein that exhibits fast response to light. The present article is the first report of the resonance and preresonance Raman spectra of Dronpa. We used the intensity and frequency of Raman bands to determine the structure of the Dronpa chromophore in two thermally stable photochromic states. The acid-base equilibrium in one photochromic state was observed by spectroscopic pH titration. The Raman spectra revealed that the chromophore in this state shows a protonation/deprotonation transition with a pKa of 5.2 ± 0.3 and maintains the cis configuration. The observed resonance Raman bands showed that the other photochromic state of the chromophore is in a trans configuration. The results demonstrate that Raman bands selectively enhanced for the chromophore yield valuable information on the molecular structure of the chromophore in photochromic fluorescent proteins after careful elimination of the fluorescence background.
Inverse synchronization of coupled fractional-order systems through ...
Indian Academy of Sciences (India)
A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two .... derivative [51], which is in essence an improved version of Adams–Bashforth–Moulton algorithm. The following is a ... OPCL control has found its applications in the synchronization of both integer-order and fractional-order ...
Preparation and characterization of photochromic effect for ceramic tiles
Directory of Open Access Journals (Sweden)
Atay, B.
2011-08-01
Full Text Available Ceramic tile industry is developing due to the technological researches in scientific area and new tiles which are not only a traditional ceramic also have many multiple functionalities have been marketed nowadays. These tiles like photocatalytic, photovoltaic, antibacterial and etc. improve the quality of life and provide lots of benefits such as self cleaning, energy production, climate control. The goal of this study was to enhance the photochromic function on ceramic tiles which is the attitude of changing color in a reversible way by electromagnetic radiation and widely used in many areas because of its aesthetic and also functional properties. High response time of photochromic features of ceramic tiles have been achieved by employing of polymeric gel with additives of photoactive dye onto the ceramic surface. Photochromic layer with a thickness of approximately 45- 50 µm was performed by using spray coating technique which provided homogeneous deposition on surface. Photochromic ceramic tiles with high photochromic activity such as reversibly color change between ΔE= 0.29 and 26.31 were obtained successfully. The photochromic performance properties and coloring-bleaching mechanisms were analyzed by spectrophotometer. The microstructures of coatings were investigated both by stereo microscopy and scanning electron microscopy (SEM.
La industria de baldosa cerámica se está desarrollando debido a las investigaciones tecnológicas en el área científica y los nuevos azulejos no son sólo de cerámica tradicional, sino que también tienen múltiples funcionalidades que son valiosas en el mercado hoy en día. Estos azulejos tipo fotocatalítico, fotovoltáico, anti-bacteriano, entre otros, mejoran la calidad de vida y proporcionan muchos beneficios como la limpieza fácil o de uno mismo, la producción energética y el control del clima. La meta de este estudio es realzar la función fotocrómatica en las baldosas cerámicas y la
Synthesis and computer-aided structural investigation of potentially photochromic spirooxazines
International Nuclear Information System (INIS)
Chi, L.
2000-03-01
Quantum mechanical methods, PPP-MO and ZINDO, were used to predict the electronic spectra of the ring-opened forms and ring-closed forms respectively of a series of spirooxazines. Molecular mechanics was used to optimise the molecular geometry and to calculate the molecular final energy (steric energy) using the MM2 force field method. An all-valence-electron quantum mechanical method was employed to calculate the heats of formation using AM1 parameters, and the data were used to provide a measure of the stability of the molecules. This computer-aided structural investigation has provided an enhanced understanding of the spirooxazine system and methods with the potential to predict photochromic behaviour have emerged. The synthesis of a series of heterocyclic analogues of the well-known spironaphthoxazines based on quinolines, coumarin and pyrazolones were attempted. The properties of the compounds obtained were correlated with the results of the calculations. (author)
International Nuclear Information System (INIS)
Algaba, A.; García, C.; Reyes, M.
2012-01-01
We characterize the nilpotent systems whose lowest degree quasi-homogeneous term is (y, σx n ) T , σ = ±1, having a formal inverse integrating factor. We prove that, for n even, the systems with formal inverse integrating factor are formally orbital equivalent to (x . ,y . ) T =(y,x n ) T . In the case n odd, we give a formal normal form that characterizes them. As a consequence, we give the link among the existence of formal inverse integrating factor, center problem and integrability of the considered systems.
The inverse method parametric verification of real-time embedded systems
André , Etienne
2013-01-01
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solv
Energy Technology Data Exchange (ETDEWEB)
Dobranszky, G.
2005-12-15
Stratigraphic modeling aims at rebuilding the history of the sedimentary basins by simulating the processes of erosion, transport and deposit of sediments using physical models. The objective is to determine the location of the bed-rocks likely to contain the organic matter, the location of the porous rocks that could trap the hydrocarbons during their migration and the location of the impermeable rocks likely to seal the reservoir. The model considered within this thesis is based on a multi-lithological diffusive transport model and applies to large scales of time and space. Due to the complexity of the phenomena and scales considered, none of the model parameters is directly measurable. Therefore it is essential to inverse them. The standard approach, which consists in inverting all the parameters by minimizing a cost function using a gradient method, proved very sensitive to the choice of the parameterization, to the weights given to the various terms of the cost function (hearing on data of very diverse nature) and to the numerical noise. These observations led us to give up this method and to carry out the in-version step by step by decoupling the parameters. This decoupling is not obtained by fixing the parameters but by making several assumptions on the model resulting in a range of reduced but relevant models. In this thesis, we show how these models enable us to inverse all the parameters in a robust and interactive way. (author)
A New Approach for Inversion of Large Random Matrices in Massive MIMO Systems
Anjum, Muhammad Ali Raza; Ahmed, Muhammad Mansoor
2014-01-01
We report a novel approach for inversion of large random matrices in massive Multiple-Input Multiple Output (MIMO) systems. It is based on the concept of inverse vectors in which an inverse vector is defined for each column of the principal matrix. Such an inverse vector has to satisfy two constraints. Firstly, it has to be in the null-space of all the remaining columns. We call it the null-space problem. Secondly, it has to form a projection of value equal to one in the direction of selected column. We term it as the normalization problem. The process essentially decomposes the inversion problem and distributes it over columns. Each column can be thought of as a node in the network or a particle in a swarm seeking its own solution, the inverse vector, which lightens the computational load on it. Another benefit of this approach is its applicability to all three cases pertaining to a linear system: the fully-determined, the over-determined, and the under-determined case. It eliminates the need of forming the generalized inverse for the last two cases by providing a new way to solve the least squares problem and the Moore and Penrose's pseudoinverse problem. The approach makes no assumption regarding the size, structure or sparsity of the matrix. This makes it fully applicable to much in vogue large random matrices arising in massive MIMO systems. Also, the null-space problem opens the door for a plethora of methods available in literature for null-space computation to enter the realm of matrix inversion. There is even a flexibility of finding an exact or approximate inverse depending on the null-space method employed. We employ the Householder's null-space method for exact solution and present a complete exposition of the new approach. A detailed comparison with well-established matrix inversion methods in literature is also given. PMID:24733148
Photochromism in p-methylbenzoylthioacetone and related β-thioxoketones
DEFF Research Database (Denmark)
Gorski, Alexander; Posokhov, Yevgen; Hansen, Bjarke Knud Vilster
2007-01-01
Irradiation of p-methylbenzoylthioacetone with UV or visible light brings about spectral changes characteristic for the photochromic behavior of β-thioxoketones. The nature of the initial species and of the photochromic product can be assigned based on spectral studies of the electronic and IR...... with the results previously obtained for three related molecules: thioacetylacetone, p-methyl(thiobenzoyl)acetone, and monothiodibenzoylmethane reveals a common pattern of the photochromic reaction. In all four molecules, the initial species corresponds to an intramolecularly hydrogen-bonded enolic molecular...
A novel anti-piracy optical disk with photochromic diarylethene
Liu, Guodong; Cao, Guoqiang; Huang, Zhen; Wang, Shenqian; Zou, Daowen
2005-09-01
Diarylethene is one of photochromic material with many advantages and one of the most promising recording materials for huge optical data storage. Diarylethene has two forms, which can be converted to each other by laser beams of different wavelength. The material has been researched for rewritable optical disks. Volatile data storage is one of its properties, which was always considered as an obstacle to utility. Many researches have been done for combating the obstacle for a long time. In fact, volatile data storage is very useful for anti-piracy optical data storage. Piracy is a social and economical problem. One technology of anti-piracy optical data storage is to limit readout of the data recorded in the material by encryption software. By the development of computer technologies, this kind of software is more and more easily cracked. Using photochromic diarylethene as the optical recording material, the signals of the data recorded in the material are degraded when it is read, and readout of the data is limited. Because the method uses hardware to realize anti-piracy, it is impossible cracked. In this paper, we will introduce this usage of the material. Some experiments are presented for proving its feasibility.
Song, Liwen; Yang, Yuheng; Zhang, Qiong; Tian, He; Zhu, Weihong
2011-12-15
Two novel photochromic naphthopyrans containing naphthalimide moieties (Nip1 and Nip2) were studied in solution under flash photolysis conditions, exhibiting highly photochromic response, rapid thermal bleaching rate and good fatigue-resistance. Owing to the different N-substituted imide groups at the naphthalimide units, the thermal bleaching rate of Nip2 bearing phenyl on the naphthalimide unit is found to be approximately 2 times that of Nip1 bearing n-butyl, indicating that the photochromic properties can be modulated with introduction of different functional groups on the naphthalimide unit. In Nip1 and Nip2, the strong electron-withdrawing effect of the imide group incorporated at the naphthalimide moiety maintains several merits: (i) shifting absorption bands to longer wavelength, (ii) beneficial to an enhancement in the ratio of transoid-cis (TC) isomer and an increase in the transformation rate from transoid-trans (TT) to TC with respect to reference compound NP, and (iii) resulting in a preferable color bleaching rate and fading absolutely to their colorless state with thermal reversibility. As demonstrated in the system of NP, the slow transformation process from TT to TC might be the predominant dynamic step in thermal back process, leading to the residual color of NP being only faded to its original colorless state by visible light irradiation. The optical densities of colored forms for Nip1 and Nip2 are dependent upon the intensity of incident light, ensuring a possible application in the manufacture of ophthalmic lenses and smart windows. Moreover, the fluorescence of Nip1 and Nip2 can be switched on and off by photoinduced conversion between the closed and open forms.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Interactions of a Photochromic Spiropyran with Liposome Model Membranes
Jonsson, Fabian
2013-02-19
The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types provide information about the environment and whether or not the spiropyran resides in the liposome membrane. By measuring LD on liposomes deformed and aligned by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran photoswitch. © 2013 American Chemical Society.
Twenty natural amino acids identification by a photochromic sensor chip.
Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin
2015-01-20
All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.
On the possibility to achieve population inversion in a magnetic nanoparticle system
International Nuclear Information System (INIS)
Hrianca, Ioan
2008-01-01
Based on the fact that an intense magnetic field may group the orientations of easy magnetic axis (e.m.a.) of nanoparticles of a ferrofluid around the field direction, one can state that, by freezing, the grouping remains although the field is absent. By bringing the frozen ferofluid to saturation magnetization in the e.m.a. direction, then followed by the field's effect inversion, a population inversion state is created. Although for nanoparticles with low anisotropy the time of inversion is rather short (10 -5 s), we have proved that for nanoparticles with higher anisotropy, this time can increase, even up to 10 5 s. One can assume that, during the inversion, the particle system represents an active medium for amplipfying electromagnetic radiations in microwaves field
Inverse Dynamic Analysis for Various Drivings in Kinematic Systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Byung Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-09-15
Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.
Directory of Open Access Journals (Sweden)
Zhiying Zhu
2017-01-01
Full Text Available Dual-winding bearingless switched reluctance motor (BSRM is a multivariable high-nonlinear system characterized by strong coupling, and it is not completely reversible. In this paper, a new decoupling control strategy based on improved inverse system method is proposed. Robust servo regulator is adopted for the decoupled plants to guarantee control performances and robustness. A phase dynamic compensation filter is also designed to improve system stability at high-speed. In order to explain the advantages of the proposed method, traditional methods are compared. The tracking and decoupling characteristics as well as disturbance rejection and robustness are deeply analyzed. Simulation and experiments results show that the decoupling control of dual-winding BSRM in both reversible and irreversible domains can be successfully resolved with the improved inverse system method. The stability and robustness problems induced by inverse controller can be effectively solved by introducing robust servo regulator and dynamic compensation filter.
Inverse crystallization if Abrikosov vortex system at periodic pinning
Zyubin, M V; Kashurnikov, V A
2002-01-01
The vortex system in the quasi-two-dimensional HTSC plate is considered in the case of the periodic pinning. The M(H) magnetization curves by various values of the external magnetic field and different temperatures are calculated through the Monte Carlo method. It is shown that in the case of the periodic pinning the crystallization of the vortex system is possible by the temperature increase. A number of peculiarities conditioned by the impact of the pinning centers periodic lattice are identified on the magnetization curves. The pictures of the vortex distribution corresponding to various points on the M(H) curve are obtained
On process capability and system availability analysis of the inverse Rayleigh distribution
Directory of Open Access Journals (Sweden)
Sajid Ali
2015-04-01
Full Text Available In this article, process capability and system availability analysis is discussed for the inverse Rayleigh lifetime distribution. Bayesian approach with a conjugate gamma distribution is adopted for the analysis. Different types of loss functions are considered to find Bayes estimates of the process capability and system availability. A simulation study is conducted for the comparison of different loss functions.
Chemical reaction systems with a homoclinic bifurcation: an inverse problem
Czech Academy of Sciences Publication Activity Database
Plesa, T.; Vejchodský, Tomáš; Erban, R.
2016-01-01
Roč. 54, č. 10 (2016), s. 1884-1915 ISSN 0259-9791 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : nonnegative dynamical systems * bifurcations * oscillations Subject RIV: BA - General Mathematics Impact factor: 1.308, year: 2016 http://link.springer.com/article/10.1007%2Fs10910-016-0656-1
Inverse synchronization of coupled fractional-order systems through ...
Indian Academy of Sciences (India)
calculus (integration and differentiation of fractional order) can go back to Liouville,. Riemann, Leibniz, Grunwald, and Letnikovis [1–3]. Nowadays, this branch of mathe- matics has found applications in a number of different areas ranging from physics to engineering. It is known that many systems in interdisciplinary fields ...
Inversion approach for thermal data from a convecting hydrothermal system
Energy Technology Data Exchange (ETDEWEB)
Kasameyer, P.; Younker, L.; Hanson, J.
1983-08-01
Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.
Multiple estimation channel decoupling and optimization method based on inverse system
Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng
2018-03-01
This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
Sliding mode control of photoelectric tracking platform based on the inverse system method
Directory of Open Access Journals (Sweden)
Yao Zong Chen
2016-01-01
Full Text Available In order to improve the photoelectric tracking platform tracking performance, an integral sliding mode control strategy based on inverse system decoupling method is proposed. The electromechanical dynamic model is established based on multi-body system theory and Newton-Euler method. The coupled multi-input multi-output (MIMO nonlinear system is transformed into two pseudo-linear single-input single-output (SISO subsystems based on the inverse system method. An integral sliding mode control scheme is designed for the decoupled pseudo-linear system. In order to eliminate system chattering phenomenon caused by traditional sign function in sliding-mode controller, the sign function is replaced by the Sigmoid function. Simulation results show that the proposed decoupling method and the control strategy can restrain the influences of internal coupling and disturbance effectively, and has better robustness and higher tracking accuracy.
Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display
Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-08-01
This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.
Alternate symbol inversion for improved symbol synchronization in convolutionally coded systems
Simon, M. K.; Smith, J. G.
1980-01-01
Inverting alternate symbols of the encoder output of a convolutionally coded system provides sufficient density of symbol transitions to guarantee adequate symbol synchronizer performance, a guarantee otherwise lacking. Although alternate symbol inversion may increase or decrease the average transition density, depending on the data source model, it produces a maximum number of contiguous symbols without transition for a particular class of convolutional codes, independent of the data source model. Further, this maximum is sufficiently small to guarantee acceptable symbol synchronizer performance for typical applications. Subsequent inversion of alternate detected symbols permits proper decoding.
Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays
International Nuclear Information System (INIS)
Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.
2005-04-01
We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)
Takagi, H.; Houweling, S.; Yokota, T.; Maksyutov, S. S.
2016-12-01
The atmospheric inversion technique infers surface fluxes of traces gases from atmospheric measurements and is used to gain insight into how anthropogenic activities modify the stocks and flows of carbon over the globe. To gain further process-level understanding of these modifications, it is important to evaluate, understand, and subsequently reduce the uncertainties in the flux estimation process. To assess the role of transport model uncertainties, the TransCom inversion inter-comparison studies were held in the late 1990s. More recently, after the advent of satellites dedicated to GHG monitoring, the GOSAT inversion inter-comparison (Phase-I) was carried out. The latter evaluated the full uncertainty of GOSAT-based CO2 flux estimation by allowing the study participants to use the inversion system and GOSAT column-mean CO2 (XCO2) retrieval dataset of their choice. The second phase of the GOSAT inversion inter-comparison explores differences between existing inversion systems and evaluates their contribution to the uncertainty in the estimated CO2 fluxes. For this purpose, the participants are asked to use a common input dataset that consists of a single GOSAT XCO2 retrieval dataset and an a priori flux dataset. The second phase study takes advantage of a five-year-long analysis period (2009-2014) during which GOSAT XCO2 retrievals are continually available, to assess the robustness of inversion-derived estimates of the impact of major weather anomalies (heat waves, droughts, and heavy precipitations, etc.) on carbon fluxes. Here, the latest on this study is reported. As an example of the results that will be generated in this experiment, we will present multi-year GOSAT CO2 fluxes from the NIES CO2 flux inversion system. The inversion uses NIES GOSAT SWIR Level 2 and ACOS B3.5 XCO2 retrievals covering the period June 2009 to early 2014 and ObsPack GVplus surface CO2 data. We evaluate how the CO2fluxes vary with respect to the handling of the observations
Synthesis of Photochromic Oligophenylenimines: Optical and Computational Studies
Directory of Open Access Journals (Sweden)
Armando I. Martínez Pérez
2015-03-01
Full Text Available Phenyleneimine oligomers 4,4'-(((1E,1'E-(((1E,1'E-(1,4-phenylenebis-(azanylylidenebis(methanylylidenebis(2,5-bis(octyloxy-4,1-phenylenebis(methanylyl-idene-bis(azanylylidenedianiline (OIC1MS and 7,7'-(((1E,1'E-(((1E,1'E-((9H-fluorene-2,7-diylbis(azanylylidenebis(methanylylidenebis(2,5-bis(octyloxy-4,1phenylenebis- (methanylylidenebis(azanylylidenebis(9H-fluoren-2-amine (OIC2MS were prepared by means of conventional and mechanochemical synthesis and characterized by FT-IR, 1H- and 13C-NMR techniques. The optical properties of the compounds were studied in solution by using UV-visible spectroscopy, and the optical effects were analyzed as a function of solvent. The results show that OIC2MS exhibits interesting photochromic properties. Furthermore, the structural and electronic properties of the compounds were analyzed by TD-DFT. It was found that the mechanosynthesis is an efficient method for the synthesis of both tetraimines.
Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors.
Hu, Kong-Qiu; Wu, Qun-Yan; Mei, Lei; Zhang, Xiao-Lin; Ma, Lei; Song, Gang; Chen, Di-Yun; Wang, Yi-Tong; Chai, Zhi-Fang; Shi, Wei-Qun
2017-12-19
A series of novel uranyl coordination polymers have been synthesized by hydrothermal reactions. Both complexes 1 and 2 prosess two ipbp - ligands (H 2 ipbpCl=1-(3,5-dicarboxyphenyl)-4,4'-bipyridinium chloride), one uranyl cation, and two coordination water molecules, which can further extend to 2D networks through hydrogen bonding. In complex 1, two sets of equivalent nets are entangled together, resulting in a 2D + 2D → 3D polycatenated framework. In complex 2, the neighbouring equivalent nets interpenetrate each other, forming a twofold interpenetrated network. Complexes 3 and 4 are isomers, and both of them are constructed from (UO 2 ) 2 (OH) 2 dinuclear units, which are connected with four ipbp - ligands. The 3D structures of complexes 3 and 4 are similar along the b axis. Similar to other viologen-based coordination polymers, complexes 3 and 4 exhibit photochromic and thermochromic properties, which are rarely observed in actinide coordination polymers. Unlike the monotonous coordination mode in complexes 1-4, the ipbp - ligands feature a μ 3 -bridge through two kinds of coordination modes in complex 5. Notably, complex 5 presents a unique example in which terminal pyridine nitrogen atom is involved in the coordination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of photochromic silk fabrics based on thiol-halogen click chemistry
Fan, Ji; Wang, Wei; Yu, Dan
2018-02-01
In this study, we have synthesized a photochromic compound 9‧-(2-bromo-2-methylethoxycarbonyl)-1,3,3-trimethyl-spiro[2H-indole-2,3‧-[3H]naphtha[2,1-b] [1,4]oxazine] and applied it to the silk fabric to acquire photochromic properties. First, tris (2-carboxyethyl) phosphine (TCEP) was used as a reducing agent to produce thiol groups on the surface of silk fabric. Then, these thiol groups will react with -Br groups of the spirooxazine via thiol-halogen click chemistry. The spirooxazine was characterized by FTIR and UV. And the color change properties of the as-prepared silk fabrics were evaluated by the color measurement methods. The results indicated that treated silk fabric has excellent photochromic properties.
Photochromic charge transfer processes in natural pink and brown diamonds
International Nuclear Information System (INIS)
Byrne, K S; Luiten, A N; Chapman, J G
2014-01-01
Natural pink and brown diamonds exhibit surprising photochromic phenomena when optically pumped with ultraviolet light of photon energy ϵ ≥ 4.1 eV, including a subsequent sensitivity to infrared pumps, which is not evident prior to UV exposure. In this study, we observe the dependence of photochromism on pump photon energy and intensity, for both UV and IR pumps. From these observations, we propose a model of several distinct charge transfer processes between multiple species of optically active defect centres. We show it is likely that the UV-induced behaviour of pink diamond photochromism is linked to the vacancy clusters responsible for brown colouration in diamonds. (paper)
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Comparison of treatments of steep and shoot generated by different inverse planning systems
International Nuclear Information System (INIS)
Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.
2011-01-01
The problem of IMRT treatments with the technique Steep and Shoot or static is the number of segments and monitor units used in the treatment. These parameters depend largely on the inverse planning system which determines treatment. Are evaluated three commercial planning systems, with each one performing clinical dosimetry for the same series of patients. Dosimetric results are compared, UM calculated and number of segments.
Direct Observation of the Ultrafast Evolution of Open-Shell Biradical in Photochromic Radical Dimer.
Kobayashi, Yoichi; Okajima, Hajime; Sotome, Hikaru; Yanai, Takeshi; Mutoh, Katsuya; Yoneda, Yusuke; Shigeta, Yasuteru; Sakamoto, Akira; Miyasaka, Hiroshi; Abe, Jiro
2017-05-10
Delocalized biradicals have been extensively studied because of fundamental interests to singlet biradicals and several potential applications such as to two-photon absorption materials. However, many of the biradical studies only focus on the static properties of the rigid molecular structures. It is expected that the biradical properties of the delocalized biradicals are sensitive to the subtle changes of the molecular structures and their local environments. Therefore, the studies of the dynamic properties of the system will give further insight into stable radical chemistry. In this study, we directly probe the ultrafast dynamics of the delocalized biradical of a photochromic radical dimer, pentaarylbiimidazole (PABI), by time-resolved visible and infrared spectroscopies and quantum chemical calculations with the extended multistate complete active space second-order perturbation theory (XMS-CASPT2). While the photogenerated transient species was considered to be a single species of the biradical, the present ultrafast spectroscopic study revealed the existence of two transient isomers differing in the contributions of biradical character. The origin of the two metastable isomers is most probably due to the substantial van der Waals interaction between the phenyl rings substituted at the imidazole rings. Unraveling the temporal evolution of the biradical contribution will stimulate to explore novel delocalized biradicals and to develop biradical-based photofunctional materials utilizing the dynamic properties.
International Nuclear Information System (INIS)
Lee, Jay Min; Yang, Dong-Seok; Bunker, Grant B
2013-01-01
Using the FEFF kernel A(k,r), we describe the inverse computation from χ(k)-data to g(r)-solution in terms of a singularity regularization method based on complete Bayesian statistics process. In this work, we topologically decompose the system-matched invariant projection operators into two distinct types, (A + AA + A) and (AA + AA + ), and achieved Synthesized Topological Inversion Computation (STIC), by employing a 12-operator-closed-loop emulator of the symplectic transformation. This leads to a numerically self-consistent solution as the optimal near-singular regularization parameters are sought, dramatically suppressing instability problems connected with finite precision arithmetic in ill-posed systems. By statistically correlating a pair of measured data, it was feasible to compute an optimal EXAFS phase retrieval solution expressed in terms of the complex-valued χ(k), and this approach was successfully used to determine the optimal g(r) for a complex multi-component system.
Mutoh, Katsuya; Kobayashi, Yoichi; Hirao, Yasukazu; Kubo, Takashi; Abe, Jiro
2016-05-21
Naphthalene-bridged phenoxyl-imidazolyl radical complex (Np-PIC) is a novel fast switchable negative photochromic compound, which shows the thermal back reaction in the millisecond time scale. Upon UV light irradiation, Np-PIC shows the hypochromic effect in the UVA region due to there being less conjugation in the transient isomer. By replacing the phenoxyl unit with a naphthoxyl unit, the molecular structure has an asymmetric carbon, leading to fast chiroptical switching. This simple molecular design will be a good candidate for the future development of negative photochromic compounds.
Laser-induced absorption and fluorescence studies of photochromic Schiff bases
DEFF Research Database (Denmark)
Kownacki, K.; Mordzinski, A.; Wilbrandt, R.
1994-01-01
Three photochromic Schiff bases: N-salicylideneaniline (SA), N-salicylidene-1-naphthylamine (SN), and N,N-bis-(salicylidene)-p-phenylenediamine (Bsp), were studied in acetonitrile by means of steady-state and time-resolved absorption and fluorescence spectroscopy, as well as semiempirical quantum...... chemical calculations. In all these molecules, the transient absorption and two-step laser-induced fluorescence spectra of long-lived transients are remarkably similar. The photochromic species is tentatively assigned to the non-hydrogen bonded form of the proton transfer reaction product...
Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films
Directory of Open Access Journals (Sweden)
Hidetoshi Miyazaki
2013-01-01
Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.
Trichromatic π-Pulse for Ultrafast Total Inversion of a Four-Level Ladder System
Directory of Open Access Journals (Sweden)
Carles Serrat
2015-11-01
Full Text Available We present a numerical solution for complete population inversion in a four-level ladder system obtained by using a full π-pulse illumination scheme with resonant ultrashort phase-locked Gaussian laser pulses. We find that a set of pulse areas such as √3π , √2π , and √3π completely inverts the four-level system considering identical effective dipole coupling coefficients. The solution is consistent provided the involved electric fields are not too strong and it is amply accurate also in the case of diverse transition dipole moments. We study the effect of detuning and chirp of the laser pulses on the complete population inversion using the level structure of atomic sodium interacting with ps and fs pulses as an example. Our result opens the door for multiple applications such as efficient ultrashort pulse lasing in the UV or the engineering of quantum states for quantum computing.
Simulated scatter performance of an inverse-geometry dedicated breast CT system.
Bhagtani, Reema; Schmidt, Taly Gilat
2009-03-01
The purpose of this work was to quantify the effects of scatter for inverse-geometry dedicated breast CT compared to cone-beam breast CT through simulations. The inverse geometry was previously proposed as an alternative to cone-beam acquisition for volumetric CT. The inverse geometry consists of a large-area scanned-source opposite a detector array that is smaller in the transverse direction. While the gantry rotates, the x-ray beam is rapidly sequenced through an array of positions, acquiring a truncated projection image at each position. Inverse-geometry CT (IGCT) is expected to detect less scatter than cone-beam methods because only a fraction of the object is irradiated at any time and the fast detector isolates the measurements from sequential x-ray beams. An additional scatter benefit is the increased air gap due to the inverted geometry. In this study, we modeled inverse-geometry and cone-beam dedicated breast CT systems of equivalent resolution, field of view, and photon fluence. Monte Carlo simulations generated scatter and primary projections of three cylindrical phantoms of diameters 10, 14, and 18 cm composed of 50% adipose/50% glandular tissue. The scatter-to-primary ratio (SPR) was calculated for each breast diameter. Monte Carlo simulations were combined with analytical simulations to generate inverse-geometry and cone-beam images of breast phantoms embedded with tumors. Noise reprehenting the photon fluence of a realistic breast CT scan was added to the simulated projections. Cone-beam data were reconstructed with and without an ideal scatter correction. The CNR between breast tumor and background was compared for the inverse and cone-beam geometries for the three phantom diameters. Results demonstrated an order of magnitude reduction in SPR for the IGCT system compared to the cone-beam system. For example, the peak IGCT SPRs were 0.05 and 0.09 for the 14 and 18 cm phantoms, respectively, compared to 0.42 and 1 for the cone-beam system. For both
Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai
2016-09-01
The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.
Tian, X.; Zhang, Y.
2018-03-01
Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.
Directory of Open Access Journals (Sweden)
mohammad Ghorbani
2016-10-01
Full Text Available Management will make a decision on the future market when economic interrelationships are considered as biological relationships. This paper presents a Differential Generalized Inverse demand system to explore the market of foods containing animal protein and the relationships between different strains of food market existing in the market are discussed in detail. Statistics needed to support the company's affairs and the livestock Statistical Yearbook of Agriculture from 1974 to 2011 was used. Inverse demand system estimated generalized differential (GIDS and test compound coefficients show that the best model for studying the demand for food containing protein villages in the country is the IAIDS model. The results showed that compensation cross elasticity indices estimated in the inverse demand substitution indicates IAIDS milk and eggs as well as meat and poultry. Quantitative Elasticity indices following theoretical foundations based on compensation were negative. This means increase in the price of any commodity its consumption drops. Meat and milk are essential products for rural consumers. The results of using the Allen elasticity of substitution also show that poultry is the best substitute for milk and vice versa. Also, poultry is the best substitute for red meat and red meat is the best substitute for eggs.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group
International Nuclear Information System (INIS)
Wang, S.J.
1993-04-01
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)
Photochromism of indolino-benzopyrans studied by NMR and UV-visible spectroscopy
Delbaere, S.; Berthet, J.; Salvador, M. A.; Vermeersch, G.; Oliveira, M. M.
2006-01-01
The synthesis of photochromic 3,3-di(4′-fluorophenyl)-3H-benzopyrans fused to an indole moiety is described. The structures of photomerocyanines elucidated by NMR spectroscopy and spectrokinetic data (λmax of colored form, colorability, and rate constant of bleaching) obtained by UV-visible spectroscopy are reported.
Light-Triggered Control of Plasmonic Refraction and Group Delay by Photochromic Molecular Switches
DEFF Research Database (Denmark)
Großmann, Malte; Klick, Alwin; Lemke, Christoph
2015-01-01
An interface supporting plasmonic switching is prepared from a gold substrate coated with a polymerfilm doped with photochromic molecular switches. A reversible light-induced change in the surface plasmon polariton dispersion curve of the interface is experimentally demonstrated, evidencing rever...... complex functionalities based on surface plasmon refraction and group delay....
Kinetics of the photochromic reaction in a polymer containing azobenzene groups
Czech Academy of Sciences Publication Activity Database
Mancheva, I.; Zhivkov, I.; Nešpůrek, Stanislav
2005-01-01
Roč. 7, č. 1 (2005), s. 253-256 ISSN 1454-4164 R&D Projects: GA MŠk 1P04OCD14.30 Grant - others:Bulgarian Ministry of Education and Science(BG) x-1322 Keywords : photochromism * azobenzene * relaxation properties Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.138, year: 2005
An UV photochromic memory effect in proton-based WO3 electrochromic devices
International Nuclear Information System (INIS)
Zhang Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.
2008-01-01
We report an UV photochromic memory effect on a standard proton-based WO 3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices
An UV photochromic memory effect in proton-based WO3 electrochromic devices
Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.
2008-11-01
We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.
Energy Technology Data Exchange (ETDEWEB)
Sekine, Akiko, E-mail: asekine@chem.titech.ac.jp [Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)
2016-08-26
Our recent results on the photochromic reactions in dual mode cobaloxime crystals containing azobenzene derivatives are briefly reviewed. This work represents the first step toward the design of functional materials which can be controlled by two independent external stimuli, one by visible light and the other by UV radiation.
Inverse Cotton-Mouton effect of the vacuum and of atomic systems
Rizzo, C.; Dupays, A.; Battesti, R.; Fouché, M.; Rikken, G. L. J. A.
2010-06-01
In this letter we calculate the inverse Cotton-Mouton effect (ICME) for the vacuum following the predictions of quantum electrodynamics. We compare the value of this effect for the vacuum with the one expected for atomic systems. We finally show that ICME could be measured for the first time for noble gases using state-of-the-art laser systems and for the quantum vacuum with near-future laser facilities like ELI and HiPER, providing in particular a test of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger limit of 4.5×1033 W/m2.
Velocity Control System Design for Leader-Following UAV Using Dynamic Inversion
榎本, 圭祐; 山崎, 武志; 高野, 博行; 馬場, 順昭
The purpose of this paper is to introduce a velocity control system for a leader-following UAV. For the purpose of our work, we designed a whole guidance and control system; the guidance system using the pure pursuit navigation guidance law, the attitude control system using the dynamic inversion with the two-time scale approach, and the velocity control system considering aircraft and engine dynamics. This paper concentrates on the velocity controller including the stability analysis for the uncertainty of the aerodynamic parameters. Velocity controller gain determination technique adapted for the aircraft and/or engine dynamics are discussed in this paper. Simulation results show that the proposed guidance and control system provides a good performance.
1D inversion of direct current data acquired with a rolling electrode system
Guillemoteau, Julien; Lück, Erika; Tronicke, Jens
2017-11-01
Direct current systems employing a kinematic surveying strategy allow to analyze the electrical resistivity of the subsurface for large areas (i.e., several hectares). Typical applications are found in precision agriculture, archaeological prospecting and soil sciences. With the typical survey setting, the collected data sets are often characterized by a rather high level of noise and a rather coarse lateral sampling compared to data acquired with fixed electrodes. We therefore present an efficient one-dimensional inversion approach in which we put special attention on modeling the effects of noise. We apply this method to data recorded with a five-offset equatorial dipole-dipole system employing rolling electrodes. By performing several synthetic tests with realistic noise levels, we found that the considered five-configuration soundings allow for a reliable imaging of two-layer cases in the uppermost two meters of the subsurface, where the subsurface can be assumed to follow a horizontally layered geometry within 3 m around the system. By analyzing the corresponding sensitivity functions, we also show that the equatorial dipole-dipole array is relatively well suited for a 1D inversion approach compared to standard in-line electrode arrays. To illustrate this aspect, we show that our method can provide results similar to those obtained with a 2D Wenner imaging procedure for data recorded across a well-constrained 2D target. We finally apply our method to a large five-offset data set acquired in an agricultural study. The final pseudo-3D model of electrical resistivity is in accordance with borehole data available for the surveyed area. Our results demonstrate the applicability and the versatility of the presented inversion approach for large-scale data sets as they are typically collected with such rolling electrode systems.
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-14
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z_{2} topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe/CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe/CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Some aspects of the inverse problem for general first order systems
International Nuclear Information System (INIS)
Sarlet, W.; Cantrijn, F.
1978-01-01
In this paper we investigate the most general systems of first-order ordinary differential equations which satisfy the integrability conditions of the inverse problem for canonical formulations, i.e., are derivable from a variational principle. It is shown that they have a structure which is invariant under arbitrary coordinate-transformations. A special class of transformations, called identity-isotopic transformations, is described. It is illustrated how these transformations share all properties with classical canonical transformations except one: the solutions of the system, viewed as transformations from the set of initial values, generally are not identity-isotopic. This failure is shown to be due to the explicit time-dependence of the functions which characterise the system, and the special role of this time-dependence is further clarified using the possibility of a reduction to conventional Hamiltonian systems. All properties are derived here within the framework of an analytic treatment of a system of differential equations
Czech Academy of Sciences Publication Activity Database
Weiter, M.; Vala, M.; Salyk, O.; Zmeškal, O.; Nešpůrek, Stanislav; Sworakowski, J.
2005-01-01
Roč. 430, - (2005), s. 227-233 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrical properties * photoconductivity * photochromism Subject RIV: CF - Physical ; Theoretical Chemistry
Energy Technology Data Exchange (ETDEWEB)
Lisin, E. A.; Lisina, I. I.; Vaulina, O. S.; Petrov, O. F. [Joint Institute for High Temperatures of the Russian Academy of Sciences, 13 bd.2 Izhorskaya St., Moscow 125412, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700 (Russian Federation)
2015-03-15
Solution of the inverse Langevin problem is presented for open dissipative systems with anisotropic interparticle interaction. Possibility of applying this solution for experimental determining the anisotropic interaction forces between dust particles in complex plasmas with ion flow is considered. For this purpose, we have tested the method on the results of numerical simulation of chain structures of particles with quasidipole-dipole interaction, similar to the one occurring due to effects of ion focusing in gas discharges. Influence of charge spatial inhomogeneity and fluctuations on the results of recovery is also discussed.
Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2018-02-01
In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.
Evaluation of an artificial intelligence guided inverse planning system: Clinical case study
International Nuclear Information System (INIS)
Yan Hui; Yin Fangfang; Willett, Christopher
2007-01-01
Purpose: An artificial intelligence (AI) guided method for parameter adjustment of inverse planning was implemented on a commercial inverse treatment planning system. For evaluation purpose, four typical clinical cases were tested and the results from both plans achieved by automated and manual methods were compared. Methods and materials: The procedure of parameter adjustment mainly consists of three major loops. Each loop is in charge of modifying parameters of one category, which is carried out by a specially customized fuzzy inference system. A physician prescribed multiple constraints for a selected volume were adopted to account for the tradeoff between prescription dose to the PTV and dose-volume constraints for critical organs. The searching process for an optimal parameter combination began with the first constraint, and proceeds to the next until a plan with acceptable dose was achieved. The initial setup of the plan parameters was the same for each case and was adjusted independently by both manual and automated methods. After the parameters of one category were updated, the intensity maps of all fields were re-optimized and the plan dose was subsequently re-calculated. When final plan arrived, the dose statistics were calculated from both plans and compared. Results: For planned target volume (PTV), the dose for 95% volume is up to 10% higher in plans using the automated method than those using the manual method. For critical organs, an average decrease of the plan dose was achieved. However, the automated method cannot improve the plan dose for some critical organs due to limitations of the inference rules currently employed. For normal tissue, there was no significant difference between plan doses achieved by either automated or manual method. Conclusion: With the application of AI-guided method, the basic parameter adjustment task can be accomplished automatically and a comparable plan dose was achieved in comparison with that achieved by the manual
Spangenberg, Arnaud; Piedras Perez, Jose Alejandro; Patra, Abhijit; Piard, Jonathan; Brosseau, Arnaud; Métivier, Rémi; Nakatani, Keitaro
2010-02-01
Quantification of the relative composition of the isomers in a photochromic system at any irradiation time interval is a critical issue in determining absolute quantum yields. For this purpose, we have developed a simple and convenient protocol involving combination of UV-visible and infra-red absorption spectroscopy. Photochromic cyclization reaction of cis-l,2-dicyano-l,2-bis(2,4,5-trimethyl-3-thieny1)ethene (CMTE) is analyzed to demonstrate the efficiency of the proposed methodology. This approach is based on the fact that the two isomers show distinctive infra-red bands. Detailed investigations of the UV-visible and infra-red spectra of the mixture obtained at different irradiation times in CCl(4) supported by quantum chemical computations lead to the unambiguous estimation of molar absorption coefficients of the closed isomer (epsilon(CF) = 4650 L mol(-1) cm(-1) at 512 nm). It facilitates the first determination of absolute quantum yields of this reversible photochromic reaction in CCl(4) by fitting the UV-visible spectral data (Phi(OF-->CF) = 0.41 +/- 0.05 and Phi(CF-->OF) = 0.12 +/- 0.02 at 405 nm and 546 nm, respectively).
Directory of Open Access Journals (Sweden)
M. A. Hussain
2014-01-01
Full Text Available This paper discusses the discrete-time stability analysis of a neural network inverse model control strategy for a relative order two nonlinear system. The analysis is done by representing the closed loop system in state space format and then analyzing the time derivative of the state trajectory using Lyapunov’s direct method. The analysis shows that the tracking output error of the states is confined to a ball in the neighborhood of the equilibrium point where the size of the ball is partly dependent on the accuracy of the neural network model acting as the controller. Simulation studies on the two-tank-in-series system were done to complement the stability analysis and to demonstrate some salient results of the study.
Proprietes ionochromes et photochromes de derives du polythiophene
Levesque, Isabelle
La synthese et la caracterisation de derives regioreguliers du polythiophene ont ete effectuees en solution et sur des films minces. La spectroscopie UV-visible de ces derives a permis de constater qu'ils peuvent posseder des proprietes chromiques particulieres selon le stimulus auquel ils sont soumis. Par exemple, une augmentation de la temperature permet en effet aux polymeres de passer d'une couleur violette a jaune, et ce, a l'etat solide aussi bien qu'en solution. Ces proprietes chromiques semblent regies par une transition conformationnelle (plane a non-plane) de la chaine principale. Ce travail avait pour but de mieux comprendre l'influence de l'organisation des chaines laterales sur les transitions chromiques. Deux derives synthetises possedant des chaines laterales sensibles aux cations alcalins se sont averes etre ionochromes en plus d'etre thermochromes. Il s'agit d'un polymere comportant des chaines laterales de type oligo(oxyethylene) et d'un autre comportant un groupement ether couronne specifique aux ions lithium. Les effets chromiques observes sont expliques par des interactions non-covalentes des cations avec les atomes d'oxygene des chaines laterales dans le cas du premier polymere, et par l'insertion de l'ion Li + dans la cavite de l'ether couronne dans le cas du second polymere. Ces interactions semblent provoquer une diminution de l'organisation induisant ainsi une torsion de la chaine principale. Les deux polymeres semblent specifiques a certains cations et pourraient donc servir comme detecteurs optiques. La specificite aux ions Li+ du second polymere pourrait aussi permettre la conduction ionique, en plus de la conductivite electronique caracteristique des polythiophenes, ce qui pourrait s'averer utile dans le cas de batteries legeres entierement faites de polymeres et de sels de lithium. D'autres derives comportant des chaines laterales de type azobenzene se sont averes etre photochromes en plus d'etre thermochromes. Le groupement lateral a
Practical use of control rod calibration system with the inverse kinetics method
International Nuclear Information System (INIS)
Yamanaka, Haruhiko; Hayashi, Kazuhiko; Motohashi, Jun; Kawashima, Kazuhito; Ichimura, Toshiyuki; Tamai, Kazuo; Takeuti, Mitsuo
2002-01-01
The control rod calibration results in the JRR-3 are used as a reactivity standard to measure and manage the reactivity change in the core. The total travel of all six control rods has been calibrated by an inverse kinetics method (IK method) during an annual maintenance period. The IK method has the great merit in saving measuring time compared with the conventional positive period method (PP method). The JRR-3 control rod calibration system was renovated and put into practical use in order to improve reliability and function by accumulating 10-year experience with the IK method in the JRR-3. The report shows the function, the performance and results of verification of the JRR-3 control rod calibration system. (author)
A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller
Directory of Open Access Journals (Sweden)
Carlos Robles Algarín
2018-01-01
Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.
Energy Technology Data Exchange (ETDEWEB)
Saeki, N.; Kansaku, K.; Higuchi, Y.; Yamaura, A. [Dept. of Neurological Surgery, Chiba University School of Medicine (Japan); Kawano, K.; Iijima, T. [Electrotechnical Lab., Tsukuba (Japan); Inoue, N. [GE Yokagawa Medical Systems, Tokyo (Japan)
2001-07-01
Short-inversion time inversion-recovery (STIR) imaging using a 3 tesla system was assessed to reveal the postcommissural fibres (PF) of the fornix, which have rarely been highlighted neuroradiologically in the clinical setting. We studied 27 normal subjects. Sequence parameters were TR/TE/TI 8000/52/150 ms. STIR was expected to take advantage of the high signal-to-noise ratio of a high-field system, due to the long repetition time. PF were identifiable in axial and coronal slices in all cases. They were bordered anteriorly and superiorly by the anterior commissure and posteriorly and inferiorly by the mamillary body. Behind the anterior commissure, they ran in an arch-shaped posterior and inferior course in the hypothalamic nuclei and joined the mamillary body anterolaterally. They usually extended through three 3-mm slices (with 1 mm interslice gap) in anteroposterior and vertical dimensions. Little variation was observed in their course or size. Demonstration of the PF would provide a more detailed correlation of human neuroanatomy to hypothalamic function and individualised understanding of hypothalamic pathology and influence therapy. (orig.)
Chen, Liwen; Xu, Qiang
2018-02-01
This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.
Czech Academy of Sciences Publication Activity Database
Sworakowski, J.; Nešpůrek, Stanislav; Lipinski, J.; Lewanowicz, A.; Sliwinska, E.
2001-01-01
Roč. 356, - (2001), s. 163-173 ISSN 1058-725X. [International Conference on the Chemistry of the Organic Solid State /14./. Cambridge , 25.07.1999-30.07.1999] R&D Projects: GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : dihydropyridine * photochromism * reaction kinetics Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.457, year: 2001
Robust superhydrophobic tungsten oxide coatings with photochromism and UV durability properties
Energy Technology Data Exchange (ETDEWEB)
Jiang, Ting [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)
2016-11-30
Highlights: • Superhydrophobic tungsten oxide (TO) coatings with a water contact angle (WCA) of 155° and rolling angle of 3.5° were developed. • The superhydrophobic coatings have excellent mechanical robustness and UV durability. • The superhydrophobic TO coatings show the reversible convert of photochromism. • The coating exhibited excellent self-cleaning behavior due to its high WCA and low rolling angle. - Abstract: Robust superhydrophobic tungsten oxide (TO) coatings with a water contact angle (WCA) of 155° were developed for photochromism via a facile and substrate-independent route. Importantly, after scatch test on both a single and two orthogonal direction, the TO coating still exhibited superhydrophobic behavior, indicating excellent mechanical robustness. It is worth mentioning that the superhydrophobic TO coatings showed the reversible convert of photochromism of WO{sub 3} induced by alternating UV and visible light irradiation. Besides that, the TO coating remained superhydrophobicity after UV irradiation for 36 h, showing excellent UV durability. In addition, the coating showed good resistance to acidic droplets. Moreover, it can also be applied on other substrates, such as copper mesh, steel, paper and fiber. The coating exhibited excellent self-cleaning behavior due to its high WCA and low rolling angle. Overall, this work is a promising approach to design and produce functional superhydrophobic coatings for various substrates.
Ciapurin, Igor V.; Robu, Stephan V.; Vlad, Lyudmila A.; Lessard, Roger A.; Tork, Amir; Lafond, Christophe; Bolte, Michel
2001-06-01
We report a new photochromic composite polymer consisting of poly-N-epoxypropylcarbazole (PEPC) polymeric matrix with a nitro-brome-substituted spiropyran (BNSP) photochromic dye. The PEPC + BNSP films can be considered as negative photochromic recording media. They are colored in the initial state and bleached upon irradiation within the visible spectra. When we placed the bleached samples to the darkness, they slowly revert to the colored form. This process has strong temperature dependence, so one can either 'freeze'' or accelerate changing of the current coloration state in the PEPC + BNSP. The experimental measurements are evaluated in conjunction with its potential applications for optical holographic recording in the visible spectral range. The real-time holographic recording procedure in PEPC + BNSP films was studied. The diffraction efficiency values reached the maximum of 23 percent at spatial frequency of 1600 line pairs per mm, during direct hologram recording with the 532 nm Coherent VERDI laser irradiation. Light exposures were ranged from 70 to 280 mJ/cm2. The investigated compounds have good perspectives for use in holography, two-photon optical data storage, electro-optics, and optical-limiting applications due to coupling of some unique properties such as high optical non-linearity, well charge transport, short response times, no-limiting resolution ability, etc.
Cho, Jaehun; Kim, Nam-Hui; Lee, Sukmock; Kim, June-Seo; Lavrijsen, Reinoud; Solignac, Aurelie; Yin, Yuxiang; Han, Dong-Soo; van Hoof, Niels J. J.; Swagten, Henk J. M.; Koopmans, Bert; You, Chun-Yeol
2015-01-01
In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii–Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction. PMID:26154986
High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system
International Nuclear Information System (INIS)
Ross, M.
1979-01-01
A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy
Application of optical deformation analysis system on wedge splitting test and its inverse analysis
DEFF Research Database (Denmark)
Skocek, Jan; Stang, Henrik
2010-01-01
. Results of the inverse analysis are compared with traditional inverse analysis based on clip gauge data. Then the optically measured crack profile and crack tip position are compared with predictions done by the non-linear hinge model and a finite element analysis. It is shown that the inverse analysis...... based on the optically measured data can provide material parameters of the fictitious crack model matching favorably those obtained by classical inverse analysis based on the clip gauge data. Further advantages of using of the optical deformation analysis lie in identification of such effects...
Shieh, Jen-Yu; Kuo, Jen-Yu; Weng, Hsueh-Ping; Yu, Hsin Her
2013-01-15
Emulsifier-free emulsion polymerization was employed to synthesize polystyrene (PS) microspheres, which were then self-assembled into an ordered periodic structure. A photochromic film was formed by adding polydimethylsiloxane (PDMS) around the self-assembly of PS microspheres on a PDMS substrate. During polymerization, the PS microspheres shrunk depending on the amount of the hydrophilic comonomer, sodium 4-styrenesulfonate (NaSS). Variation in structural color was strongly affected by the size of the PS microspheres. Scanning electron microscopy was used to observe the surface and cross sections of the self-assembled microspheres. Results showed that the order and stacking thickness of microspheres were dependent on the drawing rate of the substrate and suspension concentration. High-transmittance photochromic films could be prepared when the drawing rate was lower than 1 μm/s and the suspension concentration was 20 wt %. PDMS surrounding the vacant space between regularly arranged PS microspheres could not only protect them but also increase the degree of matching between the refractive indices of PS and PDMS. The stability of the reflected structural color increased, and the optical transmittance of the photochromic film approached 95% after PDMS was poured between the PS microspheres. A special pattern could be designed and embedded inside the photochromic film. The PS/PDMS photochromic films can also be applied in decorative painting as well as in security devices, color-changing false nails, and privacy filters.
Bellia, Alfonso; Garcovich, Caterina; D'Adamo, Monica; Lombardo, Mauro; Tesauro, Manfredi; Donadel, Giulia; Gentileschi, Paolo; Lauro, Davide; Federici, Massimo; Lauro, Renato; Sbraccia, Paolo
2013-02-01
Obesity is frequently characterized by a reduced vitamin D bioavailability, as well as insulin-resistance and a chronic inflammatory response. We tested the hypothesis of an independent relationship between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and several circulating inflammatory markers in a cohort of severely obese individuals. Cross-sectional study was carried out among obese patients undergoing a clinical evaluation before bariatric surgery in our University Hospital. Serum 25(OH)D, fasting and post load glucose and insulin, high-sensitive C-reactive protein (hs CRP), fibrinogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), leptin, adiponectin and lipid profile were collected. Insulin-resistance was assessed by insulin sensitivity index (ISI). Total body fat (FAT kg), total percent body fat (FAT%) and truncal fat mass (TrFAT) were assessed with dual-energy X-ray absorptiometry. A total of 147 obese subjects (89 women, 37.8 ± 7.1 years) with mean body mass index (BMI) of 43.6 ± 4.3 kg/m(2) were enrolled. Patients in the lowest tertile of 25(OH)D were significantly more obese with a higher amount of TrFAT, more insulin-resistant, and had higher levels of fasting and post-challenge glucose (p < 0.05 for all). In a multivariate regression analysis, serum 25(OH)D was inversely related to significant levels of hs CRP, IL-6 and TNF-α after accounting for age, gender, season of recruitment, BMI, FAT kg and TrFAT (p < 0.01 for all). In extremely obese subjects, 25(OH)D serum concentrations are inversely associated with several biomarkers of systemic inflammation, regardless of the total quantity of fat mass.
Inverse Jacobi multiplier as a link between conservative systems and Poisson structures
International Nuclear Information System (INIS)
García, Isaac A; Hernández-Bermejo, Benito
2017-01-01
Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka–Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided. (paper)
The feasibility of an inverse geometry CT system with stationary source arrays.
Hsieh, Scott S; Heanue, Joseph A; Funk, Tobias; Hinshaw, Waldo S; Wilfley, Brian P; Solomon, Edward G; Pelc, Norbert J
2013-03-01
Inverse geometry computed tomography (IGCT) has been proposed as a new system architecture that combines a small detector with a large, distributed source. This geometry can suppress cone-beam artifacts, reduce scatter, and increase dose efficiency. However, the temporal resolution of IGCT is still limited by the gantry rotation time. Large reductions in rotation time are in turn difficult due to the large source array and associated power electronics. We examine the feasibility of using stationary source arrays for IGCT in order to achieve better temporal resolution. We anticipate that multiple source arrays are necessary, with each source array physically separated from adjacent ones. Key feasibility issues include spatial resolution, artifacts, flux, noise, collimation, and system timing clashes. The separation between the different source arrays leads to missing views, complicating reconstruction. For the special case of three source arrays, a two-stage reconstruction algorithm is used to estimate the missing views. Collimation is achieved using a rotating collimator with a small number of holes. A set of equally spaced source spots are designated on the source arrays, and a source spot is energized when a collimator hole is aligned with it. System timing clashes occur when multiple source spots are scheduled to be energized simultaneously. We examine flux considerations to evaluate whether sufficient flux is available for clinical applications. The two-stage reconstruction algorithm suppresses cone-beam artifacts while maintaining resolution and noise characteristics comparable to standard third generation systems. The residual artifacts are much smaller in magnitude than the cone-beam artifacts eliminated. A mathematical condition is given relating collimator hole locations and the number of virtual source spots for which system timing clashes are avoided. With optimization, sufficient flux may be achieved for many clinical applications. IGCT with stationary
A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system
International Nuclear Information System (INIS)
Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.
2005-01-01
An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system
Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.
2017-08-01
Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.
Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P
2016-09-30
A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.
Mercury in Hair Is Inversely Related to Disease Associated Damage in Systemic Lupus Erythematosus
Directory of Open Access Journals (Sweden)
William Crowe
2015-12-01
Full Text Available Systemic lupus erythematosus (SLE is an autoimmune inflammatory disease, and environmental factors are proposed to exacerbate existing symptoms. One such environmental factor is mercury. The aim of this study was to investigate the relationship between exposure to mercury (Hg and disease activity and disease associated damage in Total Hg concentrations in hair and urine were measured in 52 SLE patients. Dental amalgams were quantified. Disease activity was assessed using three indexes including the British Isles Lupus Assessment Group Index (BILAG. Disease associated damage was measured using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology SLICC/ACR Damage Index. Pearson’s correlation identified a significant negative correlation between hair Hg and BILAG (r = −0.323, p = 0.029 and SLICC/ACR (r = −0.377, p = 0.038. Multiple regression analysis identified hair Hg as a significant predictor of disease associated damage as determined by SLICC/ACR (β = −0.366, 95% confidence interval (CI: −1.769, −0.155 p = 0.019. Urinary Hg was not related to disease activity or damage. Fish consumption is the primary route of MeHg exposure in humans and the inverse association of hair Hg with disease activity observed here might be explained by the anti-inflammatory effects of n-3 long chain polyunsaturated fatty acids also found in fish.
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement
Chen, Yinchao; Yang, Wei
2009-12-01
A dynamic inversion control method based on neural network compensation for UAV automatic landing is introduced. Aimed at the nonlinear characteristic of automatic landing procedure, the dynamic inversion method is used for feedback linearization. The on-line neural network is introduced to compensation dynamic inversion error caused by the disturbance factors during automatic landing and improves the controller performance. Numerical simulation presents that the control method can make the UAV follow the expected trace properly and have good dynamic performance and robust performance.
Carpentieri, B.; Bollhofer, M.
2012-01-01
Boundary element discretizations of exterior Maxwell problems lead to dense complex non-Hermitian systems of linear equations that are difficult to solve from a linear algebra point of view. We show that the recently developed class of inverse-based multilevel incomplete LU factorization has very
Functional avoidance of lung in plan optimization with an aperture-based inverse planning system
International Nuclear Information System (INIS)
St-Hilaire, Jason; Lavoie, Caroline; Dagnault, Anne; Beaulieu, Frederic; Morin, Francis; Beaulieu, Luc; Tremblay, Daniel
2011-01-01
Purpose: To implement SPECT-based optimization in an anatomy-based aperture inverse planning system for the functional avoidance of lung in thoracic irradiation. Material and methods: SPECT information has been introduced as a voxel-by-voxel modulation of lung importance factors proportionally to the local perfusion count. Fifteen cases of lung cancer have been retrospectively analyzed by generating angle-optimized non-coplanar plans, comparing a purely anatomical approach and our functional approach. Planning target volume coverage and lung sparing have been compared. Statistical significance was assessed by a Wilcoxon matched pairs test. Results: For similar target coverage, perfusion-weighted volume receiving 10 Gy was reduced by a median of 2.2% (p = 0.022) and mean perfusion-weighted lung dose, by a median of 0.9 Gy (p = 0.001). A separate analysis of patients with localized or non-uniform hypoperfusion could not show which would benefit more from SPECT-based treatment planning. Redirection of dose sometimes created overdosage regions in the target volume. Plans consisted of a similar number of segments and monitor units. Conclusions: Angle optimization and SPECT-based modulation of importance factors allowed for functional avoidance of the lung while preserving target coverage. The technique could be also applied to implement PET-based modulation inside the target volume, leading to a safer dose escalation.
Thakkar, Balmukund S; Svendsen, John-Sigurd M; Engh, Richard A
2017-09-14
Cis/trans isomerization of 2°-amide bonds is a key step in a wide range of important processes. Here we present a theoretical assessment of cis/trans isomerization of 2°-amide bonds using B3LYP density functional methods, describing two reaction paths and corresponding geometry changes during isomerization of N-methylacetamide (NMA) and glycylglycine methyl ester (GGMe). The isomerization begins via a common path, as the extended π-bonding of the amide bond maintains approximate planarity of the O-C-N-H dihedral angle, with only gradually increasing pyramidalization of the nitrogen atom, until a bifurcation point is reached. Both subsequent paths comprise two phases, an "ω phase" (characterized by a major change in C-C-N-C dihedral) and a "θ phase" (characterized by major change in O-C-N-H dihedral), with two distinct transition states. The θ phase involves inversion of the pyramidal amide-nitrogen geometry. Both reaction paths converge at another bifurcation point near the opposite geometry. Studies on the larger GGMe show in addition that the multiple additional rotamers do not change the qualitative properties of the isomerization, but do affect the energies of the differing transition states. These detailed results provide significant new insights into cis/trans isomerization paths in 2°-amides, and serve as a basis for theoretical studies on larger peptidic systems.
Liu, Feng-Cheng; Huang, Wen-Yen; Lin, Te-Yu; Shen, Chih-Hao; Chou, Yu-Ching; Lin, Cheng-Li; Lin, Kuen-Tze; Kao, Chia-Hung
2015-11-01
The effects of the inflammatory mediators involved in systemic lupus erythematous (SLE) on subsequent Parkinson disease have been reported, but no relevant studies have focused on the association between the 2 diseases. This nationwide population-based study evaluated the risk of Parkinson disease in patients with SLE.We identified 12,817 patients in the Taiwan National Health Insurance database diagnosed with SLE between 2000 and 2010 and compared the incidence rate of Parkinson disease among these patients with that among 51,268 randomly selected age and sex-matched non-SLE patients. A Cox multivariable proportional-hazards model was used to evaluate the risk factors of Parkinson disease in the SLE cohort.We observed an inverse association between a diagnosis of SLE and the risk of subsequent Parkinson disease, with the crude hazard ratio (HR) being 0.60 (95% confidence interval 0.45-0.79) and adjusted HR being 0.68 (95% confidence interval 0.51-0.90). The cumulative incidence of Parkinson disease was 0.83% lower in the SLE cohort than in the non-SLE cohort. The adjusted HR of Parkinson disease decreased as the follow-up duration increased and was decreased among older lupus patients with comorbidity.We determined that patients with SLE had a decreased risk of subsequent Parkinson disease. Further research is required to elucidate the underlying mechanism.
Acoustic interactions between inversion symmetric and asymmetric two-level systems
International Nuclear Information System (INIS)
Churkin, A; Schechter, M; Barash, D
2014-01-01
Amorphous solids, as well as many disordered lattices, display remarkable universality in their low temperature acoustic properties. This universality is attributed to the attenuation of phonons by tunneling two-level systems (TLSs), facilitated by the interaction of the TLSs with the phonon field. TLS-phonon interaction also mediates effective TLS–TLS interactions, which dictates the existence of a glassy phase and its low energy properties. Here we consider KBr:CN, the archetypal disordered lattice showing universality. We calculate numerically, using conjugate gradients method, the effective TLS–TLS interactions for inversion symmetric (CN flips) and asymmetric (CN rotations) TLSs, in the absence and presence of disorder, in two and three dimensions. The observed dependence of the magnitude and spatial power law of the interaction on TLS symmetry, and its change with disorder, characterizes TLS–TLS interactions in disordered lattices in both extreme and moderate dilutions. Our results are in good agreement with the two-TLS model, recently introduced to explain long-standing questions regarding the quantitative universality of phonon attenuation and the energy scale of ≈1–3 K below which universality is observed. (paper)
Optical waveguides with memory effect using photochromic material for neural network
Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin
2018-04-01
An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.
Shallcross, R Clayton; Körner, Peter O; Maibach, Eduard; Köhnen, Anne; Meerholz, Klaus
2013-09-14
A continuum of intermediate states (current levels) is demonstrated for an organic diode utilizing a photochromic (dithienylethene) switching layer. Specific intermediate states can be attained by controlling the fraction of closed isomer (X) in the transduction layer, affording a novel methodology for multilevel storage applications. The analog response of the device is discussed in terms of the concentration and morphology of closed dithienylethene isomer, which can be accessed via optical and electrical switching reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data
Downie, John D.
1998-01-01
If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.
Developing an Earth system Inverse model for the Earth's energy and water budgets.
Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.
2017-12-01
The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing
Simier, M.; Blanc, L.; Aliaume, C.; Diouf, P. S.; Albaret, J. J.
2004-01-01
As a consequence of the Sahelian drought, the Sine Saloum, a large estuarine system located in Senegal (West Africa), has become an "inverse estuary" since the late sixties, i.e. salinity increases upstream and reaches 100 in some places. To study the fish assemblages of such a modified system, a survey was conducted in 1992, collecting fish every two months with a purse seine at eight sites spread over the three main branches of the estuary. A total of 73 species belonging to 35 families were identified. Eight species comprised 97% of the total numbers of fish. The predominant species was a small clupeid, Sardinella maderensis, representing more than half of the total biomass and nearly 70% of the total number of fish. The spatio-temporal structure of the fish assemblages was studied using the STATIS-CoA method, which combines the multitable approach with the correspondence analysis method. Whatever the season, a strong spatial organization of fish assemblages was observed, mainly related to depth and salinity. Three types of assemblages were identified. In shallow water areas, fish assemblages were dominated by Mugilidae, Gerreidae and Cichlidae and were stable with time. In open water areas, large fluctuations in the species composition were observed, due to the occasional presence of large schools of pelagic species: in the southern area, where salinity and water transparency were the lowest, the main species were Ilisha africana, Brachydeuterus auritus and Chloroscombrus chrysurus, associated with a few Sciaenidae and Tetraodontidae, while the poorest areas were characterized by only two dominant species, S. maderensis and Scomberomorus tritor.
International Nuclear Information System (INIS)
Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.
2015-01-01
Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts
Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.
2014-01-01
It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261
Directory of Open Access Journals (Sweden)
Erhankana Ardiana Putra
2017-01-01
Full Text Available Pada sistem kelistrikan terutama pada sistem proteksi kelistrikan dewasa ini sangat dibutuhkan sistem yang handal, sehingga perkembangan pada sistem proteksi sudah semakin maju dengan adanya penggunaan rele digital. Rele digital digunakan dengan mempertimbangkan kecepatan, keakuratan dan serta flexible dalam sistem koordinasi. Flexibilitas ini dimaksudkan bahwa rele digital dapat digunakan menjadi rele arus lebih (overcurrent relay sesuai pembahasan tugas akhir ini dan dapat disetting menurut keinginan user sesuai karakteristik kurva OCR konvensional/standart (normal inverse, very inverse, long time inverse, extreme inverse yang akan digunakan dalam koordinasi. Jenis kurva pada rele digital juga dapat disetting diluar rumus kurva konvensional/standart yang seperti sudah disebutkan sebelumnya, kurva diluar rumusan standart disebut kurva rele non-standart. Kurva rele non-standart digunakan untuk memudahkan pengguna untuk menentukan waktu trip berdasarkan arus yang diinginkan dan sebagai solusi jika pada koordinasi proteksi mengalami kendala dalam koordinasi kurva rele. Pada tugas akhir ini akan dibahas bagaimana membuat atau memodelkan kurva karakteristik inverse overcurrent rele non-standart dengan menggunakan metode (Adaptive Neuro Fuzzy Inference System atau biasa disebut metode pembelajaran ANFIS. Kurva non-standart didapatkan dengan pengambilan titik-titik data baru berupa arus dan waktu trip sesuai keinginan user. Data baru tersebut akan digabungkan dengan data lama sehingga menghasilkan data non-standart yang nantinya akan dilakukan pembelajaran dengan metode ANFIS untuk mendapatkan desain kurva non-standart. Setelah didapatkan desain kurva non-standart akan dilakukan pengujian keakuratan dengan mengganti nilai MF (membership function didapatkan hasil rata-rata error terkecil 2,56% (MF=10 dan epoch=100. Pengujian selanjutnya dengan mengubah nilai epoch didapatkan nilai keakuratan dengan error terkecil pada epoch = 500. Simulasi pada
Kondo, A.; Yin, G.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M.
2015-07-01
Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells, photocatalysts, and display devices, thus nanoscale imaging of trapped electrons in these heterostructures provides important insight for developing efficient devices. In the present study, Kelvin probe force microscopy (KPFM) of CdS quantum dot (QD)-grafted Cs4W11O362- nanosheets was performed before and after visible-light irradiation. After visible-light excitation of the CdS QDs, the Cs4W11O362- nanosheet surface exhibited a decreased work function in the vicinity of the junction with CdS QDs, even though the Cs4W11O362- nanosheet did not absorb visible light. X-ray photoelectron spectroscopy revealed that W5+ species were formed in the nanosheet after visible-light irradiation. These results demonstrated that excited electrons in the CdS QDs were injected and trapped in the Cs4W11O362- nanosheet to form color centers. Further, the CdS QDs and Cs4W11O362- nanosheet composite films exhibited efficient remote photochromic coloration, which was attributed to the quantum nanostructure of the film. Notably, the responsive wavelength of the material is tunable by adjusting the size of QDs, and the decoloration rate is highly efficient, as the required length for trapped electrons to diffuse into the nanosheet surface is very short owing to its nanoscale thickness. The unique properties of this photochromic device make it suitable for display or memory applications. In addition, the methodology described in the present study for nanoscale imaging is expected to aid in the understanding of electron transport and trapping processes in metal oxide and metal chalcogenide heterostructure, which are crucial phenomena in QD-based solar cells and/or photocatalytic water-splitting systems.Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells
Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum
Zhang, Da-hai; Li, Wei; Zhao, Hai-tao; Bao, Jing-wei; Lin, Yong-gang
2014-04-01
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
International Nuclear Information System (INIS)
Namatame, Hirofumi; Taniguchi, Masaki
1994-01-01
Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)
Photochromic and ﬂuorescent LC gels based on a bent-shaped azobenzene-containing gelator
Czech Academy of Sciences Publication Activity Database
Bobrovsky, A.; Shibaev, I.; Hamplová, Věra; Novotná, Vladimíra; Kašpar, Miroslav
2015-01-01
Roč. 5, č. 70 (2015), 56891-56895 ISSN 2046-2069 R&D Projects: GA ČR GA13-14133S Institutional support: RVO:68378271 Keywords : liquid crystals * photochromic LC- gels Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015
Plokker, M.P.; Eijt, S.W.H.; Naziris, F.; Schut, H.; Nafezarefi, F.; Schreuders, H.; Cornelius, S.; Dam, B.
2018-01-01
In order to investigate the mechanism of the photochromic effect in yttrium oxy-hydride (YO_{x}H_{y}) thin films, Doppler broadening positron annihilation spectroscopy (PAS) was applied to probe the electronic structure and the presence of vacancies in YO_{x}H_{y}
Tsuruoka, Tohru; Hayakawa, Ryoma; Kobashi, Kazuyoshi; Higashiguchi, Kenji; Matsuda, Kenji; Wakayama, Yutaka
2016-12-14
Optical switching organic field-effect transistors (OFETs) provide a new direction for optoelectronics based on photochromic molecules. However, the patterning of OFETs is difficult because conventional fabrication processes, including lithography and ion etching, inevitably cause severe damage to organic molecules. Here, we demonstrate laser patterning of one-dimensional (1D) channels on an OFET with a photochromic diarylethene (DAE) layer. The main findings are (i) a number of 1D channels can be repeatedly written and erased in the DAE layer by scanning focused ultraviolet and visible light laser beams alternately between the source and drain electrodes, (ii) the conductivity (or resistivity) of the 1D channel can be controlled by the illumination conditions, such as the laser power density and the scan speed, and (iii) it is possible to draw an analogue adder circuit by optically writing 1D channels so that a portion of the channels overlaps and to perform optical summing operations by local laser illumination of the respective channels. These findings will open new possibilities for realizing various optically reconfigurable, low-dimensional organic transistor circuits, which are not possible with conventional thin film OFETs.
Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles
International Nuclear Information System (INIS)
Gayen, Pallab; Sinha, Chittaranjan
2012-01-01
Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans→cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of –O–H/–COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: ► Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. ► The process is sensitive to the environment of the photochrome and the solution. ► The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. ► The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. ► The activation energy is less than these values when carried out in fresh solution only.
Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles.
Pinto, Tânia V; Costa, Paula; Sousa, Céu M; Sousa, Carlos A D; Pereira, Clara; Silva, Carla J S M; Pereira, Manuel Fernando R; Coelho, Paulo J; Freire, Cristina
2016-10-26
Photochromic silica nanoparticles (SiO 2 @NPT), fabricated through the covalent immobilization of silylated naphthopyrans (NPTs) based on 2H-naphtho[1,2-b]pyran (S1, S2) and 3H-naphtho[2,1-b]pyran (S3, S4) or through the direct adsorption of the parent naphthopyrans (1, 3) onto silica nanoparticles (SiO 2 NPs), were successfully incorporated onto cotton fabrics by a screen-printing process. Two aqueous acrylic- (AC-) and polyurethane- (PU-) based inks were used as dispersing media. All textiles exhibited reversible photochromism under UV and solar irradiation, developing fast responses and intense coloration. The fabrics coated with SiO 2 @S1 and SiO 2 @S2 showed rapid color changes and high contrasts (ΔE* ab = 39-52), despite presenting slower bleaching kinetics (2-3 h to fade to the original color), whereas the textiles coated with SiO 2 @S3 and SiO 2 @S4 exhibited excellent engagement between coloration and decoloration rates (coloration and fading times of 1 and 2 min, respectively; ΔE* ab = 27-53). The PU-based fabrics showed excellent results during the washing fastness tests, whereas the AC-based textiles evidenced good results only when a protective transfer film was applied over the printed design.
Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers
Directory of Open Access Journals (Sweden)
Jian-Jun Liu
2018-02-01
Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.
Directory of Open Access Journals (Sweden)
A. Fortems-Cheiney
2012-08-01
Full Text Available For the first time, carbon monoxide (CO and formaldehyde (HCHO satellite retrievals are used together with methane (CH_{4} and methyl choloroform (CH_{3}CCl_{3} or MCF surface measurements in an advanced inversion system. The CO and HCHO are respectively from the MOPITT and OMI instruments. The multi-species and multi-satellite dataset inversion is done for the 2005–2010 period. The robustness of our results is evaluated by comparing our posterior-modeled concentrations with several sets of independent measurements of atmospheric mixing ratios. The inversion leads to significant changes from the prior to the posterior, in terms of magnitude and seasonality of the CO and CH_{4} surface fluxes and of the HCHO production by non-methane volatile organic compounds (NMVOC. The latter is significantly decreased, indicating an overestimation of the biogenic NMVOC emissions, such as isoprene, in the GEIA inventory. CO and CH_{4} surface emissions are increased by the inversion, from 1037 to 1394 TgCO and from 489 to 529 TgCH_{4} on average for the 2005–2010 period. CH_{4} emissions present significant interannual variability and a joint CO-CH_{4} fluxes analysis reveals that tropical biomass burning probably played a role in the recent increase of atmospheric methane.
Kou, Xingxia; Tian, Xiangjun; Zhang, Meigen; Peng, Zhen; Zhang, Xiaoling
2017-10-01
A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a
Well-posedness of inverse problems for systems with time dependent parameters
DEFF Research Database (Denmark)
Banks, H. T.; Pedersen, Michael
2009-01-01
on the data of the problem. We also consider well-posedness as well as finite element type approximations in associated inverse problems. The problem above is a weak formulation that includes models in abstract differential operator form that include plate, beam and shell equations with several important...
Jadoon, Khan Zaib
2015-05-12
Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract – ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.
Directory of Open Access Journals (Sweden)
Lei Zhang
2015-01-01
Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.
A mechanism for the downturn in inverse susceptibility in triangle-based frustrated spin systems
International Nuclear Information System (INIS)
Isoda, M
2008-01-01
A mechanism for the downturn of inverse magnetic susceptibility below an intermediate temperature, recently observed in many experiments, is proposed as an intrinsic feature of lattices with triangle-based frustrated geometries. The temperature at the bending of the inverse susceptibility curve may be related to the features of other thermodynamic properties; the hump of the specific heat and the emergence of a 1/3 plateau in magnetization under a magnetic field. This fact is derived through a Monte Carlo simulation study of the Ising model on triangular and kagome lattices, and the exact calculation for the single and small-sized triangle clusters, on both the Ising and Heisenberg models. These results may indicate the dominance of S(S z ) = 1/2 quantum (classical) trimer formation in the intermediate-energy regime in two-dimensional triangle-based lattices
International Nuclear Information System (INIS)
Chudnovsky, David; Chudnovsky, G.V.
1978-01-01
The relations between many particle problem with inverse square potential on the line and meromorphic eigenfunctions of Schroedinger operator are presented. This gives new type of Backlund transformations for many particle problem [fr
Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Matosiuk, Dariusz; Dzido, Tadeusz H
2016-04-01
Our previous results show, that C18 silica-based adsorbents used in high-performance thin-layer chromatography (HPTLC), provide complex retention mechanism basing on various polar and nonpolar interactions. Here we present, that in chromatography of peptides, due to mixed-mode properties of these adsorbents, there is a simple way to obtain inversion of separation system type (from reversed-phase, RP, to normal-phase, NP, and vice versa). The results presented provide detailed information how to obtain inversion mentioned and reflect the extent (the type and concentration of organic solvent, the type and concentration of ion-pairing reagent in the mobile phase) of this phenomenon. We show, that the system type inversion results in significant change of selectivity of separation, which may be especially useful in 2D separation of complex samples of basic/amphoteric compounds such as peptides. This results from the fact, that C18 silica-based HPTLC adsorbents, may be used in hydrophilic interaction chromatography (HILIC) or RP chromatography, in dependence on mobile phase composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations
DEFF Research Database (Denmark)
Broman, Søren Lindbæk
This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light......-coupling reactions, systems with either one or two “molecular alligator clips” were prepared. These were studied in solution by UV-Vis absorption spectroscopy and in a single-molecule junction, the latter by the group of Danilov and Kubatkin at the Chalmers University of Technology. A single-molecule device......-reaction (VHF → DHA), studied by UV-Vis absorption spectroscopy. In seven different model systems, the rate of back-reaction was found to obey a Hammett correlation when plotting ln(k) against the appropriate σ-values. These plots were used to estimate the σ-value of substituents which have not yet been...
Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations
DEFF Research Database (Denmark)
Broman, Søren Lindbæk
This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light...... will be discussed in detail. The second chapter describes the design and synthesis of DHA/VHFs intended for use in molecular electronics and their solution and single-molecule junction switching properties. By the expansion of the recently reported procedure for functionalization of this system by Suzuki cross...
International Nuclear Information System (INIS)
Honarvar, M; Rohling, R; Lobo, J; Mohareri, O; Salcudean, S E
2015-01-01
To produce images of tissue elasticity, the vibro-elastography technique involves applying a steady-state multi-frequency vibration to tissue, estimating displacements from ultrasound echo data, and using the estimated displacements in an inverse elasticity problem with the shear modulus spatial distribution as the unknown. In order to fully solve the inverse problem, all three displacement components are required. However, using ultrasound, the axial component of the displacement is measured much more accurately than the other directions. Therefore, simplifying assumptions must be used in this case. Usually, the equations of motion are transformed into a Helmholtz equation by assuming tissue incompressibility and local homogeneity. The local homogeneity assumption causes significant imaging artifacts in areas of varying elasticity. In this paper, we remove the local homogeneity assumption. In particular we introduce a new finite element based direct inversion technique in which only the coupling terms in the equation of motion are ignored, so it can be used with only one component of the displacement. Both Cartesian and cylindrical coordinate systems are considered. The use of multi-frequency excitation also allows us to obtain multiple measurements and reduce artifacts in areas where the displacement of one frequency is close to zero. The proposed method was tested in simulations and experiments against a conventional approach in which the local homogeneity is used. The results show significant improvements in elasticity imaging with the new method compared to previous methods that assumes local homogeneity. For example in simulations, the contrast to noise ratio (CNR) for the region with spherical inclusion increases from an average value of 1.5–17 after using the proposed method instead of the local inversion with homogeneity assumption, and similarly in the prostate phantom experiment, the CNR improved from an average value of 1.6 to about 20. (paper)
Radiation-induced coloration of photochromic dithienylethene derivatives in polymer matrices
International Nuclear Information System (INIS)
Irie, Setsuko; Irie, Masahiro
2000-01-01
The high-energy radiation-induced coloration of photochromic dithienylethenes was studied in various polymer matrices with the aim of developing a reusable color plastic dosimeter. Upon γ-irradiation, polystyrene films containing 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene 1a and 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene 2a turned red and blue, respectively. The red and blue colors disappeared upon irradiation with visible light, and the films could be reused. In both films the absorption intensities of the colors increased linearly with the absorbed dose. Although radiation-induced coloration was clearly detected in polystyrene films, a color change was scarcely observed in poly(methyl methacrylate) (PMMA) and poly(N-vinyl carbazole) containing 1a and 2a. Excitation energy transfer from polymers to dithienylethenes is considered to play a role in the coloration process in polymer films. (author)
Large persistent photochromic effect due to DX centers in AlSb doped with selenium
International Nuclear Information System (INIS)
Becla, P.; Witt, A.G.
1995-04-01
A large photochromic effect has been observed in bulk AlSb crystals doped with Se. Illumination with light of energy higher than 1 eV leads to an increase of the absorption coefficient in the spectral range 0.1 to 1.6 eV. The enhanced absorption is persistent at temperatures below about K. The effect is a manifestation of a DX-like bistability of Se donors. The illumination transfers the from the DX center to a metastable hydrogenic level. The increased absorption with peaks around 0.2 eV and 0.5 is due to photoionization from the donor level to X l and X 3 minima of the conduction band
International Nuclear Information System (INIS)
Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian
2015-01-01
In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading
Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.
Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M
2016-08-01
Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Jhen-Yan Gao
2017-09-01
Full Text Available Ring-opening polymerization (ROP of cyclic peptide monomer of γ-propargyl-l-glutamate N-carboxyanhydride (PLG–NCA was originally initiated by non-emissive, ring-close rhodamine 6G hydrazide (R-C. However, instantaneously after adding PLG–NCA to R-C, the spirolactam ring of R-C was opened by PLG–NCA, rendering emissive, ring-open R-O to initiate ROP of PLG–NCA. The emissive R-O moiety therefore produced fluorescent R–PLG with aggregation-induced emission (AIE properties. Moreover, R–PLG was found to exhibit photochromic properties with good fatigue resistance and long lifetime when forming metal complexes with Sn(II and Fe(III. In the dark, irradiated metal complexes slowly (~50 min restored to the initial state. This research provides foundation for the development of new photochromic materials with long lifetime.
DEFF Research Database (Denmark)
Rolle, Massimo; Jin, Biao
2017-01-01
Diffusive isotope fractionation of organic contaminants in aqueous solution is difficult to quantify, and only a few experimental data sets are available for compounds of environmental interest. In this study, we investigate diffusive fractionation of perdeuterated and nondeuterated benzene...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...... fractionation (DC6D6/DC6H6 = 1.02), with a remarkably faster diffusion rate of the perdeuterated isotopologue that was enriched in the downgradient portion of the diffusion tubes and at the fringes of the contaminant plumes in the flow-through setup. These outcomes can neither be interpreted as mass...
Directory of Open Access Journals (Sweden)
Michael S Akhras
2007-09-01
Full Text Available We combined components of a previous assay referred to as Molecular Inversion Probe (MIP with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer, was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i a conserved sequence primer system for genotyping Human Papillomavirus (HPV, a cancer-associated viral agent and ii screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i.e. "multiplex multiplexing padlocks" (MMPs. For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs.
Czech Academy of Sciences Publication Activity Database
Bobrovsky, A.; Shibaev, V.; Piryazev, A.; Anokhin, D.V.; Ivanov, D.A.; Sinitsyna, O.; Hamplová, Věra; Kašpar, Miroslav; Bubnov, Alexej M.
2017-01-01
Roč. 218, č. 16 (2017), s. 1-10, č. článku 1700127. ISSN 1022-1352 R&D Projects: GA ČR GA16-12150S; GA MŠk(CZ) LH15305 Institutional support: RVO:68378271 Keywords : photoorientation phenomena * azobenzene * photo-optical properties * liquid crystal * photochromic materials Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.500, year: 2016
Directory of Open Access Journals (Sweden)
Kohei Fujita
2017-08-01
Full Text Available A system identification (SI problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode method by using the lowest mode of horizontal displacements and floor rotation angles, the lowest mode of the objective building is identified first by using the subspace method. Identification of the lowest mode is performed by using the amplitude of transfer functions derived in the subspace method. Considering the resolution in measuring the floor rotation angles in lower stories, floor rotation angles in most stories are predicted from the floor rotation angle at the top floor. An empirical equation of floor rotation angles is proposed by investigating those for various building models. From the viewpoint of application of the present SI method to practical situations, a non-simultaneous measurement system is also proposed. In order to investigate the reliability and accuracy of the proposed SI method, a 10-story building frame subjected to micro-tremor is examined.
Scheme Choice and Inverse Kinematics of a Positioning System Based on a Planar Parallel Mechanism
Directory of Open Access Journals (Sweden)
P. A. Laryushkin
2017-01-01
Full Text Available Recent development of the parallel mechanisms theory has resulted in an increase of the actual machines, which are built using the conceptual schemes of such mechanisms. The advantages of parallel kinematics over conventional open-chain design, such as increased stiffness or lower inertia of moving parts, allow, in theory, higher performance rates in pick-and-place or machining applications. However, the practical usage of parallel mechanisms may be problematic due to their drawbacks, such as restricted workspace area and presence of singularities.The paper discusses a modification of the milling machine “Tetra” developed in “Modular Mechanics”, ltd. (BMSTU, which consists of two identical modules based on planar parallel kinematics mechanism. The loss of module stiffness in certain positions of the end-effector was noticed after experiments on the prototype, thus indicating the presence of singularities. Since this problem is a manifestation of fundamental properties of the chosen kinematic scheme, it was decided to change it.A scheme with three linear rails and three drives, as well as a scheme with a single rail and with four drives were considered as alternative options. The first option was discarded because it requires manufacturing a massive base plate. The second option was selected for future development. In this case, as compared to the previously known design, a configuration of the intermediate links was changed. The use of “lambda”-shaped elements makes it possible to distance the drive supports from the end-effector.For a chosen scheme an inverse kinematics problem was solved. Using constraints associated with the placement of all four drive supports on a single rail and stiffness requirements as well, a one single solution was selected among sixteen possible solutions.The further investigation will include a workspace and singularity analysis and an optimization of geometric parameters of the mechanism.
Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D
2016-05-01
An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Guohai Liu
2016-01-01
Full Text Available Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM control method, which is based on neural network generalized inverse (NNGI. This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.
Arc Boudinage, Basin Inversion and Obduction in an Evolving Subduction System of East Antarctica
Ferraccioli, F.; Balbi, P.; Armadillo, E.; Crispini, L.; Capponi, G.
2014-12-01
The paleo-Pacific margin of Gondwana experienced protracted subduction and accretionary tectonics starting in late Neoproterozic-early Cambrian times. Northern Victoria Land (NVL), in East Antarctica, preserves a cryptic record of these active margin processes. Most models indicate that NVL contains three main terranes, namely the Robertson Bay, Bowers and Wilson terranes. Significant debate centres, however, on whether these are far travelled terranes with respect to the East Antarctic Craton, and on the tectonic and magmatic processes that affected its active margin and were ultimately responsible for the formation of the Ross Orogen. Here we interpret new aeromagnetic, aerogravity and land-gravity compilations that enable us to trace the extent of major subglacial faults in the basement of NVL, examine crustal architecture, and propose a new evolutionary model for the active margin of the craton. Prominent aeromagnetic anomalies at the edge of the Wilkes Subglacial Basin delineate the extent of an early-stage magmatic arc (ca 530 Ma?). This arc may have accreted as an exotic element onto the former Neoproterozoic rifted margin of East Antarctica or (perhaps more likely) developed in situ upon a pre-existing suture. Remnants of magnetic arc basement are also identified ca 150 km further to the east within the Wilson Terrane (WT). We propose that these were originally adjacent arc segments and that transtension triggered significant arc boudinage separating these segments. Transtension may have created accommodation space for the development of thick Cambrian sedimentary basins, which are marked by regional magnetic lows with an en-echelon geometry. Basin inversion likely occurred in a later traspressional stage of the Ross-Delamerian Orogen (ca. 490-460 Ma) that triggered the development of a major pop-up structure within the WT. Several buried thrusts of the pop-up can be traced in the aeromagnetic images and a prominent residual gravity high delineates its high
Energy Technology Data Exchange (ETDEWEB)
Simandl, R.F.; Robinson, D.N.; Bolinger, W.L.; Davis, W.E.
1991-11-01
Phase inversion from durene/naphthalene, durene/tmpdo, and durene/hexadecanol binary solvent/nonsolvent systems produced well interconnected, radiographically homogeneous, open-celled poly (4- methyl-1-pentene) or pmp foams. These foams ranged in density from 5 to 50 mg/cm{sup 2}. Foam homogeneity and casting efficiency were dependent on casting scheme, durene quality, solvent-to-nonsolvent ratio, and quench temperature. Foam density tracked linearly with dissolved-polymer content. Homogeneous, ultralow-density (5 to 6 mg/cm{sup 3}) foams were produced by using a 49/51 durene/naphthalene solvent eutectic. Foam hardness or firmness tracked somewhat linearly with foam density. Foams with densities above 20 mg/cm{sup 3} were too fragile to handle without damage.
Inverse problems for Jacobi operators: I. Interior mass–spring perturbations in finite systems
International Nuclear Information System (INIS)
Del Rio, Rafael; Kudryavtsev, Mikhail
2012-01-01
We consider a linear finite spring–mass system which is perturbed by modifying one mass and adding one spring. We study when masses and springs can be recovered from the natural frequencies of the original and the perturbed systems. This is a problem about rank 2 or rank 3 perturbations of finite Jacobi matrices where we are able to describe quite explicitly the associated Green’s functions. We give necessary and sufficient conditions for two given sets of points to be eigenvalues of the original and modified systems, respectively. (paper)
International Nuclear Information System (INIS)
Gao, Li-ping; Wei, Jian; Wang, Yue-chuan; Ding, Guo-jing; Yang, Yu-lin
2012-01-01
New optical writing and electrical erasing devices have been successfully fabricated that exploit the photochromism and electrochromism of viologen. In a preliminary study, both the structures of viologen and device were investigated in detail by UV–vis spectra in order to confirm their effects on the optical writing and electrical erasing performances of corresponding devices. For sandwiched, single and complementary devices based on benzyl viologen (BV 2+ ), only optical writing can be performed, not electrical erasing operations, which indicated these devices cannot realize optical information rewriting. For single and complementary devices based on styrene-functional viologen (V BV 2+ ) and acrylic-functional viologen (ACV 2+ ), optical writing and electrical erasing operations can be reversibly performed and optical information rewriting realized. It is clear that single devices based on V BV 2+ and ACV 2+ possess better performance accompanied with contrast without significant degradation and bleaching times and without significant deterioration over 10 repeated writing/erasing cycles. Furthermore, we put forward possible mechanisms for sandwiched, single and complementary devices based on V BV 2+ and ACV 2+ for the optical writing and electrical erasing operations. This study provides a new strategy to design optical writing and electrical erasing devices to realize optical information rewriting. (paper)
Polyoxomolybdates functionalized by a flexible carboxylic acid and their photochromic properties
Wang, Jin; Ma, Pengtao; Wang, Yaping; Zhang, Dongdi; Niu, Jingyang; Wang, Jingping
2017-11-01
Two inorganic-organic hybridized polyoxomolybdates, Cs8NaH [(SeMo6O21)C6H3O3(CH2CO2)3]2·10H2O (1) and Cs8H4 [(AsMo6O21)C6H3O3(CH2CO2)3]2·10H2O (2), functionalized by a flexible tri-podal multicarboxylic ligand 1,3,5-tris (carboxymethoxy)benzene (TCMB) have been synthesized and characterized. Single-crystal X-ray diffraction analysis reveals that each of the two hybrids consists of two {XMo6} (X = Se, As) units supported by two TCMB molecules. The photochromism and thermochromism behaviors of the two compounds have been explored. The color of compound 2 could change dramatically from white to black within just 1 min of irradiation by a Xe lamp. During thermochromic experiments the two compounds change their color at 423 K for 1 and 393 K for 2, respectively.
Directory of Open Access Journals (Sweden)
Mirai Tanaka
2017-01-01
Full Text Available The convolution of a series of events is often observed for a variety of phenomena such as the oscillation of a string. A photochemical reaction of a molecule is characterized by a time constant, but materials in the real world contain several molecules with different time constants. Therefore, the kinetics of photochemical reactions of the materials are usually observed with a complexity comparable with those of theoretical kinetic equations. Analysis of the components of the kinetics is quite important for the development of advanced materials. However, with a limited number of exceptions, deconvolution of the observed kinetics has not yet been mathematically solved. In this study, we propose a mathematical optimization approach for estimating the quantum yield distribution of a photochromic reaction in a polymer. In the proposed approach, time-series data of absorbances are acquired and an estimate of the quantum yield distribution is obtained. To estimate the distribution, we solve a mathematical optimization problem to minimize the difference between the input data and a model. This optimization problem involves a differential equation constrained on a functional space as the variable lies in the space of probability distribution functions and the constraints arise from reaction rate equations. This problem can be reformulated as a convex quadratic optimization problem and can be efficiently solved by discretization. Numerical results are also reported here, and they verify the effectiveness of our approach.
Solid state photochromism and thermochromism of two related N-salicylidene anilines
Energy Technology Data Exchange (ETDEWEB)
Avadanei, Mihaela; Cozan, Vasile; Shova, Sergiu [“P.Poni” Institute of Macromolecular Chemistry, Iasi (Romania); Paixão, José António [Faculty of Sciences and Technology, Department of Physics, University of Coimbra (Portugal)
2014-11-24
Highlights: • Solid state photo- and thermochromism of two related N-salicylidene anilines are reported. • The optical properties were investigated in relation with the crystalline structure. • Only thermochromism is common for both compounds. • An explanation for the different photobehavior is proposed. - Abstract: The crystalline structure and optical properties of N-salicylidene-p-cyanoaniline and N-salicylidene-p-carboxyaniline were investigated in solid state (microcrystalline powder), with the purpose to connect the effects of substitution and crystal packing with their optical properties. Diffuse reflectance and fluorescence spectroscopy were used to study the absorption and emission properties upon photoirradiation and cooling down to the liquid nitrogen temperature. The Stokes-shifted fluorescence, with a quantum yield of about 10{sup −2}–10{sup −1}, is given by the tautomeric cis-keto species formed as a result of the excited state intramolecular proton transfer from the initial enol structure. Despite their similar geometrical parameters, only SA-COOH is photochromic, which is in contradiction with literature. On the other side, the thermochromism is especially strong at SA-CN. The study shows the behavior of SA-CN similar to that of a classical anil, while SA-COOH presents interesting features that contradict the presumed behavior based only on its supramolecular structure.
Directory of Open Access Journals (Sweden)
Gaohong Zhai
2014-01-01
Full Text Available A realistic semiclassical dynamics simulation study is reported for the photoinduced ring-opening reaction of spiropyran. The main simulation results show that one pathway involves hydrogen out-of-plane (HOOP torsion of phenyl ring nearby N atom in 254 fs on the excited state and the isomerization from cis- to trans-SP that is complete in about 10 ps on the ground state after the electron transition πσ*; the other dominate pathway corresponds to the ring-opening reaction of trans-SP to form the most stable merocyanine (MC product. Unlike the previous theoretical finding, one C−C bond cleavage on the real molecule rather than the C−N dissociation of the model one is more probable than the ring-opening reaction after the photoexcitation of SP. The simulation findings provide more important complementarity for interpreting experimental observations, confirming the previously theoretical studies of photochromic ring-opening process and even supplying other possible reaction mechanisms.
Xia, Ping; Lee, Nancy; Liu, Yu-Ming; Poon, Ian; Weinberg, Vivian; Shin, Edward; Quivey, Jeanne M; Verhey, Lynn J
2004-07-01
The purpose of this study was to develop and test planning dose constraint templates for tumor and normal structures in the treatment of nasopharyngeal carcinoma (NPC) using a specific commercial inverse treatment planning system. Planning dose constraint templates were developed based on the analyses of dose-volume histograms (DVHs) of tumor targets and adjacent sensitive structures by clinically approved treatment plans of 9 T1-2 and 16 T3-4 NPC patients treated with inverse planned intensity-modulated radiation therapy (IP-IMRT). DVHs of sensitive structures were analyzed by examining multiple defined endpoints, based on the characteristics of each sensitive structure. For each subgroup of patients with T1-2 and T3-4 NPC, the resulting mean values of these defined endpoint doses were considered as templates for planning dose constraints and subsequently applied to a second group of patients, 5 with T1-2 NPC and 5 with T3-4 NPC. The 10 regenerated plans (called new plans) were compared to the original clinical plans that were used to treat the second group of patients, based on plan conformity index and DVHs. The conformity indices of the new plans were comparable to the original plans with no statistical difference (p = 0.85). Among the serial sensitive structures evaluated, there was a significant decrease with the new plans in the dose to the spinal cord when analyzed by the maximum dose (p = 0.001), doses encompassing 1 cc of the spinal cord volume (p = 0.001) and 3 cc of the spinal cord volume (p = 0.001). There was no significant difference in the mean maximum dose to the brainstem between the new plans and the original plans (p = 0.36). However, a significant difference in the mean maximum dose to the brainstem was seen among the different T-stages (p = 0.04). A decrease with the new plan to the brainstem in the doses encompassing 5% and 10% of the volume was of borderline statistical significance (p = 0.08 and p = 0.06, respectively). There were no
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
An automatic formulation of inverse free second moment method for algebraic systems
International Nuclear Information System (INIS)
Shakshuki, Elhadi; Ponnambalam, Kumaraswamy
2002-01-01
In systems with probabilistic uncertainties, an estimation of reliability requires at least the first two moments. In this paper, we focus on probabilistic analysis of linear systems. The important tasks in this analysis are the formulation and the automation of the moment equations. The main objective of the formulation is to provide at least means and variances of the output variables with at least a second-order accuracy. The objective of the automation is to reduce the storage and computational complexities required for implementing (automating) those formulations. This paper extends the recent work done to calculate the first two moments of a set of random algebraic linear equations by developing a stamping procedure to facilitate its automation. The new method has an additional advantage of being able to solve problems when the mean matrix of a system is singular. Lastly, from storage and computational complexities and accuracy point of view, a comparison between the new method and another recently developed first order second moment method is made with numerical examples
Directory of Open Access Journals (Sweden)
Eduardo Piña-Martínez
2015-01-01
Full Text Available Current trends in Robotics aim to close the gap that separates technology and humans, bringing novel robotic devices in order to improve human performance. Although robotic exoskeletons represent a breakthrough in mobility enhancement, there are design challenges related to the forces exerted to the users’ joints that result in severe injuries. This occurs due to the fact that most of the current developments consider the joints as noninvariant rotational axes. This paper proposes the use of commercial vision systems in order to perform biomimetic joint design for robotic exoskeletons. This work proposes a kinematic model based on irregular shaped cams as the joint mechanism that emulates the bone-to-bone joints in the human body. The paper follows a geometric approach for determining the location of the instantaneous center of rotation in order to design the cam contours. Furthermore, the use of a commercial vision system is proposed as the main measurement tool due to its noninvasive feature and for allowing subjects under measurement to move freely. The application of this method resulted in relevant information about the displacements of the instantaneous center of rotation at the human knee joint.
DEFF Research Database (Denmark)
Pietrzak, Mariusz; Dobkowski, Jacek; Gorski, Alexandr
2014-01-01
of the back reaction. These observations, along with the data obtained using electronic and vibrational spectroscopies for rare gas matrix-isolated samples, glasses, polymers, and solutions, as well as the results of quantum-chemical calculations, provide insight into the stepwise mechanism...... depends on the excitation wavelength. Analysis of the mechanisms of the photochromic processes indicates a state-specific precursor: chelated thione–enol form in the excited S2(ππ*) electronic state. The results show the potential of using laser photolysis coupled with NMR detection for the identification...
Energy Technology Data Exchange (ETDEWEB)
Seki, Kazuhiko; Tachiya, M [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)
2005-12-14
Recently, photo-driven directional motion of glycerol droplets on the surface of a liquid crystal doped with photochromic azobenzene derivatives has been reported. We present a theoretical model for this phenomenon. The motion of droplets is induced by a gradient in surface tension, which is produced by the combined effect of photo-isomerization and diffusion of surface azobenzenes. The theoretical relation between the surface tension and the surface concentration of cis isomers is proposed. The experimentally observed depletion zone of droplets can be reasonably well explained in terms of diffusion of droplets in the presence of the gradient in the surface tension.
Inverse Spectral Results for AKNS Systems with Partial Information on the Potentials
International Nuclear Information System (INIS)
Rio, R. del; Grebert, B.
2001-01-01
For the AKNS operator on L 2 ([0,1],C 2 ) it is well known that the data of two spectra uniquely determine the corresponding potential φ a.e. on [0,1] (Borg's type Theorem). We prove that, in the case where φ is a-priori known on [a,1], then only a part (depending on a) of two spectra determine φ on [0,1]. Our results include generalizations for Dirac systems of classical results obtained by Hochstadt and Lieberman for the Sturm-Liouville case, where they showed that half of the potential and one spectrum determine all the potential functions. An important ingredient in our strategy is the link between the rate of growth of an entire function and the distribution of its zeros
Multiphotochromic molecular systems
Fihey, Arnaud; Perrier, Aurélie; Browne, Wesley R; Jacquemin, Denis
2015-01-01
Molecular systems encompassing more than one photochromic entity can be used to build highly functional materials, thanks to their potential multi-addressability and/or multi-response properties. Over the last decade, the synthesis and spectroscopic and kinetic characterisation as well as the
Directory of Open Access Journals (Sweden)
Esra Saatci
2010-01-01
Full Text Available We propose a procedure to estimate the model parameters of presented nonlinear Resistance-Capacitance (RC and the widely used linear Resistance-Inductance-Capacitance (RIC models of the respiratory system by Maximum Likelihood Estimator (MLE. The measurement noise is assumed to be Generalized Gaussian Distributed (GGD, and the variance and the shape factor of the measurement noise are estimated by MLE and Kurtosis method, respectively. The performance of the MLE algorithm is also demonstrated by the Cramer-Rao Lower Bound (CRLB with artificially produced respiratory signals. Airway flow, mask pressure, and lung volume are measured from patients with Chronic Obstructive Pulmonary Disease (COPD under the noninvasive ventilation and from healthy subjects. Simulations show that respiratory signals from healthy subjects are better represented by the RIC model compared to the nonlinear RC model. On the other hand, the Patient group respiratory signals are fitted to the nonlinear RC model with lower measurement noise variance, better converged measurement noise shape factor, and model parameter tracks. Also, it is observed that for the Patient group the shape factor of the measurement noise converges to values between 1 and 2 whereas for the Control group shape factor values are estimated in the super-Gaussian area.
Energy Technology Data Exchange (ETDEWEB)
Hatt, Charles R. [Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Funk, Tobias [Triple Ring Technologies, Inc., Newark, California 94560 (United States); Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Speidel, Michael A., E-mail: speidel@wisc.edu [Departments of Medical Physics and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)
2015-12-15
Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on
Obata, Yukiko; Yukawa, Ryu; Horiba, Koji; Kumigashira, Hiroshi; Toda, Yoshitake; Matsuishi, Satoru; Hosono, Hideo
2017-10-01
We investigate the band structure of the inverse perovskite Ca3PbO , a candidate three-dimensional (3D) Dirac fermion material, through soft x-ray angle-resolved photoemission spectroscopy. Conelike band dispersions are observed for Ca3PbO , in close agreement with the predictions of electronic structure calculations. We further demonstrate that chemical substitution of Bi for Pb is effective in tuning the Fermi level of Ca3PbO while leaving its electronic structure intact. Our study confirms that the inverse perovskite family provides a promising platform for the exploration of 3D Dirac fermion systems.
International Nuclear Information System (INIS)
Guyette, M.; De Smet, M.
1995-01-01
In this paper we outline a methodology to assess the fatigue induced in piping systems submitted to thermal stratification. More specifically, the transformation from the measured outer wall temperature time histories to stress time histories in any point of the line is treated.By means of inverse transfer functions, the fluid temperature distribution is calculated from the outside wall temperatures measured in a limited number of temperature sections. Using direct transfer functions, the local stresses due to stratification may be determined as well as the pipe free curvatures and the pipe free axial strains. Using a finite beam element model of the line, the global response of the line (in terms of displacements or stresses) due to the applied curvatures, axial strains, end point displacements, internal pressure and possible contacts with the pipe environment may be determined.The method is illustrated for the surge lines of the Doel 2 and Doel 4 nuclear power plants. An excellent correlation is found between measured and calculated displacements. Typical stress time histories are shown for a plant cool down. ((orig.))
Czech Academy of Sciences Publication Activity Database
Lutsyk, P.; Janus, K.; Sworakowski, J.; Kochalska, Anna; Nešpůrek, Stanislav
2012-01-01
Roč. 404, 24 August (2012), s. 22-27 ISSN 0301-0104 R&D Projects: GA MPO FR-TI1/144 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : OFET * switching * photochromism Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.957, year: 2012
International Nuclear Information System (INIS)
Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T
1998-01-01
The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)
Inverse Systems - Nanoporous Solids
Patarin, J.; Spalla, O.; di Renzo, F.
Many natural materials are characterised by an inorganic framework, generally negatively charged, containing cavities, cages, or tunnels in which inorganic (charge-balancing) cations and/or water molecules are occluded. Among these materials, the zeolites form one large family of crystalline porous materials (from the Greek zein meaning 'to boil' and lithos meaning 'stone'). Pore sizes in these aluminosilicates are generally of nanometric order. Because of their specific properties, the synthesis of zeolites, and more generally, zeolitic materials (zeolites and related solids) has considerably increased over the last few years. Indeed, applications are many and varied. They are relevant not only to the chemical industry (or more precisely, the petrochemical industry), but also to our everyday lives (phosphate-free washing powders, double-glazing insulation, and many others). By virtue of their porous structure and the mobility of the cations and water molecules occluded within their porous structures, these materials can be used as highly selective cation exchangers and adsorbents.
Houborg, Rasmus
2015-10-14
Accurate retrieval of canopy biophysical and leaf biochemical constituents from space observations is critical to diagnosing the functioning and condition of vegetation canopies across spatio-temporal scales. Retrieved vegetation characteristics may serve as important inputs to precision farming applications and as constraints in spatially and temporally distributed model simulations of water and carbon exchange processes. However significant challenges remain in the translation of composite remote sensing signals into useful biochemical, physiological or structural quantities and treatment of confounding factors in spectrum-trait relations. Bands in the red-edge spectrum have particular potential for improving the robustness of retrieved vegetation properties. The development of observationally based vegetation retrieval capacities, effectively constrained by the enhanced information content afforded by bands in the red-edge, is a needed investment towards optimizing the benefit of current and future satellite sensor systems. In this study, a REGularized canopy reFLECtance model (REGFLEC) for joint leaf chlorophyll (Chll) and leaf area index (LAI) retrieval is extended to sensor systems with a band in the red-edge region for the first time. Application to time-series of 5 m resolution multi-spectral RapidEye data is demonstrated over an irrigated agricultural region in central Saudi Arabia, showcasing the value of satellite-derived crop information at this fine scale for precision management. Validation against in-situ measurements in fields of alfalfa, Rhodes grass, carrot and maize indicate improved accuracy of retrieved vegetation properties when exploiting red-edge information in the model inversion process. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Energy Technology Data Exchange (ETDEWEB)
Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.
2011-07-01
The problem of IMRT treatments with the technique Steep and Shoot or static is the number of segments and monitor units used in the treatment. These parameters depend largely on the inverse planning system which determines treatment. Are evaluated three commercial planning systems, with each one performing clinical dosimetry for the same series of patients. Dosimetric results are compared, UM calculated and number of segments.
Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto
2005-01-01
Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of
Directory of Open Access Journals (Sweden)
Yanzhao He
2017-02-01
Full Text Available The start-up current control of the high-speed brushless DC (HS-BLDC motor is a challenging research topic. To effectively control the start-up current of the sensorless HS-BLDC motor, an adaptive control method is proposed based on the adaptive neural network (ANN inverse system and the two degrees of freedom (2-DOF internal model controller (IMC. The HS-BLDC motor is identified by the online least squares support vector machine (OLS-SVM algorithm to regulate the ANN inverse controller parameters in real time. A pseudo linear system is developed by introducing the constructed real-time inverse system into the original HS-BLDC motor system. Based on the characteristics of the pseudo linear system, an extra closed-loop feedback control strategy based on the 2-DOF IMC is proposed to improve the transient response performance and enhance the stability of the control system. The simulation and experimental results show that the proposed control method is effective and perfect start-up current tracking performance is achieved.
DEFF Research Database (Denmark)
Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten
2013-01-01
Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....
Boggio-Pasqua, Martial; Garavelli, Marco
2015-06-11
This study presents a computational investigation of the initial step of the dimethyldihydropyrene (DHP) to cyclophanediene (CPD) photoinduced ring-opening reaction using time-dependent density functional theory (TD-DFT). In particular, the photochemical path corresponding to the formation of the CPD precursor (CPD*) on the zwitterionic state is scrutinized. The TD-DFT approach was first validated on the parent compound against accurate ab initio calculations. It confirms that CPD* formation is efficiently quenched in this system by an easily accessible S2/S1 conical intersection located in the vicinity of the CPD* minimum and leading to a locally excited state minimum responsible for DHP luminescence. Increased ring-opening quantum yields were observed in benzo[e]-fused-DHP (DHP-1), isobutenyl-DHP (DHP-2), and naphthoyl-DHP (DHP-3). The calculations show that CPD* formation is much more favorable in these systems, either due to an inversion of electronic states in DHP-1, suppressing the formation of the locally excited state, or due to efficient stabilization of CPD* on the S1 potential energy surface in DHP-2 and DHP-3. Both effects can be combined in a rationally designed benzo[e]-fused-naphthoyl-DHP (DHP-4) for which we anticipate an unprecedented efficiency.
High Step-Up Trans-Inverse (Tx^−1) DC–DC Converter for the Distributed Generation System
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
turns ratio. The name “Trans-inverse (Tx^−1)” is thus used for representing this inverse operating principle of the converter. The converter draws a continuous current from the source and is, hence, suitable for many types of renewable sources. Its leakage energy from the coupled magnetics has further......This paper introduces a new magnetically coupled single-switch nonisolated dc–dc converter with a high-voltage gain. The topology utilizes magnetic coupling for boosting its output voltage, but unlike other converters with coupled magnetics, its voltage gain is increased by reducing its magnetic...
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, I.; Hayashi, T. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-10-01
Recently, with a progress of robust control such as H{infinity} control, the application of a control system design considering a robustness of controlled system fluctuation to real machinery became possible. In addition, LMI (Linear Matrix Inequality) control system design method is superior to conventional H{infinity} control, although including various difficult elements. The design algorithm permitting the robust control system design of non-linear problems by giving controlled systems was thus developed by introducing an inverse LMI control design method. This design algorithm determines the solution of models outputting the deviation between a target value and controlled variables by solving the simultaneous equations composed of a linear matrix inequality under an impulse response constraint condition and that under an H{infinity} norm constraint condition. This technique allows to give a pending step response as control condition. The technique was confirmed to be effective by its application to the position keeping control problem of marine floating structures. 6 refs., 11 figs., 2 tabs.
Houborg, Rasmus
2015-01-19
Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy
Glyphosate-resistant Palmer amaranth is adversely affecting cotton production in the Southeast US. A field experiment was established in fall 2008 at the E.V. Smith Research Center, Field Crops Unit near Shorter, AL, to investigate the role of inversion tillage, high residue cover crops, and differ...
Energy Technology Data Exchange (ETDEWEB)
Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)
2016-12-21
An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.
Yamaguchi, Tetsuo; Maity, Ayan; Polshettiwar, Vivek; Ogawa, Makoto
2017-10-26
The photoinduced adsorption of a photochromic spiropyran (1-(2-hydroxyethyl)-3,3-dimethylindolino-6'-nitrobenzopyrylospiran) onto a dendritic fibrous nanosilica (DFNS) was investigated. By UV irradiation, the colorless suspension containing the spiropyran and DFNS changed to blue without stirring, while it turned to red by the irradiation under stirring. These two colors were attributed to the photogenerated merocyanine in a non polar environment (in toluene, blue) and on a protic environment (on DFNS, red). The long lifetime of the adsorbed merocyanine on DFNS (red) and the easy separation of DFNS from the suspension made it possible to follow the kinetics of the photoinduced adsorption as a pseudo-first order reaction with the rate constant of 0.0279 s -1 . The rate limiting process was suggested to be the adsorption of the merocyanine onto DFNS.
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Directory of Open Access Journals (Sweden)
Halis Aygün
2008-01-01
Full Text Available We introduce definitions of fuzzy inverse compactness, fuzzy inverse countable compactness, and fuzzy inverse Lindelöfness on arbitrary -fuzzy sets in -fuzzy topological spaces. We prove that the proposed definitions are good extensions of the corresponding concepts in ordinary topology and obtain different characterizations of fuzzy inverse compactness.
International Nuclear Information System (INIS)
Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi; Irie, Hiroshi
2014-01-01
The addition of photo-controllable properties to tungsten trioxide (WO 3 ) is of interest for developing practical applications of WO 3 as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO 3 thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W 5+ ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO 3 could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO 3 after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ photo ) and photo-Seebeck effect (photo-Seebeck coefficient, S photo )) were also detected in response to visible-light irradiation of the colored WO 3 thin films. Under visible-light irradiation, σ photo and the absolute value of S photo increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W 5+ state) to the conduction band of WO 3 . Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO 3 thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.
Yadav, Ram Sagar; Rai, Shyam Bahadur
2018-03-01
In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.
Intersections, ideals, and inversion
International Nuclear Information System (INIS)
Vasco, D.W.
1998-01-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons
Intersections, ideals, and inversion
Energy Technology Data Exchange (ETDEWEB)
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Computation of inverse magnetic cascades
International Nuclear Information System (INIS)
Montgomery, D.
1981-10-01
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed
Thermal measurements and inverse techniques
Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M
2011-01-01
With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe
Directory of Open Access Journals (Sweden)
Subrata CHATTOPADHYAY
2008-01-01
Full Text Available A single PID controller in a process control loop may suffer from high frequency oscillations without offset or low frequency oscillation with offset. An inverse derivative control action can eliminate both of these errors. In the present paper, a low cost operational amplifier based PID controller with inverse derivative control action has been described. Its transfer function has been derived and is found to be identical with the form already derived by other workers. It has been tested with a process plant analogue and implemented in the voltage control system of a DC generator. Its transfer function along with its characteristics in a process plant analogue and the load characteristics of DC generator with and without this controller have been determined experimentally and reported in this paper.
Energy Technology Data Exchange (ETDEWEB)
Konieczkowska, Jolanta [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice (Poland); Janeczek, Henryk [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Kozanecka-Szmigiel, Anna, E-mail: annak@if.pw.edu.pl [Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa (Poland); Schab-Balcerzak, Ewa, E-mail: eschab-balcerzak@cmpw-pan.edu.pl [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)
2016-09-01
We report on a series of novel photochromic poly(amide imide)s and their poly(amic acid) precursors bearing azobenzene chromophores as the side groups. The chemical structures of the polymers were designed so that they exhibited an enhanced thermal stability combined with a large and stable birefringence photogenerated by light of the wavelengths belonging to a wide spectral range. The polymers possessed rigidly attached azochromophores in the content of either one or two per a repeating unit, which in the latter case differed in their structures. The imidization kinetics of the poly(amic acid)s was investigated by differential scanning calorimetry and the kinetic parameters were estimated using Ozawa and Kissinger methods. Measurements of the selected physical properties of the polymers, such as solubility, supramolecular structure, linear absorption, thermal stability, glass transition and photochromic response were performed and used for determination of the structure-property relations. The measurements of photochromic properties showed a very efficient generation of optical anisotropy upon blue and violet irradiation, for both the poly(amide imide)s containing two different chromophores in the repeating unit and for their precursors. For these poly(amide imide)s and for their precursors an exceptionally slow decrease in the photoinduced optical anisotropy in the dark was also observed. - Highlights: • Three azopoly(amide imide)s were obtained from azopoly(amic acid)s. • Chosen physicochemical properties and photochromic responses were measured. • Desired optical response was found for polymers with two azo-dyes in repeating unit. • Structure-property relations were shown.
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
Energy Technology Data Exchange (ETDEWEB)
Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.
2011-07-01
One of the most important issues of intensity modulated radiation therapy (IMRT) treatments using the step-and-shoot technique is the number of segments and monitor units (MU) for treatment delivery. These parameters depend heavily on the inverse optimization module of the treatment planning system (TPS) used. Three commercial treatment planning systems: CMS XiO, iPlan and Prowess Panther have been evaluated. With each of them we have generated a treatment plan for the same group of patients, corresponding to clinical cases. Dosimetric results, MU calculated and number of segments were compared. Prowess treatment planning system generates plans with a number of segments significantly lower than other systems, while MU are less than a half. It implies important reductions in leakage radiation and delivery time. Degradation in the final dose calculation of dose is very small, because it directly optimizes positions of multileaf collimator (MLC). (Author) 13 refs.
Variability in surface inversion characteristics over India in winter ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 120; Issue 1. Variability in surface inversion ... Decadal variations in inversion strength show weak inversion frequencies decreasing from the 1st to the 3rd decade while moderate/strong inversions occur more frequently at most stations. Frequencies of very strong ...
Directory of Open Access Journals (Sweden)
M. S. A. Abdel-Mottaleb
2016-01-01
Full Text Available This paper focuses on computations technique within the framework of the TD-DFT theory for studying the relationship between structure-properties of reversible conversion of photochromic materials. Specifically, we report on 1′,3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H-indole] (SP and its isomers. TD-DFT calculated UV-Vis electronic spectra of the closed and open isomers of this photochromic material are in excellent agreement with the experimental results. Moreover, this paper reports on the results of theoretical investigations of reactivity indices that may govern the conversion between spiropyrans and its isomers. In addition, the solvent and rigidity of the medium significantly control the thermal bleaching of the photogenerated colored isomers and hence the switch ability pattern of the photochromic material. The effect of molecular structure computed by DFT in gas-phase and solvents on Cspiro-O bond length has been shown to correlate with photochromic properties. For this compound, DFT optimized geometry could be used to predict photochromism. Furthermore, in an attempt to predict the driving force for MC → SP, this work explores, for the first time, profitable exploitation of the calculated and visualized mapped electrostatic potential energy surfaces (ESP map. Interestingly, it seems that the electrostatic potential forces over the molecular fragments govern spirobond rupture/closure reactions. Thermodynamically, all-trans-colored isomer (CTT is the most stable merocyanine-like form.
Energy Technology Data Exchange (ETDEWEB)
Hacker, C.J.; Fries, G.A.; Pin, F.G.
1997-01-01
Few optimization methods exist for path planning of kinematically redundant manipulators. Among these, a universal method is lacking that takes advantage of a manipulator`s redundancy while satisfying possibly varying constraints and task requirements. Full Space Parameterization (FSP) is a new method that generates the entire solution space of underspecified systems of algebraic equations and then calculates the unique solution satisfying specific constraints and optimization criteria. The FSP method has been previously tested on several configurations of the redundant manipulator HERMIES-III. This report deals with the extension of the FSP driver, Inverse Kinematics On Redundant systems (IKOR), to include three-dimensional manipulation systems, possibly incorporating a mobile platform, with and without orientation control. The driver was also extended by integrating two optimized versions of the FSP solution generator as well as the ability to easily port to any manipulator. IKOR was first altered to include the ability to handle orientation control and to integrate an optimized solution generator. The resulting system was tested on a 4 degrees-of-redundancy manipulator arm and was found to successfully perform trajectories with least norm criteria while avoiding obstacles and joint limits. Next, the system was adapted and tested on a manipulator arm placed on a mobile platform yielding 7 degrees of redundancy. After successful testing on least norm trajectories while avoiding obstacles and joint limits, IKORv1.0 was developed. The system was successfully verified using comparisons with a current industry standard, the Moore Penrose Pseudo-Inverse. Finally, IKORv2.0 was created, which includes both the one shot and two step methods, manipulator portability, integration of a second optimized solution generator, and finally a more robust and usable code design.
Rhew, Isaac C; Oesterle, Sabrina; Coffman, Donna; Hawkins, J David
2018-01-01
Earlier intention-to-treat (ITT) findings from a community-randomized trial demonstrated effects of the Communities That Care (CTC) prevention system on reducing problem behaviors among youth. In ITT analyses, youth were analyzed according to their original study community's randomized condition even if they moved away from the community over the course of follow-up and received little to no exposure to intervention activities. Using inverse probability weights (IPWs), this study estimated effects of CTC in the same randomized trial among youth who remained in their original study communities throughout follow-up. Data were from the Community Youth Development Study, a community-randomized trial of 24 small towns in the United States. A cohort of 4,407 youth was followed from fifth grade (prior to CTC implementation) to eighth grade. IPWs for one's own moving status were calculated using fifth- and sixth-grade covariates. Results from inverse probability weighted multilevel models indicated larger effects for youth who remained in their study community for the first 2 years of CTC intervention implementation compared to ITT estimates. These effects included reduced likelihood of alcohol use, binge drinking, smokeless tobacco use, and delinquent behavior. These findings strengthen support for CTC as an efficacious system for preventing youth problem behaviors.
Energy Technology Data Exchange (ETDEWEB)
Kitanidis, Peter [Stanford Univ., CA (United States)
2016-04-30
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO_{2} storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic, tracer and thermal tests before CO_{2} injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO_{2} storage examples.
Brunner, Dominik; Arnold, Tim; Henne, Stephan; Manning, Alistair; Thompson, Rona L.; Maione, Michela; O'Doherty, Simon; Reimann, Stefan
2017-09-01
Hydrofluorocarbons (HFCs) are used in a range of industrial applications and have largely replaced previously used gases (CFCs and HCFCs). HFCs are not ozone-depleting but have large global warming potentials and are, therefore, reported to the United Nations Framework Convention on Climate Change (UNFCCC). Here, we use four independent inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and HFC-125) and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch (Switzerland), Mace Head (Ireland), and Monte Cimone (Italy) and the same a priori estimates of the emissions, but differed in terms of the Lagrangian transport model (FLEXPART, NAME), inversion method (Bayesian, extended Kalman filter), treatment of baseline mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very well, with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all models estimated higher emissions from Spain + Portugal than reported to UNFCCC (median higher by 390 %) though with a large scatter between individual estimates. Estimates for Germany (+140 %) and Ireland (+850 %) were also considerably higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to HFC-125, HFC-134a emissions from Spain + Portugal were broadly consistent with UNFCCC, and emissions from Germany were only 30 % higher. The data suggest that the UK over-reports its HFC-134a emissions to
Directory of Open Access Journals (Sweden)
D. Brunner
2017-09-01
Full Text Available Hydrofluorocarbons (HFCs are used in a range of industrial applications and have largely replaced previously used gases (CFCs and HCFCs. HFCs are not ozone-depleting but have large global warming potentials and are, therefore, reported to the United Nations Framework Convention on Climate Change (UNFCCC. Here, we use four independent inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and HFC-125 and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch (Switzerland, Mace Head (Ireland, and Monte Cimone (Italy and the same a priori estimates of the emissions, but differed in terms of the Lagrangian transport model (FLEXPART, NAME, inversion method (Bayesian, extended Kalman filter, treatment of baseline mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very well, with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all models estimated higher emissions from Spain + Portugal than reported to UNFCCC (median higher by 390 % though with a large scatter between individual estimates. Estimates for Germany (+140 % and Ireland (+850 % were also considerably higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to HFC-125, HFC-134a emissions from Spain + Portugal were broadly consistent with UNFCCC, and emissions from Germany were only 30 % higher. The data suggest that the UK over
Solving inverse problems of optical microlithography
Granik, Yuri
2005-05-01
The direct problem of microlithography is to simulate printing features on the wafer under given mask, imaging system, and process characteristics. The goal of inverse problems is to find the best mask and/or imaging system and/or process to print the given wafer features. In this study we will describe and compare solutions of inverse mask problems. Pixel-based inverse problem of mask optimization (or "layout inversion") is harder than inverse source problem, especially for partially-coherent systems. It can be stated as a non-linear constrained minimization problem over complex domain, with large number of variables. We compare method of Nashold projections, variations of Fienap phase-retrieval algorithms, coherent approximation with deconvolution, local variations, and descent searches. We propose electrical field caching technique to substantially speedup the searching algorithms. We demonstrate applications of phase-shifted masks, assist features, and maskless printing.
Third Harmonic Imaging using a Pulse Inversion
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Banks, H. T.; Ito, K.
1988-01-01
Numerical techniques for parameter identification in distributed-parameter systems are developed analytically. A general convergence and stability framework (for continuous dependence on observations) is derived for first-order systems on the basis of (1) a weak formulation in terms of sesquilinear forms and (2) the resolvent convergence form of the Trotter-Kato approximation. The extension of this framework to second-order systems is considered.
DEFF Research Database (Denmark)
Lisnianski, A.; Ding, Y.
2014-01-01
of the system model with great number of states and solving a corresponding system of differential equations. Lz-transform method, which is used for reliability assessment drastically simplified the solution. Instead of straightforward finding of the resulting output stochastic process for entire MSS...
MO-DE-207A-06: ECG-Gated CT Reconstruction for a C-Arm Inverse Geometry X-Ray System
Energy Technology Data Exchange (ETDEWEB)
Slagowski, JM; Dunkerley, DAP [MA Speidel, University of Wisconsin - Madison, Madison, WI (United States)
2016-06-15
Purpose: To obtain ECG-gated CT images from truncated projection data acquired with a C-arm based inverse geometry fluoroscopy system, for the purpose of cardiac chamber mapping in interventional procedures. Methods: Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system with a scanned multisource x-ray tube and a photon-counting detector mounted to a C-arm. In the proposed method, SBDX short-scan rotational acquisition is performed followed by inverse geometry CT (IGCT) reconstruction and segmentation of contrast-enhanced objects. The prior image constrained compressed sensing (PICCS) framework was adapted for IGCT reconstruction to mitigate artifacts arising from data truncation and angular undersampling due to cardiac gating. The performance of the reconstruction algorithm was evaluated in numerical simulations of truncated and non-truncated thorax phantoms containing a dynamic ellipsoid to represent a moving cardiac chamber. The eccentricity of the ellipsoid was varied at frequencies from 1–1.5 Hz. Projection data were retrospectively sorted into 13 cardiac phases. Each phase was reconstructed using IGCT-PICCS, with a nongated gridded FBP (gFBP) prior image. Surface accuracy was determined using Dice similarity coefficient and a histogram of the point distances between the segmented surface and ground truth surface. Results: The gated IGCT-PICCS algorithm improved surface accuracy and reduced streaking and truncation artifacts when compared to nongated gFBP. For the non-truncated thorax with 1.25 Hz motion, 99% of segmented surface points were within 0.3 mm of the 15 mm diameter ground truth ellipse, versus 1.0 mm for gFBP. For the truncated thorax phantom with a 40 mm diameter ellipse, IGCT-PICCS surface accuracy measured 0.3 mm versus 7.8 mm for gFBP. Dice similarity coefficient was 0.99–1.00 (IGCT-PICCS) versus 0.63–0.75 (gFBP) for intensity-based segmentation thresholds ranging from 25–75% maximum contrast. Conclusions: The
MO-DE-207A-06: ECG-Gated CT Reconstruction for a C-Arm Inverse Geometry X-Ray System
International Nuclear Information System (INIS)
Slagowski, JM; Dunkerley, DAP
2016-01-01
Purpose: To obtain ECG-gated CT images from truncated projection data acquired with a C-arm based inverse geometry fluoroscopy system, for the purpose of cardiac chamber mapping in interventional procedures. Methods: Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system with a scanned multisource x-ray tube and a photon-counting detector mounted to a C-arm. In the proposed method, SBDX short-scan rotational acquisition is performed followed by inverse geometry CT (IGCT) reconstruction and segmentation of contrast-enhanced objects. The prior image constrained compressed sensing (PICCS) framework was adapted for IGCT reconstruction to mitigate artifacts arising from data truncation and angular undersampling due to cardiac gating. The performance of the reconstruction algorithm was evaluated in numerical simulations of truncated and non-truncated thorax phantoms containing a dynamic ellipsoid to represent a moving cardiac chamber. The eccentricity of the ellipsoid was varied at frequencies from 1–1.5 Hz. Projection data were retrospectively sorted into 13 cardiac phases. Each phase was reconstructed using IGCT-PICCS, with a nongated gridded FBP (gFBP) prior image. Surface accuracy was determined using Dice similarity coefficient and a histogram of the point distances between the segmented surface and ground truth surface. Results: The gated IGCT-PICCS algorithm improved surface accuracy and reduced streaking and truncation artifacts when compared to nongated gFBP. For the non-truncated thorax with 1.25 Hz motion, 99% of segmented surface points were within 0.3 mm of the 15 mm diameter ground truth ellipse, versus 1.0 mm for gFBP. For the truncated thorax phantom with a 40 mm diameter ellipse, IGCT-PICCS surface accuracy measured 0.3 mm versus 7.8 mm for gFBP. Dice similarity coefficient was 0.99–1.00 (IGCT-PICCS) versus 0.63–0.75 (gFBP) for intensity-based segmentation thresholds ranging from 25–75% maximum contrast. Conclusions: The
Inverse Kinematics using Quaternions
DEFF Research Database (Denmark)
Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions
Babenhauserheide, A.; Basu, S.; Peters, W.
2015-01-01
Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one
Workflows for Full Waveform Inversions
Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas
2017-04-01
Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.
Tetyukhina, D.; Van Vliet, L.J.; Luthi, S.M.; Wapenaar, C.P.A.
2010-01-01
Fluvio-deltaic sedimentary systems are of great interest for explorationists because they can form prolific hydrocarbon plays. However, they are also among the most complex and heterogeneous ones encountered in the subsurface, and potential reservoir units are often close to or below seismic
Directory of Open Access Journals (Sweden)
Hikosaka Kenji
2012-11-01
Full Text Available Abstract Background Mitochondrial (mt genomes vary considerably in size, structure and gene content. The mt genomes of the phylum Apicomplexa, which includes important human pathogens such as the malaria parasite Plasmodium, also show marked diversity of structure. Plasmodium has a concatenated linear mt genome of the smallest size (6-kb; Babesia and Theileria have a linear monomeric mt genome (6.5-kb to 8.2-kb with terminal inverted repeats; Eimeria, which is distantly related to Plasmodium and Babesia/Theileria, possesses a mt genome (6.2-kb with a concatemeric form similar to that of Plasmodium; Cryptosporidium, the earliest branching lineage within the phylum Apicomplexa, has no mt genome. We are interested in the evolutionary origin of linear mt genomes of Babesia/Theileria, and have investigated mt genome structures in members of archaeopiroplasmid, a lineage branched off earlier from Babesia/Theileria. Results The complete mt genomes of archaeopiroplasmid parasites, Babesia microti and Babesia rodhaini, were sequenced. The mt genomes of B. microti (11.1-kb and B. rodhaini (6.9-kb possess two pairs of unique inverted repeats, IR-A and IR-B. Flip-flop inversions between two IR-As and between two IR-Bs appear to generate four distinct genome structures that are present at an equi-molar ratio. An individual parasite contained multiple mt genome structures, with 20 copies and 2 – 3 copies per haploid nuclear genome in B. microti and B. rodhaini, respectively. Conclusion We found a novel linear monomeric mt genome structure of B. microti and B. rhodhaini equipped with dual flip-flop inversion system, by which four distinct genome structures are readily generated. To our knowledge, this study is the first to report the presence of two pairs of distinct IR sequences within a monomeric linear mt genome. The present finding provides insight into further understanding of evolution of mt genome structure.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
International Nuclear Information System (INIS)
Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A
1998-01-01
An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)
Babonneau, D.; Diop, D. K.; Simonot, L.; Lamongie, B.; Blanc, N.; Boudet, N.; Vocanson, F.; Destouches, N.
2018-03-01
Photochromic reaction dynamics in silver nanoparticles embedded in mesoporous titanium dioxide thin films is investigated by combining real-time grazing incidence small-angle x-ray scattering (GISAXS) and optical transmission measurements during UV–visible laser exposure cycles. While GISAXS probes changes in the particle size distribution, transmittance measurements are sensitive to spectral changes induced by photo-activated processes. Our results reveal a repeatable photochromic behavior with a good correlation in terms of kinetics between the morphological and optical fluctuations. Visible laser irradiation at 532 nm induces a preferential photo-dissolution of small silver particles, which in turn causes an increase in transmittance near the excitation wavelength. Furthermore, the photo-dissolution process can be significantly accelerated and amplified by associating visible laser with x-ray irradiation. Under UV laser irradiation at 360 nm, the bleaching process can be reverted by photocatalytic reduction with the mesopores in the TiO2 film acting as molds, which have the ability to confine the nanoparticle growth. However, in the irradiation conditions used in the present study, it appears that the photocatalytic growth of silver nanoparticles is slower than the photo-dissolution process, whereas its efficiency gradually degrades throughout the exposures to UV light.
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....
International Nuclear Information System (INIS)
Rosenwald, J.-C.
2008-01-01
The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)
Submucous Myoma Induces Uterine Inversion
Directory of Open Access Journals (Sweden)
Yu-Li Chen
2006-06-01
Conclusion: Nonpuerperal inversion of the uterus is rarely encountered by gynecologists. Diagnosis of uterine inversion is often not easy and imaging studies might be helpful. Surgical treatment is the method of choice in nonpuerperal uterine inversion.
Selvam, A. M.
2017-01-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference
Gatlin, J. A.; Englar, T. S.
1976-01-01
Generation of vertical temperatures profiles from remotely sensed atmospheric radiance data is described as an analogous communications system. The radiative transport characteristics of the atmosphere encodes the continuous temperature profile into an 'n' element vector where 'n' is the number of channels in the satellite instrument. The temperature profile is a message transmitted from station A to station B and the link is the satellite instrument. At station B the decoder reproduces a continuous function which is the best estimate of the message encoded at station A. It is shown that the decoder must operate in a tuned mode where the parameters used in the encoder precisely determine the decoder parameters, and that the characteristics of the total message block must be given by a set of decoder constraints
Sieberling, S.; Chu, Q.P.; Mulder, J.A.
2010-01-01
This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of
Miller, Christopher J.
2011-01-01
A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.
Rahman, Md. Arifur; Al Mamun, Abdullah; Yao, Kui
2015-08-01
The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.
Cattaneo, Luigi; Maule, Francesca; Barchiesi, Guido; Rizzolatti, Giacomo
2013-11-01
Does motor mirroring in humans reflect the observed movements or the goal of the observed motor acts? Tools that dissociate the agent/object dynamics from the movements of the body parts used to operate them provide a model for testing resonance to both movements and goals. Here, we describe the temporal relationship of the observer's motor excitability, assessed with transcranial magnetic stimulation (TMS), with the observed goal-directed tool actions, in an ecological setting. Motor-evoked potentials (MEPs) to TMS were recorded from the opponens pollicis (OP, thumb flexor) and the extensor indicis proprius (EIP, index extensor) muscles of participants while they observed a person moving several small objects with a pair of normal pliers (closed by finger flexion) or reverse pliers (opened by finger flexion). The MEPs were a significant predictor of the pliers' kinematics that occurred in a variable time interval between -400 and +300 ms from TMS. Whatever pliers' type was being observed, OP MEPs correlated positively and EIP MEPs correlated negatively with the velocity of pliers' tips closure. This datum was confirmed both at individual and at a group level. Motor simulation can be demonstrated in single observers in a "real-life" ecological setting. The relation of motor resonance to the tool type shows that the observer's motor system codes the distal goal of the observed acts (i.e., grasping and releasing objects) in terms of its own motor vocabulary, irrespective of the actual finger movements that were performed by the observed actor.
Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions
Directory of Open Access Journals (Sweden)
A. Babenhauserheide
2015-09-01
Full Text Available Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 – Four-Dimensional Variational model, for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude–latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.
Large maneuverable flight control using neural networks dynamic inversion
Yang, Enquan; Gao, Jinyuan
2003-09-01
An adaptive dynamic-inversion-based neural network is applied to aircraft large maneuverable flight control. Neural network is used to cancel the inversion error which may arise from imperfect modeling or approximate inversion. Simulation results for an aircraft model are presented to illustrate the performance of the flight control system.
Fucugauchi, J. U.; Perez-Cruz, L. L.; Trigo-Huesca, A.
2012-12-01
A combined magnetics and paleomagnetic study of Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a magnetic link between lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that lavas and ash tuffs carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Conduit geometry is one of the important controlling factors in eruptive dynamics of basaltic volcanoes. However volcanic conduits are often not, or only partly, exposed. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.
Pioldi, Fabio; Rizzi, Egidio
2016-08-01
This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.
International Nuclear Information System (INIS)
Maeda, M.; Sakuma, H.; Takeda, K.; Yagishita, A.; Yamamoto, T.
2003-01-01
A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)
Volberg, A.; Yuditskii, P.
2001-01-01
Solving inverse scattering problem for a discrete Sturm-Liouville operator with the fast decreasing potential one gets reflection coefficients $s_\\pm$ and invertible operators $I+H_{s_\\pm}$, where $ H_{s_\\pm}$ is the Hankel operator related to the symbol $s_\\pm$. The Marchenko-Fadeev theorem (in the continuous case) and the Guseinov theorem (in the discrete case), guarantees the uniqueness of solution of the inverse scattering problem. In this article we asks the following natural question --...
Inverse scale space decomposition
DEFF Research Database (Denmark)
Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane
2018-01-01
We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...
Convex blind image deconvolution with inverse filtering
Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong
2018-03-01
Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.
Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.
2014-01-01
Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Broekhuis, H.
2005-01-01
This article aims at reformulating in more current terms Hoekstra and Mulder’s (1990) analysis of the Locative Inversion (LI) construction. The new proposal is crucially based on the assumption that Small Clause (SC) predicates agree with their external argument in phi-features, which may be
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)
1995-12-01
The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.
Calculation of the inverse data space via sparse inversion
Saragiotis, Christos
2011-01-01
The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.
Sieberling, S.; Chu, Q.P.; Mulder, J.A.
2010-01-01
This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of angular accelerations eliminates sensitivity to model mismatch, greatly increasing the robust performance of the system compared with conventional nonlinear dynamic inversion. However, angular acce...
Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix
Shahab, Siyamak; Filippovich, Liudmila; Kumar, Rakesh; Darroudi, Mahdieh; Borzehandani, Mostafa Yousefzadeh; Gomar, Maryam; Hajikolaee, Fatemeh Haji
2015-12-01
In the present work, isomerization, photophysical properties and heat conductivity of the substance Azure A chloride (AZAC): 3-amino-7-(dimethlamino)phenothiazin-5-ium chloride under the action of UV radiation in the presence of polyvinyl alcohol (PVA) matrix was studied using the Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The electronic absorption spectra of AZAC in dimethylformamide (DMF) solution and in aqueous medium before and after UV radiation were calculated. The nature of absorption bands of AZAC and its tautomeric prototropic form with the transfer of the electron (AZAC1) in the visible and near UV spectral regions was interpreted. The solvent effect on the absorption spectrum of the AZAC has established. The comparison of measured FTIR, UV-Visible data allowed assignments of major special features of title molecules. The frontier molecular orbital HOMO-LUMO have been also presented that shows the charge transfer interactions taking place within these molecules. The excitation energies for both molecules AZAC and AZAC1 have also been calculated. The experimental as well as theoretical investigations of azure molecule have a close agreement and it gives other important clues about the properties of the system. Anisotropy of thermal conductivity in PVA-films containing AZAC and AZAC1 were also measured.
Large protonation-gated photochromism of an OPE-embedded difurylperfluorocyclopentene
Wolf, Jannic Sebastian
2015-01-01
A recently reported protolytic gating effect on the ring closing reaction of an oligo(phenylene ethynylene) (OPE) embedded difurylperfluorocyclopentene (S) with a dimethylaminophenyl chain link in each of the side arms, was quantitatively analyzed in detail. The reaction system (So, SoH+, SoH2 2+, Sc, ScH+, ScH2 2+) comprising three protolytic forms in both open and closed configuration, is characterized by four protolytic equilibrium constants and six photochemical quantum yields of ring closing and ring opening. The absorption spectra, conductivity, and effective photochemical quantum yields were measured in acetonitrile as functions of solvent acidity varied by addition of trifluoroacetic acid and triethylamine and characterized by an effective pHnon-aq. Based on the derivation of a rigorous method for assessing the individual quantum yields of ring closure and ring opening of the six species, it was shown that it is specifically the second protonation step that is responsible for a more than 10-fold increase in the quantum yield of ring closure.
Kiryukhin, A. V.
2011-12-01
On June 3, 2007, a catastrophic Giant landslide took place in the Geysers Valley, Kamchatka. It occurred synchronously with a steam explosion and was then transformed into a debris mudflow. Within a few minutes, 20 mln m3 of rocks were shifted 2 km downstream the Geysernaya river, which created a dam with Podprudnoe lake behind, and buried more than 23 geysers. The 20-30 m deep Podprudnoe lake started to inject cold water into the remaining part of the Geysers Valley hydrothermal system. The objectives of the present study are to integrate available hydrogeological data to develop 3D thermal hydrodynamic (chemical) models to deduce a mechanism for the formation hydrothermal system and its response to changing recharge/discharge conditions after the Giant landslide of June 3, 2007, and to understand triggers of such catastrophic events to be able to forecast future ones. TOUGH2-EOS3 software was used. EOS3 (equation of state 3) module is capable of describing two-phase (liquid+gas) two-component (water+air) unsaturated zone conditions prevalent in the elevated parts of the Geysers Valley. Modeling runs were completed in order to explore the possible timing of the Geysers Valley formation. Modeling different scenarios shows, that the formation of Geysers Valley hydrothermal system took from 20,000 to 30,000 years in terms of temperature distributions and discharge flowrates, and meteoric recharge took place on the outcrops of Mt. Geysernaya rhyolite extrusion on the right bank of Geysernaya river. Model analysis shows wide high pressure two-phase zone at a depth of 150-250 m between steam vent, backing Giant landslide of June 3, 2007 and geyser Velikan, which are conditions of potential steam explosion, if steam pressure transmits to shallower levels. Inverse modeling capabilities of iTOUGH2-EOS3 were used to estimate upflow rate, reservoir permeability and productivity indexes of 39 most significant hot springs based on their flowrates data. Model parameters are
International Nuclear Information System (INIS)
Bashkatov, A N; Genina, Elina A; Kochubei, V I; Tuchin, Valerii V
2006-01-01
Based on the digital image analysis and inverse Monte-Carlo method, the proximate analysis method is deve-loped and the optical properties of hairs of different types are estimated in three spectral ranges corresponding to three colour components. The scattering and absorption properties of hairs are separated for the first time by using the inverse Monte-Carlo method. The content of different types of melanin in hairs is estimated from the absorption coefficient. It is shown that the dominating type of melanin in dark hairs is eumelanin, whereas in light hairs pheomelanin dominates. (special issue devoted to multiple radiation scattering in random media)
Inverse design of multicomponent assemblies
Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-03-01
Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.
Electrochemically driven emulsion inversion
International Nuclear Information System (INIS)
Johans, Christoffer; Kontturi, Kyoesti
2007-01-01
It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for
International Nuclear Information System (INIS)
Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.
1997-01-01
A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics
Atmospheric inverse modeling via sparse reconstruction
Directory of Open Access Journals (Sweden)
N. Hase
2017-10-01
Full Text Available Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4 emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Atmospheric inverse modeling via sparse reconstruction
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Fuzzy logic guided inverse treatment planning
International Nuclear Information System (INIS)
Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho
2003-01-01
A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved
Energy Technology Data Exchange (ETDEWEB)
Speidel, M; Hatt, C; Tomkowiak, M; Raval, A [University of Wisconsin, Madison, WI (United States); Funk, T [Triple Ring Technologies, Inc., Newark, CA (United States)
2014-06-15
Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our...... ability to produce efficient search algorithms. Such algorithms may be completely problem-independent (which is the case for the so-called 'meta-heuristics' or 'blind-search' algorithms), or they may be designed with the structure of the concrete problem in mind. We show that pure meta...
DEFF Research Database (Denmark)
Jørgensen, Mariann H; Rekvig, Ole Petter; Jacobsen, Rasmus S
2011-01-01
Anti-dsDNA antibodies represent a central pathogenic factor in Lupus nephritis. Together with nucleosomes they deposit as immune complexes in the mesangial matrix and along basement membranes within the glomeruli. The origin of the nucleosomes and when they appear e.g. in circulation is not known...... an inverse correlation between anti-dsDNA antibodies and the DNA concentration in the circulation in both murine and human serum samples. High titer of anti-DNA antibodies in human sera correlated with reduced levels of circulating chromatin, and in lupus prone mice with deposition within glomeruli....... The inverse correlation between DNA concentration and anti-dsDNA antibodies may reflect antibody-dependent deposition of immune complexes during the development of lupus nephritis in autoimmune lupus prone mice. The measurement of circulating DNA in SLE sera by using qPCR may indicate and detect...
Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza
2016-02-01
Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P AM-251 (0.5 mg/kg; P AM-251 in a foot-shock stress model. © 2016 John Wiley & Sons Australia, Ltd.
RUMBLE Technical Report on Inversion Models
Simons, Dick G.; Ainslie, Michael A.; Muller, Simonette H. E.; Boek, Wilco
2002-06-01
The performance of long range low frequency active sonar (LFAS) systems in shallow water is very sensitive to the properties of the sea bed, because of the impact of these on propagation, reverberation and (to a lesser extent) ambient noise. Direct measurement of sea bed parameters using cores or grab samples is impractical for covering a wide area, and instead we consider the possibility of using the LFAS system itself to measure its operating environment. The advantages of this approach are that it exploits existing (or planned) equipment and potentially offers a wide coverage. Geo-acoustic inversion methods are reviewed, with particular consideration for the problems associated with inversion of reverberation data. Three global optimisation methods are described, known as "simulated annealing", "genetic algorithms" and "differential evolution". The Levenberg-Marquardt and downhill simplex local methods are also described. The advantages and disadvantages of each individual method, as well as some hybrid combinations, are discussed in the context of geo-acoustic inversion. A new inversion method has been developed that exploits both the shape and height of the reverberation vs time curve to obtain information about the sea bed reflection loss and scattering strength separately. Tests on synthetic reverberation data show that the inversion method is able to extract parameters representing reflection loss and scattering strength, but cannot always unambiguously separate the effects of sediment sound speed and attenuation. The method is robust to small mismatches in water depth, sonar depth, sediment sound speed gradient and wind speed.
Mesoscale inversion of carbon sources and sinks
International Nuclear Information System (INIS)
Lauvaux, T.
2008-01-01
Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO 2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO 2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO 2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model
International Nuclear Information System (INIS)
Hicks, H.R.; Dory, R.A.; Holmes, J.A.
1983-01-01
We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model
Development of Instrumental ORAM System for Radiation Dosimetry
International Nuclear Information System (INIS)
Bogard, J.S.; Cullum, B.M.; Mobley, J.; Moscovitch, M.; Vo-Dinh, T.
1999-01-01
The development of an optical-based dosimeter for neutrons and heavy charged particles is described. It is based on the use of three dimensional (3-D) optical memory materials, used in optical computing applications, and multiphoton fluorescence of photochromic dyes. Development and characterization of various types of dosimeter materials are described as well as the optical readout system. In addition, various excitation geometries for ''reading'' and ''writing'' to the optical memories are also discussed
Applications of inverse and algebraic scattering theories
International Nuclear Information System (INIS)
Amos, K.
1997-01-01
Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs
DEFF Research Database (Denmark)
Jørgensen, Mariann H; Rekvig, Ole Petter; Jacobsen, Rasmus S
2011-01-01
Anti-dsDNA antibodies represent a central pathogenic factor in Lupus nephritis. Together with nucleosomes they deposit as immune complexes in the mesangial matrix and along basement membranes within the glomeruli. The origin of the nucleosomes and when they appear e.g. in circulation is not known....... The inverse correlation between DNA concentration and anti-dsDNA antibodies may reflect antibody-dependent deposition of immune complexes during the development of lupus nephritis in autoimmune lupus prone mice. The measurement of circulating DNA in SLE sera by using qPCR may indicate and detect...... the development of lupus nephritis at an early stage....
Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements
International Nuclear Information System (INIS)
Von Ranke, P J; De Oliveira, N A; Alho, B P; Plaza, E J R; De Sousa, V S R; Caron, L; Reis, M S
2009-01-01
The inverse magnetocaloric effect occurs when a magnetic material cools down under applied magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric effect was recently reported experimentally, a theoretical microscopic description is almost nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically investigated as a function of the model parameters. The influence of the Neel and the compensation temperature on the magnetocaloric effect is also analyzed using a microscopic model.
Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements
Energy Technology Data Exchange (ETDEWEB)
Von Ranke, P J; De Oliveira, N A; Alho, B P; Plaza, E J R; De Sousa, V S R [Instituto de Fisica ' Armando Dias Tavares' , Universidade do Estado do Rio de Janeiro-UERJ, Rua Sao Francisco Xavier, 524, 20550-013, RJ (Brazil); Caron, L [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP (Brazil); Reis, M S [CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal)], E-mail: von.ranke@uol.com.br
2009-02-04
The inverse magnetocaloric effect occurs when a magnetic material cools down under applied magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric effect was recently reported experimentally, a theoretical microscopic description is almost nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically investigated as a function of the model parameters. The influence of the Neel and the compensation temperature on the magnetocaloric effect is also analyzed using a microscopic model.
Holocaust inversion and contemporary antisemitism.
Klaff, Lesley D
2014-01-01
One of the cruellest aspects of the new antisemitism is its perverse use of the Holocaust as a stick to beat 'the Jews'. This article explains the phenomenon of 'Holocaust Inversion', which involves an 'inversion of reality' (the Israelis are cast as the 'new' Nazis and the Palestinians as the 'new' Jews) and an 'inversion of morality' (the Holocaust is presented as a moral lesson for, or even a moral indictment of, 'the Jews'). Holocaust inversion is a form of soft-core Holocaust denial, yet...
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
A linear time method to decide if any inverse maximum ﬂow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to ...
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Face inversion increases attractiveness.
Leder, Helmut; Goller, Juergen; Forster, Michael; Schlageter, Lena; Paul, Matthew A
2017-07-01
Assessing facial attractiveness is a ubiquitous, inherent, and hard-wired phenomenon in everyday interactions. As such, it has highly adapted to the default way that faces are typically processed: viewing faces in upright orientation. By inverting faces, we can disrupt this default mode, and study how facial attractiveness is assessed. Faces, rotated at 90 (tilting to either side) and 180°, were rated on attractiveness and distinctiveness scales. For both orientations, we found that faces were rated more attractive and less distinctive than upright faces. Importantly, these effects were more pronounced for faces rated low in upright orientation, and smaller for highly attractive faces. In other words, the less attractive a face was, the more it gained in attractiveness by inversion or rotation. Based on these findings, we argue that facial attractiveness assessments might not rely on the presence of attractive facial characteristics, but on the absence of distinctive, unattractive characteristics. These unattractive characteristics are potentially weighed against an individual, attractive prototype in assessing facial attractiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Zhang, Dongliang
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
Radon concentration inversions in the troposphere
International Nuclear Information System (INIS)
Pereira, E.B.
1987-07-01
Vertical concentrations of radon in the lower troposphere were obtained in Southern Brazil up to 7Km high and have shown unexpected inverted profiles. The presence of low pressure center systems southwest to the flight path suggested that inversions might have been originated by a vertical transport mechanism based on the large scale circulation of developing synoptic systems. A simple friction-driven circulation model was contructed and the transport equation was solved. (author) [pt
Coin tossing and Laplace inversion
Indian Academy of Sciences (India)
MS received 5 May 1999; revised 3 April 2000. Abstract. An analysis of exchangeable sequences of coin tossings leads to inversion formulae for Laplace transforms of probability measures. Keywords. Laplace inversion; moment problem; exchangeable probabilities. 1. Introduction. There is an intimate relationship between ...
Inverse problems for Maxwell's equations
Romanov, V G
1994-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Algebraic properties of generalized inverses
Cvetković‐Ilić, Dragana S
2017-01-01
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...
Directory of Open Access Journals (Sweden)
Calvez V.
2010-12-01
Full Text Available We consider the radiative transfer equation (RTE with reflection in a three-dimensional domain, infinite in two dimensions, and prove an existence result. Then, we study the inverse problem of retrieving the optical parameters from boundary measurements, with help of existing results by Choulli and Stefanov. This theoretical analysis is the framework of an attempt to model the color of the skin. For this purpose, a code has been developed to solve the RTE and to study the sensitivity of the measurements made by biophysicists with respect to the physiological parameters responsible for the optical properties of this complex, multi-layered material. On étudie l’équation du transfert radiatif (ETR dans un domaine tridimensionnel infini dans deux directions, et on prouve un résultat d’existence. On s’intéresse ensuite à la reconstruction des paramètres optiques à partir de mesures faites au bord, en s’appuyant sur des résultats de Choulli et Stefanov. Cette analyse sert de cadre théorique à un travail de modélisation de la couleur de la peau. Dans cette perspective, un code à été développé pour résoudre l’ETR et étudier la sensibilité des mesures effectuées par les biophysiciens par rapport aux paramètres physiologiques tenus pour responsables des propriétés optiques de ce complexe matériau multicouche.
Energy Technology Data Exchange (ETDEWEB)
Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da, E-mail: deciobr@eletronuclear.gov.br, E-mail: mongeor@eletronuclear.gov.br, E-mail: cdsilva@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Departamento DDD.O - Física de Reatores
2017-07-01
The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)
International Nuclear Information System (INIS)
Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da
2017-01-01
The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)
Directory of Open Access Journals (Sweden)
H. Bovensmann
2011-09-01
Full Text Available MAMAP is an airborne passive remote sensing instrument designed to measure the dry columns of methane (CH_{4} and carbon dioxide (CO_{2}. The MAMAP instrument comprises two optical grating spectrometers: the first observing in the short wave infrared band (SWIR at 1590–1690 nm to measure CO_{2} and CH_{4} absorptions, and the second in the near infrared (NIR at 757–768 nm to measure O_{2} absorptions for reference/normalisation purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an aeroplane, MAMAP surveys areas on regional to local scales with a ground pixel resolution of approximately 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h^{−1}. The retrieval precision of the measured column relative to background is typically ≲1% (1σ. MAMAP measurements are valuable to close the gap between satellite data, having global coverage but with a rather coarse resolution, on the one hand, and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007, test flights were performed over two coal-fired power plants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO_{2} yr^{−1} and Schwarze Pumpe (11.9 Mt CO_{2} yr^{−1}, about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions reported by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO_{2} and XCH_{4} and for the two inversion methods has been performed. Both methods – the Gaussian plume model fit and the Gaussian integral method – are capable of deriving
Inverse scattering with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baye, Daniel; Sparenberg, Jean-Marc
2004-01-01
The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering
Bayesian Approach to Inverse Problems
2008-01-01
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation
Testing earthquake source inversion methodologies
Page, Morgan T.
2011-01-01
Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...
Package inspection using inverse diffraction
McAulay, Alastair D.
2008-08-01
More efficient cost-effective hand-held methods of inspecting packages without opening them are in demand for security. Recent new work in TeraHertz sources,1 millimeter waves, presents new possibilities. Millimeter waves pass through cardboard and styrofoam, common packing materials, and also pass through most materials except those with high conductivity like metals which block light and are easily spotted. Estimating refractive index along the path of the beam through the package from observations of the beam passing out of the package provides the necessary information to inspect the package and is a nonlinear problem. So we use a generalized linear inverse technique that we first developed for finding oil by reflection in geophysics.2 The computation assumes parallel slices in the packet of homogeneous material for which the refractive index is estimated. A beam is propagated through this model in a forward computation. The output is compared with the actual observations for the package and an update computed for the refractive indices. The loop is repeated until convergence. The approach can be modified for a reflection system or to include estimation of absorption.
Inverse problem in radionuclide transport
International Nuclear Information System (INIS)
Yu, C.
1988-01-01
The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab
Coin tossing and Laplace inversion
Indian Academy of Sciences (India)
of a probability measure " on Е0Y 1К via the obvious change of variables e└t И xX An inversion formula for " in terms of its moments yields an inversion formula for # in terms of the values of its Laplace transform at n И 0Y 1Y 2Y ... and vice versa. In our discussion we allow " (respectively #) to have positive mass at 0 ...
Gentili, Pier Luigi; Ortica, Fausto; Favaro, Gianna
2008-12-25
In this work, the interaction of a naturally occurring chromene, flindersine (FL), and bovine serum albumin (BSA) has been investigated by UV-vis absorption and fluorescence spectroscopy, time-resolved lifetime measurements, steady state photochemistry, and semiempirical calculations. The interplay of FL with tryptophan (Trp) has been studied in parallel. The interaction of FL with BSA causes fluorescence quenching of BSA through both static and dynamic quenching mechanisms. FL binds BSA with a stoichiometry that varies from 1.09:1 to 0.80:1 as the temperature increases from 293 to 308 K. The reaction is characterized by negative enthalpy (deltaH degrees = -193 kJ mol(-1)) and negative entropy (deltaS degrees = -550 J K(-1) mol(-1)), indicating that the predominant forces in the FL-BSA complex are hydrogen bonding and van der Waals forces. The binding distance between the protein and the photochrome was calculated as 2.5 nm, according to the Foerster theory on resonance energy transfer. The effect of FL concentration on the BSA fluorescence was analyzed according to the maximum entropy method. FL also quenches the emission of Trp with a mechanism that, based on the experimental evidence, excludes both static and dynamic effects. An alternative relaxation pathway, consisting in an electron transfer from a prefluorescent state of Trp to FL, is put forward. The photobehavior of FL is affected by the interplay with BSA but not with Trp. When FL is complexed with BSA, it becomes a more fluorescent and more reactive species. Semiempirical calculations of the lowest optically active electronic transitions of hypothetical FL photoproducts suggest the most likely structure for the photoproduct.
International Nuclear Information System (INIS)
Yamano, Akihiro; Kozuka, Hiromitsu
2011-01-01
Polymethylmethacrylate (PMMA)-perhydropolysilazane (PHPS) hybrid thin films doped with spiropyran were prepared by spin-coating, which were then converted into 0.26-1.7 μm thick, spiropyran-doped PMMA-silica hybrid films by exposure treatment over aqueous ammonia. The spiropyran/(spiropyran + PHPS + PMMA) mass ratio was fixed at a high value of 0.2 so that the films exhibit visual photochromic changes in color, while the PMMA/(PMMA + PHPS) mass ratio, r, was varied. The spiropyran molecules in the as-prepared films were in merocyanine (MC) and spiro (SP) forms, with and without an optical absorption at 500 nm, at low (r ≤ 0.2) and high (r ≥ 0.4) PMMA contents, respectively. When PMMA content r was increased from 0 to 0.2, the degree of the MC-to-SP conversion on vis light illumination was enhanced, while at higher r's the spiropyran molecules underwent photodegradation. When the silica film (r = 0) was soaked in xylene under vis light, the spiropyran molecules were almost totally leached out, while not on soaking in the dark. On the other hand, no leaching occurred for the film of r = 0.2 either in the presence or absence of vis light. These suggest that the introduction of PMMA is effective in improving the chemical durability of the films, while the silica film (r = 0) is an interesting material with a photoresponsive controlled-release ability. The pencil hardness of the films decreased with increasing PMMA content, but remained over 9H at r ≤ 0.4.
EDITORIAL: Inverse Problems in Engineering
West, Robert M.; Lesnic, Daniel
2007-01-01
Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.
SISYPHUS: A high performance seismic inversion factory
Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas
2016-04-01
In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...
He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua
2018-01-01
Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.
Energy Technology Data Exchange (ETDEWEB)
Lopez-Villada, J.; Bruno, J. C.; Coronas, A.
2008-07-01
The use of power cycles driven by solar energy to provide the required mechanical energy to drive the high-pressure pump of Reverse Osmosis systems for desalination is an interesting alternative to the conventional electric systems. In this paper it is presented a model developed in Trnsys/Trnopt for the optimisation of the operating temperature in these systems to maximise the desalted water production. The results obtained show that adjusting the plant operation to this optimal temperature following the ambient conditions at each moment, a very important increase in the desalted water production could be achieved. (Author)
Nie, Xiaokai; Coca, Daniel
2018-01-01
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
Energy Technology Data Exchange (ETDEWEB)
Kraft, U.; Richter, S.
2003-07-01
Based on the applications of the TELEPERM XS and XP platforms, experience with these operating and safety I&C system in nuclear plants both in Europe and abroad is described here. To quote information from customers in the nuclear field, the positive results can be confirmed by specific nuclear plants from all over the world, so that with the application of these new digitial platforms alternatives exist for quasi all types of nuclear plant. The TELEPERM XS and XP system families can be easily applied for modernization projects for existing I&C systems, resulting in a high degree of availability and economic advantages, in accordance with modern technology. In order to demonstrate to the readers of this article the status of development of the TELEPERM XS safety I&C system, further important information regarding the general characteristics, to the architecture of the hardware and the engineering process as well as the development of the software is given. In this way one can obtain a general idea of the TELEPERM XS system as well as an outlook combined with the successful application of this modern safety I&C system for nuclear plants world wide. (Author)
Inverse comptonization vs. thermal synchrotron
International Nuclear Information System (INIS)
Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.
1983-01-01
There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain
Inverse comorbidity in multiple sclerosis
DEFF Research Database (Denmark)
Thormann, Anja; Koch-Henriksen, Nils; Laursen, Bjarne
2016-01-01
discovery rate and investigated each of eight pre-specified comorbidity categories: psychiatric, cerebrovascular, cardiovascular, lung, and autoimmune comorbidities, diabetes, cancer, and Parkinson's disease. Results A total of 8947 MS-cases and 44,735 controls were eligible for inclusion. We found...... This study showed a decreased risk of cancers and pulmonary diseases after onset of MS. Identification of inverse comorbidity and of its underlying mechanisms may provide important new entry points into the understanding of MS.......Background Inverse comorbidity is disease occurring at lower rates than expected among persons with a given index disease. The objective was to identify inverse comorbidity in MS. Methods We performed a combined case-control and cohort study in a total nationwide cohort of cases with clinical onset...
Inverse photoemission of uranium oxides
International Nuclear Information System (INIS)
Roussel, P.; Morrall, P.; Tull, S.J.
2009-01-01
Understanding the itinerant-localised bonding role of the 5f electrons in the light actinides will afford an insight into their unusual physical and chemical properties. In recent years, the combination of core and valance band electron spectroscopies with theoretic modelling have already made significant progress in this area. However, information of the unoccupied density of states is still scarce. When compared to the forward photoemission techniques, measurements of the unoccupied states suffer from significantly less sensitivity and lower resolution. In this paper, we report on our experimental apparatus, which is designed to measure the inverse photoemission spectra of the light actinides. Inverse photoemission spectra of UO 2 and UO 2.2 along with the corresponding core and valance electron spectra are presented in this paper. UO 2 has been reported previously, although through its inclusion here it allows us to compare and contrast results from our experimental apparatus to the previous Bremsstrahlung Isochromat Spectroscopy and Inverse Photoemission Spectroscopy investigations
Inverse source problems in elastodynamics
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Inverse methods in hydrologic optics
Directory of Open Access Journals (Sweden)
Howard R. Gordon
2002-03-01
Full Text Available Methods for solving the hydrologic-optics inverse problem, i.e., estimating the inherent optical properties of a water body based solely on measurements of the apparent optical properties, are reviewed in detail. A new method is developed for the inverse problem in water bodies in which fluorescence is important. It is shown that in principle, given profiles of the spectra of up- and downwelling irradiance, estimation of the coefficient of inelastic scattering from any wave band to any other wave band can be effected.
Inverse Interval Matrix: A Survey
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Farhadsefat, R.
2011-01-01
Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp704-719.pdf
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-06
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Intelligent investment; Inversion inteligente
Energy Technology Data Exchange (ETDEWEB)
NONE
2007-06-15
In this presentation the company called Energia Renovable De Mexico SA de CV (ERDM), shows not only its obtained objectives but also its wanted objectives. This company is manufacturer and consultant of photovoltaic modules. In the first part, it is given a description of the following issues: the beginnings the company, the implemented marketing strategy, the signed agreement between ERDM and Q-CELLS AG in German, the construction of the San Andres Tuxtla's office as well as the PV module, the reasons why this company is considered a leader not only in Mexico but also in Latin America. Then, It is briefly explained the company's mission, which is mainly focused on the network-connected system that are currently allowed according to the Mexican laws. Besides, there are mentioned the key pieces that have made possible the success of this company. At the same time, there are briefly explained the plans for Mexico, in which there are found the use of both photovoltaic systems and wind turbines in order to feed the electric network. Such plans have as targets to reduce the energy cost in Mexico and to open the profitable market to potential investors. Finally, there are mentioned the future plans that are going to help the company's expansion and to improve some issues related to the energy. [Spanish] En esta presentacion la compania Energia Renovable De Mexico S.A. de C.V. (ERDM), describe tanto los objetivos alcanzados como los que desean alcanzar en el futuro, fungiendo no solo como fabricantes sino tambien como consultores de modulos fotovoltaicos. En la primera parte, se da una descripcion de: los inicios de la compania, las estrategias mercadologicas utilizadas, el acuerdo con Q-CELLS, Alemania; la construccion de la oficina de San Andres Tuxtla y del modulo PV, las causas que la han llevado a ser una empresa lider. Enseguida, se explica escuetamente la mision de la compania; ademas, se mencionan las piezas clave que la han llevado al exito
An inverse approach for elucidating dendritic function
Directory of Open Access Journals (Sweden)
Benjamin Torben-Nielsen
2010-09-01
Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.
Constraining inverse curvature gravity with supernovae
Energy Technology Data Exchange (ETDEWEB)
Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab
2005-10-01
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements
International Nuclear Information System (INIS)
Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai
2004-01-01
In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments
Czech Academy of Sciences Publication Activity Database
Diening, L.; Feireisl, Eduard; Lu, Y.
2017-01-01
Roč. 23, č. 3 (2017), s. 851-868 ISSN 1292-8119 Keywords : perforated domains * Bogovskii type operators * homogenization * compressible Navier–Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.540, year: 2016 https://www.esaim-cocv.org/articles/cocv/abs/2017/03/cocv160016-s/cocv160016-s.html
Fihey, Arnaud; Kloss, Benedikt; Perrier, Aurélie; Maurel, François
2014-07-03
We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device.
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Murray, J. R.
2016-12-01
Finite-fault source algorithms can greatly benefit earthquake early warning (EEW) systems. Estimates of finite-fault parameters provide spatial information, which can significantly improve real-time shaking calculations and help with disaster response. In this project, we have focused on integrating a finite-fault seismic-geodetic algorithm into the West Coast ShakeAlert framework. The seismic part is FinDer 2, a C++ version of the algorithm developed by Böse et al. (2012). It interpolates peak ground accelerations and calculates the best fault length and strike from template matching. The geodetic part is a C++ version of BEFORES, the algorithm developed by Minson et al. (2014) that uses a Bayesian methodology to search for the most probable slip distribution on a fault of unknown orientation. Ultimately, these two will be used together where FinDer generates a Bayesian prior for BEFORES via the methodology of Minson et al. (2015), and the joint solution will generate estimates of finite-fault extent, strike, dip, best slip distribution, and magnitude. We have created C++ versions of both FinDer and BEFORES using open source libraries and have developed a C++ Application Protocol Interface (API) for them both. Their APIs allow FinDer and BEFORES to contribute to the ShakeAlert system via an open source messaging system, ActiveMQ. FinDer has been receiving real-time data, detecting earthquakes, and reporting messages on the development system for several months. We are also testing FinDer extensively with Earthworm tankplayer files. BEFORES has been tested with ActiveMQ messaging in the ShakeAlert framework, and works off a FinDer trigger. We are finishing the FinDer-BEFORES connections in this framework, and testing this system via seismic-geodetic tankplayer files. This will include actual and simulated data.
Czech Academy of Sciences Publication Activity Database
Diening, L.; Feireisl, Eduard; Lu, Y.
2017-01-01
Roč. 23, č. 3 (2017), s. 851-868 ISSN 1292-8119 Keywords : perforated domains * Bogovskii type operators * homogenization * compressible Navier–Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.540, year: 2016 https://www.esaim-cocv.org/ articles /cocv/abs/2017/03/cocv160016-s/cocv160016-s.html
Superconductivity in Pb inverse opal
International Nuclear Information System (INIS)
Aliev, Ali E.; Lee, Sergey B.; Zakhidov, Anvar A.; Baughman, Ray H.
2007-01-01
Type-II superconducting behavior was observed in highly periodic three-dimensional lead inverse opal prepared by infiltration of melted Pb in blue (D = 160 nm), green (D = 220 nm) and red (D = 300 nm) opals and followed by the extraction of the SiO 2 spheres by chemical etching. The onset of a broad phase transition (ΔT = 0.3 K) was shifted from T c = 7.196 K for bulk Pb to T c = 7.325 K. The upper critical field H c2 (3150 Oe) measured from high-field hysteresis loops exceeds the critical field for bulk lead (803 Oe) fourfold. Two well resolved peaks observed in the hysteresis loops were ascribed to flux penetration into the cylindrical void space that can be found in inverse opal structure and into the periodic structure of Pb nanoparticles. The red inverse opal shows pronounced oscillations of magnetic moment in the mixed state at low temperatures, T 0.9T c has been observed for all of the samples studied. The magnetic field periodicity of resistivity modulation is in good agreement with the lattice parameter of the inverse opal structure. We attribute the failure to observe pronounced modulation in magneto-resistive measurement to difficulties in the precision orientation of the sample along the magnetic field
Statistical and Computational Inverse Problems
Kaipio, Jari
2005-01-01
Develops the statistical approach to inverse problems with an emphasis on modeling and computations. The book discusses the measurement noise modeling and Bayesian estimation, and uses Markov Chain Monte Carlo methods to explore the probability distributions. It is for researchers and advanced students in applied mathematics.
Coin Tossing and Laplace Inversion
Indian Academy of Sciences (India)
An analysis of exchangeable sequences of coin tossings leads to inversion formulae for Laplace transforms of probability measures. Author Affiliations. J C Gupta1 2. Indian Statistical Institute, New Delhi 110 016, India; 32, Mirdha Tola, Budaun 243 601, India. Dates. Manuscript received: 5 May 1999; Manuscript revised: 3 ...
Givental Graphs and Inversion Symmetry
Dunin-Barkovskiy, P.; Shadrin, S.; Spitz, L.
2013-01-01
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Adjoint modeling for acoustic inversion
Hursky, Paul; Porter, Michael B.; Cornuelle, B. D.; Hodgkiss, W. S.; Kuperman, W. A.
2004-02-01
The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from a linearized forward propagation model to propagate data-model misfit at the observation points back through the medium to the medium perturbations not being accounted for in the model. This adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint methods are being applied to a variety of inversion problems, but have not drawn much attention from the underwater acoustic community. This paper presents an application of adjoint methods to acoustic inversion. Inversions are demonstrated in simulation for both range-independent and range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity and error analyses are discussed showing how the adjoint model enables calculations to be performed in the space of observations, rather than the often much larger space of model parameters. Using an adjoint model enables directions of steepest descent in the model parameters (what we invert for) to be calculated using far fewer modeling runs than if a forward model only were used.
DEFF Research Database (Denmark)
Voss, Anne; Nielsen, Ellen Holm; Svehag, Sven Erik
2008-01-01
OBJECTIVE: To study serum levels of serum amyloid P component (SAP) and SAP-DNA complexes in a population-based cohort of patients with systemic lupus erythematosus (SLE). METHODS: The study population comprised 82 unselected patients of predominantly Scandinavian ancestry with SLE according...... to current classification criteria. Serum samples were collected at baseline and serially for up to 2 years. SAP component and SAP-DNA complexes were measured by ELISA. Associations between SAP-DNA and clinical manifestations or serological findings were analyzed. Ninety healthy, age-matched blood donors...... served as controls. RESULTS: SLE patients had normal serum concentrations of SAP, whereas SAP-DNA complexes were decreased. Two-thirds of the SLE patients tested persistently SAP-DNA complex-negative. There was no relationship between the occurrence of SAP-DNA complexes and clinical manifestations. SAP...
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07baryonic matter component.
Interferogram analysis using the Abel inversion technique
International Nuclear Information System (INIS)
Yusof Munajat; Mohamad Kadim Suaidi
2000-01-01
High speed and high resolution optical detection system were used to capture the image of acoustic waves propagation. The freeze image in the form of interferogram was analysed to calculate the transient pressure profile of the acoustic waves. The interferogram analysis was based on the fringe shift and the application of the Abel inversion technique. An easier approach was made by mean of using MathCAD program as a tool in the programming; yet powerful enough to make such calculation, plotting and transfer of file. (Author)
Inverse problems in classical and quantum physics
International Nuclear Information System (INIS)
Almasy, A.A.
2007-01-01
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Inverse problems in classical and quantum physics
Energy Technology Data Exchange (ETDEWEB)
Almasy, A.A.
2007-06-29
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Hindle, David; Kley, Jonas
2016-04-01
The ultimate validation of any numerical model of any geological process comes when it can accurately forward model a case study from the geological record. However, as the example of the Jura-Molasse fold thrust belt demonstrates, geological information on even the most basic aspects of the present day state of such systems is highly incomplete and usually known only with large uncertainties. Fold thrust-belts are studied and understood by geologists in an iterative process of constructing their subsurface geometries and structures (folds, faults, bedding etc) based on limited subsurface information from boreholes, tunnels or seismic data where available, and surface information on outcrops of different layers and their dips. This data is usually processed through geometric models which involve conservation of line length of different beds over the length of an entire cross section. Constructing such sections is the art of cross section balancing. A balanced cross section can be easily restored to its pre-deformation state, assuming (usually) originally horizontal bedding to remove the effects of folding and faulting. Such a pre-deformation state can then form an initial condition for a forward mechanical model of the section. A mechanical model introduces new parameters into the system such as rock elasticity, cohesion, and frictional properties. However, a forward mechanical model can also potentially show the continuous evolution of a fold thrust belt, including dynamic quantities like stress. Moreover, a forward mechanical model, if correct in most aspects, should match in its final state, the present day geological cross section it is simulating. However, when attempting to achieve a match between geometric and mechanical models, it becomes clear that many more aspects of the geodynamic history of a fold thrust belt have to be taken into account. Erosion of the uppermost layers of an evolving thrust belt is the most obvious one of these. This can potentially
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Validation of OSIRIS Ozone Inversions
Gudnason, P.; Evans, W. F.; von Savigny, C.; Sioris, C.; Halley, C.; Degenstein, D.; Llewellyn, E. J.; Petelina, S.; Gattinger, R. L.; Odin Team
2002-12-01
The OSIRIS instrument onboard the Odin satellite, that was launched on February 20, 2001, is a combined optical spectrograph and infrared imager that obtains profil sets of atmospheric spectra from 280 to 800 nm when Odin scans the terrestrial limb. It has been possible to make a preliminary analysis of the ozone profiles using the Chappuis absorption feature. Three algorithms have been developed for ozone profile inversions from these limb spectra sets. We have dubbed these the Gattinger, Von Savigny-Flittner and DOAS methods. These are being evaluated against POAM and other satellite data. Based on performance, one of these will be selected for the operational algorithm. The infrared imager data have been used by Degenstein with the tomographic inversion procedure to derive ozone concentrations above 60 km. This paper will present some of these initial observations and indicate the best algorithm potential of OSIRIS to make spectacular advances in the study of terrestrial ozone.
Inverse problem in transformation optics
Novitsky, Andrey V.
2011-01-01
The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This ap...
Fourier reconstruction with sparse inversions
Zwartjes, P.M.
2005-01-01
In seismic exploration an image of the subsurface is generated from seismic data through various data processing algorithms. When the data is not acquired on an equidistantly spaced grid, artifacts may result in the final image. Fourier reconstruction is an interpolation technique that can reduce these artifacts by generating uniformly sampled data from such non-uniformly sampled data. The method works by estimating via least-squares inversion the Fourier coefficients that describe the non-un...
The Inverse of Banded Matrices
2013-01-01
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite ...numbers of summed or subtracted terms in computing the inverse of a term of an upper (lower) triangular matrix are the generalized order-k Fibonacci ... Fibonacci numbers are the usual Fibonacci numbers, that is, f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3
Inverse-magnetron mass spectrometer
International Nuclear Information System (INIS)
Pakulin, V.N.
1979-01-01
Considered is the operation of a typical magnetron mass spectrometer with an internal ion source and that of an inverse magnetron mass spectrometer with an external ion source. It is found that for discrimination of the same mass using the inverse design of mass spectrometers it is possible to employ either r 2 /r 1 times lesser magnetic fields at equal accelerating source-collector voltages, or r 2 /r 1 higher accelerating voltages at equal magnetic fields, as compared to the typical design (r 1 and r 2 being radii of the internal and external electrodes of the analyser, respectively). The design of an inverse-magnetron mass spectrometer is described. The mass analyzer is formed by a cylindrical electrode of 3 mm diameter and a coaxial tubular cylinder of 55 mm diameter. External to the analyzer is an ionizing chamber at the pressure of up to 5x10 -6 torr. The magnetic field along the chamber axis produced by a solenoid was 300 Oe. At the accelerating voltage of 100 V and mass 28, the spectrometer has a resolution of 30 at a half-peak height
Inverse problems for difference equations with quadratic ...
African Journals Online (AJOL)
Inverse problems for difference equations with quadratic Eigenparameter dependent boundary conditions. Sonja Currie, Anne D. Love. Abstract. This paper inductively investigates an inverse problem for difference boundary value problems with boundary conditions that depend quadratically on the eigenparameter.
Inverse Schroedinger equation and the exact wave function
International Nuclear Information System (INIS)
Nakatsuji, Hiroshi
2002-01-01
Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem
Neutron inverse kinetics via Gaussian Processes
International Nuclear Information System (INIS)
Picca, Paolo; Furfaro, Roberto
2012-01-01
Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.
Inverse Variational Problem for Nonstandard Lagrangians
Saha, A.; Talukdar, B.
2014-06-01
In the mathematical physics literature the nonstandard Lagrangians (NSLs) were introduced in an ad hoc fashion rather than being derived from the solution of the inverse problem of variational calculus. We begin with the first integral of the equation of motion and solve the associated inverse problem to obtain some of the existing results for NSLs. In addition, we provide a number of alternative Lagrangian representations. The case studies envisaged by us include (i) the usual modified Emden-type equation, (ii) Emden-type equation with dissipative term quadratic in velocity, (iii) Lotka-Volterra model and (vi) a number of the generic equations for dissipative-like dynamical systems. Our method works for nonstandard Lagrangians corresponding to the usual action integral of mechanical systems but requires modification for those associated with the modified actions like S =∫abe L(x ,x˙ , t) dt and S =∫abL 1 - γ(x ,x˙ , t) dt because in the latter case one cannot construct expressions for the Jacobi integrals.
Fast computation of the inverse CMH model
Patel, Umesh D.; Della Torre, Edward
2001-12-01
A fast computational method based on differential equation approach for inverse Della Torre, Oti, Kádár (DOK) model has been extended for the inverse Complete Moving Hysteresis (CMH) model. A cobweb technique for calculating the inverse CMH model is also presented. The two techniques differ from the point of view of flexibility, accuracy, and computation time. Simulation results of the inverse computation for both methods are presented.
LA INVERSION INMOBILIARIA INDIRECTA EN ESPANA.
Joan MONTLLOR-SERRATS; Anna M. PANOSA-GUBAU
2013-01-01
En este articulo se revisan los instrumentos de inversion indirecta inmobiliaria en Espana, desde la creacion en 1992 de los Fondos y Sociedades de Inversion inmobiliaria (FII y SII) hasta la creacion de la primera Sociedad de inversion del mercado inmobiliario (SOCIMI) en 2013. Se analizan las caracteristicas de los mismos y asimismo los motivos por los cuales estas figuras de inversion no han tenido mucha demanda hasta el momento, en comparacion con los REITs (Real Estate Investment Trusts)...
Codimension zero laminations are inverse limits
Lozano Rojo, Álvaro
2013-01-01
The aim of the paper is to investigate the relation between inverse limit of branched manifolds and codimension zero laminations. We give necessary and sufficient conditions for such an inverse limit to be a lamination. We also show that codimension zero laminations are inverse limits of branched manifolds. The inverse limit structure allows us to show that equicontinuous codimension zero laminations preserves a distance function on transversals.
Inversion: A Most Useful Kind of Transformation.
Dubrovsky, Vladimir
1992-01-01
The transformation assigning to every point its inverse with respect to a circle with given radius and center is called an inversion. Discusses inversion with respect to points, circles, angles, distances, space, and the parallel postulate. Exercises related to these topics are included. (MDH)
Inverse problems in vision and 3D tomography
Mohamad-Djafari, Ali
2013-01-01
The concept of an inverse problem is a familiar one to most scientists and engineers, particularly in the field of signal and image processing, imaging systems (medical, geophysical, industrial non-destructive testing, etc.) and computer vision. In imaging systems, the aim is not just to estimate unobserved images, but also their geometric characteristics from observed quantities that are linked to these unobserved quantities through the forward problem. This book focuses on imagery and vision problems that can be clearly written in terms of an inverse problem where an estimate for the image a
Fission in Inverse Kinematics: A path to new experimental observables
Caamaño, Manuel; Farget, Fanny; Ramos, Diego
2017-11-01
Historically, experimental fission studies were based on reactions in direct kinematics with fixed target-like fissioning systems. Besides its advantages, this technique suffers from some drawbacks such as the difficulty of producing exotic fissioning systems and the seldom measurement of the fragment atomic number. Inverse kinematic provides an alternative to ease these issues and offers a new set of experimental observables that improves our level of information about the fission process, including an unprecedented access to the scission point. In this document, we review some of the observables obtained from the experimental campaign based on inverse kinematics, performed at VAMOS/GANIL.
Inversion of GPS meteorology data
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically
Inverse problem in transformation optics
DEFF Research Database (Denmark)
Novitsky, Andrey
2011-01-01
. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This approach can be useful for finding material parameters for the specified electromagnetic fields......The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it...... in the cloaking shell without knowing the coordinate transformation....
Iterative optimization in inverse problems
Byrne, Charles L
2014-01-01
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more
Generalization of the Rabi population inversion dynamics in the sub-one-cycle pulse limit
International Nuclear Information System (INIS)
Doslic, N.
2006-01-01
We consider the population inversion in a two-level system generated by a sub-one-cycle pulse excitation. Specifically, we explore the effect that the time derivative of the pulse envelope has on the Rabi dynamics. Our analysis is based on a combination of analytical, perturbative, and nonperturbative treatments and is complemented by numerical simulations. We find a shortening of the Rabi inversion period and show that complete inversion is unobtainable under resonant, ultrashort pulse conditions. The impact of nonresonant and carrier-envelope phase-dependent effects on the dynamics of two-level and multilevel systems is studied numerically, and conditions for complete population inversion are derived
Eigenvectors phase correction in inverse modal problem
Qiao, Guandong; Rahmatalla, Salam
2017-12-01
The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.
An inverse problem approach to pattern recognition in industry
Directory of Open Access Journals (Sweden)
Ali Sever
2015-01-01
Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.
LHC Report: 2 inverse femtobarns!
Mike Lamont for the LHC Team
2011-01-01
The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total. In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...
Directory of Open Access Journals (Sweden)
Duo Zhang
2014-07-01
Full Text Available Vehicle active safety control is attracting ever increasing attention in the attempt to improve the stability and the maneuverability of electric vehicles. In this paper, a neural network combined inverse (NNCI controller is proposed, incorporating the merits of left-inversion and right-inversion. As the left-inversion soft-sensor can estimate the sideslip angle, while the right-inversion is utilized to decouple control. Then, the proposed NNCI controller not only linearizes and decouples the original nonlinear system, but also directly obtains immeasurable state feedback in constructing the right-inversion. Hence, the proposed controller is very practical in engineering applications. The proposed system is co-simulated based on the vehicle simulation package CarSim in connection with Matlab/Simulink. The results verify the effectiveness of the proposed control strategy.
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
3D stochastic inversion and joint inversion of potential fields for multi scale parameters
Shamsipour, Pejman
In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel
Statistical Inversion of Seismic Noise Inversion statistique du bruit sismique
Directory of Open Access Journals (Sweden)
Adler P. M.
2006-11-01
Full Text Available A systematic investigation of wave propagation in random media is presented. Spectral analysis, inversion of codas and attenuation of the direct wave front are studied for synthetic data obtained in isotropic or anisotropic, 2D or 3D media. A coda inversion process is developed and checked on two sets of real data. In both cases, it is possible to compare the correlation lengths obtained by inversion to characteristic lengths measured on seismic logs, for the full scale seismic survey, or on a thin section, for the laboratory experiment. These two experiments prove the feasibility and the efficiency of the statistical inversion of codas. Correct characteristic lengths can be obtained which cannot be determined by another method. Le problème de la géophysique est la recherche d'informations concernant le sous-sol, dans des signaux sismiques enregistrés en surface ou dans des puits. Ces informations sont habituellement recherchées sous forme déterministe, c'est-à-dire sous la forme de la donnée en chaque point d'une valeur du paramètre étudié. Notre point de vue est différent puisque notre objectif est de déduire certaines propriétés statistiques du milieu, supposé hétérogène, à partir des sismogrammes enregistrés après propagation. Il apparaît alors deux moyens de remplir l'objectif fixé. Le premier est l'analyse spectrale des codas ; cette analyse permet de déterminer les tailles moyennes des hétérogénéités du sous-sol. La deuxième possibilité est l'étude de l'atténuation du front direct de l'onde, qui conduit aussi à la connaissance des longueurs caractéristiques du sous-sol ; contrairement à la première méthode, elle ne semble pas pouvoir être transposée efficacement à des cas réels. Dans la première partie, on teste numériquement la proportionnalité entre le facteur de rétrodiffraction, relié aux propriétés statistiques du milieu, et le spectre des codas. Les distributions de vitesse, à valeur
Coupled channels Marchenko inversion for nucleon-nucleon potentials
International Nuclear Information System (INIS)
Kohlhoff, H.; Geramb, H.V. von
1994-01-01
Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)
Gaining insight into food webs reconstructed by the inverse method
Kones, J.; Soetaert, K.E.R.; Van Oevelen, D.; Owino, J.; Mavuti, K.
2006-01-01
The use of the inverse method to analyze flow patterns of organic components in ecological systems has had wide application in ecological modeling. Through this approach, an infinite number of food web flows describing the food web and satisfying biological constraints are generated, from which one
Inverse scattering with mixed spectrum from δ-potentials
International Nuclear Information System (INIS)
Lin Jiancheng.
1987-03-01
The inverse problem is studied in a system with mixed spectrum, i.e. the continuous part of the spectrum coincides with that of a repulsive δ-potential and the discrete part coincides with that of an attractive δ-potential. (author). 2 refs, 5 figs
Remarks on the inverse scattering transform associated with toda equations
Ablowitz, Mark J.; Villorroel, J.
The Inverse Scattering Transforms used to solve both the 2+1 Toda equation and a novel reduction, the Toda differential-delay equations are outlined. There are a number of interesting features associated with these systems and the related scattering theory.
Molecular Buffers Permit Sensitivity Tuning and Inversion of Riboswitch Signals
DEFF Research Database (Denmark)
Rugbjerg, Peter; Genee, Hans Jasper; Jensen, Kristian
2016-01-01
transcription factor, while interacting DNA-binding domains mediate the transduction of signal and form an interacting molecular buffer. The molecular buffer system enables modular signal inversion through integration with repressor modules. Further, tuning of input sensitivity was achieved through perturbation...
Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion
Directory of Open Access Journals (Sweden)
Takehiko Ogawa
2010-01-01
Full Text Available In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.
Inverse problem in neutron reflection
International Nuclear Information System (INIS)
Zhou, Xiao-Lin; Felcher, G.P.; Chen, Sow-Hsin
1991-05-01
Reflectance and transmittance of neutrons from a thin film deposited on a bulk substrate are derived from solution of Schroedinger wave equation in the material medium with an optical potential. A closed-form solution for the complex reflectance and transmittance is obtained in an approximation where the curvature of the scattering length density profile in the film is small. This closed-form solution reduces to all the known approximations in various limiting cases and is shown to be more accurate than the existing approximations. The closed-form solution of the reflectance is used as a starting point for an inversion algorithm whereby the reflectance data are inverted by a matrix iteration scheme to obtain the scattering length density distribution in the film. A preliminary test showed that the inverted profile is accurate for the linear scattering length density distribution but falls short in the case of an exponential distribution. 30 refs., 7 figs., 1 tab
Directed Neutron Beams From Inverse Kinematic Reactions
Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.
2011-06-01
Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.
Incomplete Sparse Approximate Inverses for Parallel Preconditioning
International Nuclear Information System (INIS)
Anzt, Hartwig; University of Tennessee, Knoxville, TN; Huckle, Thomas K.; Bräckle, Jürgen; Dongarra, Jack
2017-01-01
In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as an attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.
Superconductivity without inversion symmetry in CePt3Si
International Nuclear Information System (INIS)
Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M.
2005-01-01
Based on symmetry arguments by Anderson, the following conditions are necessary for the formation of Cooper pairs: spin-singlet pairing relies on time-reversal symmetry, while spin-triplet pairing requires parity in addition. The rather general formulation of this rule has led to the common belief that the lack of an inversion center in a material would prevent spin-triplet pairing indiscriminately. In this presentation, we discuss symmetry aspects of superconductivity in a class of systems without inversion symmetry which is connected with spin-orbit coupling. We can show that, not only spin singlet pairing, but also certain spin triplet states remain unaffected by the loss of inversion symmetry. Moreover, the absence of an inversion center reduces the effect of paramagnetic limiting for spin-singlet pairing states in an external magnetic field. Based on this symmetry analysis, we examine the recently discovered heavy Fermion superconductor CePt 3 Si, where a missing inversion plane leads to the well-known Rashba-type of spin-orbit coupling. In particular, the problem of the pairing symmetry will be addressed as well as several properties of the superconducting phase which appears close to a quantum phase transition between a paramagnetic and antiferromagnetic phase. The same kind of analysis will also be done for another example UIr
Application of Extreme Learning Machines to inverse neutron kinetics
International Nuclear Information System (INIS)
Picca, Paolo; Furfaro, Roberto
2017-01-01
Highlights: • The paper applies the Extreme Learning Machines (ELMs) to inverse reactor problems. • Multi-group transport model is used for the inversion as opposed to point kinetics. • ELMs are compared against Artificial Neural Networks (ANNs). • Various options are tested to improve the reliability of the estimation. • Results highlight the potential of the ELM approach. - Abstract: The paper presents the application of Extreme Leaning Machines (ELMs) for inverse reactor kinetic applications. ELMs were proposed by Huang and co-workers (2004, 2006a,b, 2015), which showed their enhances capabilities in terms of training speed and generalization with respect to classical Artificial Neural Networks (ANNs). ELMs are here implemented for reactivity determination as an alternative to ANNs (e.g. Picca et al. (2008)) and Gaussian Processes (Picca and Furfaro, 2012). After a review of the main features of ELMs, their application to inverse kinetic problems is proposed. The ELMs performance is tested on a typical accelerator drive system configuration (Yalina reactor) and the inversion is carried out on an accurate kinetic model (multi-group transport).
Motion can amplify the face-inversion effect
Directory of Open Access Journals (Sweden)
Thornton Ian M.
2011-01-01
Full Text Available The face-inversion effect (FIE refers to increased response times or error rates for faces that are presented upside-down relative to those seen in a canonical, upright orientation. Here we report one situation in which this FIE can be amplified when observers are shown dynamic facial expressions, rather than static facial expressions. In two experiments observers were asked to assign gender to a random sequence of un-degraded static or moving faces. Each face was seen both upright and inverted. For static images, this task led to little or no effect of inversion. For moving faces, the cost of inversion was a response time increase of approximately 100 ms relative to upright. Motion thus led to a disadvantage in the context of inversion. The fact that such motion could not be ignored in favour of available form cues suggests that dynamic processing may be mandatory. In two control experiments a difference between static and dynamic inversion was not observed for whole-body stimuli or for human-animal decisions. These latter findings suggest that the processing of upside-down movies is not always more difficult for the visual system than the processing of upside-down static images.
Charge transport by inverse micelles in non-polar media
Strubbe, Filip; Neyts, Kristiaan
2017-11-01
Charged inverse micelles play an important role in the electrical charging and the electrodynamics of nonpolar colloidal dispersions relevant for applications such as electronic ink displays and liquid toner printing. This review examines the properties and the behavior of charged inverse micelles in microscale devices in the absence of colloidal particles. It is discussed how charge in nonpolar liquids is stabilized in inverse micelles and how conductivity depends on the inverse micelle size, water content and ionic impurities. Frequently used nonpolar surfactant systems are investigated with emphasis on aerosol-OT (AOT) and poly-isobutylene succinimide (PIBS) in dodecane. Charge generation in the bulk by disproportionation is studied from measurements of conductivity as a function of surfactant concentration and from generation currents in quasi steady-state. When a potential difference is applied, the steady-state situation can show electric field screening or complete charge separation. Different regimes of charge transport are identified when a voltage step is applied. It is shown how the transient and steady-state currents depend on the rate of bulk generation, on insulating layers and on the sticking or non-sticking behavior of charged inverse micelles at interfaces. For the cases of AOT and PIBS in dodecane, the magnitude of the generation rate and the type of interaction at the interface are very different.
Inverse modeling of April 2013 radioxenon detections
Hofman, Radek; Seibert, Petra; Philipp, Anne
2014-05-01
Significant concentrations of radioactive xenon isotopes (radioxenon) were detected by the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in April 2013 in Japan. Particularly, three detections of Xe-133 made between 2013-04-07 18:00 UTC and 2013-04-09 06:00 UTC at the station JPX38 are quite notable with respect to the measurement history of the station. Our goal is to analyze the data and perform inverse modeling under different assumptions. This work is useful with respect to nuclear test monitoring as well as for the analysis of and response to nuclear emergencies. Two main scenarios will be pursued: (i) Source location is assumed to be known (DPRK test site). (ii) Source location is considered unknown. We attempt to estimate the source strength and the source strength along with its plausible location compatible with the data in scenario (i) and (ii), respectively. We are considering also the possibility of a vertically distributed source. Calculations of source-receptor sensitivity (SRS) fields and the subsequent inversion are aimed at going beyond routine calculations performed by the CTBTO. For SRS calculations, we employ the Lagrangian particle dispersion model FLEXPART with high resolution ECMWF meteorological data (grid cell sizes of 0.5, 0.25 and ca. 0.125 deg). This is important in situations where receptors or sources are located in complex terrain which is the case of the likely source of detections-the DPRK test site. SRS will be calculated with convection enabled in FLEXPART which will also increase model accuracy. In the variational inversion procedure attention will be paid not only to all significant detections and their uncertainties but also to non-detections which can have a large impact on inversion quality. We try to develop and implement an objective algorithm for inclusion of relevant data where samples from temporal and spatial vicinity of significant detections are added in an
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
Accommodating chromosome inversions in linkage analysis.
Chen, Gary K; Slaten, Erin; Ophoff, Roel A; Lange, Kenneth
2006-08-01
This work develops a population-genetics model for polymorphic chromosome inversions. The model precisely describes how an inversion changes the nature of and approach to linkage equilibrium. The work also describes algorithms and software for allele-frequency estimation and linkage analysis in the presence of an inversion. The linkage algorithms implemented in the software package Mendel estimate recombination parameters and calculate the posterior probability that each pedigree member carries the inversion. Application of Mendel to eight Centre d'Etude du Polymorphisme Humain pedigrees in a region containing a common inversion on 8p23 illustrates its potential for providing more-precise estimates of the location of an unmapped marker or trait gene. Our expanded cytogenetic analysis of these families further identifies inversion carriers and increases the evidence of linkage.
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Identifiability Scaling Laws in Bilinear Inverse Problems
Choudhary, Sunav; Mitra, Urbashi
2014-01-01
A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A key issue that arises for such inverse problems is that of identifiability, i.e. whether the observa...
Lectures on the inverse scattering method
International Nuclear Information System (INIS)
Zakharov, V.E.
1983-06-01
In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)
Inverse kinematics of OWI-535 robotic arm
DEBENEC, PRIMOŽ
2015-01-01
The thesis aims to calculate the inverse kinematics for the OWI-535 robotic arm. The calculation of the inverse kinematics determines the joint parameters that provide the right pose of the end effector. The pose consists of the position and orientation, however, we will focus only on the second one. Due to arm limitations, we have created our own type of the calculation of the inverse kinematics. At first we have derived it only theoretically, and then we have transferred the derivation into...
Time-reversal and Bayesian inversion
Debski, Wojciech
2017-04-01
Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.
Chromatid Painting for Chromosomal Inversion Detection Project
National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...
Bilinear Inverse Problems: Theory, Algorithms, and Applications
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical
The α-chymotrypsin and its hydrophobic derivatives in inverse micelles
International Nuclear Information System (INIS)
Pitre, Franck
1993-01-01
The α-chymotrypsin is among the most used enzymes, notably and particularly in medicine for therapeutic treatments as well as in biochemistry to determine the amine acid sequence of proteins. This research thesis addresses the study of interactions between a micro-emulsion system and an enzymatic system, and more particularly the behaviour of α-chymotrypsin in AOT inverse micelles. After a brief description of the inverse micellar system and of previously obtained results on the solubilisation of α-chymotrypsin in inverse micelles, the author reports the study of the inverse micellar phase in presence of α-chymotrypsin at the vicinity of the maximum solubility. Various techniques are used for this purpose: UV-visible absorption spectrophotometry, conductometry, and X ray scattering. Then, the author describes the chemical modification of α-chymotrypsin, and reports the study of structural as well as reaction modifications introduced during the solubilisation of α-chymotrypsin modified in inverse micelles [fr
Laterally constrained inversion for CSAMT data interpretation
Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun
2015-10-01
Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good
Advances in Global Full Waveform Inversion
Tromp, J.; Bozdag, E.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Modrak, R. T.; Orsvuran, R.; Smith, J. A.; Komatitsch, D.; Peter, D. B.
2017-12-01
Information about Earth's interior comes from seismograms recorded at its surface. Seismic imaging based on spectral-element and adjoint methods has enabled assimilation of this information for the construction of 3D (an)elastic Earth models. These methods account for the physics of wave excitation and propagation by numerically solving the equations of motion, and require the execution of complex computational procedures that challenge the most advanced high-performance computing systems. Current research is petascale; future research will require exascale capabilities. The inverse problem consists of reconstructing the characteristics of the medium from -often noisy- observations. A nonlinear functional is minimized, which involves both the misfit to the measurements and a Tikhonov-type regularization term to tackle inherent ill-posedness. Achieving scalability for the inversion process on tens of thousands of multicore processors is a task that offers many research challenges. We initiated global "adjoint tomography" using 253 earthquakes and produced the first-generation model named GLAD-M15, with a transversely isotropic model parameterization. We are currently running iterations for a second-generation anisotropic model based on the same 253 events. In parallel, we continue iterations for a transversely isotropic model with a larger dataset of 1,040 events to determine higher-resolution plume and slab images. A significant part of our research has focused on eliminating I/O bottlenecks in the adjoint tomography workflow. This has led to the development of a new Adaptable Seismic Data Format based on HDF5, and post-processing tools based on the ADIOS library developed by Oak Ridge National Laboratory. We use the Ensemble Toolkit for workflow stabilization & management to automate the workflow with minimal human interaction.
Inverse problems and uncertainty quantification
Litvinenko, Alexander
2013-12-18
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
International Nuclear Information System (INIS)
Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.
2012-01-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander
2014-01-06
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Quantum method of the inverse scattering problem. Pt. 1
International Nuclear Information System (INIS)
Sklyamin, E.K.; Takhtadzhyan, L.A.; Faddeev, L.D.
1978-12-01
In this work the authors use a formulation for the method of the inverse scattering problem for quantum-mechanical models of the field theory, that can be found in a quantization of these fully integrable systems. As the most important example serves the system (sinγ) 2 with the movement equation: γtt -γxx + m 2 /β sinβγ = 0 that is known under the specification Sine-Gordon-equation. (orig.) [de
Understanding the inverse magnetocaloric effect through a simple theoretical model
Energy Technology Data Exchange (ETDEWEB)
Ranke, P.J. von, E-mail: von.ranke@uol.com.b [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil); Alho, B.P.; Nobrega, E.P.; Oliveira, N.A. de [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil)
2009-10-15
We investigated the inverse magnetocaloric effect using a theoretical magnetic model formed by two coupled magnetic lattices to describe a ferrimagnetic system. The influence of the compensation temperature, and the ferrimagnetic-paramagnetic phase transition on the magnetocaloric effect was analyzed. Also, a relation between the area under the magnetocaloric curve and the net magnetic moment of a ferrimagnetic system was established in this work.
Reverse Universal Resolving Algorithm and inverse driving
DEFF Research Database (Denmark)
Pécseli, Thomas
2012-01-01
Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new v...
Metaheuristic optimization of acoustic inverse problems.
van Leijen, A.V.; Rothkrantz, L.; Groen, F.
2011-01-01
Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance.
Inverse Filtering Techniques in Speech Analysis | Nwachuku ...
African Journals Online (AJOL)
inverse filtering' has been applied. The unifying features of these techniques are presented, namely: 1. a basis in the source-filter theory of speech production, 2. the use of a network whose transfer function is the inverse of the transfer function of ...
Inverse m-matrices and ultrametric matrices
Dellacherie, Claude; San Martin, Jaime
2014-01-01
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Stochastic Gabor reflectivity and acoustic impedance inversion
Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John
2018-02-01
To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time–frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also
MinInversion: A Program for Petrophysical Composition Analysis of Geophysical Well Log Data
Directory of Open Access Journals (Sweden)
Adewale Amosu
2018-02-01
Full Text Available Knowledge of the composition (mineral and fluid proportions of rock formation lithologies is important for petrophysical and rock physics analysis. The mineralogy of a rock formation can be estimated by solving a system of linear equations that relate a class of geophysical log measurements to the petrophysical properties of known minerals and fluids. This method is useful for carbonate rocks with complex mineralogies and a wide range of other lithologies. Although this method of linear inversion for rock composition is well known, there are no interactive, open-source programs for routinely estimating rock mineralogy from standard digital geophysical wireline logs. We present an interactive open-source program, MinInversion, for constructing a balanced system of linear equations from digital geophysical logs and estimating the rock mineralogy as an inverse problem. MinInversion makes use of a library of petrophysical properties that can be easily expanded and modified by the users. MinInversion also provides several options for solving the system of linear equations and executing the linear matrix inversion including least squares, LU-decomposition and Moore-Penrose generalized inverse methods. In addition, MinInversion enables the estimation of the joint probability distributions for constituent minerals and measured porosity. The joint probability distributions are useful for revealing and analyzing depositional or diagenetic composition trends that affect porosity. The program introduces ease and flexibility to the problems of rock formation composition analysis and the study of the effects of rock composition on porosity.
SVD analysis in application to full waveform inversion of multicomponent seismic data
International Nuclear Information System (INIS)
Silvestrov, Ilya; Tcheverda, Vladimir
2011-01-01
An inverse problem of recovery the Earth's interior by multi-shot/multi-offset multicomponent seismic data is considered in this work. This problem may be considered as a nonlinear operational equation, and local derivative-based techniques are commonly used for its solution. Such method is known in seismic precessing as 'full-waveform inversion'. The major properties of the inversion process are governed by a Frechet derivative of the forward map. We show and study these properties by means of singular value decomposition (SVD) truncation. This decomposition depends strongly on the acquisition system and on the parameterization of the problem. We show, that it is very important to study the inverse problem in each particular case, otherwise unreliable results may be obtained. Surface and cross-well acquisition systems are considered in this work. Appropriate parameterizations for them are determined, and typical behavior of the inverse problem solution is studied.
Developments in inverse photoemission spectroscopy
International Nuclear Information System (INIS)
Sheils, W.; Leckey, R.C.G.; Riley, J.D.
1996-01-01
In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G
2017-03-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Goal Directed Model Inversion: A Study of Dynamic Behavior
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.
Adding Image Constraints to Inverse Kinematics for Human Motion Capture
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Perales, Francisco J.
2009-12-01
In order to study human motion in biomechanical applications, a critical component is to accurately obtain the 3D joint positions of the user's body. Computer vision and inverse kinematics are used to achieve this objective without markers or special devices attached to the body. The problem of these systems is that the inverse kinematics is "blinded" with respect to the projection of body segments into the images used by the computer vision algorithms. In this paper, we present how to add image constraints to inverse kinematics in order to estimate human motion. Specifically, we explain how to define a criterion to use images in order to guide the posture reconstruction of the articulated chain. Tests with synthetic images show how the scheme performs well in an ideal situation. In order to test its potential in real situations, more experiments with task specific image sequences are also presented. By means of a quantitative study of different sequences, the results obtained show how this approach improves the performance of inverse kinematics in this application.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Development of an inverse method for coastal risk management
Directory of Open Access Journals (Sweden)
D. Idier
2013-04-01
Full Text Available Recent flooding events, like Katrina (USA, 2005 or Xynthia (France, 2010, illustrate the complexity of coastal systems and the limits of traditional flood risk analysis. Among other questions, these events raised issues such as: "how to choose flooding scenarios for risk management purposes?", "how to make a society more aware and prepared for such events?" and "which level of risk is acceptable to a population?". The present paper aims at developing an inverse approach that could seek to address these three issues. The main idea of the proposed method is the inversion of the usual risk assessment steps: starting from the maximum acceptable hazard level (defined by stakeholders as the one leading to the maximum tolerable consequences to finally obtain the return period of this threshold. Such an "inverse" approach would allow for the identification of all the offshore forcing conditions (and their occurrence probability inducing a threat for critical assets of the territory, such information being of great importance for coastal risk management. This paper presents the first stage in developing such a procedure. It focuses on estimation (through inversion of the flooding model of the offshore conditions leading to the acceptable hazard level, estimation of the return period of the associated combinations, and thus of the maximum acceptable hazard level. A first application for a simplified case study (based on real data, located on the French Mediterranean coast, is presented, assuming a maximum acceptable hazard level. Even if only one part of the full inverse method has been developed, we demonstrate how the inverse method can be useful in (1 estimating the probability of exceeding the maximum inundation height for identified critical assets, (2 providing critical offshore conditions for flooding in early warning systems, and (3 raising awareness of stakeholders and eventually enhance preparedness for future flooding events by allowing them to
3rd Annual Workshop on Inverse Problem
2015-01-01
This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.
Inverse Raman effect: applications and detection techniques
International Nuclear Information System (INIS)
Hughes, L.J. Jr.
1980-08-01
The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented
Inverse Raman effect: applications and detection techniques
Energy Technology Data Exchange (ETDEWEB)
Hughes, L.J. Jr.
1980-08-01
The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.
Multiparameter Optimization for Electromagnetic Inversion Problem
Directory of Open Access Journals (Sweden)
M. Elkattan
2017-10-01
Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.
Population inversion in a stationary recombining plasma
International Nuclear Information System (INIS)
Otsuka, M.
1980-01-01
Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10 8 cm -3 , which is much higher then that (approx. =10 5 cm -3 ) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model
The factorization method for inverse problems
Kirsch, Andreas
2008-01-01
The factorization method is a relatively new method for solving certain types of inverse scattering problems and problems in tomography. Aimed at students and researchers in Applied Mathematics, Physics and Engineering, this text introduces the reader to this promising approach for solving important classes of inverse problems. The wide applicability of this method is discussed by choosing typical examples, such as inverse scattering problems for the scalar Helmholtz equation, ascattering problem for Maxwell's equation, and a problem in impedance and optical tomography. The last section of the
Geoacoustic inversion using combustive sound source signals.
Potty, Gopu R; Miller, James H; Wilson, Preston S; Lynch, James F; Newhall, Arthur
2008-09-01
Combustive sound source (CSS) data collected on single hydrophone receiving units, in water depths ranging from 65 to 110 m, during the Shallow Water 2006 experiment clearly show modal dispersion effects and are suitable for modal geoacoustic inversions. CSS shots were set off at 26 m depth in 100 m of water. The inversions performed are based on an iterative scheme using dispersion-based short time Fourier transform in which each time-frequency tiling is adaptively rotated in the time-frequency plane, depending on the local wave dispersion. Results of the inversions are found to compare favorably to local core data.
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight
Adaptive Control Using a Neural Network Estimator and Dynamic Inversion
Ninomiya, Tetsujiro; Miyazawa, Yoshikazu
More and more UAVs are developed for various purposes and their flight controllers are required to have sufficient robustness and performance to realize their versatile missions. To design these sophisticated controller is pretty much time-consuming task by traditional design method. Neural network based adaptive control with dynamic inversion is applied to solve this problem. This method has two advantages. One is that the gain scheduling is not necessary because nonlinear dynamic inversion is applied to control nonlinear systems. The other is that neural network improves the controller performance by estimating parameters of the actual plant. Numerical examples show its effectiveness and its ability to adapt to modeling errors. This paper concludes that proposed method reduces the workload of controller design task and it has ability to adapt various errors of nonlinear systems.
Sensitivity analyses of acoustic impedance inversion with full-waveform inversion
Yao, Gang; da Silva, Nuno V.; Wu, Di
2018-04-01
Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.
Full traveltime inversion in source domain
Liu, Lu
2017-06-01
This paper presents a new method of source-domain full traveltime inversion (FTI). The objective of this study is automatically building near-surface velocity using the early arrivals of seismic data. This method can generate the inverted velocity that can kinetically best match the reconstructed plane-wave source of early arrivals with true source in source domain. It does not require picking first arrivals for tomography, which is one of the most challenging aspects of ray-based tomographic inversion. Besides, this method does not need estimate the source wavelet, which is a necessity for receiver-domain wave-equation velocity inversion. Furthermore, we applied our method on one synthetic dataset; the results show our method could generate a reasonable background velocity even when shingling first arrivals exist and could provide a good initial velocity for the conventional full waveform inversion (FWI).
n-Colour self-inverse compositions
Indian Academy of Sciences (India)
colour self-inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence ...
Inverse Doppler Effects in Broadband Acoustic Metamaterials.
Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R
2016-08-31
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
n-Colour self-inverse compositions
Indian Academy of Sciences (India)
inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence relations ...
Parametric optimization of inverse trapezoid oleophobic surfaces
DEFF Research Database (Denmark)
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-01-01
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...
An inverse method for radiation transport
Energy Technology Data Exchange (ETDEWEB)
Favorite, J. A. (Jeffrey A.); Sanchez, R. (Richard)
2004-01-01
Adjoint functions have been used with forward functions to compute gradients in implicit (iterative) solution methods for inverse problems in optical tomography, geoscience, thermal science, and other fields, but only once has this approach been used for inverse solutions to the Boltzmann transport equation. In this paper, this approach is used to develop an inverse method that requires only angle-independent flux measurements, rather than angle-dependent measurements as was done previously. The method is applied to a simplified form of the transport equation that does not include scattering. The resulting procedure uses measured values of gamma-ray fluxes of discrete, characteristic energies to determine interface locations in a multilayer shield. The method was implemented with a Newton-Raphson optimization algorithm, and it worked very well in numerical one-dimensional spherical test cases. A more sophisticated optimization method would better exploit the potential of the inverse method.
The inverse square law of gravitation
International Nuclear Information System (INIS)
Cook, A.H.
1987-01-01
The inverse square law of gravitation is very well established over the distances of celestial mechanics, while in electrostatics the law has been shown to be followed to very high precision. However, it is only within the last century that any laboratory experiments have been made to test the inverse square law for gravitation, and all but one has been carried out in the last ten years. At the same time, there has been considerable interest in the possibility of deviations from the inverse square law, either because of a possible bearing on unified theories of forces, including gravitation or, most recently, because of a possible additional fifth force of nature. In this article the various lines of evidence for the inverse square law are summarized, with emphasis upon the recent laboratory experiments. (author)
Inverse operator theory method and its applications in nonlinear physics
International Nuclear Information System (INIS)
Fang Jinqing
1993-01-01
Inverse operator theory method, which has been developed by G. Adomian in recent years, and its applications in nonlinear physics are described systematically. The method can be an unified effective procedure for solution of nonlinear and/or stochastic continuous dynamical systems without usual restrictive assumption. It is realized by Mathematical Mechanization by us. It will have a profound on the modelling of problems of physics, mathematics, engineering, economics, biology, and so on. Some typical examples of the application are given and reviewed
The universal behavior of inverse magnetocaloric effect in antiferromagnetic materials
Biswas, Anis; Chandra, Sayan; Samanta, Tapas; Phan, M. H.; Das, I.; Srikanth, H.
2013-05-01
We report the universal behavior of inverse magnetocaloric effect (IMCE) in antiferromagnetic materials. In contrast to the universal behavior of conventional magnetocaloric effect often observed in ferromagnetic systems, a phenomenological universal master curve can be constructed to describe the temperature dependence of magnetic entropy change for IMCE without rescaling the temperature axis. The proposed universal curve method allows extrapolating the magnetic entropy change of an IMCE material, which would be imperative to judge its suitability in actual magnetic refrigeration devices.
2D data-space cross-gradient joint inversion of MT, gravity and magnetic data
Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop
2017-08-01
We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
Apagyi, B; Scheid, W
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure.
Sensitivity study on hydraulic well testing inversion using simulated annealing
Energy Technology Data Exchange (ETDEWEB)
Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi
1997-11-01
For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.
Bayesian inversion of refraction seismic traveltime data
Ryberg, T.; Haberland, Ch
2018-03-01
We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test
An Inversion Recovery NMR Kinetics Experiment
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...
Population inversion in recombining hydrogen plasma
International Nuclear Information System (INIS)
Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.
1978-11-01
The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)
Approximation of Bayesian Inverse Problems for PDEs
Cotter, S. L.; Dashti, M.; Stuart, A. M.
2010-01-01
Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...
On the Inversion of the Lidar Equation
1984-11-01
sectitns briefly review the major inversion methods to date and a fourth section describes the development of the modified inversion method. All four...can be seeu when It is understood ’in terms of its ,physical significance. Equation 17 states that the normalized integrated backscatter has a limit. In...still give significant errors. 4.0 VALIDATION OF AGILE In this chapter, evidence of the success of AGILE will be reviewed and compared with Klett’s
Inverse regression for ridge recovery II: Numerics
Glaws, Andrew; Constantine, Paul G.; Cook, R. Dennis
2018-01-01
We investigate the application of sufficient dimension reduction (SDR) to a noiseless data set derived from a deterministic function of several variables. In this context, SDR provides a framework for ridge recovery. In this second part, we explore the numerical subtleties associated with using two inverse regression methods---sliced inverse regression (SIR) and sliced average variance estimation (SAVE)---for ridge recovery. This includes a detailed numerical analysis of the eigenvalues of th...
Fast nonlinear susceptibility inversion with variational regularization.
Milovic, Carlos; Bilgic, Berkin; Zhao, Bo; Acosta-Cabronero, Julio; Tejos, Cristian
2018-01-10
Quantitative susceptibility mapping can be performed through the minimization of a function consisting of data fidelity and regularization terms. For data consistency, a Gaussian-phase noise distribution is often assumed, which breaks down when the signal-to-noise ratio is low. A previously proposed alternative is to use a nonlinear data fidelity term, which reduces streaking artifacts, mitigates noise amplification, and results in more accurate susceptibility estimates. We hereby present a novel algorithm that solves the nonlinear functional while achieving computation speeds comparable to those for a linear formulation. We developed a nonlinear quantitative susceptibility mapping algorithm (fast nonlinear susceptibility inversion) based on the variable splitting and alternating direction method of multipliers, in which the problem is split into simpler subproblems with closed-form solutions and a decoupled nonlinear inversion hereby solved with a Newton-Raphson iterative procedure. Fast nonlinear susceptibility inversion performance was assessed using numerical phantom and in vivo experiments, and was compared against the nonlinear morphology-enabled dipole inversion method. Fast nonlinear susceptibility inversion achieves similar accuracy to nonlinear morphology-enabled dipole inversion but with significantly improved computational efficiency. The proposed method enables accurate reconstructions in a fraction of the time required by state-of-the-art quantitative susceptibility mapping methods. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Analysis of Inverse Kinamtics of an Anthropomorphic Robotic hand
Directory of Open Access Journals (Sweden)
Pramod Kumar Parida
2013-03-01
Full Text Available In this paper, a new method for solving the inverse kinematics of the fingers of an anthropomorphic hand is proposed. Solution of inverse kinematic equations is a complex problem, the complexity comes from the nonlinearity of joint space and Cartesian space mapping and having multiple solutions.This is a typical problem in robotics that needs to be solved to control the fingers of an anthropomorphic robotic hand to perform tasks it is designated to do. With more complex structures operating in a 3-dimensional space deducing a mathematical soluation for the inverse kinematics may prove challenging. In this paper, using the ability of ANFIS (Adaptive Neuro-Fuzzy Inference System to learn from training data, it is possible to create ANFIS network, an implementation of a representative fuzzy inference system using ANFIS structure, with limited mathematical representation of the system. The main advantages of this method with respect to the other methods are implementation is easy, very fast and shorter computation time and better response with acceptable error.
An application of sparse inversion on the calculation of the inverse data space of geophysical data
Saragiotis, Christos
2011-07-01
Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.
Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging
International Nuclear Information System (INIS)
Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir
2015-01-01
Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging
Chromatid Painting for Chromosomal Inversion Detection, Phase I
National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...
Inverse Problems in Economic Measurements
Shananin, A. A.
2018-02-01
The problem of economic measurements is discussed. The system of economic indices must reflect the economic relations and mechanisms existing in society. An achievement of the XX century is the development of a system of national accounts and the gross domestic product index. However, the gross domestic product index, which is related to the Hamilton-Pontryagin function in extensive economic growth models, turns out to be inadequate under the conditions of structural changes. New problems of integral geometry related to production models that take into account the substitution of production factors are considered.
Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data
DEFF Research Database (Denmark)
Tølbøll, R.J.; Christensen, N.B.
2006-01-01
but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...
Energy Technology Data Exchange (ETDEWEB)
Weng Cho Chew
2004-10-27
The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.
Patterning hierarchy in direct and inverse opal crystals.
Mishchenko, Lidiya; Hatton, Benjamin; Kolle, Mathias; Aizenberg, Joanna
2012-06-25
Biological strategies for bottom-up synthesis of inorganic crystalline and amorphous materials within topographic templates have recently become an attractive approach for fabricating complex synthetic structures. Inspired by these strategies, herein the synthesis of multi-layered, hierarchical inverse colloidal crystal films formed directly on topographically patterned substrates via evaporative deposition, or "co-assembly", of polymeric spheres with a silicate sol-gel precursor solution and subsequent removal of the colloidal template, is described. The response of this growing composite colloid-silica system to artificially imposed 3D spatial constraints of various geometries is systematically studied, and compared with that of direct colloidal crystal assembly on the same template. Substrates designed with arrays of rectangular, triangular, and hexagonal prisms and cylinders are shown to control crystallographic domain nucleation and orientation of the direct and inverse opals. With this bottom-up topographical approach, it is demonstrated that the system can be manipulated to either form large patterned single crystals, or crystals with a fine-tuned extent of disorder, and to nucleate distinct colloidal domains of a defined size, location, and orientation in a wide range of length-scales. The resulting ordered, quasi-ordered, and disordered colloidal crystal films show distinct optical properties. Therefore, this method provides a means of controlling bottom-up synthesis of complex, hierarchical direct and inverse opal structures designed for altering optical properties and increased functionality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving rotorcraft survivability to RPG attack using inverse methods
Anderson, D.; Thomson, D. G.
2009-09-01
This paper presents the results of a preliminary investigation of optimal threat evasion strategies for improving the survivability of rotorcraft under attack by rocket propelled grenades (RPGs). The basis of this approach is the application of inverse simulation techniques pioneered for simulation of aggressive helicopter manoeuvres to the RPG engagement problem. In this research, improvements in survivability are achieved by computing effective evasive manoeuvres. The first step in this process uses the missile approach warning system camera (MAWS) on the aircraft to provide angular information of the threat. Estimates of the RPG trajectory and impact point are then estimated. For the current flight state an appropriate evasion response is selected then realised via inverse simulation of the platform dynamics. Results are presented for several representative engagements showing the efficacy of the approach.
Tunable Intrinsic Plasmons due to Band Inversion in Topological Materials
Zhang, Furu; Zhou, Jianhui; Xiao, Di; Yao, Yugui
2017-12-01
Band inversion has led to rich physical effects in both topological insulators and topological semimetals. It has been found that the inverted band structure with the Mexican-hat dispersion could enhance the interband correlation leading to a strong intrinsic plasmon excitation. Its frequency ranges from several meV to tens of meV and can be effectively tuned by the external fields. The electron-hole asymmetric term splits the peak of the plasmon excitation into double peaks. The fate and properties of this plasmon excitation can also act as a probe to characterize the topological phases even in lightly doped systems. We numerically demonstrate the impact of band inversion on plasmon excitations in magnetically doped thin films of three-dimensional strong topological insulators, V- or Cr-doped (Bi ,Sb )2Te3 , which support the quantum anomalous Hall states. Our work thus sheds some new light on the potential applications of topological materials in plasmonics.
Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data
Chen, K.; Liu, Z.; Song, Y. T.
2017-12-01
Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back
QCD-instantons and conformal inversion symmetry
International Nuclear Information System (INIS)
Klammer, D.
2006-07-01
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
QCD-instantons and conformal inversion symmetry
Energy Technology Data Exchange (ETDEWEB)
Klammer, D.
2006-07-15
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Full wave-field reflection coefficient inversion.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2007-12-01
This paper develops a Bayesian inversion for recovering multilayer geoacoustic (velocity, density, attenuation) profiles from a full wave-field (spherical-wave) seabed reflection response. The reflection data originate from acoustic time series windowed for a single bottom interaction, which are processed to yield reflection coefficient data as a function of frequency and angle. Replica data for inversion are computed using a wave number-integration model to calculate the full complex acoustic pressure field, which is processed to produce a commensurate seabed response function. To address the high computational cost of calculating short range acoustic fields, the inversion algorithms are parallelized and frequency averaging is replaced by range averaging in the forward model. The posterior probability density is interpreted in terms of optimal parameter estimates, marginal distributions, and credibility intervals. Inversion results for the full wave-field seabed response are compared to those obtained using plane-wave reflection coefficients. A realistic synthetic study indicates that the plane-wave assumption can fail, producing erroneous results with misleading uncertainty bounds, whereas excellent results are obtained with the full-wave reflection inversion.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali
2016-09-21
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.
Alternating minimisation for glottal inverse filtering
Rodrigo Bleyer, Ismael; Lybeck, Lasse; Auvinen, Harri; Airaksinen, Manu; Alku, Paavo; Siltanen, Samuli
2017-06-01
A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency (F0). The results show the competitive performance of the new method: With high F0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude.
Speaker independent acoustic-to-articulatory inversion
Ji, An
Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.
Topological inversion for solution of geodesy-constrained geophysical problems
Saltogianni, Vasso; Stiros, Stathis
2015-04-01
Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a
Basic principles of forward and inverse geochemical modelization
International Nuclear Information System (INIS)
Gimeno, M.J.; Pena, J.
1994-01-01
Geochemical modeling consists in the application of thermodynamic and physicochemical principles in the hydrogeochemical systems interpretation. It has been developed following two different approaches: a) inverse modeling (or mass balance calculations), which uses observed chemical and isotopic data from waters and rocks to identify geochemical reactions responsible of them, in a quantitative way; and b) forward modeling, which attempts to predict water compositions and mass transfer that can result from hypothesized reactions, from observed initial conditions on water-rock system compositions. Both of them have intrinsic uses and limitations which drive to their use in specific problems. For systems with adequate chemical, isotopic, and mineralogic data, the inverse modeling approach of speciation and mass-balance modeling provides the most direct means of determining quantitative geochemical reaction models. In contrast, for systems with missing or inadequate data, reaction-path modeling provides an a priori method of predicting geochemical reactions. In some cases it is useful to combine forward modeling with the results from inverse models. The mass-balance results determine the net mass transfer along the flow path, but these results are only partially constrained by thermodynamics. The forward modeling can be used both, to prove thermodynamic consistency for them, and to predict water quality at points where there are no enough data. Recent advances in geochemical modeling are focused on finding the most efficient numerical procedures for coupling geochemical reactions (both equilibrium and kinetic) with the hydrodynamic transport equations in compositionally-complex systems, on uncertainty analysis, and on model validation for actual geochemical systems
International Nuclear Information System (INIS)
Volkov, B.A.; Pankratov, O.A.
1986-01-01
Semiconductor inversion junction, presenting the contact of materials in which energy levels corresponding to band edges are mutually inverted. At that, the symmetry of wave function of conductivity band in one material coincides with the symmetry of valence band of the other and vice versa. Specificity of the inversion contact is determined by the presence of electron states independent of the transition band type, which are similar to soliton ones in one-dimensional systems. In the region of the junction the states are characterized by linear massless spectrum nondegenerate in spin. Energy spectrum of the inversion junction for semiconductors of the Pb 1-x Sn y Te x type is considered
Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M
2016-04-15
A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.
From inverse problems to learning: a Statistical Mechanics approach
Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo
2018-01-01
We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.
Oil core microcapsules by inverse gelation technique.
Martins, Evandro; Renard, Denis; Davy, Joëlle; Marquis, Mélanie; Poncelet, Denis
2015-01-01
A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 μm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.
Surface Vibration Reconstruction using Inverse Numerical Acoustics
Directory of Open Access Journals (Sweden)
F. Martinus
2003-05-01
Full Text Available This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. An overview of inverse numerical acoustics is presented and compared with other holography techniques such as nearfield acoustical holography and the Helmholtz equation least squares method. In order to obtain an acceptable reproduction of the surface vibration, several critical factors such as the field point selection and the effect of experimental errors have to be handled properly. Other practical considerations such as the use of few measured velocities and regularization techniques will also be presented. Examples will include a diesel engine, a transmission housing and an engine cover.
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
FAST INVERSION OF SOLAR Ca II SPECTRA
International Nuclear Information System (INIS)
Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.
2015-01-01
We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively