WorldWideScience

Sample records for intrinsic radiosensitivity correlated

  1. The merits of cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high linear energy transfer neutron irradiation

    International Nuclear Information System (INIS)

    Theron, Therina; Slabbert, Jacobus; Serafin, Antonio; Boehm, Lothar

    1997-01-01

    Purpose: Differences in tumor response and intrinsic cellular radiosensitivity make the selection of patients for specific radiation modalities very difficult. The reasons for these differences are still unclear, but are thought to be due to genomic and cellular characteristics. Because radiosensitivities vary between cell cycle stages and because S phase cells are very radioresistant, cell cycle kinetic parameters could be a candidate for predicting intrinsic radiosensitivity. Methods and Materials: A panel of 15 tumor cell lines was analyzed for S phase content and potential doubling times (T pot ), and the influence of these parameters on the intrinsic radiosensitivity to 60 Coγ- and p(66)/Be neutron irradiation was assessed. Results: S phase content and T pot show a statistically significant correlation with the mean inactivation dose for photons. The correlation between cell kinetic parameters and the mean inactivation dose for neutrons showed the same trend as photon sensitivity but this was not found to be statistically significant. Conclusions: S phase content and T pot were identified as suitable criteria for predicting photon sensitivity. It is suggested that cell kinetic parameters could play a role in identifying neutron sensitive tumors if both tumor and normal cells are analyzed

  2. Further studies on the possible relationship between radiation-induced reciprocal translocations and intrinsic radiosensitivity of human tumor cells

    International Nuclear Information System (INIS)

    Virsik-Peuckert, P.; Rave-Fraenk, M.; Schmidberger, H.

    1996-01-01

    Background and purpose. The aim of the present study was to estimate yields of radiation-induced translocations in surviving cells of several human tumor cell lines and in normal diploid human fibroblasts, and to compare these yields with corresponding intrinsic radiosensitivities determined by standard colony-formation assay. Material and methods. The yields of radiation-induced reciprocal translocations were investigated by fluorescence in situ hybridization. Chromosomes no. 1 and no. 4 were 'painted' with fluorescent hybridization probes for whole chromosomes. Translocation yields and cell survival were determined for different doses up to 6 Gy of 200 kV X-rays. Results. We observed a higher frequency of reciprocal translocations in the radiosensitive cells MCF-7 and MDA-MB-436 than in the radioresistant cells CaSki, WiDr, A549 and normal skin fibroblasts. For primary squamous cell carcinoma cells, ZMK-1, an intermediate radiosensitivity and an intermediate translocation yield were observed. The dose-dependence of translocation yields involving chromosomes no. 1 or no. 4 varied in different cell lines: it was linear or linear with a plateau at higher doses. Conclusions. A comparison of the data obtained with chromosomes no. 1 and no. 4 in the investigated cell types, indicates that intrinsic radiosensitivity of different tumor cells observed at the survival level, is correlated with different translocation yields, respectively. This correlation was observed for all cell types investigated, independent of the number of copies of the painted chromosome per cell or the radiation dose. However, for low doses (under 1 Gy), the yields of translocations determined for the individual chromosomes seem to be too low for a discrimination between radioresistant or radiosensitive cells

  3. The merits of DNA content and cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high-LET neutron irradiation

    International Nuclear Information System (INIS)

    Theron, C.S.; Serafin, A.; Bohm, L.; Slabbert, J.P.

    1997-01-01

    Differences of the intrinsic cellular radiosensitivity between tumours make the selection of patients for specific radiation schedules very difficult. The reasons for these variations are still unclear, but are thought to be due to genomic and cellular characteristics. Radiosensitivities vary between cell cycle stages, with S-phase cells being most radioresistant and G2/M phase cells most radiosensitive. It is also well established that most tumour cells have an abnormal ploidy. DNA content and cellular proliferation kinetics therefore could influence the intrinsic radiosensitivity. This prompted us to assess the merits of these parameters as predictors of radiation response. (authors)

  4. In vitro radiosensitivity of primary human fibroblasts. Lack of correlation with acute radiation toxicity in patients with head and neck cancer

    International Nuclear Information System (INIS)

    Rudat, Volker; Dietz, Andreas; Conradt, Christian; Weber, Klaus-Josef; Flentje, Michael

    1997-01-01

    Background and purpose: There is a considerable hope among clinicians and radiobiologists to detect genetically radiosensitive patients prior to radiotherapy. A predictive assay would enable adjustment of the total irradiation dose to the individual at a constant risk of normal tissue complications. In this prospective study, the clonogenic survival assay for primary human fibroblasts to determine radiosensitivity in vitro was evaluated and then correlated with clinically observed acute radiation reactions. Materials and methods: One hundred twenty-five independent survival experiments with primary fibroblasts derived from 63 biopsies from 55 cancer and non-cancer patients were performed. Results: A wide variation of cell survival between biopsies was detected. Statistical analysis revealed a highly significantly larger interindividual than intraindividual variation of SF2 values. However, a considerable scatter of SF2 values in repeated experiments was observed in individual cases. Age, gender, disease status (cancer patient, non-cancer patient) and origin of fibroblasts (skin, periodontal tissue) were demonstrated not to be statistically significant confounding factors on the intrinsic radiosensitivity in vitro. In a prospective study, no correlation of the SF2 and acute reactions in 25 patients with head and neck cancer treated with a primary accelerated radiochemotherapy was detected. Conclusion: Our data show that the clonogenic assay is able to distinguish between intrinsic radiosensitivities of primary human fibroblasts if a statistical approach is used but does not predict acute radiation toxicity

  5. Correlation between the parameters of radiosensitivity in human cancer cell lines

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Kim, Won Dong; Min, Kyung Soo

    1998-01-01

    We conducted clonogenic assay using human cancer cell lines (MKN-45, PC-14, Y-79, HeLa) to investigate a correlation between the parameters of radiosensitivity. Human cancer cell lines were irradiated with single doses of 1, 2, 3, 5, 7 and 10Gy for the study of radiosensitivity and sublethal damage repair capacity was assessed with two fractions of 5Gy separated with a time interval of 0, 1, 2, 3, 4, 6 and 24 hours. Surviving fraction was assessed with clonogenic assay using Sperman-Karber method and mathematical analysis of survival curves was done with linear-quadratic (LQ), multitarget-single hit(MS) model and mean inactivation dose(D). Surviving fractions at 2Gy(SF2) were variable among the cell lines, ranged from 0.174 to 0.85. The SF2 of Y-79 was lowest and that of PC-14 was highest(p<0.05, t-test). LQ model analysis showed that the values of α for Y-79, MKN-45, HeLa and PC-14 were 0.603, 0.356, 0.275 and 0.102 respectively, and those of β were 0.005, 0.016, 0.025 and 0.027 respectively. Fitting to MS model showed that the values of Do for Y-79, MKN-45, HeLa and PC-14 were 1.59, 1.84, 1.88 and 2.52 respectively, and those of n were 0.97, 1.46, 1.52 and 1.69 respectively. The Ds calculated by Gauss-Laguerre method were 1.62, 2.37, 2.61 and 3.95 respectively. So the SF2 was significantly correlated with α, Do and D. Their Pearson correlation coefficiencics were -0.953 and 0.993, 0.999 respectively(p<0.05). Sublethal damage repair was saturated around 4 hours and recovery ratios (RR) at plateau phase ranged from 2 to 3.79. But RR was not correlated with SF2, α, β, Do, D. The intrinsic radiosensitivity was very different among the tested human cell lines. Y-79 was the most sensitive and PC-14 was the least sensitive. SF2 was well correlated with α, Do, and D. RR was high for MKN-45 and HeLa but had nothing to do with radiosensitivity parameters. These basic parameters can be used as baseline data for various in vitro radiobiological experiments

  6. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

    International Nuclear Information System (INIS)

    Bentzen, Soeren M.

    1997-01-01

    assays may be as a guide for the prescription of treatment schedules that are costly or involves a high risk of complications. Examples of this are certain strategies attempting to widen the therapeutic window, the use of very high doses or re-irradiation of a previously irradiated region, or the selection of patients for experimental strategies like the use of biological response modifiers to reduce normal-tissue toxicity. Finally, published data are summarized on the possible correlation between the radiosensitivities of tumor and normal tissues or between the sensitivities of various normal tissues

  7. Determining and predictive factors for the tumor radiosensitivity

    International Nuclear Information System (INIS)

    Hennequin, Ch.; Quero, L.; Hennequin, Ch.; Quero, L.; Favaudon, V.

    2008-01-01

    Many predictive factors of tumor radiosensitivity have been described. Number of clonogenic cells, proliferation rate, hypoxia and intrinsic radiosensitivity are usually considered as the main parameters of tumor control. Intrinsic radiosensitivity is correlated in a first approach to the ability of the cell to detect and repair DNA damages, and so integrity of the different pathways involved in this function: P.A.R.P.-1, X.R.C.C.1, A.T.M., p 53, M.R.N. complex or B.R.C.A.1. Genetic polymorphisms of some of these genes, found in normal lymphocytes, have been correlated to late toxicity of normal tissues. But, in tumors, because of the difficulty to obtain samplings and heterogeneity, accurate molecular analysis is not possible in many cases, and no valuable test of radiosensitivity exist at this moment. For example, T.P. 53 gene has been evaluated in many studies and results regarding its potential as a predictive factor of tumor sensitivity are conflicting. Surviving fraction at 2 Gy (S.F.2) allowed a global evaluation of sensitivity, but the obtention of this parameter often takes a long time and failed in 20 to 40%. Evaluation of double-strand break repair capacity by immuno chemistry quantification of phosphorylated forms of A.T.M., H.2 A.X. or M.R.E.11 is an interesting topic. However, discovery of tumor stem cells in a number of epithelial tumors could revolutionize the understanding of radiosensitivity. Combination of genomic and functional techniques are probably essential to better predict this parameter. (authors)

  8. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  9. Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes

    International Nuclear Information System (INIS)

    Ozsahin, Mahmut; Ozsahin, Huelya; Yuquan, Shi; Larsson, Boerje; Wuergler, Friedrich E.; Crompton, Nigel E. A.

    1997-01-01

    Purpose: An assay for radiosensitivity has numerous applications in the clinic. Avoidance of acute responses, prediction of normal tissue toxicity, and individualization of patient radiotherapy are included among these. We have developed a rapid assay (about 24 h) able to predict intrinsic radiosensitivity of CD4 and CD8 T-lymphocytes based on radiation-induced apoptosis. Methods and Materials: Fresh blood samples (1-2 ml in heparinized tubes) were irradiated with 0-, 2-, and 8-Gy X rays at a dose rate of approximately 3 Gy/min. Following irradiation, the cells were collected and prepared for flow-cytometric analysis and cell sorting. In conjunction with the CellQuest software available with the FACSVantage cell sorter (Becton-Dickinson), two T-lymphocyte types were analyzed on the basis of their cell-specific antigens (CD4 and CD8), and DNA was stained with DAPI. Following the separation of these cell types, radiation-induced cell death was assessed. Cytotoxicity was characterized by gradual degradation of internucleosomal DNA which results in a sub-G1 peak on the DNA histogram, and by the associated loss of surface antigens causing an intermediate positive peak in the antibody histogram. Using the assay, we investigated the interdonor variation in a cohort of 45 healthy adult blood donors and 5 children [one had immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF), and one had ataxia telangiectasia (AT)]. Intradonor variation was assessed with 10 different experiments from a single donor. Results: CD4 and CD8 T-lymphocyte radiosensitivities were correlated (r 0.63 and 0.65 for 2 and 8 Gy, respectively) in 45 adult donors. Both for CD4 and CD8 cells, 2 and 8 Gy irradiation responses showed a good correlation (r 0.77 for both). Interdonor variation was significantly higher than intradonor variation (p < 0.0005) for all CD4 and CD8 data. We observed a decrease in the antigen fluorescence of dying cells, a phenomenon referred to as antigen

  10. Correlation between radiosensitivity of transplanted solid tumor and nutritive condition of host animal

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K [Showa Univ., Tokyo (Japan). School of Medicine

    1975-04-01

    Studies on radiosensitivity of the transplanted tumor were carried out and the following results were obtained: 1. Radiosensitivity of the tumor ran parallel to the growth rate. 2. Malnutrition of the host after irradiation made the tumor radiosensitive, probably because the sublethally damaged tumor cell did not recover. 3. Mitotic index correlated well with radiosensitivity, and the low mitotic index caused by starvation made the tumor cell recover poorly. 4. The DNA synthetic rate measured by means of iodine labeled IUdR did not successfully correlate with the mitotic rate, presumably because of the role of thymidine pool size in this experiment. 5. The serum protein level possibly with the tumor growth, which modified the radiosensitivity. 6. Serum oxygen was difficult to interpret, however, it might be compensated by erythrocytosis in a starved condition.

  11. Is 24-color FISH detection of in-vitro radiation-induced chromosomal aberrations suited to determine individual intrinsic radiosensitivity?

    International Nuclear Information System (INIS)

    Kuechler, A.; Wendt, T.G.; Neubauer, S.; Grabenbauer, G.G.; Sauer, R.; Claussen, U.; Liehr, T.

    2002-01-01

    Background: Reliable determination of intrinsic radiosensitivity in individual patients is a serious need in radiation oncology. Chromosomal aberrations are sensitive indicators of a previous exposure to ionizing irradiation. Former molecular cytogenetic studies showed that such aberrations as an equivalent of intrinsic radiosensitivity can be detected by fluorescence in-situ hybridization (FISH) techniques using whole chromosome painting (wcp) probes. However, only one up to three randomly chosen wcp probes have been applied for such approaches until now. As a random distribution of chromosomal rearrangements along the chromosomes is up to now still controversial, the power of the 24-color FISH approach should be elucidated in the present study. Methods and Material: Lymphocytes derived from lymphoblastoid cell lines of one patient with Nijmegen breakage syndrome (NBS homozygote) and of two NBS heterozygotes and peripheral blood lymphocytes of two controls were analyzed. Samples of each patient/control were irradiated in vitro with 0.0 Gy, 0.7 Gy or 2.0 Gy prior to cultivation. Chromosomal aberrations were analyzed in detail and quantified by means of 24-color FISH as an expression of the individual intrinsic radiosensitivity. Results: 24-color FISH analyses were done in a total of 1,674 metaphases. After in-vitro irradiation, 21% (0.7 Gy) or 57% (2.0 Gy) of the controls' cells, 15% (0.7 Gy) or 53% (2.0 Gy) of the heterozygotes' cells and 54% (0.7 Gy) or 79% (2.0 Gy) of the homozygote's cells contained aberrations. The highest average rates of breaks per mitosis [B/M] (0.7 Gy: 1.80 B/M, 2.0 Gy: 4.03 B/M) and complex chromosomal rearrangements [CCR] (0.7 Gy: 0.20 CCR/M, 2.0 Gy: 0.47 CCR/M) were observed in the NBS patient. Moreover, the proportion of different aberration types after irradiation showed a distinct increase in the rate of CCR combined with a decrease in dicentrics in the NBS homozygote. Conclusion: To come to a more complete picture of radiation

  12. Correlation of RAD51 and radiosensitization of methotrexate

    International Nuclear Information System (INIS)

    Du Liqing; Bai Jianqiang; Liu Qiang; Wang Yan; Zhao Peng; Chen Fenghua; Wang Hong; Fan Feiyue

    2012-01-01

    Objective: To evaluate the correlation between homologous recombination repair protein RAD51 and methotrexate-enhanced radiosensitivity. Methods: Western blot and RT-PCR assays were used to detect RAD51 expression in HOS osteosarcoma cells exposed to γ-ray irradiation alone and in combination with methotrexate. Colony formation assay was used to test the survival fraction of HOS cells exposed to γ-rays and methotrexate. Results: Methotrexate inhibited both protein and RNA expressions of RAD51, and the combination of radiation and methotrexate enhanced the inhibition of RAD51 expression. Moreover, transfection of cells with RAD51 gene decreased cellular sensitivity to methotrexate and γ-rays. The sensitizer enhancement ratios after irradiation in combination with methotrexate were 1.51 and 0.99, respectively. Methotrexate was a preferred radiosensitizer to HOS cell. Conclusions: RAD51 might be involved in the methotrexate-enhanced radiosensitivity. (authors)

  13. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    International Nuclear Information System (INIS)

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C.; Taylor, Janet; Miller, Crispin J.; Davidson, Susan; Sanjose, Silvia de; Bosch, Xavier; Stern, Peter L.; West, Catharine M.L.

    2013-01-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA 25 ) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenic assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity

  14. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C. [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom); Taylor, Janet [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom); Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); Miller, Crispin J. [Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); Davidson, Susan [Christie National Health Service Foundation Trust, Manchester (United Kingdom); Sanjose, Silvia de; Bosch, Xavier [Cancer Epidemiology Research Program, Catalan Institute of Oncology, L' Hospitalet de Llobregat (Spain); Stern, Peter L. [Immunology Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); West, Catharine M.L., E-mail: Catharine.West@manchester.ac.uk [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom)

    2013-04-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA{sub 25}) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenic assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity.

  15. Effect of electroporation on radiosensitization with cisplatin in two cell lines with different chemo- and radiosensitivity

    International Nuclear Information System (INIS)

    Kranjc, S.; Cemazar, M.; Grosel, A.; Pipan, Z.; Sersa, G.

    2003-01-01

    Aim. Radiosensitization with cisplatin can be enhanced by electroporation of cells and tumours. The aim of this study was to extend our previous studies on two carcinoma tumour models with different chemo- and radiosensitivity in order to evaluate whether this treatment is effective also on less chemo- and radiosensitive tumour cells. Materials and methods. This in vitro study was performed on carcinoma SCK and EAT-E cells. The cytotoxicity of three-modality treatment consisting of cisplatin, electroporation and irradiation was determined by the clonogenic assay. Results. The radiosensitizing effect of cisplatin on the two cell lines was greatly enhanced by electroporation. By this combined treatment, less chemo and radiosensitive EAT-E cells were rendered as sensitive as more chemo and radiosensitive SCK cells. Conclusion. The enhancement of cisplatin-induced radiosensitization of cells by electroporation could be beneficially used in the treatment of intrinsically less chemo- and radiosensitive tumours. (author)

  16. Enhanced intrinsic radiosensitivity after treatment with stereotactic radiosurgery for an acoustic neuroma

    International Nuclear Information System (INIS)

    Adams, Gerard; Martin, Olga A.; Roos, Daniel E.; Lobachevsky, Pavel N.; Potter, Andrew E.; Zacest, Andrew C.; Bezak, Eva; Bonner, William M.; Martin, Roger F.; Leong, Trevor

    2012-01-01

    Enhanced radiosensitivity is an uncommon phenomenon attributable to deficient DNA repair after radiotherapy which can be assessed with the γ-H2AX assay. Reports of radiosensitivity after stereotactic radiosurgery (SRS) are uncommon. We describe a case where the clinical, radiological and laboratory findings suggest enhanced radiosensitivity after SRS for an acoustic neuroma.

  17. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    International Nuclear Information System (INIS)

    Lawton, P.A.

    1995-01-01

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author)

  18. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, P.A.

    1995-12-31

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author).

  19. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Roth, B.; Menendez, P.; Bonomi, M.; Mairal, L.

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro gel electrophoresis (comet) assays could be suitable approaches to evaluate individual radiosensitivity in vitro. The MN assay is an established cytogenetic technique to evaluate intrinsic cell radiosensitivity in tumor cells and lymphocytes; comet assay is a sensitive and rapid method for measuring DNA damage and repair in individual cells. The aims of this study were: 1) To assess the in vitro radiosensitivity of peripheral blood lymphocytes from two groups of cancer patients (retrospectively and prospectively studied), using MN and comet assays, in comparison with the observed clinical response; and 2) To test the predictive potential of both techniques. Materials and methods: 38 cancer patients receiving radiation therapy were enrolled in this study. The tumor sites were: head and neck (n 25) and cervix (n = 13). Nineteen patients were evaluated about 6-18 month after radiotherapy (retrospective group) and 19 patients were evaluated prior, mid-way and on

  20. Catecholamines of the body tissues and radiosensitivity of rodents

    International Nuclear Information System (INIS)

    Grayevskaya, V.M.; Zolotariova, N.N.

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole 57 Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed

  1. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  2. Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma

    International Nuclear Information System (INIS)

    Levine, E.L.; Renehan, A.; Gossiel, R.; Davidson, S.E.; Roberts, S.A.; Chadwick, C.; Wilks, D.P.; Potten, C.S.; Hendry, J.H.; Hunter, R.D.; West, C.M.L.

    1995-01-01

    Apoptosis is an important mechanism of cell death in tumours and it is seen both prior to and following radiotherapy. In this study patients with proven carcinoma of the cervix had measurement made of the percentage of apoptotic cells (apoptotic index or AI) in pre-therapy biopsies. Measurements of intrinsic radiosensitivity (SF2), already shown to be a predictor of outcome, had previously been made on the same pre-therapy biopsies. Mitotic index (MI) and Ki-67 antigen staining were also recorded as markers for proliferation. Patients were divided into those with an AI above or below the median and in general increasing apoptosis was associated with poor prognosis. The 5-year survival rate for tumours with an AI below the median was 79% and was significantly greater than the rate of 47% for those with an AI above the median (p = 0.003). There was also a significantly increased 5-year local recurrence-free rate for patients with an AI below the median compared with those with an AI above the median (79 versus 61%, p = 0.012). In addition, AI and SF2 acted as independent prognostic indicators. Patients with both an SF2 and AI value above the median did badly (25% 5-year survival, 46% local control) compared with those with an SF2 and AI below the median (80% 5-year survival, 100% local control). Apoptosis showed correlation with MI (n = 66, r = 0.34, p = 0.002) and cell staining for the Ki-67 antigen (n = 57, r = 0.25, p = 0.03), but neither MI nor Ki-67 were related to patient outcome. This suggests that while apoptosis may be a reflection of tumour proliferation this cannot in itself explain the ability of apoptosis to predict clinical outcome for this series of patients. The study raises the possibility of AI and SF2 being used together as predictors of tumour response to radiotherapy

  3. Catecholamines of the body tissues and radiosensitivity of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Grayevskaya, V M; Zolotariova, N N [AN SSSR, Moscow. Inst. Morfologii Zhivotnykh

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole < Wistar rat < wild mouse < CC/sub 57/Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed.

  4. Axin gene methylation status correlates with radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Yang, Lian-He; Stoecker, Maggie; Wang, Endi; Xu, Ke; Wang, En-Hua; Han, Yang; Li, Guang; Xu, Hong-Tao; Jiang, Gui-Yang; Miao, Yuan; Zhang, Xiu-Peng; Zhao, Huan-Yu; Xu, Zheng-Fan

    2013-01-01

    We previously reported that Axin1 (Axin) is down-regulated in many cases of lung cancer, and X-ray irradiation increased Axin expression and inhibited lung cancer cells. The mechanisms, however, were not clear. Four lung cancer cell lines were used to detect the methylation status of Axin with or without X-ray treatment. Real-time PCR was used to quantify the expression of Axin, and western blot analysis was applied to measure protein levels of Axin, β-catenin, Cyclin D1, MMP-7, DNMTS, MeCP2 and acetylated histones. Flow cytometric analysis, colony formation assay, transwell assay and xenograft growth experiment were used to study the biological behavior of the cells with hypermethylated or unmethylated Axin gene after X-ray treatment. Hypermethylated Axin gene was detected in 2 of 4 cell lines, and it correlated inversely with Axin expression. X-ray treatment significantly up-regulated Axin expression in H446 and H157 cells, which possess intrinsic hypermethylation of the Axin gene (P<0.01), but did not show up-regulation in LTE and H460 cells, which have unmethylated Axin gene. 2Gy X-ray significantly reduced colony formation (from 71% to 10.5%) in H157 cells, while the reduction was lower in LTE cells (from 71% to 20%). After X-ray irradiation, xenograft growth was significantly decreased in H157 cells (from 1.15 g to 0.28 g) in comparison with LTE cells (from 1.06 g to 0.65 g). Significantly decreased cell invasiveness and increased apoptosis were also observed in H157 cells treated with X-ray irradiation (P<0.01). Down-regulation of DNMTs and MeCP2 and up-regulation of acetylated histones could be detected in lung cancer cells. X-ray-induced inhibition of lung cancer cells may be mediated by enhanced expression of Axin via genomic DNA demethylation and histone acetylation. Lung cancer cells with a different methylation status of the Axin gene showed different radiosensitivity, suggesting that the methylation status of the Axin gene may be one important factor

  5. Comparative radiosensitivity in the class insecta

    International Nuclear Information System (INIS)

    Willard, W.K.; Cherry, D.S.

    1975-01-01

    A 'radiosensitivity index' (LT 50 /mean longevity) was correlated with the mean longevity and dry weight of 37 insect species (both sexes of 12 species) representing eight orders. Curvilinear regression analysis relating radiosensitivity to mean longevity and mean dry weight indicated that 46.3% of the observed variation could be attributed to longevity and 32.6% to the dry weight of the species. In general, large long-lived adults were more radiosensitive than small short-lived adults. Correlation of the phylogeny of insect orders and order groupings with the radio-sensitivity index was found to be poor. However, when the index was related to longevity, there was a tendency for species comprising the major orders investigated to occur in groups along the predicted curve. (author)

  6. The inherited basis of human radiosensitivity

    International Nuclear Information System (INIS)

    Gatti, R.A.

    2001-01-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity

  7. The inherited basis of human radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, R.A. [Univ. of California, School of Medicine, Los Angeles, CA (United States). Experimental Pathology

    2001-11-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity.

  8. Can intrinsic human tissue radiosensitivity be correlated with late responding gene RNA expression in white blood cells using a 96 gene micro-array?

    International Nuclear Information System (INIS)

    Schmidt, D.; Streeter, O.; Dagliyan, G.; Hill, C.K.; Williams-Hill, D.M.

    2003-01-01

    Radiation is widely used in the treatment of cancers. It is generally believed there is a sigmoid relationship between radiation dose and probability of cure. There is also a sigmoid relationship between radiation dose and normal tissue response. Generally total radiation dose to a tumor is limited by normal tissue tolerance. It has been postulated that up to 70% of inter-individual differences in radiosensitivity may be due to genetic predisposition (Tureson I. Et al, IJROBP, 1996;36:1065). However, to date, clinicians have no way of estimating or predicting an individual's normal tissue response to radiation exposure. Thus the prescribed dose cannot be tailored to an individuals actual expected response but is an empirically derived compromise based on experience. Although a number of studies using cellular techniques have shown that human cell radiosensitivity can be measured, none of these can be performed quick enough to be used in the clinic. In this study we are looking at gene expression that occurs some 24 hours after an exposure compared to expression before any exposure in peripheral white blood cells from patients undergoing radiotherapy for various tumors. The patients will be followed for overt radiation sensitivity by standard criteria by clinicians in the Department. The main aims are: does RNA expression level in a 96 gene micro-array vary before and after radiation and do these changes in RNA expression correlate with the objective measurements of acute radiation response observed by the clinicians in the patients. The USC IRB recently approved the protocol and human consent for this study to enter 50 patients in the next 12 months using mostly head and neck and endometrial cancer patients where we can get a normal tissue sample to examine as well as the blood sample. We will present the rationale, protocol, methods and early results in detail

  9. A review of human cell radiosensitivity in vitro

    International Nuclear Information System (INIS)

    Deschavanne, Patrick J.; Fertil, Bernard

    1996-01-01

    The survival curves of 694 human cell lines irradiated in exponentially growing phase in vitro were collected from the literature. Among them, 271 were derived from tumors, 423 were nontransformed fibroblasts and other normal cell strains from healthy people or people with some genetic disorders. Seventy-six different cell types are identified, and a specific radiosensitivity could be associated with each, using D-bar and surviving fraction at 2 Gy. Technical factors such as culture medium, feeder cells, and scoring method were found to affect intrinsic radiosensitivity. In particular, the cell type is not a discriminating factor when cells are studied in agar. Results obtained with cells irradiated in agar must be used cautiously, depending on how the cells were prepared for the experiments. The use of feeder cells narrows the range of radiosensitivity of human cells. For cells irradiated as monolayer, it was possible to build a scale of radiosensitivity according to cell type, ranging, in terms of D-bar from 0.6 Gy for the most sensitive cell lines to more than 4 Gy for the most resistant. Considering that, in most cases, we could estimate the variation of radiosensitivity within each cell type, our classification among cell types can be used by researchers to place their results in the context of the literature

  10. Correlation between the organism response to acute hypoxia and individual radiosensitivity of rats

    International Nuclear Information System (INIS)

    Grigor'ev, A.Yu.; Silin, D.Ya.

    1988-01-01

    A study was made of a correlation between the response of basal metabolism to acute hypoxia and the life span of rats after irradiation resulting in the development of a cerebral form of radiation sickness. The more radiosensitive animals consumed a larger amount of oxygen, exhaled a smaller amount of carbon dioxide and showd an increased normal expiratory exchange per minute. After the effect of acure hypoxia all the indices under study revealed an opposite picture

  11. Re-evaluation of in vitro radiosensitivity of human fibroblasts of different genetic origins

    Energy Technology Data Exchange (ETDEWEB)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Fertil, B.

    1986-08-01

    Statistical analysis of the radiosensitivity of 204 survival curves of non-transformed human fibroblast cell strains of different genetic origins was made using the multi-target one-hit model (characterized by parameters eta and D/sub 0/), the surviving fraction for a 2 Gy dose (S/sub 2/) and the mean inactivation dose (D-bar). D-bar is found to be the parameter for characterization of anomalous radiosensitivity linked to a genetic disorder and discrimination between groups of cell strains of differing radiosensitivity. It allows the description of a range of 'normal' radiosensitivity for control fibroblasts and classification of genetic disorders as a function of their mean radiosensitivity expressed in terms of D-bar. Nine groups of cell strains appear to exhibit radiosensitivity differing significantly from the controls: seven groups are hypersensitive (ataxia-telengiectasia homozygotes and heterozygotes, Cockayne's syndrome, Gardner's syndrome, 5-oxoprolinuria homozygotes and heterozygotes, Fanconi's anaemia) and two groups are more radioresistant (fibroblasts from retinoblastoma patients and individuals with chromosome 13 anomalies). Since the coupled parameter eta and D/sub 0/ failed to discriminate between the radiosensitivity of the different genetic groups, the use of D-bar to make an intercomparison of intrinsic radiosensitivity of non-transformed human fibroblasts is recommended. (U.K.).

  12. Re-evaluation of in vitro radiosensitivity of human fibroblasts of different genetic origins

    International Nuclear Information System (INIS)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Fertil, B.

    1986-01-01

    Statistical analysis of the radiosensitivity of 204 survival curves of non-transformed human fibroblast cell strains of different genetic origins was made using the multi-target one-hit model (characterized by parameters eta and D 0 ), the surviving fraction for a 2 Gy dose (S 2 ) and the mean inactivation dose (D-bar). D-bar is found to be the parameter for characterization of anomalous radiosensitivity linked to a genetic disorder and discrimination between groups of cell strains of differing radiosensitivity. It allows the description of a range of 'normal' radiosensitivity for control fibroblasts and classification of genetic disorders as a function of their mean radiosensitivity expressed in terms of D-bar. Nine groups of cell strains appear to exhibit radiosensitivity differing significantly from the controls: seven groups are hypersensitive (ataxia-telengiectasia homozygotes and heterozygotes, Cockayne's syndrome, Gardner's syndrome, 5-oxoprolinuria homozygotes and heterozygotes, Fanconi's anaemia) and two groups are more radioresistant (fibroblasts from retinoblastoma patients and individuals with chromosome 13 anomalies). Since the coupled parameter eta and D 0 failed to discriminate between the radiosensitivity of the different genetic groups, the use of D-bar to make an intercomparison of intrinsic radiosensitivity of non-transformed human fibroblasts is recommended. (U.K.)

  13. The selection of patients for accelerated radiotherapy on the basis of tumor growth kinetics and intrinsic radiosensitivity

    International Nuclear Information System (INIS)

    Tucker, S.L.; Kang-Sow Chan

    1990-01-01

    Mathematical modelling was used to reach qualitative conclusions concerning the relative rate of local tumor control that might be achieved by using accelerated fractionation to treat only the patients with the most rapidly growing rumors, compared with the control rated that could be expected from either conventional or accelerated radiotherapy alone. The results suggest that concomitant boost therapy is equally or more effective than conventional dose fractionation for all tumors, regardless of their growth kinetics. For tumors with very short clonogen doubling times, CHART (continuous hyperfractionated accelerated radiotherapy) may be even more effective than concomitant boost treatment, but CHART is less effective than conventional or concomitant boost therapy for tumors with longer clonogen doubling times. Thus, there is a rationale for using a predictive assay of tumor clonogen doubling times to identify the patients who should be treated with CHART. However, improvements in local tumor control resulting from concomitant boost treatment or the selective use of CHART are not likely to be apparent in the population as a whole, because the overall control rated are largely determined by refractory tumors having little chance of control with any of the treatments and by higher responsive tumors that are likely to be controlled regardless of the treatment choice. Differences in control rated with different treatment strategies are most apparent in the stochastic fraction of the population, which excludes those patients for whom there is either very little change (e.g. 99%) of achieving local control with both treatments. The stochastic fraction can be approximated by excluding those patients with the most radioresistant and the most radiosensitive tumors, since intrinsic tumor radiosensitivity appears to be the single most important factor determining treatment outcome. (author). 32 refs.; 4 figs.; 5 tabs

  14. Radiation could induce p53-independent and cell cycle - unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells

    International Nuclear Information System (INIS)

    Didelot, C.; Mirjolet, J.F.; Barberi-Heyob, M.; Ramacci, C.; Merlin, J.L.

    2002-01-01

    The effect of chemoresistance induction in radio sensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G 2 /M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G 2 /M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G 2 /M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis. the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model. (author)

  15. Hormonal status can modify radiosensitivity

    International Nuclear Information System (INIS)

    Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    In preliminary experiments, we have demonstrated that pregnancy increases chromosome radiosensitivity in the mouse at the end of gestation. Blood obtained from women at various times of pregnancy was then exposed to ionizing radiations in vitro. By comparison to non pregnant women, an increase in chromosome breakages was observed in metaphases from lymphocytes. Immediately after delivery, this increase of radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase of radiosensitivity. Thus, pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy and the risks of radiation exposure of pregnant women have to be considered not only n relation to the child, but also to their own hypersensitivity. (authors)

  16. Radiosensitivity and genes

    Energy Technology Data Exchange (ETDEWEB)

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  17. Radiosensitivity and genes

    International Nuclear Information System (INIS)

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  18. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    Ricoul, Michelle; Sabatier, Laure; Dutrillaux, Bernard

    1997-01-01

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  19. Evaluation of a MTT assay in measurement of radiosensitizing effect

    International Nuclear Information System (INIS)

    Higuchi, Keiko; Mitsuhashi, Norio; Saitoh, Jun-ichi; Maebayashi, Katsuya; Sakurai, Hideyuki; Akimoto, Tetsuo; Niibe, Hideo

    1999-01-01

    The usefulness of a MTT assay by measuring the radiosensitizing effect of caffeine on rat yolk sac tumor cell line with a mutant-type p53 in vitro was evaluated. A rat yolk sac tumor cell line with a mutant-type p53, NMT-1R, was used in this study. The radiosensitivity of NMT-1R with or without caffeine was measured with a MTT assay. The results were compared with those by a clonogenic assay. Caffeine at a concentration of 2.0 mM which released radiation-induced G 2 block demonstrated a radiosensitizing effect, but caffeine at a concentration of 0.5 mM did not. The radiosensitizing effect of caffeine measured by a MTT assay correlated with that measured by a clonogenic assay. A MTT assay was useful to measure radiosensitivity and/or a radiosensitizing effect in vitro. (author)

  20. Radiosensitivity of higher plants

    International Nuclear Information System (INIS)

    Feng Zhijie

    1992-11-01

    The general views on radiosensitivity of higher plants have been introduced from published references. The radiosensitivity varies with species, varieties and organs or tissues. The main factors of determining the radiosensitivity in different species are nucleus volume, chromosome volume, DNA content and endogenous compounds. The self-repair ability of DNA damage and chemical group of biological molecules, such as -SH thiohydroxy of proteins, are main factors to determine the radiosensitivity in different varieties. The moisture, oxygen, temperature radiosensitizer and protector are important external factors for radiosensitivity. Both the multiple target model and Chadwick-Leenhouts model are ideal mathematical models for describing the radiosensitivity of higher plants and the latter has more clear significance in biology

  1. Correlating telomere length and radiosensitivity in cancer patients

    International Nuclear Information System (INIS)

    Sprung, C.N.; Davey, D.S.P.; McKay, M.J.

    2003-01-01

    Approximately three percent of cancer patients suffer from significant side effects in normal tissue exposed to ionising radiation during radiotherapy (RT). Although RT is an effective therapy for cancer treatment, the treatment dose intensity is generally restricted to minimize the incidence of these severe reactions. This imposes tumour control limitations on most patients. A major goal of radiation biology research is to develop efficient predictive assays that could identify these hyper-radiosensitive (hRS) individuals prior to treatment. This predictive ability would enable the individualisation of RT doses, which should result in improvement of tumour control rates and a reduction in the incidence of RT side effects. Recent studies have reported a correlation between cellular and organismal RS and shortened telomeres. Interestingly, a number of DNA repair proteins have been found to be associated with telomeres. Additionally, individuals with cancer-proneness and RS syndromes, such as ataxia telangiectasia and Fanconi anemia, have shortened telomeres. In animal models, mutations in DNA repair genes such as Ku, has resulted in shortened telomeres. We have a unique bank of blood samples and lymphoblastoid cell lines (LCLs) from over 50 hRS patients. We have used traditional methods of telomere length assessment and a clinically relevant method, flow cytometry fluorescence in situ hybridisation (flow-FISH) to determine the telomere length in both LCLs and peripheral blood mononuclear cells from the hRS patients. Results from the screening of these samples will be presented. If clinical hRS can be correlated with shortened telomeres in some patients, flow-FISH may have utility as part of a pre-treatment hRS assay for use in the clinic

  2. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  3. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  4. Age-dependent radiosensitivity of mouse oocytes

    International Nuclear Information System (INIS)

    Koehler, C.

    1976-01-01

    It has been shown that there are three distinct phases of radiosensitivity in oocytes of prepubertal mice: a period of rapidly increasing sensitivity between 0 and 4 days of age; a period of consistent, high sensitivity between 5 and 18 days of age; and a period of decreasing sensitivity from 19 to at least 21 days of age. Two distinct phases have been demonstrated for the rate of population decline of the oocytes of primary follicles: an initial period of rapid loss from 0 to 4 days of age; and a period of much slower loss from 5 through 23 days of age. Correlations have been drawn between the first two phases of radiosensitivity and morphological changes in the oocyte, and between the third phase of radiosensitivity and endocrinological changes in the maturing animal. The reaction of oocytes to radiation has been separated into two categories: immediate death (within 24 hours); and delayed death (over the entire lifespan of the animal)

  5. Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer

    International Nuclear Information System (INIS)

    Brock, W.A.; Wike, J.; Tucker, S.L.

    1995-01-01

    To determine if the radiosensitivity of normal human skin fibroblasts, measured in early passage cultures, is significantly correlated with the degree of acute or late normal skin damage in patients treated for breast cancer with radiotherapy. To test assay reproducibility, SF2 values derived from paired biopsies of the same patient (12 cases) were compared. A reasonably good correlation (p = 0.075) was obtained for SF2s determined by high dose-rate irradiations with immediated plating, but not for delayed plating or low dose-rate treatments. The median coefficient of variation in the replicate SF2s after high dose-rate treatment and immediate plating was 13%, suggesting that the poor correlation in paired SF2 values is due to the magnitude of the uncertainty in SF2 relative to the overall spread in SF2 values between patients (CV = 28%). Individual SF2 values and averaged values from patients with data from two biopsies were compared with the acute and late clinical reactions. A significant negative correlation was found between SF2 and relative clinical response, but only when averaged high dose-rate SF2 values and telangiectasia scores were compared. There was no significant correlation between average SF2 values and acute responses or between individual SF2 measurements and either the acute or late clinical response. The results of this study suggest that the degree of late telangiectasia is at least partially dependent upon the intrinsic cellular radiosensitivity of normal fibroblasts, but the relationship is not clear cut. Multiple replicate assays are necessary to obtain reliable estimates of fibroblast SF2 values using current techniques. 20 refs., 3 figs., 3 tabs

  6. In vitro radiosensitivity of six human cell lines. A comparative study with different statistical models

    International Nuclear Information System (INIS)

    Fertil, B.; Deschavanne, P.J.; Lachet, B.; Malaise, E.P.

    1980-01-01

    The intrinsic radiosensitivity of human cell lines (five tumor and one nontransformed fibroblastic) was studied in vitro. The survival curves were fitted by the single-hit multitarget, the two-hit multitarget, the single-hit multitarget with initial slope, and the quadratic models. The accuracy of the experimental results permitted evaluation of the various fittings. Both a statistical test (comparison of variances left unexplained by the four models) and a biological consideration (check for independence of the fitted parameters vis-a-vis the portion of the survival curve in question) were carried out. The quadratic model came out best with each of them. It described the low-dose effects satisfactorily, revealing a single-hit lethal component. This finding and the fact that the six survival curves displayed a continuous curvature ruled out the adoption of the target models as well as the widely used linear regression. As calculated by the quadratic model, the parameters of the six cell lines lead to the following conclusions: (a) the intrinsic radiosensitivity varies greatly among the different cell lines; (b) the interpretation of the fibroblast survival curve is not basically different from that of the tumor cell lines; and (c) the radiosensitivity of these human cell lines is comparable to that of other mammalian cell lines

  7. Normal cellular radiosensitivity in an adult Fanconi anaemia patient with marked clinical radiosensitivity

    International Nuclear Information System (INIS)

    Marcou, Yiola; D'Andrea, Andrew; Jeggo, Penelope A.; Plowman, Piers N.

    2001-01-01

    Background: Fanconi anaemia is a rare disease associated with cellular sensitivity to chemicals (e.g. mitomycin C and diepoxybutane); variable but mild cellular radiosensitivity has also been reported. Materials and methods: A 32-year-old patient with Fanconi anaemia and tonsillar carcinoma, treated by radiotherapy, was found to exhibit profound clinical radiosensitivity. Confluent, ulcerating oropharyngeal mucositis developed after a conventionally fractionated dose of 34 Gy and healing was incomplete by 2 months after cessation of therapy. Results: Cellular radiosensitivity assays and RPLD studies from this patient did not suggest any major detectable radiosensitivity. Conclusion: There is a discrepancy between the observed clinical radiosensitivity and the usual 'predictive' radiosensitivity assays in this patient with Fanconi anaemia

  8. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms

    International Nuclear Information System (INIS)

    Saez Angulo, R. M.; Davila, C. A.

    1974-01-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs

  9. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    International Nuclear Information System (INIS)

    Chang, Sei Kyung; Shin, Hyun Soo; Seong, Jin Sil; Kim, Sung Hee

    2006-01-01

    We investigated whether a relationship exists between tumor control dose 50 (TCD 50 ) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD 50 , TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 ∼ 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD 50 , TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21 WAF1/CIP1 , BAX, Bcl-2, Bcl-x L , Bcl-x S , and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD 50 or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD 50 , TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, ρ = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD 50 (ρ = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21 WAF1/CIP1 and p34 showed a significant correlation either with TCD 50 (R = 0.893, ρ = 0.041 and R = 0.904, ρ = 0.035) or with TGD (R = -0.922, ρ 0.026 and R = -0.890, ρ = 0.043). The tumors with high constitutive expression levels of p21 WAF1/CIP1 or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of p21 WAF1/CIP1 or p34 can be used as biological

  10. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sei Kyung; Shin, Hyun Soo [Bundang CHA General Hospital, Seongnam (Korea, Republic of); Seong, Jin Sil; Kim, Sung Hee [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2006-06-15

    We investigated whether a relationship exists between tumor control dose 50 (TCD{sub 50}) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD{sub 50}, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 {approx} 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD{sub 50}, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21{sup WAF1/CIP1}, BAX, Bcl-2, Bcl-x{sub L}, Bcl-x{sub S}, and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD{sub 50} or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD{sub 50}, TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, {rho} = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD{sub 50} ({rho} = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21{sup WAF1/CIP1} and p34 showed a significant correlation either with TCD{sub 50} (R = 0.893, {rho} = 0.041 and R = 0.904, {rho} = 0.035) or with TGD (R = -0.922, {rho} 0.026 and R = -0.890, {rho} = 0.043). The tumors with high constitutive expression levels of p21{sup WAF1/CIP1} or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The

  11. Radiosensitivity of Bombyx mori embryos and its modification by thermal shock

    International Nuclear Information System (INIS)

    Agaev, F.A.; Zakrzhevskaya, D.T.; Yusifov, N.I.; Gaziev, A.I.; AN Azerbajdzhanskoj SSR, Baku

    1991-01-01

    Radiosensitivity of Bombyx mori embryos on days 3-4 of their development is more than 10 times higher than that of 7-9 day embryos. The rate of DNA synthesis in the embryos correlates with their radiosensitivity. Heat treatment (40 deg C, 60 min) of embryos just before γ-irradiation increases their radioresistance (DMF=+1.6), whereas such a treatment immediately after irradiation reduces the survival rate of embryos as compared to the controls irradiated without heat treatment (DMA=-1.5). The radiomodifying effect of the thermal shock on the Bombyx mori embryos is the same with exposure at both the radioresistant and the radiosensitive stage of their development. However, it is more pronounced at the radiosensitive stage

  12. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  13. Text Summarization Evaluation: Correlating Human Performance on an Extrinsic Task with Automatic Intrinsic Metrics

    National Research Council Canada - National Science Library

    President, Stacy F; Dorr, Bonnie J

    2006-01-01

    This research describes two types of summarization evaluation methods, intrinsic and extrinsic, and concentrates on determining the level of correlation between automatic intrinsic methods and human...

  14. Nicotinamide and carbogen: relationship between pO2 and radiosensitivity in three tumour lines

    International Nuclear Information System (INIS)

    Martin, L.M.; Thomas, C.D.; Guichard, M.

    1994-01-01

    The effects of carbogen breathing, nicotinamide injection and their combination on tumour radiosensitivity were correlated with changes in tumour O 2 tension to determine the relationship between radiosensitivity and measured pO 2 . The radiosensitivity (in vivo-in vitro colony assay) and O 2 tension (computerized pO 2 histograph KIMOC 6650) of two human xenografted tumours (HRT18 and NA11 +) and one murine tumour (EMT6) were measured under similar experimental conditions. (author)

  15. Radiosensitivity of neuroblastoma

    International Nuclear Information System (INIS)

    Deacon, J.M.; Wilson, P.; Steel, G.G.

    1985-01-01

    Neuroblastoma is known to be clinically radioresponsive: it is possible to obtain local tumour control with relatively small doses of radiation. The main therapeutic problem, however, is one of metastatic disease, where in spite of modern combination chemotherapy, the prognosis remains poor. Systemic therapy with either drugs or radiation is dose-limited by toxicity to bone marrow stem cells. However, the advent of new technology which enables tumour cells to be removed from infiltrated marrow prior to autologous bone marrow ''rescue'' allows dose escalation, and makes the use of systemic irradiation in the treatment of stage IV disease feasible. The objective of this study was to investigate the radiobiology of neuroblastoma in detail, including intrinsic cellular radiosensitivity, repair capacity, and extrinsic dose-modifying factors which may affect tumour response in vivo. Cells at three levels of organisation were used: single cell suspensions multicellular tumour spheroids; and xenografts grown in immune-suppressed mice

  16. Radiosensitizers and protectors

    International Nuclear Information System (INIS)

    Nori, D.; Kim, J.H.; Hilaris, B.; Chu, F.C.

    1987-01-01

    Over the past decades, various physical, biological, and clinical strategies have been investigated to improve the therapeutic effectiveness of radiation. One of these efforts has been to develop chemical radiosensitizers and protectors. In the broadest sense, a radiation sensitizer is any agent that enhances the cytolethal effects of radiation. Drugs that selectively protect tissues from radiation injury are under active study. This chapter briefly reviews the present status of chemical radiosensitizers and protectors. The discussion of sensitizers will be limited to the oxic cell and hypoxic cell radiosensitizers and their clinical applications

  17. Inter-subject Functional Correlation Reveal a Hierarchical Organization of Extrinsic and Intrinsic Systems in the Brain.

    Science.gov (United States)

    Ren, Yudan; Nguyen, Vinh Thai; Guo, Lei; Guo, Christine Cong

    2017-09-07

    The brain is constantly monitoring and integrating both cues from the external world and signals generated intrinsically. These extrinsically and intrinsically-driven neural processes are thought to engage anatomically distinct regions, which are thought to constitute the extrinsic and intrinsic systems of the brain. While the specialization of extrinsic and intrinsic system is evident in primary and secondary sensory cortices, a systematic mapping of the whole brain remains elusive. Here, we characterized the extrinsic and intrinsic functional activities in the brain during naturalistic movie-viewing. Using a novel inter-subject functional correlation (ISFC) analysis, we found that the strength of ISFC shifts along the hierarchical organization of the brain. Primary sensory cortices appear to have strong inter-subject functional correlation, consistent with their role in processing exogenous information, while heteromodal regions that attend to endogenous processes have low inter-subject functional correlation. Those brain systems with higher intrinsic tendency show greater inter-individual variability, likely reflecting the aspects of brain connectivity architecture unique to individuals. Our study presents a novel framework for dissecting extrinsically- and intrinsically-driven processes, as well as examining individual differences in brain function during naturalistic stimulation.

  18. Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer

    International Nuclear Information System (INIS)

    Brock, William A.; Tucker, Susan L.; Geara, Fady B.; Wike, Jennifer; Peters, Lester J.; Turesson, Ingela; Nyman, Jan

    1995-01-01

    averaged high dose-rate SF2 values and telangiectasia scores were compared. There was no significant correlation between average SF2 values and acute responses or between individual SF2 measurements and either the acute or late clinical response. Conclusion: The results of this study suggest that the degree of late telangiectasia is at least partially dependent upon the intrinsic cellular radiosensitivity of normal fibroblasts, but the relationship is not clear cut. Multiple replicate assays are necessary to obtain reliable estimates of fibroblast SF2 values using current techniques

  19. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Finnon, Paul; Kabacik, Sylwia; MacKay, Alan; Raffy, Claudine; A’Hern, Roger; Owen, Roger; Badie, Christophe; Yarnold, John; Bouffler, Simon

    2012-01-01

    Background and purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. Materials and methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. Results: Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0 Gy), irradiated (4 Gy) or radiation response (4–0 Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. Conclusions: Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.

  20. Radiosensitizing effect of RHOB protein in melanoma cells

    International Nuclear Information System (INIS)

    Notcovich, C.; Grissi, C.; Sánchez Crespo, R.; Delgado, D.C.; Molinari, B.; Ibañez, I.L.; Durán, H.

    2015-01-01

    Melanoma cells are highly resistant to chemo or radiotherapy. DNA damage agents such as ionizing radiation induce apoptosis involving RhoB protein. In a great variety of tumors the levels of this protein decrease along tumor progression. RhoB is considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. Considering the aforementioned, the aim of this study was to characterize the radiobiological response of different human melanoma cell lines, and to evaluate the possible correlation between RhoB expression and radiosensitivity. The human melanoma cell lines A375, MELJ and SB2 were gamma-irradiated ( 137 Cs). Survival curves were obtained by clonogenic assay and fitted to the Linear-Quadratic (LQ) model. Radiosensitivity was evaluated by surviving fraction at 2 Gy (SF2). Results showed that MELJ was significantly more radioresistant (SF2=0.71) than A375 and SB2 (0.29 and 0.21 respectively. Expression levels of RhoB, evaluated by western blot, increased in all lines vs. non-irradiated control. SB2, the most radiosensitive cells, showed a greater induction (p<0.05) of RhoB. Finally, to study whether RhoB has a radiosensitizing effect, these cell lines were stably transfected with a wild type RhoB construction, a constitutively active RhoB mutant V14, or with the empty plasmid as control. For all cell lines higher expression level of this protein was found in RhoB or V14 transfected cells (p<0.05). Sensitization was evaluated by SF2. Significant radiosensitization was demonstrated in clones derived from A375 and SB2 ((p<0.05), while for MELJ cells, radio-sensitization was only found in clones overexpressing V14. In conclusion, the increase of RhoB in melanoma cell lines, either by radiation or transfection has a radiosensitizing effect. Thus, we propose RhoB modulation as a potential therapeutic tool to improve the radiation response of radioresistant melanoma. (authors)

  1. Radiosensitivity in plants

    International Nuclear Information System (INIS)

    Nauman, A.F.

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations

  2. Radiosensitivity in plants

    Energy Technology Data Exchange (ETDEWEB)

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.

  3. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor...... radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B......) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA...

  4. Intrinsic and Extrinsic Motivational Orientations in the Classroom: Age Differences and Academic Correlates

    Science.gov (United States)

    Lepper, Mark R.; Corpus, Jennifer Henderlong; Iyengar, Sheena S.

    2005-01-01

    Age differences in intrinsic and extrinsic motivation and the relationships of each to academic outcomes were examined in an ethnically diverse sample of 797 3rd-grade through 8th-grade children. Using independent measures, the authors found intrinsic and extrinsic motivation to be only moderately correlated, suggesting that they may be largely…

  5. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  6. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  7. Premature chromosome condensation and cell separation studies in biopsies from head and neck tumors for radiosensitivity prediction

    International Nuclear Information System (INIS)

    Begg, Adrian C.; Sprong, Debbie; Balm, Alfons; Coco Martin, Jose M.

    2002-01-01

    Background and purpose: Intrinsic radiosensitivity of tumor cells from biopsies, assayed by colony formation after in vitro irradiation, has shown significant correlations with outcome after radiotherapy. Alternatives to the colony assay have been sought due to its long and cumbersome nature. We have previously shown good correlations between colony formation and radiation-induced chromosome aberrations in human tumor cell lines. In addition, we and others have shown on cell lines that premature chromosome condensation (PCC) induced with phosphatase inhibitors can be used to aid rapid assessment of aberrations in interphase cells, reducing the selection problem with metaphases. The purpose of this study was to translate the in vitro results to human cancer, with the aim of developing a rapid assay for intrinsic radiosensitivity. Methods and results: The problem of admixtures of normal and malignant cells in biopsies was addressed using magnetic bead separation (MACS) employing antibodies to human fibroblasts. This proved to be a reliable and efficient method, enriching mean tumor cell fractions from 20 to almost 80%. PCC could be induced in human normal and tumor cell lines, and in sorted or unsorted suspensions from biopsies, with the phosphatase inhibitor calyculin A. Maximum PCCs were achieved after 1-week culture of biopsy-derived cells. Mean fractions of aneuploid tumor cell PCCs were, however, less than 1%. PCCs were predominantly from S and G2 phase, of which only G2 were scorable for aberrations. Almost no G1 PCCs were found. More scorable PCCs were found after 1 h of calyculin A than metaphases after 5 h of colcemid, but these were calculated to be too few to yield reliable estimates of chromosome damage after radiation. Conlcusions: Tumor cells can be satisfactorily separated from fibroblasts in fresh suspensions from cancer biopsies, but poor growth of tumor cells in short term culture and low yields of PCCs combine to prevent the routine use of such

  8. Chromosomal radiosensitivity in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Milenkova, Maria; Milanov, Ivan; Kmetska, Ksenia; Deleva, Sofia; Popova, Ljubomira; Hadjidekova, Valeria; Groudeva, Violeta; Hadjidekova, Savina; Domínguez, Inmaculada

    2013-01-01

    Highlights: • We studied radiosensitivity to in vitro γ-irradiated lymphocytes from MS patients. • Immunotherapy in RRMS patients reduced the yield of radiation induced MN. • The group of treated RRMS accounts for the low radiosensitivity in MS patients. • Spontaneous yield of MN was similar in treated and untreated RRMS patients. - Abstract: Multiple sclerosis is a clinically heterogeneous autoimmune disease leading to severe neurological disability. Although during the last years many disease-modifying agents as treatment options for multiple sclerosis have been made available, their mechanisms of action are still not fully determined. In the present study radiosensitivity in lymphocytes of patients with relapsing–remitting multiple sclerosis, secondary progressive multiple sclerosis and healthy controls was investigated. Whole blood cultures from multiple sclerosis patients and healthy controls were used to analyze the spontaneous and radiation-induced micronuclei in binucleated lymphocytes. A subgroup of patients with relapsing–remitting multiple sclerosis was treated with immunomodulatory agents, interferon β or glatiramer acetate. The secondary progressive multiple sclerosis patients group was not receiving any treatment. Our results reveal that the basal DNA damage was not different between relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls. No differences between gamma-irradiation induced micronuclei frequencies in binucleated cells from relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls were found either. Nevertheless, when we compared the radiation induced DNA damage in binucleated cells from healthy individuals with the whole group of patients, a reduction in the frequency of micronuclei was obtained in the patients group. Induced micronuclei yield was significantly lower in the irradiated samples from treated relapsing–remitting multiple

  9. Chromosomal radiosensitivity in patients with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Milenkova, Maria; Milanov, Ivan; Kmetska, Ksenia [III Neurological Clinic, University Hospital Saint Naum, Sofia (Bulgaria); Deleva, Sofia; Popova, Ljubomira; Hadjidekova, Valeria [Laboratory of Radiation Genetics, NCRRP, Sofia (Bulgaria); Groudeva, Violeta [Department of Diagnostic Imaging, University Hospital St. Ekaterina, Sofia (Bulgaria); Hadjidekova, Savina [Department of Medical Genetics, Medical University, Sofia (Bulgaria); Domínguez, Inmaculada, E-mail: idomin@us.es [Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 (Spain)

    2013-09-15

    Highlights: • We studied radiosensitivity to in vitro γ-irradiated lymphocytes from MS patients. • Immunotherapy in RRMS patients reduced the yield of radiation induced MN. • The group of treated RRMS accounts for the low radiosensitivity in MS patients. • Spontaneous yield of MN was similar in treated and untreated RRMS patients. - Abstract: Multiple sclerosis is a clinically heterogeneous autoimmune disease leading to severe neurological disability. Although during the last years many disease-modifying agents as treatment options for multiple sclerosis have been made available, their mechanisms of action are still not fully determined. In the present study radiosensitivity in lymphocytes of patients with relapsing–remitting multiple sclerosis, secondary progressive multiple sclerosis and healthy controls was investigated. Whole blood cultures from multiple sclerosis patients and healthy controls were used to analyze the spontaneous and radiation-induced micronuclei in binucleated lymphocytes. A subgroup of patients with relapsing–remitting multiple sclerosis was treated with immunomodulatory agents, interferon β or glatiramer acetate. The secondary progressive multiple sclerosis patients group was not receiving any treatment. Our results reveal that the basal DNA damage was not different between relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls. No differences between gamma-irradiation induced micronuclei frequencies in binucleated cells from relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls were found either. Nevertheless, when we compared the radiation induced DNA damage in binucleated cells from healthy individuals with the whole group of patients, a reduction in the frequency of micronuclei was obtained in the patients group. Induced micronuclei yield was significantly lower in the irradiated samples from treated relapsing–remitting multiple

  10. Genetic components for radiosensitivity. Gene expression in radiosensitive monocygotic twins. Final report

    International Nuclear Information System (INIS)

    Dikomey, Ekkehard

    2012-01-01

    The underlying hypothesis of this project was that the variation of individual radiosensitivity is determined by the different expression of single gens. This concept was tested using 60 monozygotic twin pairs, followed by an evaluation with 80 prostate cancer patients. Radiosensitivity was assessed for both G0- as well as G2-phase using chromosomal assays. G0- radiosensitivity is determined by lethal chromosomal aberrations and reflects the individual amount of cell killing, while G2-sensitivity is determined by chromatid breaks and is taken as an indicator of individual cancer risk. For both populations, G0- and G2-radiosensitivity are characterized by substantial variation with a CV of 11 and 14% or 27 and 21%, respectively. While the mean G0-sensitivity is the same for both populations, there is a slight difference for G2. The slightly higher value of G2-sensitivity found for prostate cancer patients might result from the higher age of this group. For both populations gene expression profiles were determined using the Affymetrix chip HG-U133+2.0. Overall gene expression was characterized by a huge variation covering more than four decades. However, for single genes, expression showed little variation with CV generally ranging only between 2 and 8%. Analysis of data using several different methods revealed that variation of both G0- as well as G2-radiosensitivity cannot be ascribed to the different expression of single genes. For twins, random forests can be used to identify 8 to 10 genes than are relevant either for G0- or G2-radiosensitivity. However, these genes cannot be confirmed by an evaluation with 80 prostate cancer patients. This finding clearly demonstrates that the hypothesis, due to which variation of individual radiosensitivity is caused by different expression of single genes, has to be rejected. It appears more likely that this parameter is determined by complex interactions of several genes in functional networks. (orig.)

  11. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  12. Radiosensitizers: rationale and potential

    International Nuclear Information System (INIS)

    Brown, J.M.

    1981-01-01

    This paper briefly reviews agents that are capable of sensitizing hypoxic cells to radiation and chemotherapeutic agents. The first part is a synopsis of the development of hypoxic radiosensitizers, which concludes that misonidazole can be effective against human tumors. Unfortunately, neurotoxicity limits its effectiveness in humans because the dose that can be given in conjunction with daily fractionated radiation is five to ten times lower than is required for full radiosensitization of the hypoxic cells. The second part covers our recent efforts to develop a drug that does not produce such limiting neurotoxicity. The primary rationale of our program was to synthesize a drug with a short plasma half-life that was too hydrophilic to cross the blood-brain barrier but was able to penetrate tumors and radiosensitize hypoxic cells. From this program, a new drug, SR-2508, has been found that is as efficient as misonidazole in its radiosensitizing ability, but is four to ten times less toxic. Finally, the potential of radiosensitizers not only as agents that can sensitize tumor cells to radiation, but also as agents that can specifically sensitize tumors to chemotherapeutic agents, is discussed. In addition, these drugs may be potential cytotoxic agents that produce toxicity only in solid tumors

  13. Development of novel radiosensitizers for cancer therapy

    CERN Document Server

    Akamatsu, K

    2002-01-01

    The novel radiosensitizers for cancer therapy, which have some atoms with large X-ray absorption cross sections, were synthesized. The chemical and radiation (X-rays, W target, 100kVp) toxicities and the radiosensitivities to LS-180 human colon adenocarcinoma cells were also evaluated. 2,3,4,5,6-pentabromobenzylalcohol (PBBA) derivatives were not radiosensitive even around the maximum concentration. On the other hand, the hydrophilic sodium 2,4,6-triiodobenzoate (STIB) indicated meaningful radiosensitivity to the cells. Moreover, the membrane-specific radiosensitizers, cetyl fluorescein isthiocyanate (cetyl FITC), cetyl eosin isothiocyanate (cetyl br-FITC), cetyl erythrosin isothiocyanate (cetyl I-FITC), which aim for the membrane damage by X-ray photoabsorption on the target atoms, were localized in the plasma membrane. As the results of the colony formation assay, it was found that both cetyl FITC are similarly radiosensitive. In this report, we demonstrate the synthetic methods of the radiosensitizers, the...

  14. Analysis of the factors in determining radiosensitivity in mammalian cells by using radio-sensitive and -resistant clones isolated from HeLa S3 cells in vitro

    International Nuclear Information System (INIS)

    Nikaido, Osamu; Horikawa, Masakatsu

    1976-01-01

    The factors in determining radiosensitivity of cultured mammalian cells were analysed by using two clones each having different radiosensitivities. The radiosensitive clones were isolated from HeLa S3 cells by the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-treatment, X-irradiation (200 R) and 5-bromodeoxyuridine (BUdR)-visible light method. On the other hand, the radioresistant clone was isolated by single X-irradiation (2000 R) from MNNG-treated HeLa S3 cell population. The radiosensitivities expressed in D sub(o) and D sub(q) values were 110 and 140 R in radiosensitive SM-1a clone and 180 and 230 R in radioresistant RM-1b clone respectively. The biological and biochemical characteristics of both clones such as the distribution of chromosome numbers, formation and rejoining of single strand breaks in DNA caused by X-irradiation, non-protein sulfhydryl (NPSH) and apparent total sulfhydryl (APSH) contents were measured. Among the characteristics analysed, different contents of NPSH in the cell were well correlated to their daiosensitivities among the original HeLa S3 cells, SM-1a and RM-1b clone. Additionally, it was found that the radioresistant L.P3 Co-3 cells isolated by Tsuboi et al. from the original mouse L.P3 cells by means of serial irradiation with 60 Co γ-rays have more abundant NPSH than the original L.P3 cells. From these results, it can be concluded that the amount of NPSH play the main role in determining radiosensitivity in cultured mammalian cells. (auth.)

  15. AT-406, an IAP inhibitor, activates apoptosis and induces radiosensitization of normoxic and hypoxic cervical cancer cells.

    Science.gov (United States)

    Lu, Jing; Qin, Qin; Zhan, Liang-Liang; Liu, Jia; Zhu, Hong-Cheng; Yang, Xi; Zhang, Chi; Xu, Li-Ping; Liu, Zhe-Ming; Wang, Di; Cui, He-Qing; Meng, Ciu-Ciu; Cai, Jing; Cheng, Hong-Yan; Sun, Xin-Chen

    2014-01-01

    IAP antagonists increased the antitumor efficacy of X-irradiation in some types of cancers, but their effects on hypoxic cancer cells remain unclarified. We aims to investigate the radiosensitizing effect of an IAP inhibitor AT-406 on cervical cancer cell lines under both normoxia and hypoxia conditions. Hela and Siha cells were treated to investigate the effects of drug administration on cell proliferation, apoptosis, and radiosensitivity. Western blot analysis was used to determine the role of AT-406 in inhibition of IAPs. The pathway of apoptosis was characterized by caspases activity assay. AT-406 potently sensitized Hela cells but not Siha cells to radiation under normoxia. Notably, the radiosensitizing effect of AT-406 on hypoxic cells was more evident than on normoxic cells in both cell lines. Further mechanism studies by western blot showed that under normoxia AT-406 decreased the level of cIAP1 in Hela cells in a dose-dependent manner; while additional downregulation of XIAP expression was induced by AT-406 treatment under hypoxia in both cell lines. Finally, AT-406 works on both extrinsic death receptor and intrinsic mitochondrial apoptosis pathways to activate apoptosis. Totally, AT-406 acts as a strong radiosensitizer in human cervical cancer cells, especially in hypoxic condition.

  16. Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia

    International Nuclear Information System (INIS)

    Ryu, Samuel; Brown, Stephen L.; Kim, Sang-Hie; Khil, Mark S.; Kim, Jae Ho

    1996-01-01

    Purpose: Recent cell culture studies by us and others suggest that some human carcinoma cells are more sensitive to heat than are rodent cells following mild hyperthermia. In studying the cellular mechanism of enhanced thermosensitivity of human tumor cells to hyperthermia, prostatic carcinoma cells of human origin were found to be more sensitive to mild hyperthermia than other human cancer cells. The present study was designed to determine the magnitude of radiosensitization of human prostatic carcinoma cells by mild hyperthermia and to examine whether the thermal radiosensitization is related to the intrinsic thermosensitivity of cancer cells. Methods and Materials: Two human prostatic carcinoma cell lines (DU-145 and PC-3) and other carcinoma cells of human origin, in particular, colon (HT-29), breast (MCF-7), lung (A-549), and brain (U-251) were exposed to temperatures of 40-41 deg. C. Single acute dose rate radiation and fractionated radiation were combined with mild hyperthermia to determine thermal radiosensitization. The end point of the study was the colony-forming ability of single-plated cells. Results: DU-145 and PC-3 cells were found to be exceedingly thermosensitive to 41 deg. C for 24 h, relative to other cancer cell lines. Ninety percent of the prostatic cancer cells were killed by a 24 h heat exposure. Prostatic carcinoma cells exposed to a short duration of heating at 41 deg. C for 2 h resulted in a substantial enhancement of radiation-induced cytotoxicity. The thermal enhancement ratios (TERs) of single acute dose radiation following heat treatment 41 deg. C for 2 h were 2.0 in DU-145 cells and 1.4 in PC-3 cells. The TERs of fractionated irradiation combined with continuous heating at 40 deg. C were similarly in the range of 2.1 to 1.4 in prostate carcinoma cells. No significant radiosensitization was observed in MCF-7 and HT-29 cells under the same conditions. Conclusion: The present data suggest that a significant radiosensitization of

  17. DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack; Ostrowski, Michal

    2013-01-01

    Gamma-ray bursts (GRBs), which have been observed up to redshifts z ≈ 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission

  18. Interspecies variations inchromosomal radiosensitivity and repair among mammals

    International Nuclear Information System (INIS)

    Leonard, A.

    1988-01-01

    A review is presented of studies comparing relative chromosomal radiosensitivity of different mammalian species with the objective of assessing the induction of chromosomal aberrations in somatic cells following acute irradiation, the in vivo survival of peripheral blood lymphocytes carrying chromosomal abberations, and the correlation between chromosomal radiosensitivity of peripheral blood lymphocytes and of male germ cells. The ultimate aim was to find whether animal cell experiments can be used to replace experiments in man. The studies showed that the differences in radiosensitivity of the peripheral blood lymphocytes in the most commonly used animals and in man are insignificant and the results in animals are qualitatively and quantitatively representative of what can be expected for man. The life of peripheral blood lymphocytes carrying chromosomal abberations, however, is very short in most experimental animals. The animals thus cannot be used in studies of chromosome damage resulting from chronic irradiation. The studies also show that the yields of dicentric chromosomes in peripheral blood lymphocytes and of reciprocal translocations induced in germ cells are characteristic of each species and animal experiments cannot replace direct studies in man in this respect. (L.O.). 3 tabs., 40 refs

  19. Radiosensitivity of grapevines. Empirical modelling of the radiosensitivity of some clones to x-ray irradiation. Pt. 1

    International Nuclear Information System (INIS)

    Koeroesi, F.; Jezierska-Szabo, E.

    1999-01-01

    Empirical and formal (Poisson) models were utilized, applying experimental growth data to characterize the radiosensitivity of six grapevine clones to X-ray irradiation. According to the radiosensitivity constants (k), target numbers (n) and volumes, GR 37 doses and energy deposition, the following radiosensitivity order has been found for various vine brands: Chardonnay clone type < Harslevelue K. 9 < Koevidinka K. 8 < Muscat Ottonel clone type < Irsai Oliver K. 11 < Cabernet Sauvignon E. 153. The model can be expanded to describe the radiosensitivity of other plant species and varieties, and also the efficiency of various radioprotecting agents and conditions. (author)

  20. Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition.

    LENUS (Irish Health Repository)

    Baeyens, A

    2002-12-02

    The chromosomal radiosensitivity of breast cancer patients with a known or putative genetic predisposition was investigated and compared to a group of healthy women. The chromosomal radiosensitivity was assessed with the G2 and the G0-micronucleus assay. For the G2 assay lymphocytes were irradiated in vitro with a dose of 0.4 Gy (60)Co gamma-rays after 71 h incubation, and chromatid breaks were scored in 50 metaphases. For the micronucleus assay lymphocytes were exposed in vitro to 3.5 Gy (60)Co gamma-rays at a high dose rate or low dose rate. 70 h post-irradiation cultures were arrested and micronuclei were scored in 1000 binucleate cells. The results demonstrated that the group of breast cancer patients with a known or putative genetic predisposition was on the average more radiosensitive than a population of healthy women, and this with the G2 as well as with the high dose rate and low dose rate micronucleus assay. With the G2 assay 43% of the patients were found to be radiosensitive. A higher proportion of the patients were radiosensitive with the micronucleus assay (45% with high dose rate and 61% with low dose rate). No correlation was found between the G2 and the G0-micronucleus chromosomal radiosensitivity. Out of the different subgroups considered, the group of the young breast cancer patients without family history showed the highest percentage of radiosensitive cases in the G2 (50%) as well as in the micronucleus assay (75-78%).

  1. Predictive radiosensitivity tests in human lymphocytes

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Mairal, L.; Roth, B.; Menendez, P.; Bonomi, M.

    2004-01-01

    comparing expected MN frequencies (calibration curve from healthy donors) with values observed after in vitro irradiation. One over-reactor and patients that did not develop late effects were also evaluated through comet assay. Blood samples were in vitro irradiated with 2 Gy and DNA repair capacity was evaluated for initial damage and after different periods of incubation at 37 C degree. DNA damage and repair capacity were quantified by the Olive tail moment. MN assay resulted suitable for the evaluation of individual cytogenetic response to radiotherapy in body areas having a large blood volume and flow or including bone marrow, suggesting that lymphocyte remixing contributes to an homogenisation of the total absorbed dose. In the prospective evaluation, the MN assay correlated with the clinical late toxicity, over 2 Gy equivalent whole-body dose. Therefore, the predictive potential of MN assay results limited by the requirement to accumulate 2 Gy equivalent whole-body dose to find a substantial difference in the DNA repair capacity, measured through k parameter. In the retrospective evaluations both, spontaneous and in vitro radiation-induced micronucleus frequencies were significantly increased, compared with the expected values from the calibration curve, in patients who had developed late tissue reactions. The assessment of the repair kinetics in the lymphocytes of the patient with severe late effects supports the comet assay as a useful indicator for individual radiosensitivity. As a conclusion, MN and comet tests could be suitable predictive assays to evaluate individual radiosensitivity in vitro, contributing with the detection of patients that would develop late adverse reactions. This knowledge would provide further applications on radiation protection field. (author)

  2. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy.

    Science.gov (United States)

    Forker, L J; Choudhury, A; Kiltie, A E

    2015-10-01

    Radiotherapy is an essential component of treatment for more than half of newly diagnosed cancer patients. The response to radiotherapy varies widely between individuals and although advances in technology have allowed the adaptation of radiotherapy fields to tumour anatomy, it is still not possible to tailor radiotherapy based on tumour biology. A biomarker of intrinsic radiosensitivity would be extremely valuable for individual dosing, aiding decision making between radical treatment options and avoiding toxicity of neoadjuvant or adjuvant radiotherapy in those unlikely to benefit. This systematic review summarises the current evidence for biomarkers under investigation as predictors of radiotherapy benefit. Only 10 biomarkers were identified as having been evaluated for their radiotherapy-specific predictive value in over 100 patients in a clinical setting, highlighting that despite a rich literature there were few high-quality studies for inclusion. The most extensively studied radiotherapy predictive biomarkers were the radiosensitivity index and MRE11; however, neither has been evaluated in a randomised controlled trial. Although these biomarkers show promise, there is not enough evidence to justify their use in routine practice. Further validation is needed before biomarkers can fulfil their potential and predict treatment outcomes for large numbers of patients. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  4. Tumour radiosensitization with the halogenated pyrimidines 5'-bromo-and 5'-iododeoxyuridine

    International Nuclear Information System (INIS)

    Epstein, A.H.; Cook, J.A.; Goffman, T.; Glatstein, E.

    1993-01-01

    The authors review studies of the use of iododeoxyuridine (IdUrd) and bromodeoxyuridine as radiosensitizers and attempt to correlate the clinical outcome for patients treated with radiation and IdUrd with the extent of halogenated pyrimidine cellular uptake and incorporation. (U.K.)

  5. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Science.gov (United States)

    Takeda, Kazuyoshi; Sumiyoshi, Tomiki; Matsumoto, Madoka; Murayama, Kou; Ikezawa, Satoru; Matsumoto, Kenji; Nakagome, Kazuyuki

    2018-01-01

    The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT), one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT), not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia. PMID:29922185

  6. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2018-06-01

    Full Text Available The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT, one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT, not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia.

  7. Radiosensitive xrs-5 and parental CHO cells show identical DNA neutral filter elution dose-response: implications for a relationship between cell radiosensitivity and induction of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Iliakis, George; Okayasu, Ryuichi; Seaner, Robert

    1988-01-01

    The purpose of this work was to investigate a possible correlation between DNA elution dose-response and cell radiosensitivity. For this purpose neutral (pH 9.6) DNA filter elution dose-response curves were measured with radiosensitive xrs-5 and the parental Chinese hamster ovary (CHO) cells in the logarithmic and plateau phase of growth. No difference was observed between the two cell types in the DNA elution dose-response curves either in logarithmic or plateau phase, despite the dramatic differences in cell radiosensitivity. This observation indicates that the shape of the DNA elution dose-response curve and the shape of the cell survival curve are not causally related. It is proposed that the shoulder observed in the DNA elution dose-response curve reflects either partial release of DNA from chromatin, or cell cycle-specific alterations in the physicochemical properties of the DNA. (author)

  8. Radiosensitivity of amphibia

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, S [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-04-01

    Radiosensitivity (semi-lethal dose) and the damages of radiation in the amphibia were studied by /sup 3/H-TdR from the standpoint of cellular kinetics. The cell mitosis cycle of the amphibia required a long time. The functional cell regeneration and the physiological function of the cell were slower than in mice. The reason for the low radiosensitivity of the amphibia was discussed relative to the environmental factor of temperature. Because the amphibia change body temperature according to environmental temperature, the danger of radiation damage, the actual lethal dose and the period of survival were influenced by the environmental temperature. Acute radiation danger to amphibia was essentially the same as the danger to mammalia, both young and old. LD/sub 50/ irradiation effects varied among the species. The cell regeneration, turn over, and the mitosis in the amphibia, were affected by environmental temperature, however, the courses proceeded slower than those of the mammalia. Therefore, the question remains, whether the comparison of the radiosensitivities of amphibia with other classes of animal by LDsub(50/30) irradiation was appropriate.

  9. THE GRAVITATIONAL SHEAR-INTRINSIC ELLIPTICITY CORRELATION FUNCTIONS OF LUMINOUS RED GALAXIES IN OBSERVATION AND IN THE ΛCDM MODEL

    International Nuclear Information System (INIS)

    Okumura, Teppei; Jing, Y. P.

    2009-01-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σ θ = 34.9 +1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  10. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells

    Directory of Open Access Journals (Sweden)

    Kim Han

    2012-07-01

    Full Text Available Abstract Background In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. Results Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1 was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2. Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. Conclusions Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that

  11. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  12. Trypsinization and the radiosensitivity of mitotic and log phase Chinese hamster V79 cells exposed to 250 kVp X-rays

    International Nuclear Information System (INIS)

    Reddy, N.M.S.; Stevenson, A.F.G.; Lange, C.S.

    1989-01-01

    The authors studied the influence of trypsin-induced morphological changes on the x-radiosensitivity of cells plated at either low (4-600/cm 2 ) or high (2 x 10 4 /cm 2 ) density and grown overnight before treatments. Trypsin treatment induced contraction and rounding of spread cells. The results suggest that: (1) trypsin-induced cell contraction affects the ability of cells to repair radiation damage, (2) spread cells are better able to repair potential lethal damage (PLD) than rounded cells, (3) immediate plating survival of cells in high-density cultures may not represent their intrinsic radiosensitivity and (4) cell-to-cell contact is not necessary for log phase cells to repair PLD. (author)

  13. The radiosensitivity of nile tilapia (Oreochromis niloticus) fingerlings

    International Nuclear Information System (INIS)

    Reyes, Michael Joseph T.; Velasco, Pia Victoria V.

    2000-04-01

    The nile tilapia (Oreochromis niloticus), a very popular fish commercially in the Philippines, was studied to determine its radiosensitivity and to see its potential as a biological indicator in aquatic ecosystems. Nile tilapia was seen to be radiosensitive. The fish were exposed to gamma-irradiation and chromosomal aberrations were induced. The various types of aberrations seen were chromatid gaps, chromosome gaps, chromatid fragments, dicentric rings, fusions, despiralizations and translocations. Among the aberrations observed, dicentric rings, fusions and chromosome gaps were strongly correlated with dosage, with only the dicentric rings increasing steadily with increasing dosage. In the course of the study, the lethal dosage 50 for nile tilapia with 18 days was determined and it was observed at 2.0 krad. The modal chromosome number was also established at 2n=44 with a karyotype exhibiting 22 pairs of acrocentric chromosomes with 2 pairs of marker chromosomes present. (Author)

  14. The radiosensitivity of nile tilapia (Oreochromis niloticus) fingerlings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Michael Joseph T; Velasco, Pia Victoria V

    2000-04-01

    The nile tilapia (Oreochromis niloticus), a very popular fish commercially in the Philippines, was studied to determine its radiosensitivity and to see its potential as a biological indicator in aquatic ecosystems. Nile tilapia was seen to be radiosensitive. The fish were exposed to gamma-irradiation and chromosomal aberrations were induced. The various types of aberrations seen were chromatid gaps, chromosome gaps, chromatid fragments, dicentric rings, fusions, despiralizations and translocations. Among the aberrations observed, dicentric rings, fusions and chromosome gaps were strongly correlated with dosage, with only the dicentric rings increasing steadily with increasing dosage. In the course of the study, the lethal dosage{sub 50} for nile tilapia with 18 days was determined and it was observed at 2.0 krad. The modal chromosome number was also established at 2n=44 with a karyotype exhibiting 22 pairs of acrocentric chromosomes with 2 pairs of marker chromosomes present. (Author)

  15. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  16. Radiosensitization, mutagenicity, and toxicity of Escherichia coli by several nitrofurans and nitroimidazoles. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chessin, H.; McLaughlin, T.; Mroczkowski, Z.; Rupp, W.D.; Low, K.B.

    1978-08-01

    Representative nitrofurans (nitrofurantoin, nifuroxime, NF-167, NF-269) and nitroimidazoles (metronidazole, misonidazole) were found to sensitize hypoxic RecA/sup -/ Escherichia coli cells to X irradiation. These compounds were also mutagenic to E. coli using a UvrA/sup -/ strain as a test system, and toxic at high concentrations, using several strains differing in their repair capacity. However, the relative degrees of radiosensitization, mutagenicity, and toxicity, for the various compounds, were not simply correlated, suggesting that potential radiosensitizers with fewer side effects could be screened using bacteria.

  17. ADPRT inhibitors and hyperthermia as radiosensitizers

    International Nuclear Information System (INIS)

    Jonsson, G.G.

    1985-01-01

    Hyperthermia given in combination with gamma radiation has given considerable improvement in the therapeutic results for treatment of malignant tumors. The mechanism behind the hyperthermia effect is probably operative at the tissue level as well as at the molecular level. The metabolism of NAD + in relation to the activity of the chromosomal enzyme ADP-ribosyl transferase (ADPRT) has been studied as a possible molecular mechanism for this effect. The ADPRT activity was measured after radiosensitization with both hyperthermia and nicotinamide, which is a potent inhibitor of ADPRT. The results indicate that hyperthermia can improve the effect of radiotherapy by reducing the supply of NAD + , which is a co-substrate for ADPRT, while nicotinamide functions as a radiosensitizing agent by direct inhibition of the enzyme. The hypothesis is discussed in the thesis where inhibition of ADPRT might increase the radiosensitivity because the radiation-induced DNA damage can not be repaired with normal efficiency. The function of nicotinamide as a radiosensitizer was verified by studies on C3H mice with transplanted spontaneous mammary tumors. Because nicotinamide is not toxic, it seems quite attractive to test this vitamin as a radiosensitizing agent against human tumors. (251 refs.) (author)

  18. Glyoxylic compounds as radiosensitizers of hypoxic cells

    International Nuclear Information System (INIS)

    Cornago, M.P.; Lopez Zumel, M.C.; Alvarez, M.V.; Izquierdo, M.C.

    1990-01-01

    The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect

  19. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  20. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  1. Individual differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood

    International Nuclear Information System (INIS)

    Oriya, Asami; Takahashi, Kenji; Kashiwakura, Ikuo; Inanami, Osamu; Kuwabara, Mikinori; Miura, Toshiaki; Abe, Yoshinao

    2008-01-01

    The aim of this study is to evaluate the individual differences in radiosensitivity of lineage-committed myeloid hematopoietic progenitors, colony-forming cells (CFC), detected in steady-state human peripheral blood (PB). Mononuclear cells were prepared from the buffy-coat of 30 individuals PB, and were assayed for CFC by semi-solid culture supplemented with cytokines. X irradiation was performed in the range of 0.5-4 Gy at a dose rate of about 80 cGy/min. The mean number of hematopoietic progenitor cells is 5866±3408 in 1 ml of buffy-coat, suggesting that the erythroid progenitor cells are the major population. The total CFC radiosensitivity parameter D 0 and n value are 1.18±0.24 and 1.89±0.98, respectively. Using a linear regression analysis, a statistically significant correlation is observed between the D 0 value and the surviving fraction at 4 Gy (r=0.611 p 0 parameter and the level of antioxidants, plasma uric acid, plasma bilirubin, and intracellular glutathione. The present study demonstrates that there are large individual differences in the radiosensitivity of hematopoietic progenitor cells as detected in steady-state human PB. These differences demonstrate almost no correlation with plasma or intracellular antioxidants. The prediction of individual differences in radiosensitivity of CFC can only be measured by 4 Gy irradiation. (author)

  2. Radiosensitivity related to neuroendocrine and endodermal differentation in lung carcinoma lines

    International Nuclear Information System (INIS)

    Duchesne, G.; Casoni, A.; Pera, M.

    1988-01-01

    A panel of human lung carcinoma lines was studied with respect to hormone production and intermediate filament expression to distinguish between endodermal and neuroendocrine differentation. An index of the degree of neuroendocrine differentiation of each line was derived from the presence or absence of hormone production, cytokeratins, neurofilaments and an embryonic endodermal cell marker, which allowed identification of three groups showing high, intermediate or low neuroendocrine expression. This grouping correlated well with the in vitro radiosensitivity of the lines, those expressing pure neuroendocrine features being significantly more radiosensitive than those with an endodermal phenotype, with the intermediate group having intermediate sensitivity. Use of such an index might predict those patients likely to benefit from the use of radiotherapy in their management. 30 refs.; 3 figs.; 3 tabs

  3. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  4. Tumour radiosensitization with the halogenated pyrimidines 5'-bromo-and 5'-iododeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, A.H.; Cook, J.A.; Goffman, T. (National Cancer Inst., Bethesda, MD (United States)); Glatstein, E. (Texas Univ., Dallas, TX (United States). Southwestern Medical Center)

    1993-02-01

    The authors review studies of the use of iododeoxyuridine (IdUrd) and bromodeoxyuridine as radiosensitizers and attempt to correlate the clinical outcome for patients treated with radiation and IdUrd with the extent of halogenated pyrimidine cellular uptake and incorporation. (U.K.).

  5. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Science.gov (United States)

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  6. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    International Nuclear Information System (INIS)

    Williams, Jerry R.; Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-01-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses (∼2 Gy HDR, ∼6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications

  7. Radiosensitivity of cells

    International Nuclear Information System (INIS)

    Alexander, P.

    1960-01-01

    The mechanism by which radiation kills cells must be investigated with the goal to make possible to devise means to alter the radiosensitivity of cells. The object of our investigation, supported by IAEA, is to try and find the reasons for the variation in sensitivity between different cells. Once we know the reason for the differences in radiosensitivity of different micro-organisms we can begin to look rationally for ways of enhancing the radiation response of the more sensitive organisms. An investigation of this type has implications far beyond food sterilization, as it cannot fail to provide fundamental facts about radiation injury to cells in general. Cancer researchers have looked for many years for means of sensitizing cancer cells to radiation

  8. Radiosensitivity of cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P [Radiation Biology Section, Chester Beatty Research Institute, Royal Cancer Hospital, London (United Kingdom)

    1960-07-15

    The mechanism by which radiation kills cells must be investigated with the goal to make possible to devise means to alter the radiosensitivity of cells. The object of our investigation, supported by IAEA, is to try and find the reasons for the variation in sensitivity between different cells. Once we know the reason for the differences in radiosensitivity of different micro-organisms we can begin to look rationally for ways of enhancing the radiation response of the more sensitive organisms. An investigation of this type has implications far beyond food sterilization, as it cannot fail to provide fundamental facts about radiation injury to cells in general. Cancer researchers have looked for many years for means of sensitizing cancer cells to radiation

  9. Clinical studies on radiosensitization of cervical cancer by cisplatinum

    International Nuclear Information System (INIS)

    Yu Shiying; Chen Yuan; Xu Zhiqiang

    1993-01-01

    A prospective randomized clinical trial on the radiosensitizing effect of cisplatinum was carried out in 60 patients with cervical cancer, of whom 30 were given cisplatinum in combination with radiotherapy (radiosensitizing group) and the remaining 30 radiotherapy alone (control group). The results showed that the length of time of immediate CR and PR was shorter in the radiosensitizing group than in the control group. The sensitive enhancement ratio was 1.846. No toxicity was observed in the radiosensitizing group, and the treatment was well tolerated by the patients

  10. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  11. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization

    International Nuclear Information System (INIS)

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-01-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization

  12. Predisposition to cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Pichierri, P.; Franchitto, A.; Palitti, F.

    2000-01-01

    Many cancer-prone diseases have been shown to be radiosensitive. The radiosensitivity has been attributed to pitfalls in the mechanisms of repair of induced DNA lesions or to an impaired cell cycle checkpoint response. Although discrepancies exist in the results obtained by various authors on the radiosensitivity of individuals affected by the same disease, these can be attributed to the large variability observed already in the response to radiation of normal individuals. To date three test are commonly used to assess radiosensitivity in human cells: survival, micronucleus and G 2 chromosomal assay. The three tests may be performed using either fibroblasts or peripheral blood lymphocytes and all the three tests share large interindividual variability. In this regard a new approach to the G 2 chromosomal assay which takes into account the eventual differences in cell cycle progression among individuals has been developed. This new approach is based on the analysis of G 2 homogeneous cell populations. Cells irradiated are immediately challenged with medium containing bromodeoxyuridine (BrdU rd). Then cells are sampled at different post-irradiation times and BrdU rd incorporation detected on metaphases spread and the scoring is done only at time points showing similar incidence of labelled cells among the different donors. Using this approach it has been possible to reduce the interindividual variability of the G 2 chromosomal assay. (author)

  13. Application of bio-marker to study on tumor radiosensitivity

    International Nuclear Information System (INIS)

    Guo Wanfeng; Ding Guirong; Han Liangfu

    2001-01-01

    To definite tumor radiosensitivity is important for applying the schedules of individualization of patient radiotherapy. Many laboratories were carrying on the research which predict the tumor radiosensitivity with one bio-marker or/and multi-bio-marker in various levels. At present has not witnessed the specific bio-marker, but it provides an excellent model for predicting tumor radiosensitivity

  14. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    Science.gov (United States)

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; Pcomet assay (r=-0.73; Pcomet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation. © 2012 Elsevier B.V. All rights reserved.

  15. Differences in heat-induced cell killing as determined in three mammalian cell lines do not correspond with the extent of heat radiosensitization

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Jorritsma, J.B.M.; Burgman, P.; Konings, A.W.T.

    1986-01-01

    Three different cell lines, Ehrlich ascites tumour (EAT) cells, HeLa S 3 cells and LM mouse fibroblasts, were used to investigate whether or not the extent of heat killing (44 0 C) and heat radio-sensitization (44 0 C before 0-6 Gy X-irradiation) are related. Although HeLa cells were the most heat-resistant cell line and showed the least heat radiosensitization, we found that the most heat-sensitive EAT cells (D 0 , EAT = 8.0 min; D 0 , LM = 10.0 min; D 0 , HeLa = 12.5 min) showed less radiosensitization than the more heat-resistant LM fibroblasts (TERsub(HeLa)< TERsub(EAT)< TERsub(LM)). Therefore, it is concluded that the routes leading to heat-induced cell death are not identical to those determining heat radiosensitization. Furthermore the inactivation of DNA polymerase α and β activities by heat seemed not to correlate with heat survival alone but showed a positive relationship to heat radiosensitization. The possibility of these enzymes being a determinant in heat radiosensitization is discussed. (author)

  16. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  17. Photosensitizers and radiosensitizers in dermatology and oncology

    International Nuclear Information System (INIS)

    Bruckner, V.

    1979-01-01

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented

  18. Photosensitizers and radiosensitizers in dermatology and oncology

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, V [Stellenbosch University, Parowvallei (South Africa). Departments of Medical Physics and Radiology

    1979-09-22

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented.

  19. Hereditary syndromes with enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Lohmann, D.

    2000-01-01

    Sensitivity to ionizing radiation is modified by heritable genetic factors. This is exemplified by heritable disorders that are characterized by predisposition to the development of neoplasms. Cells derived from patients with ataxia telangiectasia, Nijmegen breakage syndrome and ataxia telangiektasia-like disorder show a markedly changed reaction to exposure to ionizing radiation. Correspondingly, at least in patients with ataxia telangiectasia, an enhanced radiosensitivity that is of clinical importance has been observed. In addition to these recessive disorders, some autosomal dominant cancer predisposition syndromes are associated with increased radiosensitivity. As cells from these patients still have a normal allele (that is dominant over the mutant allele), the cellular phenotype is most often normal. Specifically, there is no overtly altered reaction in response to ionizing radiation. Nevertheless, two dominant cancer predisposition syndromes, namely hereditary retinoblastoma and naevoid basal cell carcinoma syndrome, are associated with a enhanced radiosensitivity as indicated by increased development of tumors following radiation therapy. (orig.) [de

  20. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    Science.gov (United States)

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  1. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    M Emmy M Dolman

    Full Text Available Tumor cells might resist therapy with ionizing radiation (IR by non-homologous end-joining (NHEJ of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK. The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  2. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R M; Davila, C A

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  3. Brain correlates of the intrinsic subjective cost of effort in sedentary volunteers.

    Science.gov (United States)

    Bernacer, J; Martinez-Valbuena, I; Martinez, M; Pujol, N; Luis, E; Ramirez-Castillo, D; Pastor, M A

    2016-01-01

    One key aspect of motivation is the ability of agents to overcome excessive weighting of intrinsic subjective costs. This contribution aims to analyze the subjective cost of effort and assess its neural correlates in sedentary volunteers. We recruited a sample of 57 subjects who underwent a decision-making task using a prospective, moderate, and sustained physical effort as devaluating factor. Effort discounting followed a hyperbolic function, and individual discounting constants correlated with an indicator of sedentary lifestyle (global physical activity questionnaire; R=-0.302, P=0.033). A subsample of 24 sedentary volunteers received a functional magnetic resonance imaging scan while performing a similar effort-discounting task. BOLD signal of a cluster located in the dorsomedial prefrontal cortex correlated with the subjective value of the pair of options under consideration (Z>2.3, Preward correlated with the signal of a cluster in the ventrolateral prefrontal cortex (Z>2.3, Pintrinsic subjective cost of effort and its neural correlates in sedentary individuals. © 2016 Elsevier B.V. All rights reserved.

  4. Individual radiosensitivity does not correlate with radiation-induced apoptosis in lymphoblastoid cell lines or CD{sup 3+} lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wistop, A.; Keller, U.; Grabenbauer, G.G.; Sauer, R.; Distel, L.V.R. [Dept. of Radiation Oncology, Friedrich Alexander Univ. Erlangen-Nuremberg, Erlangen (Germany); Sprung, C.N. [Div. of Research, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia)

    2005-05-01

    Background and purpose: spontaneous and radiation-induced apoptosis of lymphoblastoid cell lines (LCLs) derived from healthy donors, cancer patients and donors with radiosensitivity syndromes as well as CD{sup 3+} lymphocytes from patients with {>=} grade 3 late toxicity were investigated as a possible marker for the detection of individual radiosensitivity. These investigations are based on the hypothesis that hypersensitive patients have reduced levels of apoptosis after in vitro irradiation as a result of a defect in the signaling pathway. Material and methods: Epstein-Barr virus-(EBV-)transformed LCLs derived from five healthy donors, seven patients with heterozygous or homozygous genotype for ataxia-telangiectasia or Nijmegen breakage syndrome and five patients with {>=} grade 3 late toxicity (RTOG) were investigated. In addition, CD{sup 3+} lymphocytes from 21 healthy individuals and 18 cancer patients including five patients with a proven cellular hypersensitivity to radiation were analyzed. Cells were irradiated in vitro with a dose of 2 and 5 Gy and were incubated for 48 h. Apoptotic rates were measured by the TUNEL assay followed by customized image analysis. Results: four out of seven radiosensitivity syndrome patients were identified to have an increased cellular radiosensitivity as determined by reduced apoptotic rates after irradiation of their respective LCLs. Comparatively, only two of the five hypersensitive cancer patients were clearly identified by reduced apoptotic rates. Spontaneous apoptotic rates were very homogeneous among all 39 samples from controls and patients, while lymphocytes of all cancer patients showed significantly lower radiation-induced rates. Conclusion: only a subgroup of hypersensitive patients may be identified by reduction of radiation-induced apoptotic rate. It is concluded that the hypothesis according to which hypersensitive cells have reduced levels of apoptosis is only conditionally true. The authors suggest that this

  5. Differences in radiosensitivity among cells in culture and in experimental tumours: Significance for the effectiveness of human cancer therapy

    International Nuclear Information System (INIS)

    Barendsen, G.W.; Amsterdam Univ.

    1987-01-01

    Problems in the application of radiobiological data on various types of models, cell in vitro, experimental tumours, and clinical models, to the prediction of tumour radiocurability are discussed. On the basis of observations on cells in culture and experimental tumours it is suggested that heterogeneity in responsiveness of tumours in patients is caused in a large part by differences in intrinsic cellular radiosensitivity. Methods and developments are reviewed, which may yield better assays for the prediction of tumour responsiveness to treatments. (Auth.)

  6. Radiosensitivity of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hennequin, C.; Quero, L.; Rivera, S.

    2011-01-01

    The frequency of hepatocellular carcinoma (HCC) is increasing in the western world and the role of radiotherapy is more and more discussed. Classically, hepatocellular carcinoma was considered as a radioresistant tumour: in fact, modern radio-biologic studies, performed on cell lines directly established from patients, showed that hepatocellular carcinoma has the same radiosensitivity than the other epithelial tumours. From clinical studies, its α/β ratio has been estimated to be around 15 Gy. Radiosensitivity of normal hepatic parenchyma is now well evaluated and some accurate NTCP models are available to guide hepatic irradiation. The biology of hepatocellular carcinoma is also better described: the combination of radiotherapy and targeted therapies will be a promising approach in the near future. (authors)

  7. Radiosensitivity of human lymphocytes and thymocytes

    International Nuclear Information System (INIS)

    Kwan, D.K.; Norman, A.

    1977-01-01

    The in vitro survival of human peripheral blood lymphocytes and thymocytes was measured 4 days following graded doses of γ radiation. Results indicate considerable heterogeneity among lymphocyte subpopulations with respect to radiosensitivity. Total T lymphocytes were characterized by rosette formation with neuraminidase-treated sheep red blood cells (nSRBC); early T (T/sub E/) cells, by early rosettes; and B cells, by their inability to form nSRBC rosettes. Late T (T/sub L/) cells were defined as T -- T/sub E/. Survival curves of T, T/sub E/, and B cells are biphasic. The radiosensitive and radioresistant components of T, T/sub E/, and B cells all have a D 0 of about 50 and 550 rad, respectively. B cells appeared to be slightly more radiosensitive than T cells. T/sub L/ cells and thymocytes, however, appeared to be homogeneous with respect to radiosensitivity, both having D 0 values of about 135 rad. The survival of T cells in mixed T and B cell cultures resembled that of separated T cells, suggesting that ionizing radiation has no significant effect on rosette formation. It also indicates that interactions of T and B cells do not significantly affect their radiation responses

  8. Review of our histological criteria for the radiosensitivity of uterine cervical cancer

    International Nuclear Information System (INIS)

    Tsukahara, Yoshiharu; Shiozawa, Kyuyo; Tsukamoto, Takashi; Sonehara, Morio; Noguchi, Hiroshi

    1975-01-01

    The determination of radiosensitiveness based on 111 operated specimens after test irradiation of 1000R was compared with that based on 64 specimens which had received biopsies seven days after irradiation. It was concluded that the determination of radiosensitiveness by local biopsy could be applied to practical use. The results of this study are listed as follows: (1) Radiosensitivity exists within tumor cells themselves before irradiation, while radiosensitiveness is a complicated change in which some reaction on the host side added to degenerated tumor cells. (2) In the determination of radio-sensitiveness, there was a good accordance of 85% between biopsies and removed specimens. (3) The followings are findings of favorable radiosensitiveness based on the removed specimens; (a) neutrocyte infiltration within cancer nests, (b) lysis of cancer nests, (c) destruction of fundus of cancer nests, (d) damages of advanced sites of cancer infiltration, (e) damages of chromatin. As unfavorable findings, (f) mitosis, (g) abundant viable cells. (4) Various histological findings within cancer nests and variation of radiosensitiveness according to various regions of the tumor often cause a discord with biopsies. (5) Many specimens which show the intermediate histological type in maturation before irradiation indicate favorable radiosensitiveness. Even if they belong to the intermediate type, the specimens in which the issued histological findings are mixed show mostly unfavorable radiosensitiveness. (6) Removed specimens can be expressed in indices of radiosensitiveness. (Ichikawa, K.)

  9. Hyperthermic radiosensitization : mode of action and clinical relevance

    NARCIS (Netherlands)

    Kampinga, HH; Dikomey, E

    Purpose: To provide an update on the recent knowledge about the molecular mechanisms of thermal radiosensitization and its possible relevance to thermoradiotherapy. Summary: Hyperthermia is probably the most potent cellular radiosensitizer known to date. Heat interacts with radiation and potentiates

  10. Intrinsic work function of molecular films

    International Nuclear Information System (INIS)

    Ivančo, Ján

    2012-01-01

    The electronic properties of molecular films are analysed with the consideration of the molecular orientation. The study demonstrates that surfaces of electroactive oligomeric molecular films can be classified—analogously to the elemental surfaces—by their intrinsic work functions. The intrinsic work function of molecular films is correlated with their ionisation energies; again, the behaviour is analogous to the correlation existing between the first ionisation energy of elements and the work function of the corresponding elemental surfaces. The proposed intrinsic work-function concept suggests that the mechanism for the energy-level alignment at the interfaces associated with molecular films is virtually controlled by work functions of materials brought into the contact. - Highlights: ► Molecular films exhibit their own (intrinsic) work function. ► Intrinsic work function is correlated with ionisation energy of molecular films. ► Intrinsic work function determines dipole at interface with a particular surface. ► Surface vacuum-level change upon film growth does not relate to interfacial dipole.

  11. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  12. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy

    International Nuclear Information System (INIS)

    Bristow, Robert G.; Benchimol, Samuel; Hill, Richard P.

    1996-01-01

    Background and purpose: Experimental studies have implicated the normal or 'wild type' p53 protein (i.e. WTp53) in the cellular response to ionizing radiation and other DNA damaging agents. Whether altered WTp53 protein function can lead to changes in cellular radiosensitivity and/or clinical radiocurability remains an area of ongoing study. In this review, we describe the potential implications of altered WTp53 protein function in normal and tumour cells as it relates to clinical radiotherapy, and describe novel treatment strategies designed to re-institute WTp53 protein function as a means of sensitizing cells to ionizing radiation. Methods and Materials: A number of experimental and clinical studies are critically reviewed with respect to the role of the p53 protein as a determinant of cellular oncogenesis, genomic stability, apoptosis, DNA repair and radioresponse in normal and transformed mammalian cells. Results: In normal fibroblasts, exposure to ionizing radiation leads to a G1 cell cycle delay (i.e. a 'G1 checkpoint') as a result of WTp53-mediated inhibition of G1-cyclin-kinase and retinoblastoma (pRb) protein function. The G1 checkpoint response is absent in tumour cells which express a mutant form of the p53 protein (i.e. MTp53), leading to acquired radioresistance in vitro. Depending on the cell type studied, this increase in cellular radiation survival can be mediated through decreased radiation-induced apoptosis, or altered kinetics of the radiation-induced G1 checkpoint. Recent biochemical studies support an indirect role for the p53 protein in both nucleotide excision and recombinational DNA repair pathways. However, based on clinicopathologic data, it remains unclear as to whether WTp53 protein function can predict for human tumour radiocurability and normal tissue radioresponse. Conclusions: Alterations in cell cycle control secondary to aberrant WTp53 protein function may be clinically significant if they lead to the acquisition of mutant

  13. Individual radiosensitivity measured with lymphocytes can be used to predict the risk of fibrosis after radiotherapy of breast cancer patients

    International Nuclear Information System (INIS)

    Hoeller, U.; Borgmann, K.; Alberti, W.; Dikomey, E.

    2003-01-01

    To analyse the relationship of individual cellular radiosensitivity and fibrosis after breast conserving therapy. A new model was used describing the percentage of patients developing fibrosis per year per patients at risk . In a retrospective study, 86 patients were included, who had undergone breast conserving surgery and irradiation of the breast with a median dose of 55 Gy (54-55Gy), 2.5 Gy/fraction (n=57) or 2 Gy/fraction (n=29). Median age was 62 years (range: 44-86) and median follow up was 7.5 years (range 5-16). Patients were examined for fibrosis according to the LENT/SOMA score. For analysis, fibrosis was classified as none (G0-1) or present (G2-3). The time to complete development of fibrosis was determined by analysis of yearly mammograms. Individual cellular radiosensitivity was determined by scoring lethal chromosomal aberrations in in vitro irradiated (6 Gy) lymphocytes using metaphase technique. Patients with low/intermediate cellular radiosensitivity were compared with patients with high cellular radiosensitivity with actuarial methods. Ten patients developed fibrosis at 1-8 years after radiotherapy. Individual cellular radiosensitivity was described by normal distribution of lethal chromosomal aberrations, average 5.47 lethal aberrations per cell (standard deviation 0.71). Cellular radiosensitivity was defined as low/intermediate (le 6.18 lethal aberrations) in 73 patients and as high (> 6.18 lethal aberrations ) in 13 patients. In both groups the actuarial rate of fibrosis-free patients declined exponentially with time after radiotherapy. Patients with high cellular radiosensitivity showed a 2.3 fold higher annual rate for fibrosis than patients with intermediate and low radiosensitivity (3.6±0.1 vs. 1.6±0.3). In breast cancer patients, high individual cellular radiosensitivity as determined by the number of lethal chromosome aberrations in in vitro irradiated lymphocytes was correlated with an enhanced annual rate of fibrosis

  14. Tumour-specific radiosensitizers for radiation therapy

    International Nuclear Information System (INIS)

    Denekamp, J.

    1977-01-01

    Recently Adams and coworkers at the Gray Laboratory have developed a new class of radiosensitizers which act specifically on hypoxic cells by abolishing the protection afforded by low oxygen concentrations. Since most experimental tumours contain a high proportion of oxygen-deprived cells, and most normal tissues are well oxygenated, these drugs are tumour specific radiosensitizers. Based on the hypothesis that sensitization increases with increasing electron affinity, the two nitroimidazoles, metronidazole (Flagyl) and Ro-07/0582 were identified as potent radiosensitizers with low toxicity. These drugs are effective only in the absence of oxygen, and only if the drug is present at the time of irradiation. The degree of sensitization increases with drug concentration rapidly over the range 0.1 to 1.0mg/g body weight for Ro-07-0582, and more gradually for Flagyl. Tumour studies have been performed on at least 12 different experimental tumours, using a variety of end points. Significant sensitization has been observed in every tumour studied, often corresponding to a dose reduction factor of 2.0 for high but non-toxic drug doses. Fractionated studies have also been performed on a few tumour lines. In most cases a useful therapeutic advantage was observed, although the sensitization was smaller. Ro-07-0582 used with X-rays gives a therapeutic gain comparable with that from cyclotron-produced fast neutrons. Neutrons used together with Ro-07-0582 are even more effective. In addition to the radiosensitization there is a specific cytotoxicity to hypoxic cells after prolonged exposure to Ro-07-0582. This cytotoxicity can be greatly enhanced in vitro by moderate hyperthermia. Flagyl and Ro-07-0582 have been used clinically as radiosensitizers, with promising early results. The clinical application is limited to certain dose fractionation patterns because of neurotoxicity. (author)

  15. Radiosensitivity of lymphocytes among Filipinos: final report

    International Nuclear Information System (INIS)

    Medina, F.I.S.; Gregorio, J.S.; Aguilar, C.P.; Poblete, E.E.

    1996-01-01

    This report is about the studies on the radiosensitivity of Filipino lymphocytes to radiation that can elucidate on the potential of blood chromosomes as biological dosimeters. The objective of this study is to determine the radiosensitivity of lymphocytes among Filipinos and to establish the radiation-induced chromosome anomaly standard curve in lymphocytes for radiological dosimetry. 47 refs., 9 figs., 1 tab

  16. Cellular radiosensitivity in human severe-combined-immunodeficiency (SCID) syndromes

    International Nuclear Information System (INIS)

    Sproston, Anthony R.M.; West, Catharine M.L.; Hendry, Jolyon H.

    1997-01-01

    Purpose: The aim of the work was to establish to what extent a variety of human severe-combined-immunodeficiency (SCID) disorders are associated with in vitro cellular hypersensitivity to ionizing radiation. Materials and methods: A study was made of fibroblast strains established from individuals with adenosine deaminase deficiency, T(-)B(-) SCID, Omenn's syndrome and a SCID heterozygote. For comparison, an assessment was also made of the radiosensitivity of a series of fibroblast strains derived from: normal donors, a patient with ataxia-telangiectasia (A-T) and an A-T heterozygote. Radiosensitivity was determined using a clonogenic assay following both high (HDR) and low (LDR) dose-rate irradiation. Results: Following HDR irradiation, the fibroblast strains derived from the different human SCID disorders displayed a wide range of radiosensitivity: the adenosine deaminase deficiency cells were similar in radiosensitivity to normal fibroblasts, T(-)B(-) cells were as hypersensitive to radiation as A-T cells and the Omenn's syndrome cells showed intermediate radiosensitivity. However, whereas all four normal cell strains studied showed significant LDR sparing, none of the SCID fibroblasts did. Conclusions: These data indicate that human SCID is variable in terms of radiosensitivity depending on the particular defect. In addition, the lack of LDR sparing of radiation-induced damage suggests the involvement of some form(s) of DNA repair defect in all the human SCID syndromes

  17. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Dan; Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China)

    2017-01-15

    Highlights: • Extrinsic condition and intrinsic sensitivity both affect responses to spaceflight. • Protein phosphorylation/dephosphorylation is sensitive to μg and space radiation. • Microgravity affects transcription depending on dystrophin gene dys-1 in C.elegans. • Loss-function of apoptotic gene ced-1 leads protective responses to space radiation. - Abstract: Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under

  18. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight

    International Nuclear Information System (INIS)

    Gao, Ying; Xu, Dan; Zhao, Lei; Sun, Yeqing

    2017-01-01

    Highlights: • Extrinsic condition and intrinsic sensitivity both affect responses to spaceflight. • Protein phosphorylation/dephosphorylation is sensitive to μg and space radiation. • Microgravity affects transcription depending on dystrophin gene dys-1 in C.elegans. • Loss-function of apoptotic gene ced-1 leads protective responses to space radiation. - Abstract: Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under

  19. Radiosensitivity of human haematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Kato, Kengo; Kashiwakura, Ikuo; Omori, Atsuko

    2013-01-01

    The haematopoietic system is regenerative tissue with a high proliferative potential; therefore, haematopoietic stem cells (HSCs) are sensitive to extracellular oxidative stress caused by radiation and chemotherapeutic agents. An understanding of this issue can help predict haematopoietic recovery from radiation exposure as well as the extent of radiation damage to the haematopoietic system. In the present study, the radiosensitivity of human lineage-committed myeloid haematopoietic stem/progenitor cells (HSPCs), including colony-forming unit–granulocyte macrophage, burst-forming unit–erythroid and colony-forming unit–granulocyte–erythroid–macrophage–megakaryocyte cells, which are contained in adult individual peripheral blood (PB) and fetus/neonate placental/umbilical cord blood (CB), were studied. The PB of 59 healthy individual blood donors and the CB of 42 neonates were investigated in the present study. HSPCs prepared from PB and CB were exposed to 0.5 or 2 Gy x-irradiation. The results showed that large individual differences exist in the surviving fraction of cells. In the case of adult PB, a statistically significant negative correlation was observed between the surviving fraction observed at a dose of 0.5 Gy and the age of the blood donors; however, none of these correlations were observed after 2 Gy x-irradiation. In addition, seasonal and gender variation were observed in the surviving fraction of CB HSPCs. The present results suggest that there are large individual differences in the surviving fraction of HSPCs contained in both adult PB and fetus/neonate CB. In addition, some factors, including the gender, age and season of birth, affect the radiosensitivity of HSPCs, especially with a relatively low-dose exposure. (paper)

  20. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    Science.gov (United States)

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  1. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells

    International Nuclear Information System (INIS)

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.; Gustafson, Carl; Gupta, Shiv K.; Riester, Scott M.; Maran, Avudaiappan; Galindo, Mario; Wijnen, Andre J. van; Sarkaria, Jann N.; Yaszemski, Michael J.

    2017-01-01

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK CS ), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK CS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK CS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK CS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK CS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.

  2. INTRINSIC AND EXTRINSIC MOTIVATION - AN INVESTIGATION OF PERFORMANCE CORRELATION

    Directory of Open Access Journals (Sweden)

    Abrudan Maria-Madela

    2011-07-01

    Full Text Available A series of research untaken in the last decade have revealed some interesting aspects regarding the effects of different types of motivation on performance. Among the researchers who have shown interest in this field we can number: Richard Ryan, Edward Deci, Sam Glucksberg, Dan Ariely, Robert Eisenhower, Linda Shanock, analysts from London School of Economics, and others. Their findings suggest that extrinsic incentives may have a negative impact on overall performance, but a general agreement in this respect has not been reached. In this paper we intend to shed some light upon the relationship between intrinsic and extrinsic motivation and performance. Experts define intrinsic motivation as being the execution of a task or activity because of the inherent satisfaction arising from it rather than due to some separate outcome. In contrast with intrinsic motivation, we speak of extrinsic motivation whenever an activity is done in order to attain some separable outcome. With the purpose of contributing to the clarification of the links between concepts, we initiated and conducted an explanatory research. The research is based on the analysis of the relations between the results obtained by third year students and their predominant type of motivation. For this, we formulated and tested four work hypotheses using a combination of quantitative methods (investigation and qualitative methods (focus group. After the validation of the questionnaires, the respondents were divided into four categories: intrinsically motivated, extrinsically motivated, both intrinsically and extrinsically motivated and unmotivated. To analyze the collected data, we made use of Excel and SPSS. Some of the primary conclusions of the research are as follows: as the average increases, the percent of individuals having both extrinsic and intrinsic motivation is decreasing; the highest percentage of unmotivated students is concentrated in the highest average category; Female

  3. Radiosensitivity in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Lavin, M.F.; Khanna, K.K.; Watters, D.

    1998-01-01

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  4. Radiosensitivity in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research and The Department of Surgery; Khanna, K.K.; Watters, D. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research

    1998-12-31

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  5. Individual radiosensitivity and its relevance to health physics

    International Nuclear Information System (INIS)

    Schnarr, K.; Dayes, I.; Sathya, J.; Boreham, D.

    2006-01-01

    Full text: In the radiation protection industry, dose limits are developed to keep the workers safe. These limits assume that people have equal responses to ionizing radiation and that there is no variation in radiation risk. In radiotherapy, where patients receive large doses of radiation to their tumours and the surrounding tissue volume, 5-10% of individuals are sensitive to the treatment (adverse reactions). A radiation sensitive individual may have increased toxicity in the tissue around the tumour. This can result in necrosis, loss of organ function or even death. The cause of this sensitivity is only speculative. We postulate that this variation is due to the individual's intrinsic cellular response to radiation. Therefore, this systemic predisposition results in a lack of ability for damaged cells to be eliminated properly or repaired and consequently causes an adverse reaction. Understanding this phenomenon is crucial for radiation protection practices, since these radiosensitive individuals may also be at increased risk to high occupational or medical exposures. We have investigated individual radiosensitivity using a number of different biological endpoints. Apoptosis, or programmed cell death, was measured in human lymphocytes after receiving in vitro doses of 0, 2, 4, and 8Gy. At high doses (8Gy), radiation induced apoptosis showed a wide range of responses (mean = 34% apoptosis, o = 8.2) with z-scores ranging from -1.5 to 2.4. Low dose responses (mGy range) were also studied measuring apoptosis, DNA double strand break induction and repair in human lymphocytes exposed in vivo when patients a whole body radiation dose during diagnostic PET scans. The results showed varied individual responses and indicates that individuals may be at increased risk due to differences in DNA repair capabilities. Being able to measure radiation sensitivity would allow the radiation protection industry to tailor dose limits to an individual, reducing risk to the worker

  6. Contributions concerning radiosensitivity proffered by the basic sciences to clinical radiation therapy

    International Nuclear Information System (INIS)

    Caputo, A.

    1974-01-01

    Basic concepts of radiosensitivity are reviewed. Some topics discussed are: probability of lethal injury as a dose dependent function; mutations resulting from radiation damage to DNA; relation of cell radiosensitivity to chromosome volume; relation of molecular structure of DNA to relative radiosensitivity of the organism; repair replication of DNA following uv and x irradiation of Escherichia coli and mammalian cells; and relation of the cell cycle to radiosensitivity. (U.S.)

  7. Radiosensitivity of fingermillet genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Raveendran, T S; Nagarajan, C; Appadurai, R; Prasad, M N; Sundaresan, N [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1984-07-01

    Varietal differences in radiosensitivity were observed in a study involving 4 genotypes of fingermillet (Eleusine coracana (Linn.) Gaertn.) subjected to gamma-irradiation. Harder seeds were found to tolerate a higher dose of the mutagen.

  8. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  9. The influence of gender- and age-related differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood

    International Nuclear Information System (INIS)

    Kato, Kengo; Kashiwakura, Ikuo; Kuwabara, Mikinori

    2011-01-01

    To investigate the importance of gender and aging on the individual radiosensitivity of lineage-committed myeloid hematopoietic stem/progenitor cells (HSPCs) detected in mononuclear cells (MNCs) of steady-state human peripheral blood (PB), the clonogenic survival of HPCs, including colony-forming unit-granulocyte macrophage; burst-forming unit-erythroid; colony-forming unit-granulocyte-erythroid-macrophage-megakaryocyte cells derived from MNCs exposed to 0.5 Gy and 2 Gy X-irradiation were estimated. MNCs were prepared from the buffy-coats of 59 healthy individual blood donors. The results showed that large individual differences exist in the number of HSPCs, as well as in the surviving fraction of cells. Furthermore, the number of progenitor cells strongly correlated with their surviving fraction, suggesting that the radiosensitivity of hematopoietic progenitor cells decreases with the number of cells in the 10 5 cells population. A statistically significant negative correlation was observed between the surviving fraction observed at a dose of 0.5 Gy and the age of an individual, however, none of these correlations were observed after 2 Gy irradiation. No statistically significant difference was observed in individual radiosensitivity between males and females at either radiation dose. The present results indicated a correlation between the individual responsiveness of HSPCs to ionizing irradiation, especially to low dose irradiation, and aging. (author)

  10. Modern concepts for basic radiobiological factors characterizing tumor tissue radiosensitivity

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.

    2002-01-01

    Traditionally radiotherapy is prescribed at doses consistent with the expected therapeutic response and tolerance of tumor and normal tissues without consideration to individual differences in radiosensitivity. However, the basic radiobiological knowledge and clinical experience along this line point to significant variations in the observed therapeutic results. It has been established that cells and tissues under experimental and clinical conditions manifest a wide spectrum of individual radiosensitivity. The aim of this survey is to outline the current concepts for the basic radiobiological factors influencing tumor radiosensitivity. A thorough discussion is done of the essence, mechanisms of action, methods of determination and measurement, and effect on the prognosis in patients with malignant diseases of a number of radiobiological factors, such as: tumor-cell proliferation, apoptosis, tumor hypoxia and neovascularization. Although the knowledge of the mechanisms of radiosensitivity is constantly expanding, its clinical implementation is still rather limited. The true role of radiosensitivity in predicting the therapeutic response should be more accurately defined. (authors)

  11. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  12. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    NARCIS (Netherlands)

    Neijenhuis, S.; Verwijs-Janssen, M.; Broek, Bart van den; Begg, A.C.; Vens, C.

    2010-01-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand

  13. HLA‐G modulates the radiosensitivity of human neoplastic cells

    International Nuclear Information System (INIS)

    Michelin, Severino; Gallegos, Cristina; Baffa Trasci, Sofía; Dubner, Diana; Favier, B.; Carosella, E.D.

    2011-01-01

    Tumor cells show a very broad range of radiosensitivities. The differential radiosensitivity may depend on many factors, being the efficiency to recognize and/or repair the DNA lesion, and the cell cycle control mechanisms, the most important (Jeggo and Lavin, 2009; Kumala et al., 2003). Human leukocyte antigen‐G (HLA‐G) is a non‐classical HLA class I molecule involved in fetus protection form the maternal immune system, transplant tolerance, and viral and tumoral immune escape (Carosella et al., 2008). It has been determined that gamma radiation modulates HLA‐G expression at the plasma membrane of human melanoma cells. However, its role in tumoral radiosensitivity has not been demonstrated yet. The objective of this work was to determine if the radiosensitivity of human neoplastic cell lines cultured in vitro was mediated by HLA‐G expression. (authors)

  14. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  15. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    International Nuclear Information System (INIS)

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cells hut not CCL-120 normal cells to radiation. Ouabain inhibits the Na+-K+-pump rapidly thus it increases intracellular Na concentration. Vanadate which is distributed extensively in almost all living organisms in known to be a Na+-K+-ATPase inhibitors. This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of Na+-K+-ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMG cell and trypan blue dye exclusion test for L120, and spleen cells. Measurements of Na+-K+-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined 10-6 M vanadate and radiation treated cells were done. The results were summarized as follows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Minimum or cytotoxicity was seen with vanadate below concentration of 10-6 M. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. E. 2-Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. Na+-K+-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiation itself inhibited Na+-K+-ATPase activity of tumor cell with high Na+- K+-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with original Na+-K+-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized

  16. Validation of a radiosensitivity molecular signature in breast cancer

    NARCIS (Netherlands)

    S.A. Eschrich (Steven); C. Fulp (Carl); Y. Pawitan (Yudi); J.A. Foekens (John); M. Smid (Marcel); J.W.M. Martens (John); M. Echevarria (Michelle); P.S. Kamath (Patrick); J.-H. Lee (Ji-Hyun); E.E. Harris (Eleanor); J. Bergh (Jonas); J.F. Torres-Roca (Javier)

    2012-01-01

    textabstractPurpose: Previously, we developed a radiosensitivity molecular signature [radiosensitivity index (RSI)] that was clinically validated in 3 independent datasets (rectal, esophageal, and head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT)-treated breast cancer patients.

  17. ATM-induced radiosensitization in vitro and in vivo

    International Nuclear Information System (INIS)

    Choi, E. K.; Ahn, S. D.; Rhee, Y. H.; Chung, H. S.; Ha, S. W; Song, C. W.; Griffin, R. J.; Park, H. J.

    2003-01-01

    It has been known that ATM plays a central role in response of cells to ionizing radiation by enhancing DNA repair. We have investigated the feasibility of increasing radiosensitivity of tumor cells with the use of ATM inhibitors such as caffeine, pentoxifylline and wortmannin. Human colorectal cancer RKO.C cells and RKO-ATM cells (RKO cells overexpressing ATM) were used in the present study. The clonogenic cell survival in vitro indicated that RKO-ATM cells were markedly radioresistant than RKO.C cells. Treatment with 3 mM of caffeine significantly increased the radiosensitivity of cells, particulary the RKO-ATM cells, so that the radiosensitivity of RKO.C cells and RKO-ATM cells were almost similar. The radiation induced G2/M arrest in RKO-ATM cells was noticeably longer than that in RKO.C cells and caffeine treatment significantly reduced the length of the radiation induced G2/M arrest in both RKO.C and RKO-ATM cells. Pentoxifylline and wortmannin were also less effective than caffeine to radiosensitize RKO.C or RKO-ATM cells. However, wortmannin was more effective than caffeine against human lung adenocarcinoma A549 cells indicating the efficacy of ATM inhibitor to increase radiosensitivity is cell line dependent. For in vivo study, RKO.C cells were injected s.c. into the hind-leg of BALB/c-nuslc nude mice, and allowed to grow to 130mm3 tumor. The mice were i.p. injected with caffeine solution or saline and the tumors irradiated with 10 Gy of X-rays. The radiation induced growth delay was markedly increased by 1-2 mg/g of caffeine. It was concluded that caffeine increases radiosensitivity of tumor cells by inhibiting ATM kinase function, thereby inhibiting DNA repair, that occurs during the G2/M arrest after radiation

  18. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  19. Radiosensitivity of peripheral blood lymphocytes in autoimmune disease

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G [Kennedy Inst. of Rheumatology, London (UK). Div. of Experimental Pathology; Cramp, W A; Edwards, J C; George, A M; Sabovljev, S A; Hart, L; Hughes, G R.V. [Hammersmith Hospital, London (UK); Denman, A M [Northwich Park Hospital, Harrow (UK); Yatvin, M B [Wisconsin Clinical Cancer Center, Madison (USA)

    1985-06-01

    The proliferation of peripheral blood lymphocytes, cultured with Con A, can be inhibited by ionizing radiation. Lymphocytes from patients with conditions associated with autoimmunity, such as rheumatoid arthritis, systemic lupus erythematosus and polymyositis, are more radiosensitive than those from healthy volunteers or patients with conditions not associated with autoimmunity. Nuclear material isolated from the lymphocytes of patients with autoimmune diseases is, on average, lighter in density than the nuclear material from most healthy controls. This difference in density is not related to increased sensitivity to ionizing radiation but the degree of post-irradiation change in density (lightening) is proportional to the initial density, i.e. more dense nuclear material always shows a greater upward shift after radiation. The recovery of pre-irradiation density of nuclear material, 1 h after radiation exposure, taken as an indication of DNA repair, correlates with the radiosensitivity of lymphocyte proliferation (Con A response); failure to return to pre-irradiation density being associated with increased sensitivity of proliferative response. These results require extension but, taken with previously reported studied of the effects of DNA methylating agents, support the idea that DNA damage and its defective repair could be important in the aetio-pathogenesis of autoimmune disease.

  20. Chemical radiosensitization and quality of cellular damage in bacteria exposed to gamma rays

    International Nuclear Information System (INIS)

    Nair, C.K.K.; Pradhan, D.S.; Sreenivasan, A.

    1976-01-01

    Iodoacetic acid (IAA) and N-ethylmaleimide (NEM) when present during exposure of Streptococcus faecalis cells to gamma radiation enhance radiation-induced lethality under both anoxic and aerated conditions. The changes brought about by this radiosensitization in cellular functions have been studied with a view to elucidating the mechanism responsible for the increased loss of viability. The quality of cellular damage in chemical radiosensitization was investigated by correlating survival and the biosynthetic capacity of an irradiated cell population. The relationship between surviving fraction and extent of incorporation of 3 H-thymidine into DNA was found to be unaffected regardless of whether the sensitizers (IAA or NEM) were present or absent during irradiation under anoxia. However, under the oxic condition of irradiation the survival--DNA-labeling relationship was completely different in the presence and in the absence of the sensitizers

  1. The impact of complex chromosomal rearrangements on the detection of radiosensitivity in cancer patients

    International Nuclear Information System (INIS)

    Neubauer, Susann; Dunst, Juergen; Gebhart, Erich

    1997-01-01

    Background and purpose: Lymphocytes of a small fraction of cancer patients responded to in vitro irradiation with an extreme chromosomal reaction. A large portion of the observed chromosome aberrations were complex chromosomal rearrangements (CCR). The present study is an attempt to define the impact of CCR on the predictive detection of an intrinsic clinical radiosensitivity in cancer patients in more detail. Materials and methods: A three-colour 'FISH-painting' technique (chromosome in situ suppression (CISS) hybridization) was used for the detection of chromosomal rearrangements, induced by in vitro irradiation, in 81 samples of peripheral blood lymphocytes from 66 cancer patients. Thirty-three of those were assigned for radiation therapy, the others having just undergone radiation therapy. Seven healthy individuals served as controls. Results: CCRs are a very rare event in non-irradiated cells. Lymphocytes of patients who had just undergone therapeutic irradiation, however, not only exhibited high basic frequencies of CCR but also responded to in vitro irradiation with a more drastic increase of CCR than did the lymphocytes of non-exposed patients. A high inter-individual variability of the reaction to in vitro irradiation could be generally stated. The lymphocytes of patients with clinical signs of an outstanding radiosensitivity responded with an unusually high frequency of CCR. The total number of CCRs detected by CISS was found to be dependent on the interval from a previous radiation therapy and was slightly influenced by previous cytostatic therapy. Irrespective of these influences, patients with clinically defined radiation hypersensitivity were those with the highest radiosensitivity also in cytogenetic terms (including CCR). Conclusion: The successful use of FISH-painting for the detection of CCR, in addition to the general breakage frequency, highlights its suitability in the identification of individual hypersensitivity to ionizing radiation. The

  2. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Feeley, M.M.

    1994-01-01

    DNA polymerase inactivation is compared to thermal radiosensitization and inhibition of damage recovery in human glioma cells. Two human glioma cell lines (U87MG and U373MG) were exposed to hyperthermia and irradiation. Hyperthermia was given at 43 degrees C and 45 degrees C and DNA polymerase α + δ + ε and β activities were measured. Hyperthermia was given at various times before irradiation and the degree of radiosensitization and polymerase activity was assessed at various times after heating. In addition the ability of cells to undergo repair of potentially lethal radiation damage was assessed for cells irradiated at various times after heating. Polymerase α + δ + ε and polymerase β both recovered after heating but polymerase β was faster and was complete in U373MG but not in the U87MG cell lines after 48 h incubation after heating (45 degrees C, 60 min). Incubation, between hyperthermia and irradiation resulted in a loss of radiosensitization and a loss of inhibition of repair of potentially lethal damage. These changes correlated well with recovery of polymerase β but not with polymerase α + δ + ε. The correlation of polymerase β activity and thermoradiosensitization and its recovery indicate that polymerase β may be one of the mechanisms involved in thermoradiosensitization. 35 refs., 7 figs

  3. Radiosensitizing efficiency of sodium glycididazole on V79 cells in vitro

    International Nuclear Information System (INIS)

    Zheng Xiulong; Gao Jianguo; Zhang Hong; Zhu Qin; Meng Xiangshun; Zhao Fang

    1995-01-01

    Radiosensitizing effect of sodium glycididazole (SGDD) on the hypoxic V 79 cells by standard in vitro colon formation method has been further studied. The results showed its toxicity was low. Its ID 50 in cells under hypoxic and aerobic condition were 23.5 and 35.7 mmol/L respectively. These indicated that SGDD showed more toxicity under hypoxic than under aerobic condition (p 1.6 was 0.48 mmol/L. Its maximum SER was 2.3 at 1.38 mmol/L. Comparisons of radiosensitizing effect of SGDD versus MISO and its mother compound (metronidazole) under the same experimental condition, SER for SGDD, MISO and metronidazole were 1.75, 1.53 and 1.07 at 0.3 mmol/L respectively. SGDD showed more radiosensitizing efficiency than MISO and much greater than metronidazole. This study further confirms our previous results i.e. SGDD is a hypoxic radiosensitizer with low toxic, high efficiency and selectively enhances the radiosensitivity of hypoxic cells for tumor radiotherapy

  4. Evaluation of 2-amino-5-nitrothiazole as a hypoxic cell radiosensitizer

    International Nuclear Information System (INIS)

    Rockwell, S.; Mroczkowski, Z.; Rupp, W.D.

    1982-01-01

    The nitroheterocyclic compound 2-amino-5-nitrothiazole (ANT) was evaluated as a hypoxic radiosensitizer. Experiments with bacteria showed that this agent was similar to misonidozole in radiosensitizing activity, but was less cytotoxic and less mutagenic than misonidazole. Experiments with EMT6 tumor cells in culture showed ANT to be an effective hypoxic radiosensitizer, although slightly less active than misonidazole, and to be less cytotoxic than misonidazole. ANT was more toxic to mice than misonidazole and produced a spectrum of symptoms, including hyperactivity and agitation, different from those of misonidazole. The toxicities of ANT and misonidazole were additive. The maximum levels of ANT achieveable in the tumors after ip injection of nontoxic doses of drug were low ( -4 M) and the radiosensitization obtainable with the drug in vivo was inferior to that obtainable with misonidazole. These findings suggest that nitrothiazoles might be an interesting class of nitroheterocyclic radiosensitizers, but that molecules with increased solubility and improved pharmacokinetics would be necessary for efficacy in vivo

  5. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  6. Effects of binding metronidazole to a copper-acetate compound on radiosensitizer properties

    International Nuclear Information System (INIS)

    Negron, Ana C. Valderrama; Silva, Denise de Oliveira; Cruz, Aurea S.

    2009-01-01

    Copper compounds exhibit interesting biological properties. Nitroimidazoles show radiosensitizer properties for radiotherapy tumor treatment. In the present work, the effect of binding metronidazole (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole = MTZ) to copper-acetate on the radiosensitizer properties has been investigated. A compound of copper-acetate-MTZ was prepared and characterized. The experiments were carried out by gamma-irradiation of Hep2 (human larynx cancer) cells under hypoxic conditions. The radiation doses for 50% cell survival in the presence of radiosensitizer were about 8.2 Gy for CuAcMTZ or free MTZ. The effect of binding metronidazole to copper acetate on radiosensitizer properties is mainly related to the radiosensitizer process which involves two events for CuAcMTZ in contrast to one event observed for the MTZ free drug. (author)

  7. Neuropathy of nitroimidazole radiosensitizers: clinical and pathological description

    International Nuclear Information System (INIS)

    Wasserman, T.H.; Nelson, J.S.; VonGerichten, D.

    1984-01-01

    The dose limiting toxicity of the nitroimidazole radiosensitizers is peripherial neuropathy. Improved pharmacology of newer drugs has eliminated the encephalopathy. Peripheral neuropathies are predominently mild to moderate paresthesias of both hands and feet. Subjective changes occur with or without minimal objective changes on neurologic exam. All of the neuropathies occurred within 30 days of the last drug dose and are of varible duration. Sural nerve biopsies from patients indicate progressive axonal degeneration affecting both large and small caliber myelinated fibers. Axonal damage appears to be more severe in the distal portion of the nerves. More data are needed for correlation of clinical and pathological changes

  8. On the Path to Seeking Novel Radiosensitizers

    International Nuclear Information System (INIS)

    Katz, David; Ito, Emma; Liu Feifei

    2009-01-01

    Radiation therapy is a highly effective cancer treatment modality, and extensive investigations have been undertaken over the years to augment its efficacy in the clinic. This review summarizes the current understanding of the biologic bases underpinning many of the clinically used radiosensitizers. In addition, this review illustrates how the advent of innovative, high-throughput technologies with integration of different disciplines could be harnessed for an expeditious discovery process for novel radiosensitizers, providing an exciting future for such pursuits in radiation biology and oncology

  9. Preliminary screening of the radiosensitivity-associated genes on colorectal cancer

    International Nuclear Information System (INIS)

    Xing Chungen; Yang Xiaodong; Zhou Liying; Wu Yongyou; Jiang Yinfen; Dai Hong; Lv Xiaodong; Gong Wei

    2007-01-01

    The screening of radiosensitive genes of human colorectal cancer was made by gene chip. Two human colorectal cancer cell lines LOVO and SW480 were cultivated and the total RNA was extracted from at least lxl0 7 cells. Then the gene expression profiling was performed by HG-U133 Plus 2.0 Array and the difference of gene expression has been analyzed. The results shows that there are 16882 genes expressed in LOVO cell and 17114 genes expressed in SW480 cell through gene expression profiling. It has been found that the genes with 2-fold expressed differentially include 908 genes up-regulated and 1312 genes down-regulated. The same genes, such as Fas and NFkB which is up-regulated, Caspas6, and RAD21 which is down-regulated, have been proved to be related to radiosensitivity. The genes with high expression level including CEACAM5, THBS1, SERPINE2, ARL7, HPGD in LOVO cell may also be related to the radiosensitivity. And the genes with high expression level including SCD, NQ01, LYZ, KRT20, ATP1B1 in SW480 cell may be related to the radioresistance of human colorectal cancer. It could be concluded that the radiosensitivity of colorectal cancer can be reflected from gene and protein expression level. And gene expression profiling is a fast and sensitive tool to predict the radiosensitivity and screen radiosensitive genes of colorectal cancer. (authors)

  10. Radiosensitizers in cervical cancer. Cisplatin and beyond

    International Nuclear Information System (INIS)

    Candelaria, Myrna; Garcia-Arias, Alicia; Cetina, Lucely; Dueñas-Gonzalez, Alfonso

    2006-01-01

    Cervical cancer continues to be a significant health burden worldwide. Globally, the majority of cancers are locally advanced at diagnosis; hence, radiation remains the most frequently used therapeutical modality. Currently, the value of adding cisplatin or cisplatin-based chemotherapy to radiation for treatment of locally advanced cervical cancer is strongly supported by randomized studies and meta-analyses. Nevertheless, despite these significant achievements, therapeutic results are far from optimal; thus, novel therapies need to be assayed. A strategy currently being investigated is the use of newer radiosensitizers alone or in combination with platinum compounds. In the present work, we present preclinical information on known and newer cytotoxic agents as radiosensitizers on cervical cancer models, as well as the clinical information emanating from early phase trials that incorporate them to the cervical cancer management. In addition, we present the perspectives on the combined approach of radiation therapy and molecular target-based drugs with proven radiosensitizing capacity

  11. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Habash

    2017-10-01

    Full Text Available Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.

  12. The radiosensitivity of spermatogonial stem cells in C3H/101 F1 hybrid mice

    International Nuclear Information System (INIS)

    Van der Meer, Yvonne; De Rooij, Dirk G.; Cattanach, Bruce M.

    1993-01-01

    The radiosensitivity of spermatogonial stem cells of C3H/HeHx101/H F 1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIII irr , during quiescence, the spermatogonial stem cells were most radiosensitive with a D 0 of 1.4 Gy. In stages XI irr -V irr , when the cells were proliferatively active, the D 0 was about 2.6 Gy. Based on the D 0 values for sensitive and resistant spermatogonia and on the D 0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing. When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y=e τD , with τ=1 for the sensitive and τ=0.1 for the resistant spermatogonial stem cells, with a maximal e τD of 100

  13. Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations

    Science.gov (United States)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang

    2018-01-01

    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.

  14. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  15. Radiosensitivities of cultured barley of different type (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan

    1990-01-01

    The dormant seeds (with 13% moisture) of 47 barley varieties were irradiated with various doses (0-40 krad) of 137 Cs γ-rays. The radiosensitivities of naked barley was significantly higher than that of hulled barley. The sensitive coefficients of seedling height were 0.04945 and 0.03667 for naked barley and hulled barley, respectively. The radiosensitivity of four-row naked barley was significantly higher than that of two-row hulled barley and six-row hulled barley. 47 varieties studied could be divided into five types with different radiosensitivities, i.e. extreme resistant, resistant, intermediate, sensitive and extreme sensitive. It was also found that the dose-effect curves of cell nucleus volume had a peal at 30 krad

  16. The molecular basis of radiosensitivity

    International Nuclear Information System (INIS)

    McMillan, T.J.

    1989-01-01

    This paper considers how DNA damage induced by ionising radiation is processed within the cell. The current view of radiobiology is discussed. The author explains the molecular processes that underlie the differences in radiosensitivity

  17. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    CERN Document Server

    Di Giorgio, M; Busto, E; Mairal, L; Menendez, P; Roth, B; Sardi, M; Taja, M R; Vallerga, M B

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro...

  18. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  19. The development of genes associated with radiosensitivity of cervical cancer

    International Nuclear Information System (INIS)

    Li Hongyan; Chen Zhihua; He Guifang

    2007-01-01

    It has a good application prospect to predict effects of radiotherapy by examining radiosensitivity of patients with cervical cancers before their radiotherapy. Prediction of tumor cell radiosensitivity according to their level of gene expression and gene therapy to reverse radio-resistance prior to radiation on cervical cancers are heated researches on tumor therapy. The expression of some proliferation-related genes, apoptosis-related genes and hypoxia-related genes can inerease the radiosensitivity of cervical cancer. Microarray technology may have more direct applications to the study of biological pathway contributing to radiation resistance and may lead to development of alternative treatment modalities. (authors)

  20. Synergism between two helper cell subpopulations characterized by different radiosensitivity and nylon adherence

    International Nuclear Information System (INIS)

    Agarossi, G.; Mancini, C.; Doria, G.

    1981-01-01

    The present work extends our previous results on the radiosensitivity of the helper cell function. Two helper cell subpopulations, 1 radiosensitive and the other radioresistant, have been demonstrated in the spleen of mice at different times after priming with HRBC. The radiosensitive subpopulation increases with the increasing time interval between carrier-priming and irradiation. The 2 cell subpopulations have been further characterized by different nylon adherence properties: radioresistant helper cells adhere to nylon wool, whereas radiosensitive cells pass through. The 2 cell subpopulations were separated by x-irradiation and nylon wool filtration, and their helper activity was assessed separately or after recombination. The results favor the notion that 2 functionally independent helper T cells, as characterized by different radiosensitivity and nylon adherence, participate synergistically in the helper activity of primed spleen cells

  1. Membrane specific drugs as radiosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Mishra, K.P.; Shenoy, M.A.; Singh, B.B.; Srinivasan, V.T.; Verma, N.C.

    1981-01-01

    Procaine, paracetamol, and chlorpromazine showed inhibition of post irradiation repair. The chlorpromazie effect could be further augmented by treatment of cells with procaine. Chlorpromazine was also found to be preferentially toxic to hypoxid bacterial cells, and the survivors showed extreme radiosensitivity to gamma rays. Chlorpromazine was found to inhibit tumour growth in swiss mice when given intraperitoneally as well as when injected directly into the tumour. When combined with single x-ray doses, significant radiosensitization was observed in two in vivo tumours sarcoma 180A and fibrosarcoma. These results indicated that chlorpromazine may prove a good drug for combined chemo-radiotherapy of solid tumours. Investigations continued studying various aspects such as effectiveness in other tumour lines, distribution in healthy and tumour bearing animals, hyperthermia and drug combination effects, and encapsulation of the drug in artificial liposomes and blood cells. (ERB)

  2. Radiosensitization of mouse spermatogenic stem cells by Ro-07-0582

    International Nuclear Information System (INIS)

    Suzuki, N.; Withers, R.; Hunter, N.

    1977-01-01

    The hypoxic character of the spermatogenic stem cells of the mouse testis was investigated by measuring the effect on radiosensitivity of treatment with the hypoxic cell radiosensitizer, Ro-07-0582 or hyperbaric oxygen (30 psi). The D 0 values obtained were 181 (161-207) rad for irradiation alone, 140 (133-148) rad for irradiation after treatment with Ro-07-0582, and about 100 rad for irradiation in the presence of hyperbaric oxygen. Ro-07-0582 alone was slightly cytotoxic. The results demonstrate that mouse spermatogenic stem cells are radiosensitized by Ro-07-0582 or hyperbaric oxygen and are not as well oxygenated as other normal tissues

  3. Metronidazole as a radiosensitizer: a preliminary report on estimation in serum and saliva

    International Nuclear Information System (INIS)

    Karim, A.B.M.F.; Faber, D.B.; Haas, R.E.; Hoekstra, F.H.; Njo, K.H.

    1980-01-01

    Some studies indicate the clinical benefit of hypoxic radiosensitizers in patients who are undergoing radiotherapy. Serum level of sensitizers are usualy advised; however they are very demanding on the patient. Saliva level of the sensitizers may be an alternative method. This study correlated serum level of metronidazole to the saliva level in 10 patients who were undergoing radiotherapy with the sensitizer. A change to the saliva level method appears to relieve the patients

  4. Differential radiosensitivity on a tissue level in Delphinium ajacis

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, S K; Basu, R K [Bose Research Inst., Calcutta (India). Cryogenetics Lab.

    1980-09-01

    Root, leaf, pollen mother cell and endosperm of D.ajacis showed differential sensitivity as measured by X-ray-induced chromosomal aberrations at mitotic anaphase and telophase stages of the first and second division cycles after irradiation. These tissues differed significantly in Interphase Chromosome Volume (ICV) values. In all the tissues the percentage of aberrant cells increased linearly with increase in X-ray dose. Though endosperm had the largest ICV value it was the most radioresistant tissue tested. The relative radiosensitivity of the other 3 tissues was positively correlated with ICV value. The radioresistance of endosperm is probably due to factors unique to this tissue which remained obscure.

  5. Study on ionizing radiosensitivity of respiratory deficiency yeast mutants

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei

    2006-01-01

    The radiosensitivity of respiratory deficiency yeast mutants has been studied in this work. The mutants which were screened from the yeasts after ionizing irradiation were irradiated with 12 C 6+ at different doses. Because of the great change in its mitochondria and mitochondrial DNA, the respiratory deficiency yeast mutants show radio-sensitivity at dose less than 1 Gy and radioresistance at doses higher than 1 Gy. (authors)

  6. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    International Nuclear Information System (INIS)

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-01-01

    Research highlights: → In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. → The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. → The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. → P53 status is not associated with the occurrence of unsensitized clone. → Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC -/- cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC -/- clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  7. The combination of olaparib and camptothecin for effective radiosensitization

    International Nuclear Information System (INIS)

    Miura, Katsutoshi; Sakata, Koh-ichi; Someya, Masanori; Matsumoto, Yoshihisa; Matsumoto, Hideki; Takahashi, Akihisa; Hareyama, Masato

    2012-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a key enzyme involved in the repair of radiation-induced single-strand DNA breaks. PARP inhibitors such as olaparib (KU-0059436, AZD-2281) enhance tumor sensitivity to radiation and to topoisomerase I inhibitors like camptothecin (CPT). Olaparib is an orally bioavailable inhibitor of PARP-1 and PARP-2 that has been tested in multiple clinical trials. The purpose of this study was to investigate the characteristics of the sensitizing effect of olaparib for radiation and CPT in order to support clinical application of this agent. DLD-1 cells (a human colorectal cancer cell line) and H1299 cells (a non-small cell lung cancer cell line) with differences of p53 gene status were used. The survival of these cells was determined by clonogenic assay after treatment with drugs and X-ray irradiation. The γH2AX focus formation assay was performed to examine the influence of olaparib on induction and repair of double-stranded DNA breaks after exposure to radiation or CPT. A radiosensitizing effect of olaparib was seen even at 0.01 μM. Its radiosensitizing effect after exposure for 2 h was similar to that after 24 h. H1299 cells with depletion or mutation of p53 were more radioresistant than H1299 cells with wild-type p53. However, similar enhancement of radiosensitization by olaparib was observed with all of the tested cell lines regardless of the p53 status. Olaparib also sensitized cells to CPT. This sensitizing effect was seen at low concentrations of olaparib such as 0.01 μM, and its sensitizing effect was the same at both 0.01 μM and 1 μM. The combination of olaparib and CPT had a stronger radiosensitizing effect. The results of the γH2AX focus assay corresponded with the clonogenic assay findings. Olaparib enhanced sensitivity to radiation and CPT at low concentrations and after relatively short exposure times such as 2 h. The radiosensitizing effect of olaprib was not dependent on the p53 status of tumor cells. These

  8. Influence of the 100% w/v perfluorooctyl bromide (PFOB) emulsion dose on tumour radiosensitivity

    International Nuclear Information System (INIS)

    Thomas, C.; Guichard, M.; Riess, J.

    1991-01-01

    The radiosensitizing effect of a 100% w/v emulsion of a fluuorocarbon PFOB, which carries 4 times more oxygen than Fluosol-DA 20% emulsion, was studied on two human tumour xenografts (HRT18 and HT29) and murine tumour EMT6. This effect was compared to that of carbogen alone. The fluorocrit (amount of fluorocarbon in the blood) and haematocrit remained unchanged from 7 to 65 min post-injection of the emulsion (8ml/kg). Significant tumour radiosensitization was obtained with relatively low amounts of 100% w/v concentrated emulsion of PFOB plus carbogen. Maximum radiosensitization occurs at low fluorocarbon dose of about 3g/kg. These results are comparable to those obtained with Fluosol-DA 20% or Therox emulsion. Since this radiosensitization occurs only at relatively low fluorocrit without haematocrit modification, the oxygen-carrying capacity of the fluorocarbon is not the only factor involved in radiosensitization of tumor cells, regardless of the effect of carbogen on radiosensitivity. (author)

  9. Radiosensitization by hematocrit manipulation

    International Nuclear Information System (INIS)

    Hirst, D.G.; Hazlehurst, J.L.; Brown, J.M.

    1985-01-01

    The authors show that tumors in mice adapt to anemia in a rather complex manner. Radiosensitivity may be lower, higher or equal to normal depending on when the anemia is induced prior to irradiation. The authors study these changes in radiosensitivity which occur during a period of anemia followed by the restoration of the hematocrit. When mice were made anemic immediately before irradiation, their tumors were very resistant, but the resistance was lost over the following 24 hrs even though the anemia was maintained. If mice which had been anemic for 24 hrs were retransfused to normal levels with red blood cells immediately before irradiation, their tumors were considerably more sensitive than normal. As the interval between retransfusion and irradiation was increased, sensitization was rapidly lost so that by 24 hrs sensitivity was the same as that of control tumors. They attribute this loss of sensitization to rapid tumor growth in response to a restored oxygen supply so that new hypoxic cells are created. The implications of this for the treatment of the anemic patient are discussed

  10. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and

  11. Radiation-induced DNA damage in halogenated pyrimidine incorporated cells and its correlation with radiosensitivity

    International Nuclear Information System (INIS)

    Watanabe, R.; Nikjoo, H.

    2003-01-01

    Cells with DNA containing 5-halogenated pyrimidines in place of thymidine show significant reductions of slope (Do) and shoulder (Dq) of their radiation survival curves. Similar radiosensitization has also been observed in the yield of DNA strand breaks. The purpose of this study is to obtain an insight into the mechanism of cell lethality by examining the relationship between the spectrum of DNA damage and the cell survival. In this study we estimated the enhancement of strand breaks due to incorporation of halogenated pyrimidine, the complexity of DNA damage and the probability of the initial DNA damage leading to cell inactivation. Monte Carlo track structure methods were used to model and simulate the induction of strand breakage by X-rays. The increase of DNA strand break was estimated by assuming the excess strand break was caused by the highly reactive uracil radicals at the halouracil substituted sites. The assumption of the enhancement mechanism of strand breaks was examined and verified by comparison with experimental data for induction of SSB and DSB. The calculated DNA damage spectrum shows the increase in complexity of strand breaks is due to incorporation of halogenated pyrimidines. The increase in the yield of DSB and cell lethality show similar trend at various degrees of halogenated pyrimidine substitution. We asked the question whether this agreement supports the hypothesis that DSB is responsible for cell lethality? The estimated number of lethal damage from the cell survival using a linear-quadratic model is much less than the initial yield of DSB. This work examines the correlation of cell lethality as a function of frequencies of complex form of double strand breaks

  12. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer

    International Nuclear Information System (INIS)

    Brooks, Colin; Sheu, Tommy; Bridges, Kathleen; Mason, Kathy; Kuban, Deborah; Mathew, Paul; Meyn, Raymond

    2012-01-01

    Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib’s ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was

  13. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide

    International Nuclear Information System (INIS)

    Griffin, Robert J.; Makepeace, Carol M.; Hur, Won-Joo; Song, Chang W.

    1996-01-01

    Purpose: The effects of nitric oxide (NO) on the radiosensitivity of SCK tumor cells in oxic and hypoxic environments in vitro were studied. Methods and Materials: NO was delivered to cell suspensions using the NO donors 2,2-diethyl-1-nitroso-oxyhydrazine sodium salt (DEA/NO), and a spermine/nitric oxide complex (SPER/NO), which release NO at half-lives of 2.1 min and 39 min at pH 7.4, respectively. The cells were suspended in media containing DEA/NO or SPER/NO for varying lengths of time under oxic or hypoxic conditions, irradiated, and the clonogenicity determined. Results: Both compounds markedly radiosensitized the hypoxic cells. The drug enhancement ratios (DER) for 0.1, 1.0, and 2.0 mM DEA/NO were 2.0, 2.3 and 3.0, respectively, and those for 0.1, 1.0, and 2.0 mM SPER/NO were 1.6, 2.3, and 2.8, respectively. Aerobic cells were not radiosensitized by DEA/NO or SPER/NO. When DEA/NO and SPER/NO were incubated in solution overnight to allow release of NO, they were found to have no radiosensitizing effect under hypoxic or oxic conditions indicating the sensitization by the NO donors was due to the NO molecule released from these drugs. At the higher concentrations, SPER/NO was found to be cytotoxic in aerobic conditions but not in hypoxic conditions. DEA/NO was only slightly toxic to the cells in both aerobic and hypoxic conditions. Conclusions: NO released from NO donors DEA/NO and SPER/NO is as effective as oxygen to radiosensitize hypoxic cells in vitro. Its application to the radiosensitization of hypoxic cells in solid tumors remains to be investigated

  14. Reaction between nitracrine and glutathione: implications for hypoxic cell radiosensitization and cytotoxicity

    International Nuclear Information System (INIS)

    Wilson, W.R.; Anderson, R.F.

    1989-01-01

    Nitracrine (NC) is an electron affinic DNA intercalating agent and a potent hypoxia-selective cytotoxin and radiosensitizer in cell culture. Although NC is too cytotoxic and too rapidly metabolized to provide hypoxic cell radiosensitization in tumors, it is of mechanistic interest as an example of a DNA affinic radiosensitizer. We have observed a rapid chemical reaction between NC and reduced glutathione (GSH), which suggests that the observed potent in vitro cytotoxicity and radiosensitization might be dependent on thiol depletion by the large extracellular reservoir of drug. However, no GSH depletion was observed under conditions providing radiosensitization or rapid cell killing, and prior depletion of GSH by buthionine sulphoximine had no effect on cytotoxicity or formation of macromolecular adducts. Further, the intracellular reaction of NC with GSH is slower than predicted on the basis of the measured second order rate constant and the total intracellular concentrations of both species. The results are consistent with a role for DNA binding in protecting NC from reaction with GSH, and in improving the efficiency with which reduced electrophilic metabolites react with DNA in preference to GSH

  15. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  16. Effect of retinoic acid on the radiosensitivity of normal human oral keratinocyte

    International Nuclear Information System (INIS)

    Lee, Jean; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Choi, Hang Moon

    2003-01-01

    To evaluate the effect of all-trans-retinotic acid (ATRA) on the radiosensitivity of normal human oral keratinocyte (NHOK). Relative cell survival fraction including SF2 (survival fraction at 2 Gy) was calculated on the basis of colony formation assay. Data were fitted to the linear-quadratic model to establish the survival curve and calculate α and β values. Using flow cytometry at 1, 2, 3, 4, and 5 days after exposure to 2 and 10 Gy irradiation, cell cycle arrest and apoptosis were analysed. To understand the molecular mechanism of the radiosensitization of ATRA on NHOK, proteins related with apoptosis and cell cycle arrest were investigated by Western blot analysis. Treatment with ATRA resulted in a significant decrease of SF2 value for NHOK from 0.63 to 0.27, and increased α and β value, indicating that ATRA increased radiosensitivity of NHOK. ATRA increased LDH significantly, but increasing irradiation dose decreased LDH, suggesting that the radiosensitizing effect of ATRA is not directly related with increasing cell necrosis by ATRA. ATRA did not induce appotosis but increased G2 arrest after 10 Gy irradiation, implying that the increased radiosensitivity of NHOK may be due to a decrease in mitosis caused by increasing G2 arrest. ATRA inhibited the reduction of p53 at 3 days after 10 Gy irradiation and increased p21 at 1 day after 10 Gy irradiation. Further study is required to determine the precise relationship between this effect and the radiosensitizing effect of ATRA. These results suggested that ATRA increase radiosensitivity by inhibiting mitosis caused by increasing G2 arrest.

  17. Involvement of placental/umbilical cord blood acid-base status and gas values on the radiosensitivity of human fetal/neonatal hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masaru; Ebina, Satoko; Kashiwakura, Ikuo

    2013-01-01

    Arterial cord blood (CB) acid-base status and gas values, such as pH, PCO 2 , PO 2 , HCO 3 - and base excess, provide useful information on the fetal and neonatal condition. However, it remains unknown whether these values affect the radiosensitivity of fetal/neonatal hematopoiesis. The present study evaluated the relationship between arterial CB acid-base status, gas values, and the radiosensitivity of CB hematopoietic stem/progenitor cells (HSPCs). A total of 25 CB units were collected. The arterial CB acid-base status and gas values were measured within 30 min of delivery. The CD34 + HSPCs obtained from CB were exposed to 2 Gy X-irradiation, and then assayed for colony-forming unit-granulocyte-macrophage, burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte erythroid, macrophage and megakaryocyte cells. Acid-base status and gas values for PCO 2 and HCO 3 - showed a statistically significant negative correlation with the surviving fraction of BFU-E. In addition, a significant positive correlation was observed between gestational age and PCO 2 . Moreover, the surviving fraction of BFU-E showed a significant negative correlation with gestational age. Thus, HSPCs obtained from CB with high PCO 2 /HCO 3 - levels were sensitive to X-irradiation, which suggests that the status of arterial PCO 2 /HCO 3 - influences the radiosensitivity of fetal/neonatal hematopoiesis, especially erythropoiesis. (author)

  18. Radio-sensitivity and mutability in lentil (Lens culinars Medik.) as related to seed size

    International Nuclear Information System (INIS)

    Malik, I.A.; Chaudhry, M.S.; Ashraf, M.; Erskine, W.

    1998-01-01

    Eight diverse genotypes of lentil (Lens culinaris Medikus) were irradiated with 0, 10, 20, 30 and 40 kR of gamma rays. The mean lethal dose (LD50) for survival was 25.0 kR, radiation sensitivity varying over genotypes from 51.6 to 16.2 kR. The optimum irradiation dose to produce chlorophyll mutants was 21.8 kR, and that for morphological mutants was 21.4 kR. Correlations were made between a group of traits measuring radio-sensitivity and mutability, and a range of other plant characters. Most correlation coefficients between the two character groups were non-significant [it

  19. In vivo radiosensitizing effect of nitroimidazole derivative KIN-804

    International Nuclear Information System (INIS)

    Tada, Takuhito; Nakajima, Toshifumi; Onoyama, Yasuto; Murayama, Chieko; Mori, Yomoyuki; Nagasawa, Hideko; Hori, Hitoshi; Inayama, Seiichi

    1994-01-01

    In vivo characteristics of 2-nitroimidazole-1-methylacetohydroxamate (KIN-804), which is a newly developed hypoxic cell radiosensitizer, are presented. The toxicity, pharmacokinetics, and radiosensitizing effect of KIN-804 were studied by in vivo experiments using C3H/He mice bearing the SCCVII tumor. Results were compared with misonidazole (MISO). LD 50 7 of KIN-804 and MISO were 3200 mg/kg and 2000 mg/kg, respectively. The peak concentration of KIN-804 in the tumor occurred 20 min after intraperitoneal injection and reached about 62% of the maximum concentration in the blood. The concentrations in brain and sciatic nerve were very low and clearance from sciatic nerve was rapid. Enhancement ratios of KIN-804 calculated using the growth delay method were 1.22, 1.50, and 1.71 at doses of 50, 100, and 200 mg/kg, respectively, compared with 1.36 for MISO at a dose of 100 mg/kg. In the TCD 50 assay, enhancement ratios at a dose of 200 mg/kg were 1.69 for KIN-804 and 1.52 for MISO, respectively. KIN-804 is a promising radiosensitizer since it shows less toxicity and higher radiosensitizing activity than MISO. 10 refs., 5 figs

  20. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  1. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo [Ewha Womans University, Seoul (Korea, Republic of)

    2014-04-15

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer.

  2. Heterogeneity of the radiosensitivity and origins of tissue macrophage colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Oghiso, Yoichi; Yamada, Yutaka (National Inst. of Radiological Sciences, Chiba (Japan))

    1992-12-01

    Previous studies suggest that the radiosensitivity and origin of tissue macrophage precursors differ from those of hemopoietic macrophage colony-forming units (CFU-Ms) committed to macrophage-lineage cells. We assessed the origins of tissue macrophage colony-forming cells (M-CFCs) in mice by comparing their kinetics and radiosensitivities in the normal steady state and under the conditions of bone marrow depletion by [sup 89]Sr-administration and/or splenectomy. The results indicate that the radiosensitive peritoneal M-CFCs elicited by thioglycollate are derived from bone marrow macrophage precursors; where as alveolar M-CFCs, which are radioresistant, are self-sustained locally and independent of hemopoietic macrophage precursors. In contrast, highly radiosensitive liver M-CFCs are probably derived from CFU-Ms that appear to be propagated in the spleen in association with hemopoietic responses. (author).

  3. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    International Nuclear Information System (INIS)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo

    2014-01-01

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer

  4. Gene mutation in ATM/PI3K region of nasopharyngeal carcinoma cell lines

    International Nuclear Information System (INIS)

    Wang Hongmei; Wu Xinyao; Xia Yunfei

    2002-01-01

    Objective: To define the correlation between nasopharyngeal carcinoma (NPC) cell radiosensitivity and gene mutation in the ATM/PI3K coding region. Methods: The gene mutation in the ATM/PI3K region of nasopharyngeal carcinoma cell lines which vary in radiosensitivity, was monitored by reverse transcription-polymerase chain reaction (RT-PCR) and fluorescence-marked ddNTP cycle sequencing technique. Results: No gene mutation was detected in the ATM/PI3K region of either CNE1 or CNE2. Conclusion: Disparity in intrinsic radiosensitivity between different NPC cell lines depends on some other factors and mechanism without being related to ATM/PI3K mutations

  5. Regularities of ''rapid'' repair in radiosensitive mutants of diploid yeasts Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1982-01-01

    A study was made of ''rapid'' repair in radiosensitive mutants of diploid yeast Saccharomyces cerevisiae after irradiation with ν-quanta and α-particles. It was shown that the capacity of ''rapid'' repair does not always correlate with the ability of ''slow'' postirradiation repair of viability of yeast cells. A conclusion is made that ''rapid'' and ''slow'' repair are independent processes. It was found that ''rapid'' repair of the studied strains of diploid yeast is more effective after exposure to ν-quanta than α-particles

  6. Radiosensitivity of the swiss-rap mouse as a function of its growth rate

    International Nuclear Information System (INIS)

    Legeay, G.; Glas, J.F.

    1969-01-01

    The results of an exhaustive study of the age dependence of the radiosensitivity of female Swiss-Rap mice are given. A close relationship of radiosensitivity versus age could not be brought out, whereas the weekly growth rate could be accurately related to radiosensitivity. Thus, the latter should be studied when a strain is to be used for biological experiments, as the rates of growth are different with the strains. (author) [fr

  7. Radiosensitivity of continuous cultures: experiments with diploid yeast

    International Nuclear Information System (INIS)

    Kiefer, J.; Wagner, E.

    1975-01-01

    To study the influence of systems parameters on the radiosensitivity of cell populations, stationary chemostat cultures of diploid yeast with different dilution rates were γ-irradiated. Proliferation and budding kinetics were investigated and the doses necessary to eliminate the entire population determined as a function of dilution rate. It was found that this killing dose decreases with dilution rate in a linear manner. The radiosensitivity of the cells was shown to depend on the dilution rate which is presumably due to differing compositions of the population. (U.S.)

  8. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    Science.gov (United States)

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  9. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    Science.gov (United States)

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  10. Radiosensitivity of primary tumour cultures as a determinant of curability of human head and neck cancers

    International Nuclear Information System (INIS)

    Peters, L.J.; Tofilon, P.J.; Goepfert, H.; Brock, W.A.

    1989-01-01

    Between November 1985 and November 1987, 31 patients with squamous cell carcinomas of the head and neck who were treated on protocol by surgery and post-operative radiotherapy at the University of Texas M. D. Anderson Cancer Center had radiosensitivity measurements made on primary cultures of the surgical specimens using the Adhesive Tumour Cell Culture System. The parameter of cell survival at 2 Gy (S 2 ) was correlated with the clinical outcome independently of pathological risk factors. All five recurrences have been in patients with S 2 values >0.3 (p = 0.08). Evidence of significant intratumoral heterogeneity of cellular radiosensitivity in vitro was demonstrated in one of four cultures tested. Mathematical modelling suggests that in the absence of marked heterogeneity, the S 2 parameter is likely to be more robust than other radiobiologically based assays in predicting clinical treatment outcome. (author)

  11. The combination of olaparib and camptothecin for effective radiosensitization

    Directory of Open Access Journals (Sweden)

    Miura Katsutoshi

    2012-04-01

    Full Text Available Abstract Background Poly (ADP-ribose polymerase-1 (PARP-1 is a key enzyme involved in the repair of radiation-induced single-strand DNA breaks. PARP inhibitors such as olaparib (KU-0059436, AZD-2281 enhance tumor sensitivity to radiation and to topoisomerase I inhibitors like camptothecin (CPT. Olaparib is an orally bioavailable inhibitor of PARP-1 and PARP-2 that has been tested in multiple clinical trials. The purpose of this study was to investigate the characteristics of the sensitizing effect of olaparib for radiation and CPT in order to support clinical application of this agent. Methods DLD-1 cells (a human colorectal cancer cell line and H1299 cells (a non-small cell lung cancer cell line with differences of p53 gene status were used. The survival of these cells was determined by clonogenic assay after treatment with drugs and X-ray irradiation. The γH2AX focus formation assay was performed to examine the influence of olaparib on induction and repair of double-stranded DNA breaks after exposure to radiation or CPT. Results A radiosensitizing effect of olaparib was seen even at 0.01 μM. Its radiosensitizing effect after exposure for 2 h was similar to that after 24 h. H1299 cells with depletion or mutation of p53 were more radioresistant than H1299 cells with wild-type p53. However, similar enhancement of radiosensitization by olaparib was observed with all of the tested cell lines regardless of the p53 status. Olaparib also sensitized cells to CPT. This sensitizing effect was seen at low concentrations of olaparib such as 0.01 μM, and its sensitizing effect was the same at both 0.01 μM and 1 μM. The combination of olaparib and CPT had a stronger radiosensitizing effect. The results of the γH2AX focus assay corresponded with the clonogenic assay findings. Conclusion Olaparib enhanced sensitivity to radiation and CPT at low concentrations and after relatively short exposure times such as 2 h. The radiosensitizing effect of olaprib

  12. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  13. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  14. Study on radiation regulation of hypoxia inducible factor-1α expression and its correlation with hepatoma radiosensitivity

    International Nuclear Information System (INIS)

    Jin Wensen; Kong Zhaolu; Shen Zhifen; Tong Shungao; Ji Huajun; Jin Yizun

    2008-01-01

    Objective: To study the regulation of hypoxia inducible factor-1α (HIF-1α) expression in hepatoma cells after irradiation and the expression of HIF-1α effect on the radiosensitivity of heptoma cells. Methods: HepG2 cells were pretreated by Cobalt chloride (COCl 2 ), a chemical hypoxia agent, to induce and stabilize the expression of HIF-1α, and then exposed to different γ-irradiation doses. Clonogenic assay was used to evaluate HepG2 cell survival fraction (SF) after irradiation under normoxia and chemical hypoxia. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot assay (Western blot) were utilized to detect the changes of intracellular HIF-1α on the level of transcripation and translation. Results: Cell survival level was elevated by chemical hypoxia and there was a statistical difference between chemical hypoxic group and normoxic group. The ratios of SF(SF co /SF o 2 )on two different conditions were increased with irradiation doses. Meanwhile, the irradiation induced up-regulation of HIF-1α in dose-dependent manner. The expression of HIF-1α was correlated with HepG2 cell survival level to some extent. Conclusions: Irradiation could up-regulate the level of HIF-1α expression in HepG2 cells under chemical hypoxic condition. The cells survival level might be influenced by the changes in HIF-1α expression. (authors)

  15. Inhibition of DNA synthesis and radiosensitization effects of thalidomide on esophageal carcinoma TE1 cells

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Suping; Sun Zhiqiang; Sun Meiling; Liu Fenju

    2010-01-01

    Objective: To explore the radiosensitization effect of thalidomide combined with X-ray on esophageal carcinoma TE1 cells. Methods: Cell scratch assay was used to detect the inhibition ability of different concentration of Thalidomide on cell invasion and metastasis. H 3 -TdR incorporation assay was used to investigate the inhibition of DNA synthesis in TE1 cells by treated with Thalidomide singly or combination with X-rays. The colony formation assay was used to analyze the radiosensitization of Thalidomide effect on TE1 cells. Results: Thalidomide had obvious inhibition effect on TE1 cell metastasis, DNA synthesis and colony formation, which were correlated with drug concentration. The values D 0 , D q and SF 2 in TE1 cells were gradually decreased with thalidomide concentration increased. When the concentration of thalidomide was 100μg/ml, the SER D 0 and SER D 0 and SER D q were (1.4±0.2) and (1.5±0.1), respectively, While the concentration of thalidomide was 150 μg/ml, the SER D 0 and SER D q were (1.5±0.2) and (1.8±0.2), respectively. Conclusions: Thalidomide could inhibit TE1 cell invasion, metastasis, DNA synthesis, and significantly enhance the radiosensitizing effect on esophageal carcinoma TE1 cells. (authors)

  16. Radiosensitivity of two populations of Clethrionomys glareolus Schreber from East Lithuania

    International Nuclear Information System (INIS)

    Mazheikyte, R.

    1997-01-01

    The basic radiosensitivity of bank vole population inhabiting the region of the Ignalina NPP (INPP) and the control zones, 50 km to the south-west from the INPP, i.e., radiosensitivity of bank voles overwintered and bank vole underyearlings as well as that of males and females in spring and autumn was investigated. In the investigated points the bank voles were caught in May and September 1984. In all, in the experiment there were used 18 bank voles overwintered at the age of 10-13 months and 42 bank vole underyearlings of 2 months. The investigations were carried out using cytologic method because it was shown that there is a direct relationship between the radiosensitivity of animal and that of its organs and tissues to ionizing radiation. The investigations of radiosensitivity of bank voles overwintered and bank vole underyearlings in spring and autumn have shown that the number of cells with spontaneous chromosome structure aberrations in tissues of bank voles of all the investigated age groups was almost the same, i.e., ecological living conditions of bank voles in population A and population B were the same. It should be noted that some differences in radiosensitivity of the investigated populations revealed the different genetic structure of these populations during the abundance dynamics of bank voles. (author).3 tabs

  17. Radiosensitizers action on Iodine 131 therapeutical effect

    International Nuclear Information System (INIS)

    Agote, Marcos; Kreimann, Erica L.; Bocanera, Laura V.; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.

    1999-01-01

    Present studies were aimed to research the possible application of a radiosensitizer, nicotinamide, to increase the therapeutical effect of radioiodine. There were used goitrous and normal rats with growing dose of Iodine 131, with and without simultaneous treatment with nicotinamide. The obtained results show that the nicotinamide treatment importantly increases the thyroid radio destructive effect induced by radioiodine. Under these experimental conditions, nicotinamide induces to a significant increase of thyroid vascularisation, without changes in the proteins ADP-ribosylation activity. These results show, for the first time, the radiosensitizer effect of nicotinamide in front of Iodine 131 and give the possibility of using it in the treatment of hyperthyroid or thyroid difference cancer patients. (author)

  18. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. II. - X irradiation effects and influence of hyperthermia on the radiosensitivity

    International Nuclear Information System (INIS)

    Bueren, J.A.; Nieto, M.

    1983-01-01

    The effects of the X-irradiation on the viability of the granulocyte-macrophage precursors, has been determined by means of the agar diffusion chamber culture technique. The results show the high radiosensitivity of these cells, with survival parameter similar to those previously reported in the literature about different granulocyte-macrophage precursors. When a hyperthermic treatment is performed prior to the X-irradiation, a radiosensitization phenomenon is observed due to the synergism existent between hyperthermia and X rays on the lethality of the precursors. (Authors) 37 refs

  19. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  20. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    International Nuclear Information System (INIS)

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J.

    2006-01-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases

  1. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Radl, Analia; Sardi, Mabel

    2008-01-01

    Full text: Around 5 % -7 % of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half

  2. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Sardi, M.

    2011-01-01

    Around 5%-7% of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half-time (T1/2) and

  3. Radiosensitization of hypoxic tumor cells by simultaneous administration of hyperthermia and nitroimidazoles

    International Nuclear Information System (INIS)

    Hofer, K.G.; Hofer, M.G.; Ieracitano, J.; McLaughlin, W.H.

    1977-01-01

    The radiation response of oxygenated and hypoxic L1210 leukemia cells subjected to in vivo treatments with hyperthermia and/or chemical radiosensitizers was evaluated with the [ 125 I]iododeoxyuridine prelabeling assay. X irradiation of L1210 cells at body temperatures of 41 0 C or higher resulted in strongly enhanced tumor cell death. The magnitude of this thermal effect increased with increasing temperatures. Hypoxic L1210 cells were particularly sensitive to heat induced enhancement of radiation damage, i.e., the sensitizing effects were more pronounced and occurred at lower temperatures. Chemical radiosensitizers (metronidazole, Ro 7-0582) selectively sensitized hypoxic L1210 populations; fully oxygenated cells were not affected. Considerable radiosensitization was achieved at nontoxic dose levels of the two sensitizers. Experiments designed to determine the degree of radiosensititization as a function of drug dose showed that Ro 7-0582 was consistently more effective than metronidazole in sensitizing hypoxic tumor populations. At the highest drug dose used (3 mg/g body wt) the DMF was 2.2 for metronidazole and 2.8 for Ro 7-0582. Combined administration of hyperthermia and Ro 7-0582 (or metronidazole) produced synergistic potentiation of radiation damage in hypoxic L1210 populations (DMF of 4.2). Under optimal conditions, hypoxic L1210 cells subjected simultaneously to both modes of radiosensitization became more radiosensitive than untreated, fully oxygenated L1210 cells. Experiments on two other tumor lines (BP-8 murine sarcoma and Ehrlich ascites cells) indicate that such synergistic radiosensitization effects are not unique to L1210 cells

  4. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Mihatsch, Julia; Holler, Marina; Chaachouay, Hassan; Rodemann, H. Peter

    2014-01-01

    Background and purpose: Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Material and methods: Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Results: Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. Conclusion: The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization

  5. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Directory of Open Access Journals (Sweden)

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  6. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII

    Science.gov (United States)

    Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2014-01-01

    The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428

  7. Study on relationship between apoptosis-related genes and radiosensitivity of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Huixiang; Wang Yaohe; Shi Yonggang; Gao Dongling; Zhang Yunhan

    2000-01-01

    Objective: To observing the relationship between apoptosis-related genes bcl-2,c-myc, p53 and the radiosensitivity of esophageal squamous cell carcinoma. Methods: The expression levels of bcl-2, c-myc and p53 genes in 57 biopsy samples from patients of esophageal squamous cell carcinoma were detected with the LSAB immunohistochemistry method. All the patients were treated with radiotherapy. The radiotherapeutic effect in these patients was observed and the relation between gene expression and radiosensitivity was analyzed. Results: Compared with the bcl-2-negative group, the radiosensitivity of bcl-2-positive one was lower(P<0.01). The radiosensitivity of p53-positive group was slightly lower than that of the p53-negative one (P<0.05). The c-myc protein expression was not related to radiosensitivity. Conclusion: Detection and comprehensive analysis of bcl-2, c-myc and p53 protein expressions are useful in forecasting the radiotherapeutic effect on squamous cell carcinoma of esophagus

  8. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  9. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  10. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    Science.gov (United States)

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. THERMAL RADIOSENSITIZATION IN HEAT-SENSITIVE AND RADIATION-SENSITIVE MUTANTS OF CHO CELLS

    NARCIS (Netherlands)

    KAMPINGA, HH; KANON, B; KONINGS, AWT; STACKHOUSE, MA; BEDFORD, JS

    Recently, it has been hypothesized (Iliakis and Seaner 1990) that DNA double-strand break (dsb) repair proficiency is a prerequisite for heat radiosensitization on the basis of the finding that the radiosensitive and dsb-repair-deficient mutant xrs-5 cell line shows no significant heat-induced

  12. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions.

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.

  13. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  14. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    International Nuclear Information System (INIS)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-01-01

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials

  15. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma.

    Science.gov (United States)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-09-27

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  16. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  17. Leukocyte apoptosis as a predictor of radiosensitivity in Fanconi anemia

    International Nuclear Information System (INIS)

    Petrovic, Sandra; Leskovac, Andreja; Joksic, Ivana; Filipovic, Jelena; Joksic, Gordana; Vujic, Dragana; Guc-Scekic, Marija

    2013-01-01

    Fanconi anemia (FA) is a rare cancer-prone genetic disease characterized by impaired oxygen metabolism and defects in DNA damage repair. Response of FA cells to ionizing radiation has been an issue intensively debated in the literature. To study in vitro radiosensitivity in patients suffering from FA and their parents (heterozygous carriers), we determined radiation-induced leukocyte apoptosis using flow cytometry. As TP53 gene is involved in the control of apoptosis, we studied its status in FA lymphocytes using dual colour fluorescence in situ hybridization (FISH). FA patients and female heterozygous carriers display radiosensitive response to ionizing radiation seen as abnormal elimination of cells via apoptosis. By employment of FISH, the TP53 allele loss in FA lymphocytes was not observed. In diseases related to oxidative stress, determination of radiation-induced apoptosis is the method of choice for testing the radiosensitivity. (author)

  18. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  19. In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    2011-02-01

    Full Text Available Xiaomeng Zhang1*, Huanjun Yang1*, Ke Gu1, Jian Chen2, Mengjie Rui2, Guo-Liang Jiang11Departments of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College,Fudan University,Shanghai, People’s Republic of China; 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; *Xiaomeng Zhang and Huanjun Yang share the first authorshipObjective: To investigate the in vitro and in vivo radiosensitization effect of an institutionally designed nanoliposome encapsulated cisplatin (NLE-CDDP.Materials and methods: NLE-CDDP was developed by our institute. In vitro radiosensitization of NLE-CDDP was evaluated by colony forming assay in A549 cells. In vivo radiosensitization was studied with tumor growth delay (TGD in Lewis lung carcinoma. The radiosensitization for normal tissue was investigated by jejunal crypt survival. The radiosensitization studies were carried out with a 72 h interval between drug administration and irradiation. The mice were treated with 6 mg/kg of NLE-CDDP or CDDP followed by single doses of 2 Gy, 6 Gy, 16 Gy, and 28 Gy. Sensitization enhancement ratio (SER was calculated by D0s of cell survival curves for A549 cells, doses needed to yield TGD of 20 days in Lewis lung carcinoma, or D0s of survival curves in crypt cells in radiation alone and radiation plus drug groups.Results: Our NLE-CDDP could inhibit A549 cells in vitro with half maximal inhibitory concentration of 1.12 µg/mL, and its toxicity was 2.35 times that observed in CDDP. For in vitro studies of A549 cells, SERs of NLE-CDDP and CDDP were 1.40 and 1.14, respectively, when combined with irradiation. For in vivo studies of Lewis lung carcinoma, the strongest radiosensitization was found in the 72 h interval between NLE-CDDP and irradiation. When given 72 h prior to irradiation, NLE-CDDP yielded higher radiosensitization than CDDP (SER of 4.92 vs 3.21 and slightly increased injury in jejunal

  20. Chromosomal radiosensitivity in breast cancer patients and BRCA1 and 2 mutation carriers

    International Nuclear Information System (INIS)

    Vral, Anne

    2004-01-01

    Enhanced chromosomal radiosensitivity is observed in significant proportions of cancer patients. In breast cancer patients, this elevated sensitivity is confirmed in several independent studies with the G2 assay as well as with the GO micronucleus (MN) assay for peripheral blood lymphocytes (PBL). Enhanced chromosomal radiosensitivity is a common feature of sporadic breast cancer patients as well as breast cancer patients with a family history of the disease. Segregation analysis showed Mendelian heritability of chromosomal radiosensitivity. As mutations in the highly penetrant breast cancer predisposing genes, BRCA1 and 2, are only present in about 3-5 % of familial breast cancer patients, they cannot solely account for the high proportion of radiosensitive cases found among all breast cancer patients. A review on chromosomal radiosensitivity in BRCA1 and 2 mutation carriers shows that breast cancer patients with a BRCAl or 2 mutation are on the average more radiosensitive than healthy individuals, but not different from breast cancer patients without a BRCA mutation. The radiation response of healthy BRCA1/2 mutation carriers, on the contrary, is not significantly different from controls. Most studies performed on wild type and BRCA +/- EBV lymphoblastoid cell lines also could not demonstrate any differences in MN response between both groups. These findings suggest that mutations in BRCA 1 and 2 are not playing a major role in chromosomal radiosensitivity as measured by G2 and MN assay. The enhanced sensitivity observed in a substantial proportion of breast cancer patients, irrespective of a BRCA1/2 mutation or not, suggests that this feature may be related to the presence of other mutations in low penetrance breast cancer predisposing genes, which may be involved in the process of DNA damage. (author)

  1. Doranidazole (PR-350), a hypoxic cell radiosensitizer, radiosensitizes human lung tumors (RERF-LC- AI) and causes changes in tumor oxygenation

    International Nuclear Information System (INIS)

    Kubota, N.; Griffin, R.J.; Williams, B.W.; Song, C.W.; Yahiro, T.

    2003-01-01

    Full text: We previously have reported the radiosensitizing capability of Doranidazole (PR-350) on SCCVII cells and tumors (Puerto Rico, 2001). In the present study, we have investigated the efficacy of PR-350 as a hypoxic cell radiosensitizer using human lung cancer cells (RERF-LC-AI) in vitro and also RERF-LC-AI tumors grown s.c. in Balb/c nude mice. Using the micronucleus assay method, we determined the effect of PR-350 on the response of RERF-LC-AI cells to radiation under hypoxic conditions and enhancement ratios (ER) of 1.45∼2.26 were obtained. The in vivo radiosensitizing effect was studied by irradiating RERF-LC-AI tumors with 15 Gy at 20 min. after i.v. injection of PR-350 (200mg/kg) and measuring the tumor growth delay. Significant growth delay occurred after i.v. injection of PR-350 before irradiation compared to radiation alone. We measured tumor pO 2 at 3, 7 and 14 days after treatment using an Eppendorf pO 2 histograph. The frequency of pO 2 values 2 in tumors treated with radiation plus PR-350 were higher than that in tumors treated with radiation plus saline. These data suggest that the O 2 consumption in tumors treated with radiation plus PR-350 was less than that in tumors treated with radiation plus saline due to greater drug and radiation-induced cell death. This hypothesis is supported by the fact that the tumor size in the combined treatment group was smaller than in radiation alone. These results suggest that PR-350 may improve the response of tumors to radiotherapy not only by increasing the radiosensitivity of hypoxic cells but also by improving tumor oxygenation over many days during fractionated radiotherapy

  2. Effect of cisplatin on the clinically relevant radiosensitivity of human cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Britten, Richard A.; Evans, Andrew J.; Allalunis-Turner, M. Joan; Pearcey, Robert G.

    1996-01-01

    Purpose: To evaluate the effect of clinically relevant levels of cisplatin on the radiosensitivity of human cervical tumor cells, and to estimate what changes in local control rates might be expected to accrue from the concomitant use of cisplatin during fractionated radiotherapy. Methods and Materials: The effects of concomitant cisplatin (1 μg/ml, a typical intratumor concentration) on the clinically relevant radiosensitivity, i.e., surviving fraction after 2 G (SF 2 ) values, was determined in 19 cloned human cervical tumor cell lines. These early passage cell lines had SF 2 values ranging from 0.26 to 0.87. Results: The concomitant administration of cisplatin reduced the clinically relevant radiosensitivity in the majority (11 out of 19) of the human tumor cell lines investigated. In only 4 out of 19 was any radiosensitization observed, and in 4 out of 19 cell lines there was no significant change in radiosensitivity. However, the sum of the independent cell killing by radiation and cisplatin, was approximately twofold higher than after radiation alone. There was no apparent dependence of the cisplatin-induced changes in SF 2 values upon the level of cell killing by cisplatin. However, there is a suggestion that concomitant cisplatin administration may have a differential effect in inherently radiosensitive and resistant human tumor cell lines. Conclusions: Our data suggest that concomitant cisplatin/radiotherapy regimens may result in a higher level of local tumor control, but primarily through additive toxicity and not through radiosensitization. Future improvements in local tumor control may, thus, be derived by increasing the total dose of cisplatin

  3. Skin test of radiosensitivity. Application to Fanconi anemia

    International Nuclear Information System (INIS)

    Dutreix, J.; Gluckman, E.

    1983-01-01

    A test of skin radiosensitivity is described. It is achieved by irradiating small skin fields (15 mm in diameter) with 50 kV X-rays. The radiosensitivity is evaluated from the skin reaction observed for a single acute dose of 8 and 10 Gy; it is considered increased if the reaction for 10 Gy exceeds the desquamation threshold, and scored according to the observed reaction. The test includes an evaluation of the cellular repair, assessed on the comparison of the reactions for single dose and split irradiation. The time of the reaction peak is also reported. Abnormal reactions have been observed on 4 out of 8 patients with Fanconi Anemia

  4. Skin test of radiosensitivity. Application to Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Dutreix, J. (Institut Gustave-Roussy, 94 - Villejuif (France)); Gluckman, E. (Centre Hayem, Hopital St.-Louis, 75 Paris (France))

    1983-01-01

    A test of skin radiosensitivity is described. It is achieved by irradiating small skin fields (15 mm in diameter) with 50 kV X-rays. The radiosensitivity is evaluated from the skin reaction observed for a single acute dose of 8 and 10 Gy; it is considered increased if the reaction for 10 Gy exceeds the desquamation threshold, and scored according to the observed reaction. The test includes an evaluation of the cellular repair, assessed on the comparison of the reactions for single dose and split irradiation. The time of the reaction peak is also reported. Abnormal reactions have been observed on 4 out of 8 patients with Fanconi Anemia.

  5. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation

    International Nuclear Information System (INIS)

    Supiot, Stephane; Thillays, Francois; Rio, Emmanuel; Gouard, Sebastien; Morgenstern, Alfred; Bruchertseifer, Frank; Mahe, Marc-Andre; Chatal, Jean-Francois; Davodeau, Francois; Cherel, Michel

    2007-01-01

    The radiosensitizing properties of gemcitabine in relation to low Linear Energy Transfer (LET) particles (Cobalt 60) and high-LET particles (alpha-RIT 213 Bi-radiolabeled CHX-DTPA-B-B4) were analyzed. Three multiple myeloma cell lines (LP1, RPMI 8226, U266) were irradiated with or without 10 nM gemcitabine 24 h prior to radiation. Gemcitabine led to radiosensitization of LP1 and U266 cells with low-LET (Radiation Enhancement Ratio: 1.55 and 1.49, respectively) but did not radiosensitize any cell line when combined with high-LET

  7. Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 less than z Less Than 3

    Science.gov (United States)

    Kurczynski, Peter; Gawiser, Eric; Acquaviva, Viviana; Bell, Eric F.; Dekel, Avishai; De Mello, Duilia F.; Ferguson, Henry C.; Gardner, Jonathan P.; Grogin, Norman A.

    2016-01-01

    We present estimates of intrinsic scatter in the star formation rate (SFR)--stellar mass (M*) correlation in the redshift range 0.5 less than z less than 3.0 and in the mass range 10(exp 7) less than M* less than 10(exp 11) solar mass. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5 sigma depth) probes the SFR--M* correlation down to M* approximately 10(exp 7) solar mass, a factor of 10-100 x lower in M* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR-M* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter approximately 100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10(exp 7) solar mass.

  8. Prenyltransferase inhibitor radiosensitization of pancreatic ductal carcinoma (PaCa) cells

    International Nuclear Information System (INIS)

    Brunner, T.B.; Hahn, S.M.; Rustgi, A.K.

    2003-01-01

    Farnesyltransferase inhibitors (FTIs) radiosensitize tumor cell lines expressing activated H-Ras. K-Ras however remains active after FTI treatment due to prenylation by geranylgeranyltransferase. Up to 90% of pancreatic carcinomas (PaCa) are mutant in K-ras. We hypothesized that combined FTI and geranylgeranyltransferase inhibitor (GGTI) treatment could radiosensitize PaCa cells. Nine human PaCa lines (7 K-ras-mutant, 2 ras-wt) and transgenic mouse pancreatic ductal cells (PDC) expressing wt-ras or mutant K-ras were tested in clonogenic assays with combined FTI-A +/- GGTI-B (Merck and Co Inc.). Inhibition of PI3- kinase (with LY294002) or inhibition of MEK1/2 (with U0126) served to assess the significance of the PI3-kinase and MAPK to radiation survival in these cells. H- and K-Ras prenylation status and changes in phosphorylation of AKT and MAPK were monitored as were changes in cell cycle distribution. FTI+GGTI treatment achieved inhibition of K-Ras prenylation in all PaCa cell lines. This treatment radiosensitized the K-ras mutant cell lines AsPC-1, Capan-2, MiaPaCa-2 and PSN-1, PancM, but not Capan-1 or the ras-wt cell lines (BxPC-3, HS766T, PDC-wt). L-778,123, a dual action inhibitor, sensitized all K-ras mutant cells. Surprisingly, PancM, Panc-1, MiaPaCa-2 and PDC K-Ras cells were radiosensitized by FTI treatment alone. R11577, another FTI without GGTI activity, also sensitized Panc-1 and MiaPaCa-2 and additionally AsPC-1 cells. Radiosensitization was also achieved after treatment with LY294002 in all PaCa lines expressing mutant-K-ras and the ras-wt line BxPC-3 overexpressing Akt2. However these lines were not sensitized by U0126. FTI+GGTI sensitize K-ras mt PaCa cell lines to radiation. PI3-kinase signaling but not MAPK signaling appears to contribute to radiation survival in PaCa cells. Radiosensitization of certain PaCa cells by FTI alone indicates that alternate pathways or farnesylated targets other than K-Ras may also be involved in radiation survival

  9. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  10. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    Directory of Open Access Journals (Sweden)

    Wenbo Wang

    Full Text Available The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3 as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.

  11. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Saelen Marie

    2012-09-01

    Full Text Available Abstract Background The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC. Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Methods Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Results Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Conclusions Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  12. Effect of Quercetin on radio-sensitivity of HeLa cells

    International Nuclear Information System (INIS)

    Wu Xiaofen; Hong Chengjiao; Guo Wenxiu; Pan Yanling; Zhang Baoguo

    2011-01-01

    In order to investigate the mechanism of Quercetin on radio-sensitivity of human Uterine Cervix Cancer HeLa cells, HeLa cells were cultured in different concentrations of Quercetin and different doses of irradiation. The clonogenic assay was used to observe the cell survival rate. The repair of DNA double-strand breaks and effect of Quercetin combination of radiation on the cell cycle were detected by flow cytometry. The results show that the radio-sensitivity of Quercetin on HeLa cells was obvious and the unrepaired DSBs after irradiation increased, but did not decrease G2/M cell cycle arrest. From this it can be inferred that the effect on HeLa cell radio-sensitivity may be related to the inhibition of the repair of DNA double-strand breaks induced by Quercetin, but it dose not reveal a significant relation with the cell cycle and G2/M arrest. (authors)

  13. Enhancement of misonidazole radiosensitization by an inhibitor of glutathione biosynthesis

    International Nuclear Information System (INIS)

    Hodgkiss, R.J.; Middleton, R.W.

    1983-01-01

    A well known inhibitor of glutathione biosynthesis, buthione sulphoximine (S-n-butyl homocysteine sulphoximine, BSO) depletes non-protein sulphydryls (NPSH) in Chinese hamster cells in vitro, resulting in a marked increase in the radiosensitization efficiency of misonidazole. V79 379A Chinese hamster cells were maintained in suspension cultures and irradiated in monolayers using 250 kVp X-rays at a dose rate of 3.93 Gy/min. Radiosensitization by misonidazole alone gave results within 0.1 sensitizer enhancement ratio (s.e.r.) of the curve reported by Watts et al. (1980). GSH (2 mmol dm - 3 ) added to the extracellular medium resulted in a marked decrease in the radiosensitization efficiency of misonidazole, eliminating the effect at 0.1 mmol dm - 3 misonidazole (s.e.r. = 1.0 relative to nitrogen control). A marked enhancement of the radiosensitization by misonidazole was observed when the cells had been incubated with BSO (0.1 mmol dm - 3 ). BSO alone at this concentration gave s.e.r. = 1.17; misonidazole alone (0.1 mmol dm - 3 ) gave s.e.r. = 1.18 and misonidazole with BSO (both 0.1. mmol dm - 3 ) gave s.e.r. = 1.9. The BSO treatment gave little effect in aerated cells. The concentration of BSO needed to produce these effects in vitro is ca. 40-fold lower than doses tolerated by mice in repeated administrations. (U.K.)

  14. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.

    Directory of Open Access Journals (Sweden)

    Shane Zaidi

    Full Text Available Heat shock protein 90 (HSP90 is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001. NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G(2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line

  15. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line

  16. The potential role of G2- but not of G0-radiosensitivity for predisposition of prostate cancer

    International Nuclear Information System (INIS)

    Borgmann, Kerstin; Raabe, Annette; Reuther, Sebastian; Szymczak, Silke; Schlomm, Thorsten; Isbarn, Hendrik; Gomolka, Maria; Busjahn, Andreas; Bonin, Michael; Ziegler, Andreas; Dikomey, Ekkehard

    2010-01-01

    Purpose: Comparing the chromosomal radiosensitivity of prostate cancer patients with that of healthy donors. Materials and methods: The study was performed on 81 prostate cancer patients characterised by a clinical stage of predominantly pT2c or pT3a and a median age of 67 years. As healthy donors 60 male monozygotic twin pairs were recruited with a median age of 28 years. Chromosomal radiosensitivity was measured using both G0- and G2-assay. Results: No difference between healthy donors and prostate cancer patients was detected concerning G0-radiosensitivity, since medians were similar (Hodges-Lehmann estimate: -0.05, 95% CI: -0.18-0.08, p = 0.4167). However, a pronounced difference was determined for G2-radiosensitivity with prostate cancer patients showing a significantly higher sensitivity compared to healthy donors (Hodges-Lehmann estimate: -0.41, 95% CI: -0.53 to -0.30, p = 1.75 -9 ). Using the 90% quantile of G2-radiosensitivity in healthy donors as a threshold for discrimination the fraction of prostate cancer patients with elevated radiosensitivity increased to 49%. Conclusion: G2-, but not G0-radiosensitivity is a promising marker for predisposition of prostate cancer.

  17. Chromosomal fragility syndrome and family history of radiosensitivity as indicators for radiotherapy dose modification

    International Nuclear Information System (INIS)

    Alsbeih, Ghazi; Story, Michael D.; Maor, Moshe H.; Geara, Fady B.; Brock, William A.

    2003-01-01

    Beside a few known radiosensitive syndromes, a patient's reaction to radiotherapy is difficult to predict. In this report we describe the management of a pediatric cancer patient presented with a family history of radiosensitivity and cancer proneness. Laboratory investigations revealed a chromosomal fragility syndrome and an increased cellular radiosensitivity in vitro. AT gene sequencing revealed no mutations. The patient was treated with reduced radiation doses to avoid the presumed increased risks of toxicity to normal tissues. The patient tolerated well the treatment with no significant acute or late radiation sequelae. Five years later, the patient remains both disease and complications free. While an accurate laboratory test for radiosensitivity is still lacking, assessments of chromosomal fragility, cell survival and clinical medicine will continue to be useful for a small number of patients

  18. Behavioral Correlates of Primates Conservation Status: Intrinsic Vulnerability to Anthropogenic Threats.

    Directory of Open Access Journals (Sweden)

    Amélie Christelle Lootvoet

    Full Text Available Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability.

  19. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Science.gov (United States)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  20. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Borsa, J. E-mail: jborsa@mds.nordion.com; Lacroix, M.; Ouattara, B.; Chiasson, F

    2004-10-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D{sub 10}. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  1. Mitochondrial modulation of oxygen-dependent radiosensitivity in some human tumour cell lines.

    LENUS (Irish Health Repository)

    Anoopkumar-Dukie, S

    2009-10-01

    Oxygen-dependent radiosensitivity of tumour cells reflects direct oxidative damage to DNA, but non-nuclear mechanisms including signalling pathways may also contribute. Mitochondria are likely candidates because not only do they integrate signals from each of the main kinase pathways but mitochondrial kinases responsive to oxidative stress communicate to the rest of the cell. Using pharmacological and immunochemical methods, we tested the role of mitochondrial permeability transition (MPT) and the Bcl-2 proteins in oxygen-dependent radiosensitivity. Drug-treated or untreated cervical cancer HeLa, breast cancer MCF-7 and melanoma MeWo cell lines were irradiated at 6.2 Gy under normoxic and hypoxic conditions then allowed to proliferate for 7 days. The MPT blocker cyclosporin A (2 microM) strongly protected HeLa but not the other two lines against oxygen-dependent radiosensitivity. By contrast, bongkrekic acid (50 microM), which blocks MPT by targeting the adenine nucleotide transporter, had only marginal effect and calcineurin inhibitor FK-506 (0.1 microM) had none. Nor was evidence found for the modulation of oxygen-dependent radiosensitivity by Bax\\/Bcl-2 signalling, mitochondrial ATP-dependent potassium (mitoK(ATP)) channels or mitochondrial Ca(2+) uptake. In conclusion, calcineurin-independent protection by cyclosporin A suggests that MPT but not mitoK(ATP) or the mitochondrial apoptosis pathway plays a causal role in oxygen-dependent radiosensitivity of HeLa cells. Targeting MPT may therefore improve the effectiveness of radiotherapy in some solid tumours.

  2. In vivo radiosensitization by diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Kent, C.R.; Blekkenhorst, G.H.

    1988-01-01

    Diethyldithiocarbamate (DDC) has been suggested to have both radiosensitizing (due to superoxide dismutase (SOD) inhibition) and radioprotective properties. We have studied the activity of SOD up to 24 h after intratumoral administration of 50, 100, 150, and 300 mg/kg DDC in 3-methylcholanthrene-induced tumors in BALB/c mice. Maximal inhibition of SOD (8% of control) was obtained 1 h after administration of 100 mg/kg DDC. Tumor response to DDC and X irradiation was assessed using a tumor growth-delay assay, after 11 Gy 100-kVp X rays given up to 24 h after DDC administration. Radiation-induced tumor growth delay (7.11 +/- 1.76 days) was enhanced only when tumors were irradiated 2-4 h after 50 mg/kg DDC. When higher doses of DDC were used, tumor cure was noted when DDC was injected 1-6 h before irradiation. We suggest our findings are consistent with radiosensitization being due to SOD inhibition, but that if insufficient time is allowed between DDC injection and irradiation, the sensitization is masked by a radioprotective effect. We believe that further investigations as to the therapeutic potential of DDC in human patients with cancer are warranted

  3. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    International Nuclear Information System (INIS)

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-01-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing γH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2μg/mL], Trinovin [10μg/mL], and Prostate Rx [50 μg/mL]). However, both Trinovin (10μg/mL) and Prostate Rx (6μg/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  4. Studies on varietal radiosensitivity and genetical effect in triticum aestivum L

    International Nuclear Information System (INIS)

    Feng Zhijie; Wang Linqing

    1987-09-01

    The Dormand seeds (with 13% water content) of 49 wheat varieties (T riticum aestivum L.) were irradiated with 60 Co-γ ray of various doses, and the varietal radiosensitivities and the genetical effects were studied in experimental plots and laboratories. Significant differences in radiosensitivity were found among the varieties used in present experiment. The varietal radiosensitivity of T riticum aestivum L. manifested a continuous variation, which accords approximately with the normal distribution, from the sensitive to the resistant to 60 Co-γ rays. 49 varieties utilized could be divided into five groups with different radiosensitivity to 60 Co-γ rays: higher resistent, resistant, intermediat respose, sensitive and higher sensitive. It was found that most of the mutant varieties improved by irradiation were more resistant to γ rays than the local varieties which were more resistant than recombination varieties bred by crossbreeding, that is radiation-induced mutant varieties 2 generation. The results showed that mutation frequencies, mutation spectra and variebilities of the quantative traits varied with varieties. Higher mutation frequencies, wider mutation spectra and greater variabilities were observed in the sensitive varieties than in the resistant ones, and it suggested that there is a greater potential for selecting mutants in M 2 generation of more sensitive varieties

  5. Effect of constitutive androstane receptor on radiosensitization of mictomycin C and its homologoue-629

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun

    2008-01-01

    The object of this work is to evaluate radiosensitization of MMC and its analogue 5-(aziridin-l-yl)-3- hydroxymethyl-1-methylindole-4,7-dione(629) and how transfection of constitutive androstane receptor (CAR) affect their biological effects. The expressions of CAR mRNA and CYP2B6 mRNA in HepG2 cells and g2car cells were detected by RT-PCR. The radiosensitization of MMC and 629 in vitro were evaluated in HepG2 cells and g2car cells by colony formation under anaerobic and aerobic condition. The effect of 629 on cell cycle and apoptosis of HepG2 cells and g2car cells were assayed by flow cytometry. It was found that plasmid mCAR1/pCR3 was transfected into g2car cells successfully and target CYP2B6 was transactivated by CAR. To compare with aerobic and anaerobic, the radiosensitization of MMC and 629 to HepG2 cells and g2car cells had significantly enhanced, the radiosensitization of 629 was stronger than its parent compound-MMC under aerobic and anaerobic condition, and transfect CAR gene could improve the radiosensitization of MMC and 629. Furthermore, CYP2B6 is one master enzyme for the metabolism of MMC and 629. Transfection of CAR can increase expression of CYP2B6 mRNA in HepG2 cells, and can affect radiosensitization of MMC and 629. (authors)

  6. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  7. Correlation between intrinsic hardness and defect structures of ion irradiated Fe alloys

    International Nuclear Information System (INIS)

    Shin, C.; Jin, H. H.; Kwon, J.

    2008-01-01

    Evolution of micro structures and mechanical properties during an in-service irradiation is one of the key issues to be addressed in nuclear materials. Ion irradiation is an effective method to study these irradiation effects thanks to an ease in handling post-irradiated specimens. But the characteristics of an ion irradiation pose a certain difficulty in evaluating irradiation effects. For example, ion irradiated region extends only a few hundred nano-meters from the surface of a sample and the depth profile of an irradiation damage level is quite heterogeneous. Thus it requires special care to quantify the changes in properties after an ion irradiation. We measured changes in a hardness by using a nano-indentation combined with a continuous stiffness measurement (CSM technique. Although the SM technique allows for a continuous measurement of hardness along penetration depth of an indenter; it is difficult to obtain an intrinsic hardness of an irradiation hardened region because one is measuring hardness of a hard layer located on a soft matrix. Thus we modeled the nano-indentation test by using a finite element method. We can extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. We investigated the irradiation effects on Fe-Cr binary alloy by using the methods mentioned above. TEM analysis revealed that an irradiation forms dislocation loops with Burgers vector of and 1/2 . These loops varied in size and density with the Cr content and dose level. We discuss in detail a correlation between the measured irradiation-induced changes in the surface hardness and an irradiation induced defect. (authors)

  8. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  9. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  10. Radiosensitization of tumors and normal tissues by combined treatment with misonidazole and heat

    International Nuclear Information System (INIS)

    Hofer, K.G.; MacKinnon, A.R.; Schubert, A.L.; Lehr, J.E.; Grimmett, E.V.

    1981-01-01

    Combination treatment of mice with misonidazole (0.5 mg/g body wt.) and hyperthermia (41.5/sup o/C for 45 mins.) produced dramatic radiosensitization in hypoxic BP-8 murine sarcoma cells. The dose modifying factor (DMF: 4.3) was such that hypoxic BP-8 cells subjected to combination therapy became more radiosensitive than untreated, fully oxygenated cell populations. In contrast, radiosensitization by combination treatment was comparatively minor or completely absent in normal body tissues such as skin (DMF: 1.57), intestine (DMF: 1.0), and bone marrow (DMF: 1.0). These results suggest that simultaneous administration of misonidazole and hyperthermia may prove an effective adjuvant to conventional clinical radiation therapy

  11. Preferential radiosensitization of G1 checkpoint--deficient cells by methylxanthines

    International Nuclear Information System (INIS)

    Russell, Kenneth J.; Wiens, Linda W.; Demers, G. William; Galloway, Denise A.; Le, Tiep; Rice, Glenn C.; Bianco, James A.; Singer, Jack W.; Groudine, Mark

    1996-01-01

    Purpose: To develop a checkpoint-based strategy for preferential radiosensitization of human tumors with deficient and/or mutant p53. Methods and Materials: A549 human lung adenocarcinoma cell lines differing in their expression of the p53 tumor suppressor gene were produced by transduction with the E6 oncogene from human papilloma virus type 16. The cells expressing E6 (E6+) lack a G1 arrest in response to ionizing radiation, are deficient in p53 and p21 expression, and exhibit a fivefold greater clonogenic survival following 10 Gy radiation. Results: Postirradiation incubation with millimolar concentrations of the methylxanthine pentoxifylline (PTX) results in preferential radiosensitization of the E6+ cells compared to the LXSN+ vector transduced controls. There is a threefold sensitization of the LXSN+ cells and a 15-fold sensitization of the E6+ cells, which results in equal clonogenic survival of the two lines. Flow cytometry reveals PTX abrogation of the radiation induced G2 arrest for both cell lines. PTX also prolongs G1 transit for both cell lines. Preliminary results are presented using a novel methylxanthine, lisofylline (LSF), which has similar cell cycle effects on G1 and G2 and achieves differential radiosensitization at micromolar concentrations that are sustainable in humans. Conclusions: This checkpoint-based strategy is a promising approach for achieving preferential radiosensitization of p53- tumors relative to p53+ normal tissues

  12. Evaluation of Radiosensitivity of HeLa Cells Infected with Polio Virus Irradiated by Co 60

    Directory of Open Access Journals (Sweden)

    F Seif

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: The main purpose of radiotherapy is exposing enough doses of radiation to tumor tissue and protecting the normal tissues around it. Tumor dose for each session in radiotherapy will be considered based on radiosensitivity of the tissues. The presence of viral diseases in tumoral area can affect the radiosensitivity of cells. This study aimed to evaluate the radiosensitivity of Hela cells infected with poliomyelitis virus irradiated by Co 60. Materials & Methods: In this study, the radiosensitivity of HeLa cells, with or without the viral infection, after gamma radiation of cobalt 60, was assessed. Results: Results of comparison of the radisensitivity of infected and uninfected cells indicates that after 2 Gy irradiation by Co 60, polio infection in low, moderate and high virus load, increases the cell death by 20-30%, 30-40% and 70-90% respectively. Conclusion : Radiosensitivity of tumoral cells increase when they are infected with viral agents. Results of this study showed that non cancer diseases should be considered when prescribing dose fraction in radiotherapy of cancers.

  13. Pronounced radiosensitization of cultured human cancer cells by COX inhibitor under acidic microenvironment

    International Nuclear Information System (INIS)

    Shah, Tushar; Ryu, Samuel; Lee, Ho Jun; Brown, Stephen; Kim, Jae Ho

    2002-01-01

    Purpose: To demonstrate the influence of pH on the cytotoxicity and radiosensitization by COX (cyclooxygenase) -1 and -2 inhibitors using established human cancer cells in culture. Methods and Materials: Nonselective COX inhibitor, ibuprofen (IB), and selective COX-2 inhibitor, SC-236, were used to determine the cytotoxicity and radiosensitization at varying pH of culture media. Human colon carcinoma cell line (HT-29) was exposed to the drug alone and in combination with radiation at different pH of the cell culture media. The end point was clonogenic ability of the single-plated cells after the treatment. Results: Cytotoxicity and radiosensitization of IB increased with higher drug concentration and longer exposure time. The most significant radiosensitization was seen with IB (1.5 mM) for 2-h treatment at pH 6.7 before irradiation. The dose-modifying factor as defined by the ratio of radiation doses required to achieve the same effect on cell survival was 1.8 at 10% survival level. In contrast, SC-236 (50 μM for 2-8 h) showed no pH-dependent cytotoxicity. There was modest increase in the cell killing at lower doses of radiation. Conclusion: An acidic pH was an important factor affecting the increased cytotoxicity and radiosensitization by ibuprofen. Radiation response was enhanced at shoulder portion of the cell survival curve by selective COX-2 inhibitor

  14. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity - preliminary methodological study and discussion

    Science.gov (United States)

    Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana

    2017-09-01

    In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

  15. Effects of glutathione depletion by buthionine sulfoximine on radiosensitization by oxygen and misonidazole in vitro

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Denekamp, J.; Minchinton, A.I.

    1985-01-01

    Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 μM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure. Removal of BSO resulted in a rapid regeneration of GSH after 50 μM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 μM. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 μM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms

  16. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    International Nuclear Information System (INIS)

    Ku, S.; Abiteboul, J.; Dimond, P.H.; Dif-Pradalier, G.; Kwon, J.M.; Sarazin, Y.; Hahm, T.S.; Garbet, X.; Chang, C.S.; Latu, G.; Yoon, E.S.; Ghendrih, Ph.; Yi, S.; Strugarek, A.; Solomon, W.; Grandgirard, V.

    2012-01-01

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  17. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was

  18. Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients

    NARCIS (Netherlands)

    de Jong, Monique C.; ten Hoeve, Jelle J.; Grénman, Reidar; Wessels, Lodewyk F.; Kerkhoven, Ron; te Riele, Hein; van den Brekel, Michiel W. M.; Verheij, Marcel; Begg, Adrian C.

    2015-01-01

    Predominant causes of head and neck cancer recurrence after radiotherapy are rapid repopulation, hypoxia, fraction of cancer stem cells, and intrinsic radioresistance. Currently, intrinsic radioresistance can only be assessed by ex vivo colony assays. Besides being time-consuming, colony assays do

  19. Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients

    NARCIS (Netherlands)

    de Jong, M.C.; ten Hoeve, J.J.; Grénman, R.; Wessels, L.F.; Kerkhoven, R.; te Riele, H.; van den Brekel, M.W.M.; Verheij, M.; Begg, A.C.

    2015-01-01

    Purpose: Predominant causes of head and neck cancer recurrence after radiotherapy are rapid repopulation, hypoxia, fraction of cancer stem cells, and intrinsic radioresistance. Currently, intrinsic radioresistance can only be assessed by ex vivo colony assays. Besides being time-consuming, colony

  20. Pretreatment microRNA Expression Impacting on Epithelial-to-Mesenchymal Transition Predicts Intrinsic Radiosensitivity in Head and Neck Cancer Cell Lines and Patients

    NARCIS (Netherlands)

    Jong, M.C. de; Hoeve, J.J. Ten; Grenman, R.; Wessels, L.F.; Kerkhoven, R.; Riele, H. Te; Brekel, M.W. van den; Verheij, M.; Begg, A.C.

    2015-01-01

    PURPOSE: Predominant causes of head and neck cancer recurrence after radiotherapy are rapid repopulation, hypoxia, fraction of cancer stem cells, and intrinsic radioresistance. Currently, intrinsic radioresistance can only be assessed by ex vivo colony assays. Besides being time-consuming, colony

  1. Radiosensitivity of quince seeds (Cydonia oblonga Mill.)

    International Nuclear Information System (INIS)

    Dall'Orto, F.A.C.; Ojima, M.; Hiroce, R.; Igue, T.; Ferraz, E.S.B.; Nascimento Filho, V.F. do; Menten, J.O.M.; Tulmann Neto, A.; Ando, A.

    1984-01-01

    The investigation with quince seeds (Cydonia oblonga Mill.) radiosensitivity and the mineral composition of the plants obtained for mutation breeding are related. The concentration of some macro and micronutrients in quince seedlings obtained from irradiated seeds are studied. (M.A.C.) [pt

  2. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Kanon, B.; Konings, A.W.T.; Stackhouse, M.A.; Bedford, J.S.

    1993-01-01

    In the current study, the extent of hyperthermic radiosensitization in a new γ-radiation-sensitive cell line, irs-20, recently isolated by Stackhouse and Bedford (1991) and a heat-sensitive mutant hs-36 (Harvey and Bedford 1988) was compared with the radiosensitization of their mutual parent CHO 10B12 cell line. The irs-20 and CHO 10B12 cells have comparable heat (43.5 o C) sensitivities, whereas hs-36 and CHO 10B12 show a similar sensitivity to γ- and X-rays. Radiosensitization due to pre-exposure to 43.5 o C heating of plateau phase cultures was found for all three cell lines, even after relatively mild heat treatment killing <20% of cells. Experiments using CHEF electrophoresis confirmed the dsb repair deficiency of the irs-20 cells (Stackhouse and Bedford 1992) and showed that heat inhibited dsb repair in all three cell lines. (Author)

  3. Characterization of tumorigenicity and radio-sensitivity markers by an ex vivo approach. In vivo identification of p53 dependent radio-sensitivity markers

    International Nuclear Information System (INIS)

    Alvarez, S.

    2003-12-01

    After a detailed discussion of the relationship between cancer and genetic instability, of the structure, activation mechanisms, activity and biological functions of the p53 protein, a presentation of p53 mutants, and a recall of the effects of ionizing radiations, the author reports a biology research during which he investigated a cell model established from rat embryo lungs treated with Benzo[a]pyrene and made of tumoral lines muted by the p53 gene. He tried to identify markers which could report differences of tumorigenicity and radio-sensitivity observed in these different lines. He also tried to characterize radio-sensitivity molecular markers dependent on the p53 gene in a context of normal cells

  4. Taxonomic and developmental aspects of radiosensitivity

    International Nuclear Information System (INIS)

    Harrison, F.L.; Anderson, S.L.

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stages being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms'' responses to radiation

  5. Taxonomic and developmental aspects of radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, F.L. [Lawrence Livermore National Lab., CA (United States); Anderson, S.L. [Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stages being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms` responses to radiation.

  6. Gamma radiosensitivity of a common bean cultivar

    International Nuclear Information System (INIS)

    Colaco, W.; Martinez, C.R.

    1995-01-01

    A preliminary experiment was conducted to evaluate the radiosensitivity of common bean (Phaseolous vulgaris L.), cultivar to gamma rays from a 60 Co source. Sets of seeds (60 seed/sample) irradiated with 50, 100, 150, 200, and 250 Gy, were compared to a control without irradiation (0 Gy), under greenhouse conditions. The radiosensitivity was evaluated through seedling height reduction, determined at 15 days after emergence (DAE), and also through seedling survival, root length, and dry matter production of leaves, shoots and roots. Seedling height was significantly reduced for the treatments with 150 and 250 Gy, in relation to the control. The dose causing reduction of 50% seedling height was between 150 and 200 Gy. Survival rates corresponding to these doses, were, respectively, 85% and 60%. Root length and dry matter of leaves, shoots and roots, were inversely related to the doses. (author). 15 refs, 3 figs, 1 tab

  7. Radiosensitivity of garlic air bulbs

    International Nuclear Information System (INIS)

    Zhila, Eh.D.

    1975-01-01

    The paper presents data on the radiosensitivity of various sorts of garlic. It is shown that the frequency of chromosomal aberrations in the irradiated aerial bulbs of stemmed varieties of garlic is directly dependent upon the gmma-ray dose. With increasing dose the germination capacity and the viability of the plants diminishes. A dose of 750 r was found to be critical for the bulbs of the garlic varieties studied

  8. Study on the relationship between DNA-PKcs and genomic instability and hyper-radiosensitivity

    International Nuclear Information System (INIS)

    Yang Kang; Zhu Jiayun; Ding Nan; Li Junhong; Hu Wentao; Su Fengtao; He Jinpeng; Li Sha

    2010-01-01

    To investigate the relationship between DNA-PKcs and genome instability and hyper-radiosensitivity, human glioma cell lines M059K and M059J, as a model expressing wild-type DNA-PKcs and a model defective in DNA-PKcs activity, were exposed to low doses of X-rays. Cells survival fractions were assessed by colony-forming assay and Cytochalasin-B micronucleus assay was employed to detect the genomic instability happening in each single irradiated colony. It has been found that as the post-incubation time increased, M059K cells expressing wild-type DNA-PKcs exhibited low-dose hyper-radiosensitivity and showed a similar genomic instability after 0.2 Gy and 0.6 Gy irradiations, but the M059J cells lacking in DNA-PKcs didn't present low-dose hyper-radiosensitivity and showed a higher genomic instability of 0.6 Gy than that of 0.2 Gy. The results indicate that DNA-PKcs may act as one of the key factors that lead to low-dose hyper-radiosensitivity. (authors)

  9. Clinical experiences with the radiosensitizer Misonidazol

    International Nuclear Information System (INIS)

    Bamberg, M.; Scherer, C.; Tamulevicius, P.; Streffer, C.

    1981-01-01

    The principle of action of sensitizers with electron affinity is explained and the development of these radiosensitizing substances up to the clinical of Misonidazol (MIS; Ro-07-0582) is shown. With special regard to the pharmacokinetic action of this substance, the therapeutic effects of MIS were examined in ten patients with brain tumors of high malignancy (400 mg/m 2 ) and four patients with oesophageal carcinomas (1 g/m 2 ), all these patients having reached the clinical phase III. Four other patients with recurrent brain tumors received a dose of 1 g/m 2 of MIS before each irradiation. Apart from slight neurotoxic and gastrointestinal side effects, the applicated doses of MIS were generally well tolerated. Only in one case a generalized maculopapular exanthema developed which regressed completely within few days. No correlation could be found between the subjective side effects and the plasma values determined by means of high pressure liquid chromatography (HPLC). After one to four hours following oral application, the maximum plasma concentrations were measured, the half-life (T 1/2) varying in all patients between five and ten hours. It was not possible to demonstrate an influence of dexamethasone on the plasma concentration of half-life of MIS in the brain tumor patients. The cerebrospinal fluid concentrations of MIS which may be used as an index for the concentrations in brain tumors, are closely correlated with the corresponding plasma values. There was no correlation between MIS concentrations in plasma and saliva, so that the determination of MIS in the saliva cannot be recommended as a routine method for control examinations. (orig.) [de

  10. Effect of quercetin and 17-AAG on radiosensitivity of rat peripheral blood lymphocyte

    International Nuclear Information System (INIS)

    Chu Xuegang; Hong Chengjiao; Zhang Baoguo

    2012-01-01

    To investigate the effect of quercetin and 17-AAG on proliferation and on radiosensitivity of blood lymphocyte cells. CCK-8 assay is performed to evaluate the cytotoxicity of Quercetin on proliferation of blood lymphocyte cells. CCK-8 assay employed to observe its effects on the radiosensitivity of the cells quantified by calculating the sensitive enhancement ratio (SER). CCK-8 results showed that the inhibition of Quercetin on the cells was the dose-dependent and time-dependent, and the results of assay showed the inhibition of 17-AAG on blood lymphocyte cells was the dose-dependent and time-dependent. The study showed that Quercetin and 17-AAG have no effect on the radiosensitivity of the blood lymphocyte cells. (authors)

  11. Variation of radiosensitivity of bean seeds depending where they come from

    International Nuclear Information System (INIS)

    Perez Talavera, S.

    1988-01-01

    Seeds from three cuban beans varieties were irradiated at different doses in a gamma source. They were cultivated in Krimsk, USSR by 5-8 generations and in Havana, Cuba. The height, root longitude and the fresh mass of the plantules 10-11 days after being sown in laboratory conditions were used as radiosensitivity indicators. Values significantly higher were obtained from 50-200 Gy for the relative values of the three indexes taken as radiosensitivity criteria in plantules from the tree

  12. Radiosensitizing and cytotoxic properties of DNA targeted phenanthridine-linked nitroheterocycles of varying electron affinities

    International Nuclear Information System (INIS)

    Cowan, D.S.M.; Rauth, A.M.; Toronto Univ., ON; Matejovic, J.F.; McClelland, R.A.; Wardman, P.

    1994-01-01

    2-Nitroimidazoles targeted to DNA via intercalation have previously been shown to be as much as 10-100 times more efficient on a molar basis than the untargeted nitroimidazole, misonidazole, in vitro as hypoxic cell selective radiosensitizers and cytotoxins based on extracellular concentrations. In this work the effect of varying the nitroaromatic group has been examined through the preparation of a DNA-targeted 4-nitroimidazole (4-MeNLP-3), a 5-nitroimidazole (5-NLP-3) and a 5-nitrofuran (FEP-2) linked to phenanthridinium ions. With the previously synthesized 2-nitroimidazoles, this provides a series of DNA targeted compounds of varying electron affinity as well as structure at the nitroaromatic position. The present series of compounds was tested for partition coefficient, DNA binding ability, reduction potentials and in vitro radiosensitizing and cytotoxic abilities. The results obtained indicate that targeting such compounds to DNA diminishes the dependency of radiosensitizing and cytotoxic properties on reduction potential and may allow significant uncoupling of toxicity from radiosensitizing ability. (author)

  13. Glutathione in the modulation of radiosensitivity: a review

    International Nuclear Information System (INIS)

    Umadevi, P.; Prasanna, P.G.S.

    1993-01-01

    Glutathione (γ - glutamyl cysteinyl glycine, GSH) constitutes the major low molecular weight thiol compound in the mammalian cells. GSH has been assigned an important role in determining the inherent radiosensitivity of cells. Endogenous GSH involved in a number of radiation induced chemical processes, which help in the repair of radiation injury to the target molecules. Experimental evidence suggests that GSH competes with molecular oxygen in the cells to prevent fixation of DNA damage. Certain chemicals like buthionine sulfoximine are found to deplete the cellular GSH content by interactions at specific sites in the GSH cycle. It may be possible to take advantage of this phenomenon by increasing the radiosensitivity of hypoxic tumor cells, without seriously affecting the normal cells, so as to increase the therapeutic efficiency of radiation treatment. (author). 52 refs., 1 fig

  14. Cytogenetic radiosensitivity of G0-lymphocytes of breast and esophageal cancer patients as determined by micronucleus assay

    International Nuclear Information System (INIS)

    Mozdarani, H.; Mansouri, Z.; Haeri, S.A.

    2005-01-01

    Enhanced chromosomal radiosensitivity is a feature of many cancer predisposition conditions, indicative of the important role of chromosomal alterations in carcinogenesis. In this study the cytokinesis-blocked micronucleous assay was used to compare the radiosensitivity of blood lymphocytes obtained from Iranian breast or esophageal cancer patients (n=50, n=16; respectively) with that of control individuals (n=40). For each sample, one thousand binucleate lymphocytes were analyzed before and after in vitro exposure to 3 Gy of γ rays. The radiation-induced frequency of micronucleus was significantly higher in the breast cancer group (261/1,000 binucleated cells) than in esophageal cancer group (241/1,000 binucleated cells, P<0.01) or in the control group (240/1,000 binucleated cells, P<0.01). The results indicate that breast cancer patients are more radiosensitive compared to normal healthy individuals or esophageal cancer patients. Increased radiosensitivity could be due to defects in DNA repair genes involved in breast cancer formation. Since patients with esophageal cancer did not show elevated radiosensitivity, it is assumed that the contribution of radiosensitivity-related genes to the development of esophageal cancer may be smaller than the contribution of those genes to breast cancer. (author)

  15. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  16. Studies on radiosensitization of Escherichia coli cells by cis-platinum complexes

    International Nuclear Information System (INIS)

    Zimbrick, J.D.; Sukrochana, A.; Richmond, R.C.

    1979-01-01

    We recently reported that the antitumor drug cis-Pt(NH 3 ) 2 Cl 2 (cis-DDP) produces significant radiosensitization of anoxic E coli C cells. We have extended these studies to three other platinum drugs, all of which have been shown to be more effective antitumor drugs than cis-DDP. The drugs are: cis-dichloro bis(ethylene imine) Pt(II) (cis-DEP); cis-dichlorobicyclopentylamine Pt(II) (cis-PAD); and Pt-thymine blue (cis-PTB). Survival curve studies indicate that these drugs all produce greater anoxic radiosensitization of E coli C than cis-DDP at concentrations which are less toxic to the cells than similar concentrations of cis-DDP. If the cells are treated with any one of these drugs for two hours and then washed to remove the drug before irradiation, no detectable radiosensitization is found. We conclude that these drugs have the potential for being useful agents in combined modality therapy and that they warrant further study in mammalian systems

  17. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  18. Parotid radiosensitivity changes: a temporal relation to glandular circadian rhythms

    International Nuclear Information System (INIS)

    El-Mofty, S.K.; Hovenga, T.L.; Russell, J.E.; Simmons, D.J.

    1982-01-01

    The radiosensitivity of the rat parotid gland to X-radiation increased considerably towards the end of the daily light span (0800-2000 hours) and to a lesser extent before the onset of that period. The major sensitivity peak occurred at 1600 hours and coincides with a diurnal nadir in the rates of protein and RNA synthesis. The minor peak occurred at 0400 hours and was temporally related to a daily period of maximal secretory activity. It is suggested that suboptimal repair and secretion-linked cellular perturbations might contribute to the pathogenesis of the circadian increases in radiosensitivity of parotid cells. (author)

  19. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  20. The dependence of fibroblast radiosensitivity on cell pH

    International Nuclear Information System (INIS)

    Veksler, A.M.; Kublik, L.N.; Degtyareva, O.V.; Ehjdus, L.Kh.

    1983-01-01

    The problem of the change of radiosensitivity of Chinese hamster fibroblasts, irradiated under aerobic and hypoxic conditions in the course of intracellular pH (pHsub(intr.)) change by means of a phosphate buffer has been studied. It has been found that pHsub(intr.) reduction considerably increases the radiosensitivity, the effect being more pronounced on hypoxic cells which is essential for radiotherapy of tumors. The survival rate of cell irradiated under hypoxia conditions does not depend on season while cell resistance in case of irradiation in open air in spring and autumn is different. The effect discovery in case of pHsub(intr.) reduction upon irradiation shows up the influence of the studied factor on repair processes

  1. Influence of some methodological factors on the radiosensitivity of the mouse zygote

    International Nuclear Information System (INIS)

    Jacquet, P.; Grinfeld, S.

    1990-01-01

    The experiments reported here were undertaken to investigate the influence of some methodological factors on the radiosensitivity of the mouse zygote. The following factors were studied: (1) the use of natural or hormone-stimulated ovulation; (2) the procedure followed for fertilization:mating overnight, or only during a short period in the morning after all oocytes have been ovulated, in vitro fertilization; (3) the type of irradiation, i.e., in vivo or in vitro irradiation. The radiosensitivity of the zygotes was estimated under the different experimental conditions by measuring the ability of the irradiated embryos to cleave and to develop further to the blastocyst stage. Our results suggest that the protocols used for mating and fertilization probably have a greater influence on embryonic survival following irradiation than the use of gonadotropins to stimulate ovulation. The highest degree of synchrony in the development of the embryos is achieved by restricting mating to a short period or by using in vitro fertilization. The very low LD50s obtained under such synchronous conditions confirm the high radiosensitivity of the mouse zygote at the early pronuclear stage. Comparison between the effects of in vivo and in vitro irradiation does not indicate a greater radiosensitivity of the embryo irradiated in vitro in comparison to the embryo irradiated in vivo

  2. Radiosensitivity study of salmonella enteritidis in chickens

    International Nuclear Information System (INIS)

    Fernandez Gianotti, Tomas

    1997-01-01

    One of the applications of ionizing radiations in food is the inactivation of vegetative phatogenic bacteria (radicidation) such as Salmonella, Shigella, Campylobacter, Vibro and Listeria. These bacteria are associated with the diseases transmitted by food (ETA). Fresh and frozen farmyard fowls can be contaminated with pathogenic microorganisms, between them Salmonella. In Argentine, between years 1987-1990, Salmonella enteritidis was the main cause of salmonellosis. In food irradiation, with the aim of improving and assuring its hygienic quality, it is important to know the radiosensitivity of microorganisms to be inactivated. Inactivation of a determined microorganism shall depend, between others factors, of the species, strain, number and of the irradiation conditions (temperature, media, etc.). D 10 value is a very useful data in order to compare radiosensitivities between the microorganisms and the influence of different factors in their sensitivities. In this paper, it was determined the sensitivity to the gamma radiation of Salmonella enteritidis in fresh and frozen chickens

  3. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  4. Hypoxia, Radiosensitizers and high-LET radiation - Nimorazole fragmentation using mass spectrometry

    DEFF Research Database (Denmark)

    Feketeova, Linda; Bassler, Niels

    (s): Fragmentation experiments have been performed using a Finnigan- LTQ-FT mass spectrometer equipped with an electrospray ionisation source. Collision-induced dissociation (CID) and electron-induced dissociation (EID) have been carried out by mass selecting the desired ions and subjecting them to activation energy...... using mass spectrometry. Understanding the fragmentation of radiosensitizers is crucial in evaluating the radiosensitization potential and developing new and more effective drugs, which may improve TCP in hypoxic tumours when using ion beams such as carbon-12 along with LET-painting techniques. Method...

  5. Chromosomal radiosensitivity of lymphocytes in South African breast ...

    African Journals Online (AJOL)

    radiosensitivity has been used as an indirect measure of cancer susceptibility. ... studies have shown that breast cancer patients are more sensitive to ionising radiation than healthy individuals. .... There was an effect of ER positivity on the MN.

  6. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    Science.gov (United States)

    Racusin, J. L.; Oates, S. R.; De Pasquale, M.; Kocevski, D.

    2016-01-01

    We present a correlation between the average temporal decay (alpha X,avg, greater than 200 s) and early-time luminosity (LX,200 s) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity â€" average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  7. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    International Nuclear Information System (INIS)

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-01-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer

  8. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects

    International Nuclear Information System (INIS)

    Horas, Jorge A; Olguin, Osvaldo R; Rizzotto, Marcos G

    2005-01-01

    We model the heterogeneous response to radiation of multicellular tumour spheroids assuming position- and volume-dependent radiosensitivity. We propose a method to calculate the overall radiosensitivity parameters to obtain the surviving fraction of tumours. A mathematical model of a spherical tumour with a hypoxic core and a viable rim which is a caricature of a real tumour is constructed. The model is embedded in a two-compartment linear-quadratic (LQ) model, assuming a mixed bivariated Gaussian distribution to attain the radiosensitivity parameters. Ergodicity, i.e., the equivalence between ensemble and volumetric averages is used to obtain the overall radiosensitivities for the two compartments. We obtain expressions for the overall radiosensitivity parameters resulting from the use of both a linear and a nonlinear dependence of the local radiosensitivity with position. The model's results are compared with experimental data of surviving fraction (SF) for multicellular spheroids of different sizes. We make one fit using only the smallest spheroid data and we are able to predict the SF for the larger spheroids. These predictions are acceptable particularly using bounded sensitivities. We conclude with the importance of taking into account the contribution of clonogenic hypoxic cells to radiosensitivity and with the convenience of using bounded local sensitivities to predict overall radiosensitivity parameters

  9. DNA-radiosensitivity and repair in mammolian cells

    International Nuclear Information System (INIS)

    Proskuryakov, S.Ya.; Ivannik, B.P.; Ryabchenko, N.I.

    1979-01-01

    Determination was made of the formation and repair of single-stranded DNA breaks (SB) in cells of rat thymus and liver and Ehrlich's ascites tumor (EAT) with the use of the method of low-gradient viscosimetry of alkaline cell lysates. The radiochemical yield of single-stranded breaks (Gsub(SB)) induced by irradiation of animals is 41.2 eV/break for hepatocytes, 96.8 eV/break, for thymocytes, and 129.7 eV/break, for EAT cells. The half-recovery time of single-stranded DNA breaks for cells of thymus and EAT exposed in vivo is 16.0 and 5.1 s -1 , correspondingly. In hepatocytes exposed in vivo and in vitro no repairs occurs for 3 h. Under conditions of inhibition of SB repair, when suspensions of thymocytes and hepatocytes were exposed in vitro at 4 deg C, Gsub(SB) is 35.5 and 38.7 eV/break, respectively. The analysis of the data obtained prompts the conclusion that under in vivo conditions, there is a correlation between DNA radiosensitivity and the rate of repair processes

  10. Radiosensitivity study of cultured barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-07-01

    For studying the radioactivity, forty seven varieties of dormant barley seeds were irradiated with various doses (0 ∼ 400 Gy) of 137 Cs γ-rays. The results showed that the dose-effects relations of seedling growth inhibition could be fitted by an equation of F(D) = 1 - (1 - e -a 1 D ) N , and the dose-effects of cell-nucleus, the frequency of root tip cell with chromosome aberations and peroxidase isoenzyme band could be expressed by a linear regression equation Y = A + B · X. The radioactivity of naked barley was much higher than of covered barley. According to different radiosensitivities the varieties studied could be divided into five types i.e. extreme resistant, resistant, intermediate, sensitive, and extreme sensitive. The results also showed that there was close relationship between the DNA content of cell-nucleus, peroxidase isoenzyme zymogram and radioactivity. The radiosensitivty was proportional to the DNA content. The volume of cell-nucleus varied inversly as D 50 of nucleus volume and no obvious correlation with the D 50 of seedling growth inhibition

  11. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  12. ZnFe2O4 nanoparticles for potential application in radiosensitization

    International Nuclear Information System (INIS)

    Hidayatullah, M; Nurhasanah, I; Budi, W S

    2016-01-01

    Radiosensitizer is a material that can increase the effects of radiation in radiotherapy application. Various materials with high effective atomic number have been developed as a radiosensitizer, such as metal, iron oxide and quantum dot. In this study, ZnFe 2 O 4 nanoparticles are included in iron oxide class were synthesized by precipitation method from the solution of zinc nitrate and ferrite nitrate and followed by calcination at 700° C for 3 hours. The XRD pattern shows that most of the observed peaks can be indexed to the cubic phase of ZnFe 2 O 4 with a lattice parameter of 8.424 Å. SEM image reveals that nanoparticles are the sphere-like shape with size in the range 84-107 nm. The ability of ZnFe 2 O 4 nanoparticles as radiosensitizer was examined by loading those nanoparticles into Escherichia coli cell culture which irradiated with photon energy of 6 MV at a dose of 2 Gy. ZnFe 2 O 4 nanoparticles showed ability to increase the absorbed dose by 0.5 to 1.0 cGy/g. In addition, the presence of 1 g/L ZnFe 2 O 4 nanoparticles resulted in an increase radiation effect by 6.3% higher than if exposed to radiation only. These results indicated that ZnFe 2 O 4 nanoparticles can be used as the radiosensitizer for increasing radiation effect in radiotherapy. (paper)

  13. Multiscale Characterization of PM2.5 in Southern Taiwan based on Noise-assisted Multivariate Empirical Mode Decomposition and Time-dependent Intrinsic Correlation

    Science.gov (United States)

    Hsiao, Y. R.; Tsai, C.

    2017-12-01

    As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.

  14. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  15. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    Science.gov (United States)

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses

  16. The radio-sensitizing effects and mechanisms of artemisinin and its derivates

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zeng; Jianping, Cao; Saijun, Fan [School of Radiation Medicine and Public Health, Suzhou Univ., Suzhou (China)

    2008-10-15

    It has been proved that the antimalarial agent, Artemisinin and its derivates (such as artemether, arteether, artesunate, dihydroartemisinine, etc) boast powerful antitumor effects. Recently, researches have found that Artemisinin and its derivates can also enhance the radio-sensitivity of tumors through regulating cell cycle, creating cytotoxic effects induced by ROS, suppressing GSH activity and inhibiting the reparation of DNA damage etc. Moreover, they can reduce cell survival in a dose-dependent manner. This paper is paying more attention on the radio-sensitizing effects, characteristics and mechanisms of artemisinin and its derivates. (authors)

  17. The radio-sensitizing effects and mechanisms of artemisinin and its derivates

    International Nuclear Information System (INIS)

    Zeng Jing; Cao Jianping; Fan Saijun

    2008-01-01

    It has been proved that the antimalarial agent, Artemisinin and its derivates (such as artemether, arteether, artesunate, dihydroartemisinine, etc) boast powerful antitumor effects. Recently, researches have found that Artemisinin and its derivates can also enhance the radio-sensitivity of tumors through regulating cell cycle, creating cytotoxic effects induced by ROS, suppressing GSH activity and inhibiting the reparation of DNA damage etc. Moreover, they can reduce cell survival in a dose-dependent manner. This paper is paying more attention on the radio-sensitizing effects, characteristics and mechanisms of artemisinin and its derivates. (authors)

  18. Determination of one-electron reduction potentials of some radiosensitive compounds by pulse radiolysis

    International Nuclear Information System (INIS)

    Zuo Zhihua; Yao Side; Li Hucheng; Lin Nianyun; Jin Yizun

    1994-01-01

    One-electron reduction potential (E 7 1 ) is one of the important parameters of radiosensitive compound with high electron affinity. In this work one-electron reduction potentials of some radiosensitizers, such as Miso, 911, CMNa, SMU-1, SMU-2, SMD, SNN, S 3 and BSO, were determined pulse radiolytically by using anthraquinone-2-sulfate (AQS), duroquinone (DQ) and methyl viologen (MV 2+ ) as references

  19. Misonidazole radiosensitization in vivo: A therapeutic gain by penicillin pretreatment

    International Nuclear Information System (INIS)

    Sheldon, P.W.; Clarke, C.; Dawson, K.B.; Simpson, W.; Simmons, D.J.C.; Adams, G.E.

    1984-01-01

    Because intestinal microflora have the potential to metabolize nitroimidazole compounds (possibly to toxic species), the authors investigated their influence on the pharmacological, neurotoxic and radiosensitizing properties of misonidazole (MIS) in mice. This was done by comparing the responses obtained in 'normal' mice to those obtained in mice whose microflora had been depleted by pretreatment for 7-14 days with penicillin (PEN) at the rate of 0.5g/1 of drinking water. Bacteriological studies showed this treatment to C57B1 mice eliminated more than 99% of the flora from the caeca and, furthermore, this efficacy of penicillin was not interfered with by MIS administered IP at 0.3mg/g between days 7-14. This pretreatment resulted not only in the elimination of the caecal flora, but also in an increase in the pharmacokinetic exposure to MIS, an increase in Lewis lung tumour radiosensitization by MIS and a decrease in MIS-induced neurotoxicity. The authors conclude pretreatment with PEN can give a therapeutic gain with MIS radiosensitization. Further, assuming no direct interaction between the PEN and MIS, these findings indicate that the intestinal flora may produce neurotoxic species by their metabolism of MIS

  20. Genetic control of the radiosensitivity of lymphoid cells for antibody formation ability in mice

    International Nuclear Information System (INIS)

    Okumoto, Masaaki; Mori, Nobuko; Esaki, Kozaburo; Imai, Shunsuke; Haga, Satomi; Hilgers, Jo; Takamori, Yasuhiko.

    1994-01-01

    To analyze the genetic basis of the relationship between the radiosensitivity of the immune response and radiation lymphomagenesis, we examined the radiosensitivity of lymphoid cells for antibody formation in BALB/cHeA, STS/A, F 1 hybrids, and their recombinant inbred mouse strains. The decrease in the number of plaque-forming spleen cells in BALB/cHeA mice exposed to 3 Gy X-irradiation was more than tenfold that in STS/A mice. The phenotype of radioresistance was dominant over sensitivity. The coincidence between the strain distribution patterns of the genetic markers and radiosensitivities of antibody formation in the various recombinant inbred strains was in the region with the lgh locus on chromosome 12. There was obvious difference between the patterns in the region containing the lfa locus on chromosome 4 which has been shown to be related to the incidence of radiation-induced lymphomas. These results indicate that the region on chromosome 12 may contain major gene(s) related to radiosensitivity for antibody formation. (author)

  1. Investigation of radiosensitivity and growth dynamics for callus tissues Crepis Capillaris, Haplopappus gracilis, Phasolium vulgaris exposed to gamma radiation

    International Nuclear Information System (INIS)

    Gatsek, Eh.; Glinkova, E.; Ismailova, Eh.N.

    1983-01-01

    Radiosensitivity of three kinds of callus tissues (Crepis capillaris, Haplopappus gracilis, Phasolium vulgaris) manifested in the change of fresh weight after γ-irradiation has been investigated. Irradiated callus arowth showed decrease with increasing doses. It is shown that the radiosensitivity of ''young'' callus tissues is determined by the kind of the plant. Callus of Phaseolis has been found to have the highest radioresistance, while that of Crepis has the lowest one. Radiosensitivity of ''old'' callus tissues is the same for all kinds. Potential mechanism of radiosensitivity of callus tissUes are discussed

  2. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  3. Radiosensitivities of sensitized lymphocytes

    International Nuclear Information System (INIS)

    Taniguchi, Kazuto

    1979-01-01

    Immunization of mice with cell antigens such as allogeneic tumor cells or xenogeneic erythrocytes raises a variety of immune reactions mediated by T lymphocytes: i.e. delayed type hypersensitivity (DTH), cytotoxicity, and antibody production. The radiosensitivities of these reactions were examined in mice exposed to 600 R x-irradiation a few hours before or after immunization. 1) DTH to xenogeneic erythrocytes, as demonstrated by footpad reaction, was not suppressed by irradiation 3 h before or after immunization. DTH to allogeneic tumor cells, as demonstrated by a migration inhibition test, hardly developed in mice that had been irradiated before or after immunization. It may have belonged to distinct types of delayed reactions which were mediated by distinct subpopulations of T lymphocytes. 2) Cytotoxicity against allogeneic cells and xenogeneic erythrocytes showed almost the same radiosensitivity. It was scarcely detected in mice that had been irradiated before immunization. However, a low but definite degree of cytotoxicity was detected in mice that had been irradiated only a few hours after immunization. Solubilized allogeneic cells instead of native cells were used as immunizing antigens. It was also possible for precursor cells with cytotoxicity to acquire a radioresistant nature by immunization of solubilized antigens, but native cells were required as stimulation for radioresistant precursor cells to differentiated into nature cytotoxic effector cells. 3) Antibody production against xenogeneic erythrocytes or allogeneic cells was almost completely depleted in mice that had been irradiated before or after immunization. It is possible that antibody production essentially requires cell division and clonal expansion of B lymphocytes. (Bell, E.)

  4. Combined cytokinesis-block micronucleus and chromosomal aberration assay for the evaluation of radiosensitizers at low radiation doses

    International Nuclear Information System (INIS)

    Oya, Natsuo; Shibamoto, Yuta; Shibata, Toru

    1994-01-01

    Several methods have been tried for evaluating the efficacy of hypoxic cell radiosensitizers at clinically relevant low radiation doses (1-4 Gy). The cytokinesis-block micronucleus assay is known to be useful for both the in vitro and in vivo evaluation of radiosensitizers, while the chromosomal aberration assay has been commonly used to assess the mutagenicity of various agents. In the present study, the chromosomal aberration assay and the cytokinesis-block micronucleus assay were performed simultaneously to assess the radiosensitizing effect of etanidazole and KU-2285 at low radiation doses. The correlation between the two assays was also evaluated. In vitro study: EMT-6 cells were irradiated at a dose of 1-3 Gy under hypoxic conditions with or without the drugs at 1 mM. In vivo-in vitro study: EMT-6 tumor-bearing BALB/c mice received 2-4 Gy of radiation with or without administration of the drugs at 200 mg/kg. Single-cell suspensions were then obtained in both studies and were used for the cytokinesis-block micronucleus assay and the chromosomal aberration assay. The micronucleus frequency in binucleate cells was evaluated in the former assay, and the frequency of chromosomal aberrations in metaphase cells was evaluated in the latter assay. In vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.73 and 2.21, respectively, in the micronucleus assay, and 1.41 and 1.79 in the chromosomal aberration assay. In vivo-in vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.18 and 1.31, respectively, in the micronucleus assay, and 1.16 and 1.42 in the chromosomal aberration assay. In both studies, a linear correlation was observed between the micronucleus frequency and the chromosomal aberration frequency. The background (i.e., the frequency at 0 Gy) of the latter assay was considerably lower than that of the former assay, especially in the in vivo study. 31 refs., 4 figs

  5. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  6. Quince tree (cydonia oblonga Mill.)-breeding bases:seed propagation, cytogenetics and radiosensitivity

    International Nuclear Information System (INIS)

    Dall'Orto, F.A.C.

    1982-01-01

    The following aspects of the marmeleiro, cydonia oblonga Mill., were, researched: media nad periods to supply the seed chilling requirement in moist cold storage (5-10 0 c); quince seeds viability prepared by several extraction processes; seed germination and seedling development; cytogenetic aspects; seeds viability influenced by storage conditions and periods of time for storage; preliminary determination of seed radiosensitivity; concentrations of some macro and micronutrients in quince seedlings obtained from irradiated seeds, and radiosensitivity and interphasic nuclear volumes. (MAC) [pt

  7. Radiosensitization of non-small cell lung cancer by kaempferol.

    Science.gov (United States)

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  8. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    International Nuclear Information System (INIS)

    Yi Xianjin; Ni Chuo; Wang Wengi; Li Ding; Jin Yizun

    1993-01-01

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by the specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity of BSO on retinoblastoma were reported. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is (2.7 +- 1.3) x 10 -12 mmol/cell, (1.4 +- 0.2) x 10 -12 mmol/cell, and 2.8 +- 1.2 μmol/g respectively. The ID50 of BSO on Y-79 and So-Rb50 in air for 3h exposure is 2.5 mM and 0.2 mM respectively. GSH depletion by 0.1 mM BSO for 24h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma bearing nude mice after BSO administration is differential. BSH depletion after BSO exposure in Y-79 cells in vitro decrease the D 0 value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under the hypoxic condition is 1.21 and 1.36 respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of cell line and BSO can increase hypoxic retinoblastoma cells radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenograft is needed

  9. Effects of heat-shock treatment and genotype on radiosensitivity of maize seeds

    International Nuclear Information System (INIS)

    Yamagata, Hirotada; Tanisaka, Takatoshi; Harima, Kunio

    1975-01-01

    In order to clarify the internal and external factors responsible for radiosensitivity of seed, and to induce mutations more effectively, two experiments were conducted using maize. (1) Seeds of an inbred line were irradiated with γ rays at an extremely low temperature (-70 0 C) and then dipped in hot water (60 0 C, 30 sec.). Through such heat-shock treatment the radiosensitivity of maize seeds was remarkably reduced: LD 50 and RD 50 for growth rose as high as about three times and about twice, respectively. (2) Seeds of seven strains including four inbred lines, two single-cross hybrids and one double-cross hybrid were exposed to γ rays by the ordinary procedure. Hybrids, regardless of whether they were single cross or double cross, were clearly proved to surpass their parental strains in radiation tolerance, both in survival rate and in culm length. These descents of radiosensitivity were considered to be due mainly to the increased heterozygosity. (auth.)

  10. Radiosensitivity of pulmonary alveolar macrophages in rats exposed to local X-irradiation

    International Nuclear Information System (INIS)

    Gong Yifen; Fei Lihua; Wu Dechang

    1987-01-01

    The radiosensitivity of pulmonary alveolar macrophages (PAMs) in rats exposed to local thoracic X-irradiatoin was studied. The percentages of mitotic and labeling cells were used as biological endpoints. The parameters of radiosensitivity of PAMs obtained on the second day after local exposure are as follows: D 0 = 0.68 Gy, Dq = 0.06 Gy, n = 1.1 for mitotic cells and D 0 = 1.04 Gy, Dq = 0.12 Gy, n = 1.12 for labeling cells. The parameters of radiosensitivity of PAMs in bronchical lavage obtained immediately after X-irradiation are: D 0 = 3.56 Gy, Dq = 0.77 Gy, n = 1.24 for labeling cells and D 0 = 3.69 Gy, Dq = 0.35 Gy, n = 1.1 for mitotic cells. The comparison of thses results indicates that the radiation effect on PAMs obtained immediately after X-irradiation is less severe than that of PAMs obtained 2 days later. It might be caused by the delay of cell cycle within 2 days after X-irradiation

  11. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  12. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Kim, Jin Ho; Chie, Eui Kyu; Da Young, Park; Kim, In Ah; Kim, Il Han

    2012-01-01

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  13. Radiosensitivity of drug-resistant human tumour xenografts

    International Nuclear Information System (INIS)

    Mattern, J.; Bak, M. Jr.; Volm, M.; Hoever, K.H.

    1989-01-01

    The radiosensitivity of three drug-resistant sublines of a human epidermoid lung carcinoma growing as xenografts in nude mice was investigated. Drug resistance to vincristine, actinomycin D and cisplatin was developed in vivo by repeated drug treatment. It was found that all three drug-resistant tumour lines were not cross-resistant to irradiation. (orig.) [de

  14. Whole brain radiotherapy with radiosensitizer for brain metastases

    Directory of Open Access Journals (Sweden)

    Viani Gustavo

    2009-01-01

    Full Text Available Abstract Purpose To study the efficacy of whole brain radiotherapy (WBRT with radiosensitizer in comparison with WBRT alone for patients with brain metastases in terms of overall survival, disease progression, response to treatment and adverse effects of treatment. Methods A meta-analysis of randomized controlled trials (RCT was performed in order to compare WBRT with radiosensitizer for brain metastases and WBRT alone. The MEDLINE, EMBASE, LILACS, and Cochrane Library databases, in addition to Trial registers, bibliographic databases, and recent issues of relevant journals were researched. Significant reports were reviewed by two reviewers independently. Results A total of 8 RCTs, yielding 2317 patients were analyzed. Pooled results from this 8 RCTs of WBRT with radiosensitizer have not shown a meaningful improvement on overall survival compared to WBRT alone OR = 1.03 (95% CI0.84–1.25, p = 0.77. Also, there was no difference in local brain tumor response OR = 0.8(95% CI 0.5 – 1.03 and brain tumor progression (OR = 1.11, 95% CI 0.9 – 1.3 when the two arms were compared. Conclusion Our data show that WBRT with the following radiosentizers (ionidamine, metronidazole, misonodazole, motexafin gadolinium, BUdr, efaproxiral, thalidomide, have not improved significatively the overall survival, local control and tumor response compared to WBRT alone for brain metastases. However, 2 of them, motexafin- gadolinium and efaproxiral have been shown in recent publications (lung and breast to have positive action in lung and breast carcinoma brain metastases in association with WBRT.

  15. Effect of allicin on the radiosensitivity of human pancreatic carcinoma BXPC3 cells

    International Nuclear Information System (INIS)

    Ma Hongbing; Di Zhengli; He Na; Wen Jiao; Ke Yue

    2014-01-01

    Objective: To study the effect of allicin on the growth and radiosensitivity of human pancreatic carcinoma BXPC3 cells. Methods: BXPC3 cells were exposed to X-rays in the presence or absence of allicin. Cell proliferation was measured by MTT assay. Cell cycle distribution and apoptosis were detected by flow cytometry assay. Cell radiosensitivity and the influence of allicin on it was evaluated by colony formation assay. The expressions of Bax and Bcl-2 proteins were assayed by RT-PCR and Western blot. Results: IC 50 values of allicin on cell growth were 76.24, 58.34 and 43.58 μmol/L under 12, 24 and 48 h treatment, respectively. Treatment of cells with allicin obviously inhibited cell growth after irradiation and hence increased radiosensitivity (t = 2.74, P < 0.05). This treament also enhanced radiation-induced cell cycle arrest at G 2 /M phase (t = 11.41, P < 0.05), apoptosis induction (t = 12.36, P < 0.05), and Bax expression (t = 4.83, P < 0.05), but it decreased Bcl-2 expression (t = 3.69, P < 0.05). Conclusions: Allicin could inhibit cell growth, induce cell cycle arrest and apoptosis via Bax/Bcl-2 pathway and hence increases radiosensitivity of BXPC3 cells. (authors)

  16. A study on the toxicity of three radiosensitizers on retinoblastoma cells by MTT assay

    International Nuclear Information System (INIS)

    Yi Xianjin; Jin Yizun; Ding Li; Ni Zhou; Wang Wenji

    1994-01-01

    The toxicity of three radiosensitizers BSO, CM and RSU-1069 on retinoblastoma cells was determined and the efficiency of in vitro MTT assay on drug-screening for retinoblastoma was also evaluated. The results showed that the MTT assay is very useful. The toxicity of radiosensitizers on retinoblastoma cells is dependent on cell line characteristics, drug concentration and time of exposure to it

  17. Effect of radiation on immunity and immunological methods of radiosensitivity modifications

    International Nuclear Information System (INIS)

    Ivanov, A.A.

    1987-01-01

    Immunity system is shown to be heterogeneous as to its radiosensitivity, but injury of one of its most radiosensitive links results in the violation of the whole system functioning already at the level of sublethal radiation doses. Injury processes and disbalance in the immunity system play important role in the realization of radiobiological effects at the level of the whole organism starting from the period of primary reaction to irradiation and ending with the period of remote consequences. The process of radiation injury can be considerably modified by actively affecting cell and humoral factors of immunologic reactivity

  18. Comparison of radiosensitivity of bacteria isolated from given radiation exposure history

    International Nuclear Information System (INIS)

    Kim, K.S.; Min, B.H.; Rhee, K.S.

    1974-01-01

    This experiment was carried out to identify and to compare the radiosensitivities of bacteria isolated from the sources of different radiation exposure histories. Among 10 strains isolated in this investigation, 4 strains of bacteria, Bacillus firmus, Bacillus brevis, Bacillus subtilis and Bacillus sphaericus were isolated from high- and low-radioactive sites simultaneously. Bacterial strains isolated from radioactive sources such as reactor and isotope production rooms were more resistant to irradiation than the microorganisms from medical products and laboratories, however, there was no significance in radiosensitivity in the same species of bacteria, even if they were isolated from different radiation exposure histories. (author)

  19. Influence of the size of garlic propagules on radiosensitivity of clones

    International Nuclear Information System (INIS)

    Perez Talavera, S.; Acevedo, A.M.; Perez, A.

    1989-01-01

    The influence of the size of garlic propagules selected to be irradiated on the results of radiosensitivity was studied so as to determine the useful radiation doses for improvement. This was done using radio inhibition of the plant height index as criteria and the mahalanobis distance stadigrapher calculated among defined groups for the behaviour of cloves in reference to six radiation doses. Significative differences were found among dose-effect curves obtained when using big cloves and small cloves, in five garlic clones, as well as different behaviours of clone radiosensitivity when it was investigated using the two proposed variants

  20. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis

    DEFF Research Database (Denmark)

    Martel, Britta Cathrina; Litman, Thomas; Hald, Andreas

    2016-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. In this study, we used microarray analysis to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared...... with mild extrinsic and intrinsic AD similar to previous reports for severe AD. Interestingly, expression of genes involved in inflammatory responses in intrinsic AD resembled that of psoriasis more than that of extrinsic AD. Overall, differences in expression of inflammation-associated genes found among...... patients with mild intrinsic and extrinsic AD correlated with previous findings for patients with severe intrinsic and extrinsic AD....

  1. Study of radiosensitization of chloroquine on esophageal cancer cell line

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Li Tao; Huang Jianming; Zha Xiao; Deng Bifang; Lang Jinyi

    2014-01-01

    Objective: To investigate the possibility of chloroquine radiosensitization of esophageal cancer cell line TE-1 and its further mechanism. Methods: Effect of chloroquine on cell viability of TE-1 cells was determined by MTT method. Expression of LC3, Beclin-1 and formation of acidic vesicular organelles (AVOs) were determined by Western blot, and fluorescence staining with Lyso-Tracker Red DND-99, respectively. Clonogenic survival of TE-1 cells was examined by clonogenic forming assay. Results: Chloroquine showed dose-dependent inhibition of TE-1 cell growth, and its values of IC_5_0 and IC_1_0 were (72.33±5.28) and (15.42±3.33) μmol/L, respectively. The expression of Beclin-1 and LC3-II/I markedly increased in irradiated TE-1 cells. The addition of chloroquine with IC_1_0 concentration significantly reduced the fluorescence and intensity of AVOs accumulation in the cytoplasm of TE-1 cells. Clonogenic survival fraction decreased obviously in TE-1 cells with addition of chloroquine after radiation and the value of SERD0 was 1.439. Conclusions: Chloroquine could radiosensitize esophageal cancer cells by blocking autophagy-lysosomal pathway and be used as a potential radiosensitizing strategy. (authors)

  2. Heritability of Susceptibility to Ionizing Radiation-Induced Apoptosis of Human Lymphocyte Subpopulations

    International Nuclear Information System (INIS)

    Schmitz, Annette; Bayer, Jan; Dechamps, Nathalie; Goldin, Lynn; Thomas, Gilles

    2007-01-01

    Purpose: To evaluate the heritability of intrinsic radiosensitivity, the induction of apoptosis in lymphocyte subpopulations was determined on samples from related individuals belonging to large kindred families. Methods and Materials: Quiescent lymphocytes from 334 healthy individuals were gamma-irradiated in vitro. Apoptosis was determined 18 h after irradiation by eight-color flow cytometry. Radiosensitivity was quantified from dose-effect curves. Intrafamilial correlations and heritability were computed for 199 father-mother-offspring trios using the programs SOLAR (Sequential Oligogenic Linkage Analysis Routines) and SAGE (Statistical Analysis for Genetic Epidemiology). Segregation analyses were conducted using SAGE. Results: Marked differential susceptibility of naive and memory T lymphocytes was demonstrated. Also, although age and gender were significant covariates, their effects only accounted for a minor part of the inter-individual variation. Parent-offspring and sib-sib correlations were significant for the radiosensitivity of B cells, T4, and T8 and of effector memory T4 and T8 subpopulations. In the T4-effector memory subpopulation, the phenotype showed correlations most consistent with dominant or additive genetic effects, and the results of the segregation analysis were consistent with the contribution of a bi-allelic dominant locus. Conclusions: Heritability was demonstrated for the susceptibility to ionizing radiation-induced apoptosis of lymphocyte populations, and the segregation of the T4-effector memory radiosensitivity phenotype was consistent with a simple mendelian transmission model involving one major gene

  3. Radiation mutagenesis in lavender. I.Dose and emissive power as affecting the radiosensitivity of lavender seeds in gamma-ray treatment

    International Nuclear Information System (INIS)

    Tsvetkov, R.

    1977-01-01

    The radiosensitivity has been investigated of dormant seeds of the widely distributed aboriginal Hemus and Karlovo varieties and of the Soviet Stepnaya lavender variety in treatment with gamma rays using 60 Co. Doses within 1 to 100 kRad are applied at different emissive power of the emitter. Both irradiated and nonirradiated control seeds are gibberellic acid treated. The dynamics of seed sprouting is followed up. The number of survived plants and peculiarities of their growth are registered. The radiosensitivity of Lavandula vera D.C. seeds is modified by the emissive power in equal doses applied. Stepnaya variety showed highest resistance, followed by Karlovo and Hemus varieties. Doses are ascertained with a stimulating, inhibiting, semilethal and lethal effect in regard to the separate varietoes. Both stimulation and injuring prove to be of saltatory character. The radiation injuring of doses with an inhibitory, semilethal and lethal effect positively correlate with the dose of all tested emissive powers of the gamma-emitter. (author)

  4. Differential radiosensitivity among B cell subpopulations

    International Nuclear Information System (INIS)

    Riggs, J.E.

    1988-01-01

    The selective radiosensitivity of sIgM >> sIgD marginal zone B cells is associated with the selective loss of B cell function. The simultaneous restoration of impaired function and recovery of these cells with time supports this premise. B cell recovery, delayed one week after irradiation, is in progress at two weeks, and virtually complete by three weeks. XID mice reveal similar recovery kinetics although there are fewer recovering cells and these bear reduced levels of Ia. This observation represents additional evidence that xid B cells are distinct from those of normal mice. The simultaneous loss, and concurrent recovery, of sIgM >> sIgD B cells and TI-2 responsiveness in irradiated mice suggests the existence of a unique B cell subpopulation possessing both phenotypes. Additional support for this hypothesis is provided by demonstrating that splenocytes, depleted of IgD + cells adoptively reconstitute this response in XID mice. The peritoneal B cell pool, which, compared to the spleen, consist of increased numbers of sIgM >> sIgD B cells, is shown to be a source of radiosensitive B cells that are TI-2 responsive. These observations represent additional evidence for an association between sIgM >> sIgD B cells and TI-2 responsiveness

  5. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  6. Radiosensitization of nitroindazole derivatives on HeLa cells

    International Nuclear Information System (INIS)

    Wang Hao; Shi Peiji; Zhou Xiaoliang; Wang Yan; Tang Weisheng

    2010-01-01

    Objective: To investigate the cytotoxicity and radiosensitization of 5-nitroindazole-3-formyliminodiacetic acid on HeLa cells. Methods: HeLa cells in exponential growth phase were incubated in culture media with different doses and the survival rate was determined by MTT assay. The survival rate of cells receiving radiation combined with different doses of medicine was compared with that of the control.Results: The cytotoxicity of S-nitroindazole-3-formyliminodiacetic acid on HeLa cells was very low. The drug had hypoxia radiosensitizing effect on HeLa cells. At doses of 0, 6, 12, 24, 48 and 96 μg/ml under hypoxia, the survival rate were 0.91 , 0.87, 0.84, 0.81, 0.76 and 0.60, respectively. At the dosage of 48 and 96 μg/ml, the survival rate were 0.85 and 0.73 under oxygenous). Conclusions: 5-Nitroindazole-3-formyliminodiacetic acid has low cytotoxicity and rediosensitizing effect on HeLa cells. (authors)

  7. Individual radiosensitivity measured with lymphocytes may be used to predict the risk of fibrosis after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Hoeller, Ulrike; Borgmann, Kerstin; Bonacker, Michael; Kuhlmey, Antje; Bajrovic, Amira; Jung, Horst; Alberti, Winfried; Dikomey, Ekkehard

    2003-01-01

    Background and purpose: To analyse the relationship of individual cellular radiosensitivity and fibrosis after breast conserving therapy. A new model was used describing the percentage of patients developing fibrosis per year and per patient at risk. Patients and methods: In a retrospective study, 86 patients were included, who had undergone breast conserving surgery and irradiation of the breast with a median dose of 55 Gy (54-55 Gy) given at 2.5 Gy/fraction (n=57) or 2 Gy/fraction (n=29). Median age was 62 years (range 44-86) and median follow-up was 7.5 years (range 5-17). Patients were examined for fibrosis according to the LENT/SOMA score. For analysis, fibrosis was classified as grade 0 and grade 1 (G0-1) or present grade 2 and grade 3 (G2-3). The time to complete development of fibrosis was determined by analysis of yearly mammograms. Individual cellular radiosensitivity was determined by scoring lethal chromosomal aberrations in in vitro irradiated (6 Gy) lymphocytes using metaphase technique. Patients with low/intermediate cellular radiosensitivity were compared with patients with high cellular radiosensitivity using actuarial methods. Results: Ten patients developed fibrosis at 1-8 years after radiotherapy. Individual cellular radiosensitivity was described by normal distribution of lethal chromosomal aberrations, the average was 5.47 lethal aberrations per cell (standard deviation (SD) 0.71). Cellular radiosensitivity was defined as low/intermediate (≤6.18 lethal aberrations) in 73 patients and high (>6.18 lethal aberrations; mean+SD) in 13 patients. In both groups, the actuarial rate of fibrosis-free patients decreased exponentially with time after radiotherapy. Patients with high cellular radiosensitivity showed a 2.3-fold higher annual rate for fibrosis than patients with intermediate and low radiosensitivity (3.6 versus 1.6% per year). Conclusions: In breast cancer patients, high individual cellular radiosensitivity as determined by the number of

  8. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  9. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle

    Directory of Open Access Journals (Sweden)

    Morrison RA

    2017-05-01

    Full Text Available Rachel A Morrison,1,* Malgorzata J Rybak-Smith,1,* James M Thompson,2 Bénédicte Thiebaut,3 Mark A Hill,2 Helen E Townley1,4 1Department of Engineering Science, 2Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, 3Johnson Matthey, Technology Centre, Reading, Berkshire, 4Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK *These authors have contributed equally to this work Abstract: The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%. It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization

  10. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.; Sehmi, D.S.

    1981-01-01

    Radiosensitization of hypoxic bacterial cells by five 2-nitroimidazoles, with similar reduction potentials to misonidazole but having lower lipophilicites, has been measured in Escherichia coli AB 1157 and Streptococcus lactis 712. Sensitization efficiency progressively decreased with decreasing lepophilicity in E. coli but not in S. lactis. This difference is discussed in terms of the differing membrane properties of the two bacteria; E. coli resembled a multicompartment model, as would also be expected with mammalian cells. Rapid-mix experiments are described which show that the radiosensitization observed after experiments are described which show that the radiosensitization observed after preirradiation contact times between ca. 3 and 30 msec is dependent on the lipophilicity of the sensitizer, higher lipophilicity resulting in a lower contact time being required for radiosensitization. This result and the observation that a highly lipophilic compound affects only half the full oxygen enhancement level after short contact times suggest that part of the sensitization process occurs in a lipophilic compartment of the cell

  11. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  12. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  13. Radiosensitivity and cell kinetics of the human solid cancer transplanted to nude mouse

    International Nuclear Information System (INIS)

    Ikeuchi, Shunji

    1983-01-01

    This study was undertaken to analyse the relationship between radiosensitivity and cell kinetics of human solid cancer in experimental nude mouse system. Four strains of tumors used for the experiment were poorly differentiated squamous cell carcinoma of the lung (Lu-9), oat cell carcinoma of the lung (Lu-24), well differentiated squamous cell carcinoma of the tongue (To-1) and moderately differentiated squamous cell carcinoma of the esophagus (Es-4) which were serially transplantable to BALB/c nude mice. Radiosensitivity was evaluated by tumor growth in terms of inhibition rate, histological change and host reaction after irradiation. Cell kinetics were studied by autoradiography with pulse administration of 3 H-thymidine to mice. Although Lu-24 was most radiosensitive, followed by To-1, Es-4 and Lu-9 in the order of sensitivity, it was suggested that they might be more radioresistant in nude mice without T-cell function than in human. Regarding squamous cell carcinomas, well differentiated type was more radiosensitive than poorly differentiated one. All of these tumors in nude mouse revealed distinct percent labeled mitosis curves with two clear peaks which were quite different from those in human body. Lu-24 showed a characteristic pattern with a long time lag before visible growth, short G 1 , and low growth fraction, compared to other three tumors. Three strains of squamous cell carcinoma demonstrated similar cell kinetic factors which were almost the same as those in human body reported previously. The differences in volume doubling time of tumor, growth fraction and cell loss factor were partially related to those of radiosensitivities among tumors except for Lu-24. The theoretical volume doubling time was proved to be most reliable for estimation of effectiveness of irradiation, but the labeling index was not a valuable indicator for it. (author)

  14. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  15. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    International Nuclear Information System (INIS)

    Xianjin Yi; Li Ding; Yizun Jin; Chuo Ni; Wenji Wang

    1994-01-01

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity effects of BSO on retinoblastoma cells are reported in this paper. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is 2.7 ± 1.3 X 1.0 -12 mmol/cell, 1.4 ± 0.2 X 1.0 -12 mmol/cell, and 2.8 ± 1.2 μmol/g, respectively. The ID 50 of BSO on Y-79 and So-Rb50 in air for 3 h exposure is 2.5 mM and 0.2 mM, respectively. GSH depletion by 0.1 mM BSO for 24 h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma-bearing nude mice after BSO administration is differential. GSH depletion after BSO exposure in Y-79 cells in vitro decreases the Do value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under hypoxic conditions is 1.21 and 1.36, respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of the cell line and that BSO can increase hypoxic retinoblastoma cells' radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenografts is needed. 25 refs., 3 figs., 3 tabs

  16. MicroRNA-375 Inhibits Growth and Enhances Radiosensitivity in Oral Squamous Cell Carcinoma by Targeting Insulin Like Growth Factor 1 Receptor

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-08-01

    Full Text Available Background: MicroRNAs (miRNAs have emerged as key players in various human biological processes, including tumorigenesis. Here, we investigated the roles of miR-375 in the pathogenesis of oral squamous cell carcinoma (OSCC. Methods: We performed quantitative real-time PCR (qRT-PCR to detect miR-375 expression in OSCC tissues and corresponding normal oral epithelial tissues and analyze the correlation of miR-375 expression with OSCC metastasis and patient’s survival. Then, the effects of miR-375 expression on proliferation, cell cycle, apoptosis and radiosensitivity in OSCC cells were determined by using MTT, flow cytometry and clonogenic survival assays. A dual-luciferase reporter assay was performed to test whether miR-375 binds to the 3’-untranslated region (3’-UTR of target mRNA. Results: The expression level of miR-375 in OSCC tissues was significantly lower than that in normal oral epithelial tissues, and low miR-375 expression was correlated with higher incidence of lymph node metastasis and poor survival of OSCC patients. Upregulation of miR-375 significantly inhibits growth, induces cell cycle arrest in G0/G1 phase, increases apoptosis and enhances radiosensitivity in OSCC cells. Analysis of luciferase activity demonstrated that miR-375 binds to the 3’-UTR of insulin like growth factor 1 receptor (IGF-1R. Small interfering RNA (shRNA-mediated IGF-1R knockdown mimics the effects of miR-375 upregulation, while overexpression of IGF-1R partially reverses those effects in OSCC cells. Conclusion: It was obviously demonstrated that miRNA-375 inhibits growth and enhances radiosensitivity in OSCC cells by targeting IGF-1R, suggesting that miR-375 may be a potential therapeutic target for OSCC patients.

  17. Use of radiosensitivity to identify irradiated fresh poultry products

    International Nuclear Information System (INIS)

    Copin, M.P.; Bourgeois, C.M.

    1991-01-01

    Microbiological comparison between irradiated and non-irradiated foodstuff has been studied for a long time as a way to detect whether a foodstuff has been irradiated or not. Generally, the proposed methods are based on the fact that ionization select species of bacteria which are recognized to be radioresistant. So reduction or elimination of known radiation sensitive microbes from the normal endogenous microflora could give an indication that the foodstuff has been irradiated, predominance of known radioresistant bacteria should be another indication. In the present work, we try to develop a test based on the radiosensitivity of the bacteria independently of their place. These first experiments show that the determination of radiosensitivity of strains isolated from a product or even of global radioresistance of mesophilic microflora could indicate if this product has been previously submitted to ionizing radiations. (4 tabs)

  18. Change in radiosensitivity of sea-urchin eggs during early cleavage stages

    International Nuclear Information System (INIS)

    Nakamura, I.

    1977-01-01

    When sea-urchin eggs were irradiated with 137 Cs γ-rays, their radiosensitivity, expressed by the percentage which formed pluteus larvae, fluctuated during the early cleavage cycle. Split-dose irradiations were made both in the sensitive and resistant phases. For eggs in the sensitive phase, the effect of the first exposure of 500 rad was not diminished during the interval before the second exposure. Eggs irradiated in the resistant phase were only slightly damaged. Results implied that fluctuations in radiosensitivity of sea-urchin eggs were caused mainly by different degrees of non-repairable damage in each phase of cleavage rather than by different recovery abilities. (author)

  19. Effect of anemia on tumor radiosensitivity under normo and hyperbaric conditions

    International Nuclear Information System (INIS)

    Rojas, A.; Stewart, F.A.; Smith, K.A.; Soranson, J.A.; Randhawa, V.S.; Stratford, M.R.; Denekamp, J.

    1987-01-01

    The effect of chronic anemia on tumor radiosensitivity in a murine tumor has been investigated. Anemia was induced by bilateral kidney irradiation given several months before tumor implantation. Anemic, anemic transfused, and normal non-anemic age-matched tumor bearing animals were irradiated with X rays (2 F/24 hr) either in air, air plus misonidazole, or under hyperbaric oxygen. The most resistant response was that of tumors grown in normal mice treated in air. Anemia produced an increase in radiosensitivity which was further enhanced by red blood cell replacement. The most sensitive overall response was seen in the anemic-transfused group treated with HBO

  20. Genotype dependent radiosensitivity of autotetraploids in Trigonella foenum-graecum L

    Energy Technology Data Exchange (ETDEWEB)

    Raghuvanshi, S S; Singh, A K

    1980-01-01

    Different diploids of Trigonella foenum-graecum L. and their corresponding autotetraploids were seedtreated with 40 krad of ..gamma..-rays, and parameters such as germination, survival, growth reduction, pollen fertility, pod setting, etc. were recorded. A stimulation of seed germination due to the irradiation could be observed. Contrary to the general rule that polyploids are more radioresistant than their corresponding diploids, one 4x strain was completely killed while the 2x version survived comparatively well. Apparently gene reduplication is not the overall protective mechanism as was once earlier believed. The importance of genotypic influence on radiosensitivity was demonstrated at both the 2x and 4x level. The limitation of interphase chromosome volume and degree of ploidy in predicting radiosensitivity is discussed.

  1. Application of rosula-formation tests for determining man lymphocyte radiosensitivity

    International Nuclear Information System (INIS)

    Shchilik, Ts.; Krushevskij, E.; Endrzhejchak, V.

    1982-01-01

    Radiosensitivity of subpopulation of lymphocytes-T-lymphocytes and B-lymphocytes was studied to diagnose acute radiation disease as well as if radiosensitivity of any of them is more effective indication of irradiation as compared with absolute lymphocyte quantity. The investigations were carried on in vitro using blood of healthy men-donors at the age of 21-25. It is shown that absolute quantity of cells forming AE rosette in perapheral blood is a much better indication of irradiation as compared with absolute quantity of lymphocytes. Considerable significance of tests of rosette formation especially AE test is underlined. High test sensitivity and relative simplicity of accomplishment permit authors to recommend it for diagnostic purposes when revealing acute radiation disease including the stages of medicinal evacuation

  2. The relationship between motivational structure, sense of control, intrinsic motivation and university students' alcohol consumption.

    Science.gov (United States)

    Shamloo, Zohreh Sepehri; Cox, W Miles

    2010-02-01

    The aim of this study was to determine how sense of control and intrinsic motivation are related to university students' motivational structure and alcohol consumption. Participants were 94 university students who completed the Personal Concerns Inventory, Shapiro Control Inventory, Helplessness Questionnaire, Intrinsic-Extrinsic Aspirations Scale, and Alcohol Use Questionnaire. Results showed that sense of control and intrinsic motivation were positively correlated with adaptive motivation and negatively correlated with alcohol consumption. Mediational analyses indicated that adaptive motivation fully mediated the relationship between sense of control/intrinsic motivation and alcohol consumption.

  3. Radio-sensitizing effect of ethyl caffeate on nasopharyngeal ...

    African Journals Online (AJOL)

    3Department of Clinical Laboratory, The 5th People's Hospital of Ji'nan, Ji'nan ... Purpose: To investigate the radio-sensitizing effect of ethyl caffeate (ETF) on naso-pharyngeal ... malignant solid tumors of head and neck which ... Excess irradiation could result in severe side .... protein bands were probed with corresponding.

  4. Evaluation of the effect of three monazite constituents on the radiosensitivity of human osteoblasts

    International Nuclear Information System (INIS)

    Iwahara, Lucas Kiyoshi da Fonseca; Oliveira, Monica Stuck de; Alencar, Marcus Alexandre Vallim de

    2017-01-01

    Thorium has gained notoriety in recent years, as a potential source of nuclear energy, substituting uranium in power plants. Monazite is an important font of thorium, as well of uranium and rare earths elements. Professionals involved in the extraction and manipulation of this mineral are occupationally exposed to aerosols containing metals and to ionizing radiation. This paper analyzed the effects of thorium, cerium and lanthanum on cell radiosensitivity. As an osteotropic substance, thorium is mostly deposited in bone tissue and may interfere in cellular radiosensitivity. A human osteoblast cell line was used to evaluate the effects of thorium, cerium and lanthanum on cell radiosensitivity, using proliferation as indicator. Assays were performed using cell cultures exposed to metals and to ionizing radiation. As a result, metals in combination with ionizing radiation induced changes on cell proliferation, in a concentration-dependent manner, in comparison with the exposure to metals alone. That suggests the possibility of combination interfering with radiosensitivity of osteoblasts, indicating an enhancement in occupational risk for workers that manipulate monazite byproducts and are subject to radiation in the environment. Thus, the development of risk assessment models that include the evaluation of metal-radiation mixtures and their cytotoxic and radiotoxic effects on tissues and organs must be highlighted. (author)

  5. Effect of quercetin on radiosensitivity of human uterine cervix cancer HeLa cells

    International Nuclear Information System (INIS)

    Liang Xiaofang; Hong Chengjiao; Zhang Baoguo

    2009-01-01

    In order to investigate the effects of Quercetin on radiosensitivity of human Uterine Cervix Cancer HeLa cells, MTT assay and clonogenic assay were performed to evaluate the cytotoxicity of Quercetin on the cells. Clonogenic assay was used to observe its effects on the radiosensitivity of the cells. MTT result shows that the inhibition of Quercetin on the cells is in the dose-dependent and time-dependent. And the clonogenic assay result shows that the effect of Quercetin on HeLa cells can be divided into two parts, one for the inhibition of HeLa cells and another for the induction of HeLa cell death. The other clonogenic assay result also shows Quercetin can decrease clonogenic survival rate of HeLa cells exposed to X rays. The study shows Quercetin might enhance the radiosensitivity of the HeLa cell line. And it may provide a useful evaluation to combination of ionizing radiation and Quercetin for cancer patients. (authors)

  6. Intrinsic motivation as a predictor of work outcome after vocational rehabilitation in schizophrenia.

    Science.gov (United States)

    Saperstein, Alice M; Fiszdon, Joanna M; Bell, Morris D

    2011-09-01

    Intrinsic motivation is a construct commonly used in explaining goal-directed behavior. In people with schizophrenia, intrinsic motivation is usually subsumed as a feature of negative symptoms or underlying neurocognitive dysfunction. A growing literature reflects an interest in defining and measuring motivational impairment in schizophrenia and in delineating the specific role of intrinsic motivation as both an independent predictor and a mediator of psychosocial functioning. This cross-sectional study examined intrinsic motivation as a predictor of vocational outcomes for 145 individuals with schizophrenia and schizoaffective disorder participating in a 6-month work rehabilitation trial. Correlation and mediation analyses examined baseline intrinsic motivation and negative symptoms in relation to work hours and work performance. Data support a significant relationship between intrinsic motivation and negative symptoms and significant correlations with outcome variables, such that lower negative symptoms and greater intrinsic motivation were associated with better work functioning. Moreover, in this sample, intrinsic motivation fully mediated the relationships between negative symptoms, work productivity, and work performance. These results have significant implications on the design of work rehabilitation interventions for people with schizophrenia and support a role for targeting intrinsic motivation directly to influence vocational functioning. Future directions for research and intervention are discussed.

  7. Use of a temperature-sensitive p53 mutant to evaluate mechanisms of 5-fluorodeoxyuridine-mediated radiosensitization

    International Nuclear Information System (INIS)

    Naida, J.D.; Davis, M.A.; Lawrence, T.S.

    1996-01-01

    Purpose/Objective: Evidence exists that fluorodeoxyuridine (FdUrd)-mediated radiosensitization occurs in HT29 human colon carcinoma cells (which are p53 mutant) when these cells progress past the G 1 /S boundary in the presence of the drug. It has been demonstrated that wild type p53 levels increase following fluoropyrimidine treatment and that G 1 arrest is associated with increased p53 levels. We hypothesized that the restoration of wild type p53 function might restore G 1 /S arrest after FdUrd treatment, and that this would prevent FdUrd-mediated radiosensitization. Similarly, we hypothesized that cells containing wild type p53 would not be radiosensitized by FdUrd. Materials and Methods: Two clones of HT29 human colon cancer cells (ts29-A and ts29-G) containing murine temperature-sensitive p53 were constructed using electroporation and Geneticin selection. Incubation of these cells at the permissive temperature of 32 deg. C produces wild type p53 function and at the non permissive temperature of 38 deg. C causes mutant p53 function. A G418 resistant control cell line was also constructed (HT29neo). Cells were incubated at either 32 deg. C or 38 deg. C for 24 hours prior to irradiation and with FdUrd (100 nM) or medium only during the last 14 hours of the temperature shift. To assess progression into S phase, single-parameter (propidium iodide (PI)) and two-parameter (PI and bromodeoxyuridine) flow cytometry were performed at the end of drug exposure. A standard clonogenic assay was used. Results: We found that when ts29-A and ts29-G cells were incubated at the non-permissive (inactive p53 conformation) temperature, they progressed into S phase following exposure to FdUrd and were radiosensitized (enhancement ratio 1.5) to a degree similar to that seen in parental HT29 cells. Cells incubated at the permissive (wild-type p53 conformation) temperature demonstrated G 1 arrest, S phase depletion, and G2 arrest. In addition, FdUrd-mediated radiosensitization was

  8. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  9. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Roberto Gomez-Casal

    2015-05-01

    Full Text Available The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  10. Radiosensitivity of hemopoietic stem cells on cloning in bone marrow and spleen

    International Nuclear Information System (INIS)

    Shvets, V.N.; Shafirkin, A.V.

    1979-01-01

    It was shown that population of stem cells from bone marrow of mice is heterogenous by radiosensitivity. A 55%-survival of CFU is exponential function of radiation dose (D 0 -9 rad). A dose-effect curve for radioresistant part of the population (D 0 =180 rad) is sygmoid (Dsub(q)=130 rad). Radiosensitive CFU are suggested to represent a primarily committed fraction of half-semi cells, and radioresistant CFU are referable to a pool of pluripotent stem cells. Heterogenous nature of CFU population is proved with different modifications of radiation effect and interactions of CFU with T-lymphocytes

  11. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  12. Cabazitaxel-induced stabilization of microtubules enhances radiosensitivity in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Charles eKunos

    2013-09-01

    Full Text Available Background: Up to 40% of women with ovarian cancer have short disease-free intervals due to molecular mechanisms of chemotherapy resistance. New therapeutic strategies are sought. Ovarian cancers are sensitive to radiochemotherapy. The taxane cabazitaxel (XRP6258, Jevtana promotes tubulin assembly and stabilizes microtubules against depolymerization in cells, acting similarly in mechanism to paclitaxel. Here, sequences of cabazitaxel-radiation co-administration are tested for drug-alone cytotoxicity and optimal radiosensitization.Methods: SKOV3, OVCAR3, and TOV-112D ovarian cancer cells were administered cabazitaxel 24 h before (first, 18 h before (second, together (third, or 24 h after (fourth a single radiation dose, and then, investigated by clonogenic assay and flow cytometric assays. Radiation dose-cell survival data were fitted by two-stage multivariate analyses of variance. High content flow cytometry partitioned cabazitaxel effects into G2-phase versus M-phase events by DNA content, cyclin A2, and phospho-S10-histone H3 (PHH3. Paclitaxel served as a comparator. Findings: Cabazitaxel cytotoxicity and radiosensitization were dose dependent. Cabazitaxel added 24 h before radiation was the most lethal schedule. DNA content measurements by flow cytometry showed that cabazitaxel-treated cells accumulated in the radiosensitive G2/M 4C DNA complement compartment. Cytometry also showed that surviving cabazitaxel-induced cell cycle arrested cells resolve the arrest by entering 4C or by 8C DNA complement cell cycles.Interpretation: The radiosensitizing effect of cabazitaxel was schedule dependent, due to cell cycle redistribution, and best when cabazitaxel was given 24 h before radiation. Clinical trials of administering both cabazitaxel and radiation should be explored in women with chemoresistant ovarian cancer. Funding: Case Comprehensive Cancer Center and Sanofi-Aventis

  13. Dosimetry using radiosensitive gels in radiotherapy: significance and methods

    International Nuclear Information System (INIS)

    Gibon, D.; Bourel, P.; Castelain, B.; Marchandise, X.; Rousseau, J.

    2001-01-01

    The goal of conformal radiotherapy is to concentrate the dose in a well-defined volume by avoiding the neighbouring healthy structures. This technique requires powerful treatment planning software and a rigorous control of estimated dosimetry. The usual dosimetric tools are not adapted to visualize and validate complex 3D treatment. Dosimetry by radiosensitive gel permits visualization and measurement of the three-dimensional dose distribution. The objective of this work is to report on current work in this field and, based on our results and our experience, to draw prospects for an optimal use of this technique. Further developments will relate to the realization of new radiosensitive gels satisfying, as well as possible, cost requirements, easy realization and use, magnetic resonance imagery (MRI) sensitivity, tissue equivalence, and stability. Other developments focus on scanning methods, especially in MRI to measure T1 and T2. (author)

  14. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    Science.gov (United States)

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  15. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.

    Science.gov (United States)

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.

  16. Regional differences in radiosensitivity across the rat cervical spinal cord

    International Nuclear Information System (INIS)

    Bijl, Hendrik P.; Luijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2005-01-01

    Purpose: To study regional differences in radiosensitivity within the rat cervical spinal cord. Methods and materials: Three types of inhomogeneous dose distributions were applied to compare the radiosensitivity of the lateral and central parts of the rat cervical spinal cord. The left lateral half of the spinal cord was irradiated with two grazing proton beams, each with a different penumbra (20-80% isodoses): lateral wide (penumbra = 1.1 mm) and lateral tight (penumbra = 0.8 mm). In the third experiment, the midline of the cord was irradiated with a narrow proton beam with a penumbra of 0.8 mm. The irradiated spinal cord length (CT-2) was 20 mm in all experiments. The animals were irradiated with variable single doses of unmodulated protons (150 MeV) with the shoot-through method, whereby the plateau of the depth-dose profile is used rather than the Bragg peak. The endpoint for estimating isoeffective dose (ED 50 ) values was paralysis of fore and/or hind limbs within 210 days after irradiation. Histology of the spinal cords was performed to assess the radiation-induced tissue damage. Results: High-precision proton irradiation of the lateral or the central part of the spinal cord resulted in a shift of dose-response curves to higher dose values compared with the homogeneously irradiated cervical cord to the same 20-mm length. The ED 50 values were 28.9 Gy and 33.4 Gy for the lateral wide and lateral tight irradiations, respectively, and as high as 71.9 Gy for the central beam experiment, compared with 20.4 Gy for the homogeneously irradiated 20-mm length of cervical cord. Histologic analysis of the spinal cords showed that the paralysis was due to white matter necrosis. The radiosensitivity was inhomogeneously distributed across the spinal cord, with a much more radioresistant central white matter (ED 50 = 71.9 Gy) compared with lateral white matter (ED 50 values = 28.9 Gy and 33.4 Gy). The gray matter did not show any noticeable lesions, such as necrosis or

  17. Increased radiosensitivity of a subpopulation of T-lymphocyte progenitors from patients with Fanconi's anemia

    International Nuclear Information System (INIS)

    Knox, S.J.; Wilson, F.D.; Greenberg, B.R.; Shifrine, M.; Rosenblatt, L.S.; Reeves, J.D.; Misra, H.

    1981-01-01

    In vitro radiation survival of peripheral blood T lymphocytes was studied in 15 clinically normal adults and 4 patients with Fanconi's anemia. Tritiated thymidine incorporation in a whole blood lymphocyte stimulation test (LST) and a newly developed whole blood T-lymphocyte colony assay were used to measure lymphocyte blastogenesis and colony formation in response to phytohemagglutinin (PHA) or concanavalin-A (Con-A) stimulation. Lymphocyte colony formation was found to be consistently more sensitive than the LST for detection of low-level radiation effects using both normal cells and lymphocytes from Fanconi's anemia patients. Lymphocytes from patients with Fanconi's anemia were significantly more sensitive to in vitro x irradiation than lymphocytes from clinically normal individuals as measured by their ability to divide when stimulated by PHA in the LST and colony formation assay. No significant difference in the radiosensitivity of the Con-A response was observed between the two groups. The PHA-responsive T-lymphocyte subpopulation in Fanconi's anemia patients appears to be intrinsically defective. The nature of this defect, significance in the disease process, and relevancy of these findings to the establishment of radiation protection standards are discussed

  18. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    International Nuclear Information System (INIS)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M; Singh, P; Manohar, N; Tailor, R; Cho, S; Goodrich, G; Krishnan, S

    2015-01-01

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  19. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Diagaradjane, P [M.D. Anderson Cancer Center, Houston, TX (United States); Deorukhkar, A; Sankaranarayanapillai, M; Singh, P [The UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N; Tailor, R; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Goodrich, G [Nanospectra Biosciences Inc, Houston, TX (United States); Krishnan, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  20. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Wang Shubin; Zhang Bo; Sun Weijian; Wang Yu; Liu Xiaodan; Xu Qinzhi; Zhou Pingkun

    2010-01-01

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60 Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P 50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G 2 /M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G 2 /M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G 2 /M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  1. Profound radiosensitivity in leukemic T-cell lines and T-cell-type acute lymphoblastic leukemia demonstrated by sodium [51Cr]chromate labeling

    International Nuclear Information System (INIS)

    Nakazawa, S.; Minowada, J.; Tsubota, T.; Sinks, L.F.

    1978-01-01

    Radiation sensitivity was determined by measuring spontaneous release from 51 Cr-labeled cells in various lymphoid cell populations. Among six leukemia T-cell lines originating from acute lymphoblastic leukemia, four such lines were found to be highly radiosensitive. In contrast, two of the leukemic T-cell lines and four normal control B-cell lines were not radiosensitive. Thymocytes from six patients and leukemia T-cell blasts from three patients with T-cell leukemia were likewise found to be highly radiosensitive, whereas leukemic blasts from six patients with null-cell (non-T, non-B-cell) acute lymphoblastic leukemia were not radiosensitive. Normal peripheral blood lymphocytes and mitogen-induced normal lymphoblasts were found not to be radiosensitive. The results indicate that measurement of the radiation sensitivity of acute leukemic blasts may have a therapeutic significance in coping with the heterogeneous nature of individual leukemia cases

  2. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    Science.gov (United States)

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  3. MicroRNA-449a enhances radiosensitivity in CL1-0 lung adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yi-Jyun Liu

    Full Text Available Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5 with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation.

  4. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer cells. In cell cycle progression, G2/M phase is the most sensitive phase for radiation-induced damage which was delayed by the compound treatment in radiation exposed cells. The lower concentrations of silibinin substantially enhanced radiation-induced apoptosis. A prolonged reactive oxygen species production was also observed in these treatments EGFR signaling pathway can contribute to radiation-induced pro-survival mechanisms and to the therapeutic resistance. Agent treatment reduced the IR-induced EGFR phosphorylation and consequently reversed the resistance mediating mechanisms within the cancer cell. Thus, inhibiting DNA repair in cancer cells would enhance therapeutic response of radiation in cancer cells. Silibinin affected the localization of EGFR and DNA-dependent protein kinase, the DNA-PK is known to be an important mediator of DSB repair in human cells, and showed increased number of pH2AX (ser139) foci, and thus indicating lower DNA repair in these cancer cells. This was also confirmed in the tumor xenograft study. Our findings suggest that a combination of silibinin with radiation could be an effective treatment of radioresistant human prostate cancer and warrants further investigation. (author)

  5. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    1991-01-01

    The cellular basis of radiation-induced demyelination and white matter necrosis of the central nervous system (CNS), is poorly understood. Glial cells responsible for myelination in the CNS might be the target cells of this type of damage. Glial cells with stem cell properties derived from the perinatal and adult rat CNS can be cultured in vitro. These cells are able to differentiate into oligodendrocytes or type-2 astrocytes (O-2A) depending on the culture conditions. Growth factors produced by monolayers of type-1 astrocytes inhibit premature differentiation of O-2A progenitor cells and allow colony formation. A method which employs these monolayers of type-1 astrocytes to culture O-2A progenitor cells has been adapted to allow the analysis of colonies of surviving cells after X-irradiation. In vitro survival curves were obtained for glial progenitor cells derived from perinatal and adult optic nerves. The intrinsic radiosensitivity of perinatal and adult O-2A progenitor cells showed a large difference. Perinatal O-2A progenitor cells are quite radiosensitive, in contrast to adult O-2A progenitor cells. For both cell types an inverse relationship was found between the dose and the size of colonies derived from surviving cells. Surviving O-2A progenitor cells maintain their ability to differentiate into oligo-dendrocytes or type-2 astrocytes. This system to assess radiation-induced damage to glial progenitor cells in vitro systems to have a great potential in unraveling the cellular basis of radiation-induced demyelinating syndromes of the CNS. (author). 28 refs.; 4 figs.; 1 tab

  6. Enhanced apoptosis and radiosensitization by combined 13-CIS-retinoic acid and interferon-α2a; role of RAR-β gene

    International Nuclear Information System (INIS)

    Ryu, Samuel; Stein, Joseph P.; Chung, Chung T.; Lee, Yong J.; Kim, Jae Ho

    2001-01-01

    Purpose: Combined use of 13-cis-retinoic acid (cRA) and interferon-α2a (IFNα) induced significant radiosensitization in human cervical cancer ME-180 cell line, whereas it failed to achieve similar radiation enhancement in HeLa cells. The differential radiosensitization could be from the difference of retinoic acid receptor (RAR) expression because RAR-β was highly expressed in ME-180 cells in contrast to the HeLa cells where RAR-β was not detectable. We examined the role of this gene in mediating radiosensitization by cRA and IFNα, and explored the mechanism of radiation-induced cell killing. Methods and Materials: Human cervical cancer cell lines, ME-180 and HeLa, were treated with cRA and IFNα followed by radiation. Apoptosis and radiosensitization were quantitated by TUNEL assay (in situ DNA nick end labeling) and colony-forming ability of surviving cells. The cells were transfected with bcl-2 gene and RAR-β gene to test the role of these genes in mediating radiosensitization and apoptosis. Results: Synergistic radiosensitization and apoptosis was observed by combined use of cRA and IFNα with radiation in ME-180 cells which express high level of RAR-β mRNA, whereas these were not seen in HeLa cells where RAR-β mRNA is not detectable. Both radiosensitization and apoptosis were abolished by bcl-2 gene in ME-180 cells. RAR-β gene transfection induced similar radiation enhancement and apoptosis in HeLa cells. Conclusion: Apoptosis and radiation response were enhanced in the cells with high level of RAR-β mRNA expression. The RAR-β gene appears to mediate the radiation-induced apoptosis by cRA and IFNα. These findings indicate that presence of RAR-β in the cancer cells could be exploited for patient selection in using these drugs for apoptosis and radiosensitization

  7. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines

    International Nuclear Information System (INIS)

    Güster, Julian David; Weissleder, Stephanie Valerie; Busch, Chia-Jung; Kriegs, Malte; Petersen, Cordula; Knecht, Rainald; Dikomey, Ekkehard; Rieckmann, Thorsten

    2014-01-01

    Background and purpose: HPV-negative and HPV-positive HNSCC comprise distinct tumor entities with different biological characteristics. Specific regimens for the comparably well curable HPV-positive entity that reduce side effects without compromising outcome have yet to be established. Therefore, we tested here whether the inhibition of EGFR or PARP may be used to specifically enhance the radiosensitivity of HPV-positive HNSCC cells. Materials and methods: Experiments were performed with five HPV/p16-positive HNSCC cell lines. Inhibitors used were cetuximab, olaparib and PF-00477736. The respective inhibition of EGFR, PARP and Chk1 was evaluated by Western blot, immunofluorescence analysis and assessment of cell cycle distribution. Cell survival was assessed by colony formation assay. Results: Inhibition of EGFR by cetuximab failed to radiosensitize any of the HPV-positive HNSCC cell lines tested. In contrast, PARP-inhibition resulted in a substantial radiosensitization of all strains, with the sensitization being further enhanced by the additional inhibition of Chk1. Conclusions: PARP-inhibition effectively radiosensitizes HPV-positive HNSCC cells and may therefore represent a viable alternative to chemotherapy possibly even allowing for a reduction in radiation dose. For the latter, PARP-inhibition may be combined with the inhibition of Chk1. In contrast, the inhibition of EGFR cannot be expected to radiosensitize HPV-positive HNSCC through the modulation of cellular radiosensitivity

  8. Strain differences in the radiosensitivity of mouse spermatogonia

    CERN Document Server

    Bianchi, M; Hurtado de Catalfo, G; Hendry, J H

    1985-01-01

    The radiosensitivity of spermatogonia was found to be greater by up to a factor of 2 in C3H mice than in B6D2F1 mice, whether assessed for the highly sensitive spermatogonia (types A2 to In) or the much more resistant clonogenic spermatogonia which repopulate tubules. The latter were similarly resistant in the B6D2F1 hybrid and in the DBA2 parent, but were much more sensitive in the C57BL parent strain. A difference in sensitivity by up to a factor of 2 results in a variation by a factor of 10 or more in the level of survival of clonogenic cells after high doses. This variation is also observed when comparing data in the literature from different authors using various strains of mice. Using the radiosensitizer misonidazole, it was shown that hypoxia did not play a major role in the lesser sensitivity demonstrated in B6D2F1 mice. The variation in sensitivity is similar to the range reported in the literature for reciprocal translocations.

  9. Clinical experience with intravenous radiosensitizers in unresectable sarcomas

    International Nuclear Information System (INIS)

    Kinsella, T.J.; Glatstein, E.

    1987-01-01

    Traditionally, adult bone and soft tissue sarcomas have been considered to be ''radioresistant.'' Because of this philosophy, patients who present with locally advanced, unresectable sarcomas often are treated in a palliative fashion, usually with low-dose radiotherapy. Over the last 6 years, 29 patients with unresectable primary or metastatic sarcomas were treated using a combination of intravenous chemical radiosensitizers and high-dose irradiation. Twenty-two of 29 patients achieved clinical local control, with six patients having a complete clinical response. The time to tumor response is often several months or longer, which is in contrast to other tumor histologies (carcinomas, lymphomas), where tumor response usually occurs over several weeks. Several large tumors have shown only a minimal tumor response, yet were found to be sterilized in posttreatment biopsy or autopsy examination. Of 15 patients with primary sarcomas without metastases, 11 patients (73%) remain free of local tumor progression from 12 to 83 months. Adult high-grade sarcomas can be controlled with high-dose radiotherapy and intravenous radiosensitizers, although the precise role of these agents is unclear

  10. Evaluation of connectivity map-discovered celastrol as a radiosensitizing agent in a murine lung carcinoma model: Feasibility study of diffusion-weighted magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Hong Young Jun

    Full Text Available This study was designed to identify potential radiosensitizing (RS agents for combined radio- and chemotherapy in a murine model of human lung carcinoma, and to evaluate the in vivo effect of the RS agents using diffusion-weighted magnetic resonance imaging (DW-MRI. Radioresistance-associated genes in A549 and H460 cells were isolated on the basis of their gene expression profiles. Celastrol was selected as a candidate RS by using connectivity mapping, and its efficacy in lung cancer radiotherapy was tested. Mice inoculated with A549 carcinoma cells were treated with single ionizing radiation (SIR, single celastrol (SC, or celastrol-combined ionizing radiation (CCIR. Changes in radiosensitization over time were assessed using DW-MRI before and at 3, 6, and 12 days after therapy initiation. The tumors were stained with hematoxylin and eosin at 6 and 12 days after therapy. The percentage change in the apparent diffusion coefficient (ADC value in the CCIR group was significantly higher than that in the SC and SIR group on the 12th day (Mann-Whitney U-test, p = 0.05; Kruskal-Wallis test, p < 0.05. A significant correlation (Spearman's rho correlation coefficient of 0.713, p = 0.001 was observed between the mean percentage tumor necrotic area and the mean ADC values after therapy initiation. These results suggest that the novel radiosensitizing agent celastrol has therapeutic effects when combined with ionizing radiation (IR, thereby maximizing the therapeutic effect of radiation in non-small cell lung carcinoma. In addition, DW-MRI is a useful noninvasive tool to monitor the effects of RS agents by assessing cellularity changes and sequential therapeutic responses.

  11. Effect of 17-AAG on radio-sensitivity of HeLa and V79 cells

    International Nuclear Information System (INIS)

    Pan Yanling; Hong Chengjiao; Zhang Baoguo

    2010-01-01

    In order to investigate the radio-sensitizing effect of 17-AAG, an inhibitor of Heat Shock Protein 90, on human Uterine Cervix Cancer HeLa and V79 cells, Clonogenic assay was used to observe the cell survival rate. The results show that 17-AAG can decrease obviously (p 0.05). This indicates that 17-AAG may enhance the radio-sensitivity of the HeLa cell line and has no effect on the V79 cell line. (authors)

  12. Modification of γ-irradiation damaging effect on the seeds of radiosensitive and radioresistant plants

    International Nuclear Information System (INIS)

    Kaplan, I.S.; Tikhomirov, F.A.; Khvostova, V.V.; AN SSSR, Novosibirsk. Inst. Tsitologii i Genetiki)

    1975-01-01

    Low and high temperature treatment of seeds during irradiation has shown to result in a decrease of the general deleterious effect of radiation in both relatively radiosensitive (bean) and radioresistant (flax, mustard) species. The protective effect of the treatment is supposed to be due to its influence on short-half-life radicals and this is supportted by experiments with storage of irradiated seeds. The treatment allows to obtain high mutation frequencies in both radiosensitive and radioresistant plants

  13. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    International Nuclear Information System (INIS)

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  14. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Directory of Open Access Journals (Sweden)

    Fukuda eMegumi

    2015-03-01

    Full Text Available Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e. temporal correlation between two regions is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least two months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

  15. Radio-sensitization of WRN helicase deficient cancer cells by targeting homologous recombination pathway

    International Nuclear Information System (INIS)

    Gupta, Pooja; Saha, Bhaskar; Patro, Birija Sankar; Chattopadhyay, Subrata

    2016-01-01

    Ionizing radiation (IR) induced DNA double-strand breaks (DSBs) are primarily repaired by non-homologous end joining (NHEJ). However, it is well established that a subset DSBs which are accumulated in IR-induced G2 phase are dependent on homologous recombination (HR). DNA repair deficient tumor cells have been shown to accumulate high levels of DNA damage. Consequently, these cells become hyperdependent on DNA damage response pathways, including the CHK1-kinase-mediated HR-repair. These observations suggest that DNA repair deficient tumors should exhibit increased radio-sensitivity under HR inhibition. Genetic defects leading to functional loss of werner (WRN) protein is associated with genomic instability and increased cancer incidence. WRN function is known to be abrogated in several human cancer cells due to hypermethylation of CpGisland-promoter and transcriptional silencing of WRN gene. In the current investigation, using isogenic pairs of cell lines differing only in the WRN function, we showed that WRN-deficient cell lines were hyper-radiosensitive to CHK1 pharmacologic inhibition. Here, we found that unrepaired DSB was drastically increased in WRN-deficient cells vis-à-vis WRN-proficient cells in response to IR and CHK1 inhibitor (CHK1i). Our results revealed a marginal role of NHEJ pathway accountable for the radio-sensitivity of WRN-deficient cells. Interestingly, silencing CTIP, a HR protein required for RAD51 loading, significantly abrogated the CHK1i-mediated radiosensitivity in WRN-deficient cells. Silencing of WRN or CTIP individually led to no significant difference in the extent of DNA end resection, as required during HR pathway. Imperatively, our results revealed that WRN and CTIP together play a complementary role in executing DNA end resection during HR-mediated repair of IR induced DSBs. Altogether, our data indicated that inhibition of IR-induced HR pathway at RAD51 loading, but not at DSB end resection, make the WRN-deficient cancer cells

  16. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  17. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    International Nuclear Information System (INIS)

    Sebastià, N.; Montoro, A.; Hervás, D.; Pantelias, G.; Hatzi, V.I.; Soriano, J.M.; Villaescusa, J.I.

    2014-01-01

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  18. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-01

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity

  19. THE BRAIN CORRELATES OF THE EFFECTS OF MONETARY AND VERBAL REWARDS ON INTRINSIC MOTIVATION

    Directory of Open Access Journals (Sweden)

    Konstanze eAlbrecht

    2014-09-01

    Full Text Available Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: We do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: While performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one’s competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI. We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: After verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.

  20. Procedures for increasing the radiosensitivity of malignant tumors with special regard to synchronized radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, W

    1975-01-01

    Two principal ways to increase the radiosensitivity of malignant tumours are described: to begin with, both the use of highly ionizing corpuscular radiation - e.g. in neutron therapy - and the simultaneous application of photons and high-pressure oxygen heighten radiosensitivity by increasing the number of secondary hit events. The second principal direction - in which the radiation intervals are timed in dependence of lifetime and division rhythm of the tumour cells - is described and illustrated by results of 5-fluorouracil and /sup 60/Co irradiation of 71 patients. The results show a particularly good response of carcinomas of the ENT region and the breast. Questions of the radiosensitive stage, the time of infusion, the influence of the generation cycle and the influence of oxygen-starved cells on the results are major points for future studies on synchronized radiotherapy. Mathematical calculations are carried out concerning the time of infusion and the influence of the generation cycle. Some consequences are mentioned which had not been dealt with so far in synchronized radiotherapy: high single doses and short intervals between sessions for tumours with short generation and duplication times, and low doses and long intervals for small tumours with slow growth rates. There is no principal difference between oxygen-starved and oxygen-rich cells as far as the dependence of radiosensitivity on the generation cycle - i.e. the starting point of synchronized radiotherapy - is concerned.

  1. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    International Nuclear Information System (INIS)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-01-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  2. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  3. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter

  4. Apoptosis-related molecules and radiation response in human oral cancers

    International Nuclear Information System (INIS)

    Teni, Tanuja; Mallick, Sanchita; Palve, Vinayak; Yasser, Mohd; Pawar, Sagar; Kannan, Sadhana; Agarwal, Jai Prakash; Kane, Shubhada

    2013-01-01

    The ability of the tumor cells to respond to radiotherapy depends upon their intrinsic radiosensitivity, which may be partly governed by molecules of the intrinsic cell death pathway. To identify the defects in this pathway in oral cancers, transcript expression analysis of the pathway members was done using the Ribonuclease protection assay in oral cell lines and tumors. The intrinsic apoptosis pathway was found to be deregulated in oral cell lines and majority of oral tumors with altered expression of Mcl-l, bclxl, survivin, p53 and p16 mRNA. To identify factors associated with radiosensitivity, differential gene expression profiles of radiation-treated versus untreated oral cell lines of differing radiosensitivities was carried out. To assess the predictive value of above altered molecules in radiotherapy outcome in oral cancer patients, pretreated biopsies from thirty nine oral cancer patients were examined for the expression of the apoptotic markers using immunohistochemistry and their expression was correlated with the clinico pathological parameters. High expression of Mcl-1 (p = 0.05) and PCNA (p = 0.007) was seen to be associated with poor disease free survival. High expression of Bcl-xL was associated with poor response to radiotherapy treatment. PCNA (p=0.04) and Mcl-1 (p=0.05) emerged as independent prognostic markers for predicting disease free survival in oral cancers treated with primary radiotherapy. A predominant overexpression of anti-apoptotic Mcl-1L over pro-apoptotic Mcl-1S isoform was observed in the oral cancer cell lines and oral tumors. An inverse correlation was observed between Mcl-1L expression and apoptosis induction in AW8507 cell line post-radiation treatment supporting its pro-survival role. A rapid and short induction of Mcl-1L versus sustained induction of Mcl-1L was observed in the relatively more radiosensitive FBM versus AW8507 respectively. siRNA treatment in combination with IR demonstrated significant induction of apoptosis

  5. Kinematical tests for the intrinsic shapes of galaxies

    International Nuclear Information System (INIS)

    Capaccioli, M.; Fasano, G.

    1984-01-01

    Determining the intrinsic shape of elliptical galaxies has been an illusive enterprise, but one fundamental to the understanding of their internal dynamics and formation. Here the problem is approached dynamically; noting that the velocity dispersion is largest when sighted down the longest axis, the correlations are derived of velocity dispersion with observed eccentricity expected, after the known trend of velocity dispersion with luminosity is removed. Using a compilation of published data, the relation between luminosity and velocity dispersion is determined more accurately. The residuals are examined as a function of axis ratio in order to construct a test for the intrinsic shape of galaxies. The effects of projection are modelled and possible intrinsic variations are examined. (author)

  6. Triolimus: A Multi-Drug Loaded Polymeric Micelle Containing Paclitaxel, 17-AAG, and Rapamycin as a Novel Radiosensitizer.

    Science.gov (United States)

    Tomoda, Keishiro; Tam, Yu Tong; Cho, Hyunah; Buehler, Darya; Kozak, Kevin R; Kwon, Glen S

    2017-01-01

    Triolimus is a multi-drug loaded polymeric micelle containing paclitaxel (PTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin (RAP). This study examines the radiosensitizing effect of Triolimus in vitro and in vivo. Radiosensitizing effects of Triolimus on A549 cells are dose dependent and at 2 × 10 -9 m, Triolimus shows significant radiosensitization even at low radiation doses (2 Gy). By sensitivity enhancement ratio, PTX alone, dual drug combinations, and Triolimus treatment at 2 × 10 -9 m have radiosensitizing effects with potency as follows: PTX alone (PTX) > PTX and RAP (P/R) > Triolimus (TRIO) > PTX and 17-AAG (P/17) >17-AAG and RAP (17/R). In vivo, fractionated radiation of 15 Gy preceded by infusion of PTX alone, dual drug combinations, or an intermediate dose of Triolimus (Int. TRIO: PTX/17-AAG/RAP at 15/15/7.5 mg kg -1 ) strongly inhibits A549 tumor growth. Notably, pretreatment with high dose of Triolimus (High TRIO: PTX/17-AAG/RAP at 60/60/30 mg kg -1 ) before the fractionated radiation leads to tumor control for up to 24 weeks. An enhanced radiosensitizing effect is observed without an increase in acute toxicity compared to PTX alone or radiation alone. These results suggest that further investigations of Triolimus in combination with radiation therapy are merited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Radiosensitization by SAHA in Experimental Colorectal Carcinoma Models-In Vivo Effects and Relevance of Histone Acetylation Status

    International Nuclear Information System (INIS)

    Folkvord, Sigurd; Ree, Anne Hansen; Furre, Torbjorn; Halvorsen, Thomas; Flatmark, Kjersti

    2009-01-01

    Purpose: Histone deacetylase inhibitors are being evaluated as antitumor agents in ongoing clinical trials, and promising preclinical results, combined with favorable toxicity profiles, have rendered the drugs as interesting candidates for combination with other treatment modalities, such as radiotherapy. The aim of the present study was to evaluate the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) and the possible requirement of histone hyperacetylation at radiation exposure. Methods and materials: Radiosensitization by SAHA was assessed in a colorectal carcinoma cell line and in two colorectal xenograft models by analysis of clonogenic survival and tumor growth delay, respectively. Histone acetylation status at radiation exposure was evaluated by Western blot. Results: In vitro, radiosensitization was demonstrated when cells were preincubated with SAHA, and, in the xenografts, tumor growth was delayed when the mice were treated with fractionated radiation combined with daily SAHA injections compared with radiation alone. Surprisingly, the SAHA-dependent growth delay was still present when radiation was delivered at restored baseline acetylation levels compared with maximal histone hyperacetylation. Conclusion: SAHA was an effective radiosensitizer in experimental colorectal carcinoma models, suggesting that histone deacetylase inhibition might constitute a valuable supplement to current multimodal treatment strategies in rectal cancer. The presence of histone hyperacetylation at radiation was not required to obtain an increased radiation response, questioning the validity of using histone hyperacetylation as a molecular marker for radiosensitivity.

  8. Radiosensitivity of str.fecalis in presence of some substances being contained in meat cans

    International Nuclear Information System (INIS)

    Stojchev, M.; Brankova, G.; Dzhezheva, G.

    1974-01-01

    This study was designed to assess the effects of some organic and inorganic substances present in canned meats on the radiosensitivity of Streptococcus faecalis exposed to different doses of gamma rays. It was found that the death rate of irradiated S.faecalis depends on the radiation dose, the time elapsed after irradiation, and the medium in which the cells are suspended. Adding lactic and ascorbic acids and glucose to the model solution decreased the radiosensitivity and increased the post-irradiation effects. (E.T.)

  9. Evaluation of the single radiosensitivity in patients subjected to medical exposure that show severe skin reactions

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Portas, M.; Perez, M.R.

    2006-01-01

    The Burnt Hospital of the Buenos Aires City Government (HQGCBA) it is a hospital of reference of the Net of Medical Responses in Radiological Emergencies of the Argentine Republic. In the mark of an agreement among the HQGCBA and the Authority Regulatory Nuclear (ARN), it is in execution a study protocol for the one boarding diagnoses and therapeutic of radioinduced cutaneous leisure. They exist individual variations that can condition the response to the ionizing radiations (IR), so much in accidental exposures as having programmed (radiotherapy, radiology interventionist). In this context, the individual radiosensitivity is evaluated in the patients signed up in this protocol that presented sharp or late cutaneous reactions, with grades of severity 3-4 (approaches EORTC/RTOG). The capacity of repair of the DNA was evaluated in outlying blood lymphocytes irradiated in vitro (2 Gy, gamma of Co-60) by means of the micronucleus techniques and comet essay in alkaline conditions. In this work two cases in those that is applied this study protocol, the therapeutic answer and its correlate with the discoveries of the radiosensitivity tests is presented. Case 1: patient of feminine sex, subjected to external radiotherapy by a breast infiltrating ductal carcinoma; developed sharp cutaneous radiotoxicity grade 3 (confluent humid epithelitis) that motivate the interruption of the treatment. Case 2: patient of masculine sex, subjected to a coronary angioplasty (interventionist radiology); developed late cutaneous radiotoxicity grade 4 (ulceration in dorsal region). Both patients were treated with topical trolamine associated to systemic administration of pentoxiphiline and antioxidants. The therapeutic answer is evaluated by means of clinical pursuit, photographic serial register and complementary exams (thermography and ultrasonography of high frequency). In the case 1 the answer was very favorable, with precocious local improvement and complete remission of symptoms and

  10. Radiosensitivity of mice and its modifiers based on the endogeneous spleen colony formation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Jindo; Wagatuma, Kaoru

    1987-02-01

    In irradiated mouse hematopoietic tissue, there is a group of cells which can proliferate and form macroscopic colonies. In the spleen, the colonies formed in this manner are discrete and easy to count. In order to look into a difference of radiosensitivity between male and female and the mechanisms of the modification, such as protective agent and hormones on radiosensitivity, the spleen colony forming (SCF) is used as an indicator of reactions in the x-rays irradiated mice. A linear decrease was found in SCF depended on x-rays dose. From the colony forming after irradiation the male was more radiosensitive than female. AET protected from the injury depended on the radiation dose in male mice, but in female mice, protection effects were not observed. Gonatropin showed protective effects for radiation injury on high dose irradiation both in male and female mice. Adrenaline showed similar effects as Gonatropin. Insuline showed a negative effects of protection on 400 R irradiation, while on 600 R irradiation, protective effects were observed.

  11. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +- 0.2, compared with an oxygen enhancement ratio of 3.3 +- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD 50 was estimated to be 125 to 150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  12. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  13. Molecular mechanism of radiosensitization by nitro compounds

    International Nuclear Information System (INIS)

    Kagiya, T.; Wada, T.; Nishimoto, S.I.

    1984-01-01

    In this chapter a molecular mechanism of radiosensitization by electron-affinic nitro compounds is discussed, mainly on the basis of the results of the radiation-induced chemical studies of DNA-related compounds in aqueous solutions. In Section II the general aspects of the radiation chemistry of organic compounds in the absence and presence of oxygen in aqueous solution are shown in order to demonstrate characteristic differences between radiation chemical reactions in hypoxic and oxic cells. The effects of nitro compounds on the radiolysis yields of DNA-related compounds in aqueous solutions are described in Section III. In Section IV the retardation effects of misonidazole on the radiation chemical processes of DNA-related compounds are shown along with the reaction characteristics of misonidazole with hydroxyl radical ( . OH) and hydrated electron (e/sub aq/-bar) produced by the radiolysis of water. The promotion of radiation-induced oxidation of thymine into thymine glycol (TG) by nitro radiosensitizers in deoxygenated solution and the relations between the activity of nitro compound for the thymine glycol formation and the enhancement activity measured in vitro are described in Section V. Finally, the protection against radiation-induced damage of thymine by a sulfhydryl compound of glutathione and the ability of electron-affinic compounds to decompose the intracellular radioprotector are described in Section VI

  14. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    International Nuclear Information System (INIS)

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-01-01

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated γ-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of γ-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 μmol/L (AMC-3046), 3 μmol/L (VU-109), and 2.5 μmol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to γ-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene

  15. Alterations in growth phenotype and radiosensitivity after fractionated irradiation of breast carcinoma cells from a single patient

    International Nuclear Information System (INIS)

    Wazer, D.E.; Joyce, M.; Jung, L.; Band, V.

    1993-01-01

    The purpose was to investigate growth regulation and radiosensitivity in surviving clonogens after fractionated irradiation. Four breast carcinoma cell lines isolated from the primary tumor (21NT, 21PT) and metastases (21MT-1, 21MT-2) of a single patient were exposed to cumulative radiation doses of 30 Gy yielding cell lines designated -IR with respect to their parent. The irradiated lines were then compared to their parent for serum- and growth factor-requirements under defined media conditions, ability to proliferate in soft agar, concentration of TGF-alpha in conditioned medium, and radiosensitivity. The irradiated lines showed no change in proliferative doubling times under serum- and growth factor-supplemented media conditions. A single line, 21MT-1-IR, acquired a limited ability to proliferate in serum- and growth factor-deplete medium with a day 2-4 doubling time of 44.5 hr. Three lines, 21MT-1-IR, 21MT-2-IR, and 21NT-IR, formed colonies in soft agar in contrast to none of the unirradiated parent lines. There were significant 6-8 fold increases in conditioned media TGF-alpha concentrations for 21MT-2-IR and 21NT-IR cells. The 21MT-1-IR and 21NT-IR cells were significantly less radiosensitive than their respective parent lines. This decrease in radiosensitivity appeared to be at least partially mediated by a released factor as the radiosensitivity of 21MT-1 cells was significantly decreased by pre-incubation with conditioned medium from 21MT-1-IR cells. Radiation-induced changes in growth phenotype vary with respect to clonal origin of the cell line and may influence the radiosensitivity of surviving clonogens after fractionated treatment. 18 refs., 4 figs., 3 tabs

  16. Evaluation of different biomarkers to predict individual radiosensitivity in an inter-laboratory comparison--lessons for future studies.

    Directory of Open Access Journals (Sweden)

    Burkhard Greve

    Full Text Available Radiotherapy is a powerful cure for several types of solid tumours, but its application is often limited because of severe side effects in individual patients. With the aim to find biomarkers capable of predicting normal tissue side reactions we analysed the radiation responses of cells from individual head and neck tumour and breast cancer patients of different clinical radiosensitivity in a multicentric study. Multiple parameters of cellular radiosensitivity were analysed in coded samples of peripheral blood lymphocytes (PBLs and derived lymphoblastoid cell lines (LCLs from 15 clinical radio-hypersensitive tumour patients and compared to age- and sex-matched non-radiosensitive patient controls and 15 lymphoblastoid cell lines from age- and sex- matched healthy controls of the KORA study. Experimental parameters included ionizing radiation (IR-induced cell death (AnnexinV, induction and repair of DNA strand breaks (Comet assay, induction of yH2AX foci (as a result of DNA double strand breaks, and whole genome expression analyses. Considerable inter-individual differences in IR-induced DNA strand breaks and their repair and/or cell death could be detected in primary and immortalised cells with the applied assays. The group of clinically radiosensitive patients was not unequivocally distinguishable from normal responding patients nor were individual overreacting patients in the test system unambiguously identified by two different laboratories. Thus, the in vitro test systems investigated here seem not to be appropriate for a general prediction of clinical reactions during or after radiotherapy due to the experimental variability compared to the small effect of radiation sensitivity. Genome-wide expression analysis however revealed a set of 67 marker genes which were differentially induced 6 h after in vitro-irradiation in lymphocytes from radio-hypersensitive and non-radiosensitive patients. These results warrant future validation in larger

  17. Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)

    International Nuclear Information System (INIS)

    Hannan, M.A.; Smith, B.P.; Sigut, D.; Sackey, K.

    1990-01-01

    Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showed the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells

  18. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  19. Radiosensitivity of red flour beetle tribolium castaneum

    International Nuclear Information System (INIS)

    Sattar, A.; Khattak, S.; Hamed, M.

    1992-07-01

    In this report radiosensitivity of red beetle has been discussed. Red flour beetle is the most injurious pest causing great losses to stored grain. Radiation is one of the best tools of insect control. Different radiation doses (50 to 200 krads) were employed for different age groups from 1 to 60 days. It is concluded from these results that 200 krad radiation dose caused 100% mortality in red beetle in all age group. (A.B.)

  20. Integrin inhibitor (Cilengitide) as radiosensitization strategy for malignant tumors

    International Nuclear Information System (INIS)

    Silva, Felipe Henrique de Souza

    2017-01-01

    Radiotherapy is effective in tumor control, but several tumors have molecular characteristics that lead to radioresistance and possible posttreatment recurrence. Many tumors have overexpression of integrin receptors. Integrins play a central role in growth, motility, regulation of adhesion and survival, leading to increased proliferation, invasion and metastasis of tumors, making these receptors excellent targets for the development of new therapies. Studies have shown that inhibiting the interaction of matrix proteins with integrin receptors may increase the cytotoxic effect of ionizing radiation by demonstrating the radiosensitizing potential of combination therapy in tumoral lines. Cilengitide an inhibitor of integrins receptors α Vβ3 and αVβ5 stands out for its great antitumor potential against gliomas. Thus, the combination of ionizing radiation with cilengitide is an alternative therapeutic strategy. However, the effect of this combination is little studied in Glioblastomas (U87 and T98) and not studied in melanoma (UACC). The objective of this study was to evaluate the radiosensitising potential of the RGD molecule cilengitida by means of the combined treatment with gamma radiation in different tumor lines, as well as to compare the effect of this combination therapy with cisplatin, a molecule already used in clinical practice. Our panel of tumor cell lines was composed of U87 (wild-type p53 malignant glioblastoma) T98 (malignant glioblastoma mutant p53), MCF7 (mammary carcinoma) and UACC (melanoma). The radiosensitizer effect of cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenicity assays. The flow cytometer was used to investigate cell cycle distribution and the type of cell death induced. We observed that in all cell lines examined, cilengitida promoted detachment, metabolic alterations and reduction of proliferation, as well as alteration of

  1. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation

    OpenAIRE

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards ar...

  2. THE BRAIN CORRELATES OF THE EFFECTS OF MONETARY AND VERBAL REWARDS ON INTRINSIC MOTIVATION

    OpenAIRE

    Konstanze eAlbrecht; Johannes eAbeler; Bernd eWeber; Bernd eWeber; Armin eFalk; Armin eFalk

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: We do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: While performance-based monetary rewards ar...

  3. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    Science.gov (United States)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  4. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    , the rank-order correlation coefficient between the single dose hypoxic versus fractionated dose TCD50s under hypoxic or aerobic conditions was 1.0. For all 5 tumors examined, a trend for rank correlation was observed between the single dose and the fractionated dose TCD50s performed under normal or clamp hypoxic conditions (r=0.7, p=0.16 in both cases). The linear correlation coefficients were 0.83, p=0.08 and 0.72, p=0.17, respectively. Failure to attain a rank correlation of 1.0 was due to one tumor exhibiting an insignificant fractionation effect. The rank correlation between the TCD50s for fractionated treatments under normal versus the extrapolated TCD50s under clamp hypoxic conditions was 1.00; the linear correlation coefficient was 0.97 (p=0.01). Conclusions: In the tumor models examined, factors controlling the single fraction tumor control dose, also impact the response to fractionated treatments. These results suggest that laboratory estimates of intrinsic radiosensitivity and tumor clonogen number at the onset of treatment, will be of use in predicting radiocurability for fractionated treatments, as has been observed for single dose treatments

  5. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  6. A mathematical model resolving normal human blood lymphocyte population X-ray survival curves into six components: radiosensitivity, death rate and size of two responding sub-populations

    International Nuclear Information System (INIS)

    Thomson, A.E.R.; Vaughan-Smith, S.; Peel, W.E.

    1982-01-01

    The analysis was based on observations of survival decrease as a function of dose (range 0-5 Gy (= 500 rad)) and time after irradiation in vitro. Since lymphocyte survival is also sensitive to culture conditions the effects of radiation were examined daily up to 3 days only, while survival of control cells remained ca. 90 per cent. The time-dependent changes were resolved as the death rates (first-order governed) of lethally-hit cells (apparent survivors), so rendering these distinguishable from the morphologically identical, true (ultimate) survivors. For 12 blood donors the estimated dose permitting 37 per cent ultimate survival (D 37 value) averaged 0.72 +- 0.18 (SD) Gy for the more radiosensitive lymphocyte fraction and 2.50 +- 0.67 Gy for the less radiosensitive, each fraction proving homogeneously radiosensitive and the latter identifying substantially in kind with T-type (E-rosetting lymphocytes). The half-life of lethally-hit members of either fraction varied widely among the donors (ranges, 25-104 hours and 11-40 hours, respectively). Survival curves reconstructed by summating the numerical estimates of the six parameters according to the theoretical model closely matched those observed experimentally (ranged in multiple correlation coefficient, 0.9709-0.9994) for all donors). This signified the absence of any additional, totally radioresistant cell fraction. (author)

  7. Radiosensitization by overexpression of the nonphosphorylation form of IκB-α in human glioma cells

    International Nuclear Information System (INIS)

    Honda, Naoko; Yagi, Kasumi; Ding, Gui-Rong; Miyakoshi, Junji

    2002-01-01

    To assess the role of NF-κB in cellular radiosensitivity, we constructed mutated IκB expression plasmids for SY-IκB (with mutations at residues of 32, 36 and 42) expression in human malignant glioma cells (radiosensitive MO54 and radioresistant T98 cells), giving respective cell types referred to as MO54-SY4 and T98-SY14. Both of the clones expressing SY-IκB became radiosensitive, compared with the parental MO54 and T98 cells. A treatment with herbimycin A or genistein did not change the radiosensitivity of cells expressing SY-IκB, but made both the MO54 and T98 parental cells more sensitive to ionizing radiation. A treatment with TNF-α induced DNA fragmentation and apoptosis in cells expressing SY-IκB, but not in MO54 and T98 cells. The survival after X-ray exposure of the parental MO54 cells was slightly increased by a TNF-α treatment, but that of the parental T98 cells did not change. The change in sensitivity to ultra-violet (UV) radiation and adriamycin in MO54-SY4 cells was very similar to that for X-ray sensitivity, but no change was observed in T98-SY14 cells. Significant sublethal damage repair was observed in T98 cells, whereas MO54 cells showed little repair activity. The expression of p53 was enhanced in the parental MO54 cells, while the p53 levels in the MO54-SY4, and in the parent and clonal T98 cells, did not change. Our data suggest that the serine and tyrosine phosphorylation of IκB-α may play a role in determining the radiosensitivity of malignant glioma cells. (author)

  8. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  9. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  10. Characteristics of fluorinated nitroazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Shibamoto, Y.; Nishimoto, S.; Shimokawa, K.

    1989-01-01

    Types of 2-nitroimidazoles and 3-nitro-1,2,4-triazoles bearing one or two fluorine atoms on their side chains were synthesized to evaluate their physicochemical properties, radiosensitizing effects, and toxicity. The reduction potential of the compounds containing one fluorine was similar to that of misonidazole (MISO), whereas that of the difluorinated compounds was slightly higher. Both mono- and difluorinated compounds had an in vitro sensitizing activity comparable to or slightly higher than that of MISO. The fluorinated 3-nitrotriazoles were almost as efficient as the 2-nitroimidazoles with the same substituent. In vivo, some of the compounds were up to twice more efficient than MISO, whereas others were as efficient as MISO. Toxicity in terms of LD50/7 in mice was quite variable depending on the side-chain structure; the amide derivatives were less toxic than MISO, whereas the alcohol and ether derivatives were more toxic. In view of the radiosensitizing effect and toxicity in vivo, at least one compound, KU-2285 (a 2-nitroimidazole with an N1-substituent of: CH2CF2CONHCH2CH2OH) has been found to be as useful a hypoxic cell sensitizer as SR-2508

  11. Rockets, radiosensitizers, and RRx-001: an origin story part I.

    Science.gov (United States)

    Oronsky, Bryan; Scicinski, Jan; Ning, Shoucheng; Peehl, Donna; Oronsky, Arnold; Cabrales, Pedro; Bednarski, Mark; Knox, Susan

    2016-03-01

    From Adam and Eve, to Darwinism, origin stories attempt to fill in the blanks, connect the dots, and define the turning points that are fundamental to subsequent developments. The purpose of this review is to present the origin story of a one-of-a-kind anticancer agent, RRx-001, which emerged from the aerospace industry as a putative radiosensitizer; not since the dynamite-to-dilator transformation of nitroglycerin in 1878 or the post-World War II explosive-to-elixir conversion of hydralazine, an ingredient in rocket fuel, to an antihypertensive, an antidepressant and an antituberculant, has energetic chemistry been harnessed for therapeutic purposes. This is Part 1 of the radiosensitization story; Parts 2 and 3, which detail the crossover activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews.

  12. Neoplasms radiosensitivity: how to increase the efficiency of radiotherapy

    International Nuclear Information System (INIS)

    Calais, G.

    1991-01-01

    The hypoxia in the neoplasms is a radioresistance factor. This article is about the methods able to reduce the hypoxia in tumors: use of hyperbaric oxygen, radiosensitizers (as metronidazole), hyperthermia and modification of oxygen release in the tissues in modifying the blood flow and in reducing the hemoglobin affinity for oxygen [fr

  13. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  14. Effects of taurolidine on radiosensitivity of murine melanoma cells and its mechanism

    International Nuclear Information System (INIS)

    Sun Baosheng; Liu Shixin; Wang Tiejun; Liu Linlin; Huang Guomin; Gong Shouliang

    2008-01-01

    Objective: To observe the effects of taurolidine on radiosensitivity of B16-F10 cells of murine melanoma via the enhancement of Bax and Bad proteins and induction of Bcl-2 protein. Methods: The apoptosis of B16-F10 cells was assessed after treated with 0, 10, 25, 50, 100 and 150 μmol·L -1 taurolidine, clone survival assay was used to detect the radiosensitivity of B16-F10 cells, and protein expressions were determined by Western blotting. Results: The apoptosis of 5% cells was induced in a dose-and time-dependent manner after B16-F10 cells were treated with 50 μmol·L -1 taurolidine. The survival rate decreased after treated with tautolidine in combination with 2 Gy X-irradiation with the increase of taurolidine concentration and doses of irradiation (P 0 and SER D q ) also increased with the increase of its concentration, there was significant difference between 50 μmol·L -1 taurolidine group and 10 μmol·L -1 taurolidine group (P<0.05); meantime, the level of proapototic protein Bax and Bad increased and the level of antiapoptotic protein Bcl-2 reduced. Conclusion: Taurolidine in combination with irradiation can enhance the radiosensitivity by the mediation of Bcl-2 family protein. (authors)

  15. DNA-PK. The major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathway

    International Nuclear Information System (INIS)

    Hashimoto, Mitsumasa; Rao, S.; Tokuno, Osamu; Utsumi, Hiroshi; Takeda, Shunichi

    2003-01-01

    The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia mutated (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H, CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54 -/- ). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs -/-/- ) failed to exhibit wortmannin radiosensitization. On the other hand, severe combined immunodeficiency (SCID) mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM -/- ) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ). (author)

  16. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032

    International Nuclear Information System (INIS)

    Sambade, Maria J.; Peters, Eldon C.; Thomas, Nancy E.; Kaufmann, William K.; Kimple, Randall J.; Shields, Janiel M.

    2011-01-01

    Purpose: To assess the relative radiosensitivities of a large collection of melanoma cell lines and to determine whether pharmacologic inhibition of mutant B-RAF with PLX-4032 can radiosensitize B-Raf+ melanoma cells. Materials and methods: A large collection of melanoma cell lines (n = 37) were treated with 0-8 Gy IR and clonogenic survival assays used to generate survival curves to rank relative radiosensitivities among the cell lines. The ability of a B-RAF inhibitor, PLX-4032, to radiosensitize highly radioresistant B-Raf+ cells was also assessed by clonogenic cell survival and spheroid invasion assays and the effects of treatment on the cell cycle assessed by FACS. Results: Melanoma cell lines displayed a very large, heterogeneous range of SF2 values (1.002-0.053) with a mean of 0.51. Cell lines with surviving fractions of 0.29 or less at SF2 and SF4 were observed at a high frequency of 18.9% and 70.2%, respectively. Treatment of B-Raf+ cells with the B-RAF inhibitor PLX-4032 in combination with radiation provided enhanced inhibition of both colony formation and invasion, and radiosensitized cells through an increase in G 1 arrest. Conclusions: Our data suggest that melanomas are not uniformly radioresistant with a significant subset displaying inherent radiosensitivity. Pharmacologic inhibition of B-RAF with PLX-4032 effectively radiosensitized B-Raf+ melanoma cells suggesting that this combination approach could provide improved radiotherapeutic response in B-Raf+ melanoma patients.

  17. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway.

    Science.gov (United States)

    Li, Gang; Wang, Ziming; Chong, Tie; Yang, Jie; Li, Hongliang; Chen, Haiwen

    2017-10-01

    The radiation resistance of renal cell carcinoma (RCC) remains the primary obstacle to improve patient survival. This study aimed to investigate the effects of curcumin on the radiosensitivity of RCC cells. Human RCC cell (ACHN) was exposed to irradiation (IR) and/or curcumin treatment. Cell viability, DNA repair, cell cycle, and apoptosis, were evaluated by MTT, immunofluoresence staining and flow cytometry. Moreover, ACHN cells were xenografted into nude mice and subjected to IR and/or curcumin treatment. The expression of NF-κB signaling related proteins in ACHN cells and xenografts was detected by western blot analysis. The results showed that curcumin significantly increased radiosensitivity of ACHN cells by inhibiting the cell proliferation and DNA damage repair, causing cell cycle arrest at G2/M phase, inducing apoptosis in vitro, and suppressing the growth of xenografts in vivo. In addition, curcumin enhanced radiosensitivity was through markedly inhibiting IR-induced NF-κB signaling by modulating the related protein expressions including NF-κBP65, I-κB, VEGF, COX2, and Bcl-2 in ACHN cells, which was further strengthened by NF-κB inhibitor PDTC treatment. Thus, curcumin may confer radiosensitivity on RCC via inhibition of NF-κB activation and its downstream regulars, suggesting the potential application of curcumin as an adjuvant in radiotherapy of RCC. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism.

    Science.gov (United States)

    Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo

    2017-08-15

    Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.

  19. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Oike, Takahiro [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Ogiwara, Hideaki [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Torikai, Kohta [Gunma University Heavy Ion Medical Center, Maebashi, Gunma (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Yokota, Jun [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Kohno, Takashi, E-mail: tkkohno@ncc.go.jp [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan)

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  20. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: Association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Ruyck, Kim de; Eijkeren, Marc van; Claes, Kathleen; Morthier, Rudy; Paepe, Anne de; Vral, Anne; Ridder, Leo de; Thierens, Hubert

    2005-01-01

    Purpose: To examine the association of polymorphisms in XRCC1 (194Arg/Trp, 280Arg/His, 399Arg/Gln, 632Gln/Gln), XRCC3 (5' UTR 4.541A>G, IVS5-14 17.893A>G, 241Thr/Met), and OGG1 (326Ser/Cys) with the development of late radiotherapy (RT) reactions and to assess the correlation between in vitro chromosomal radiosensitivity and clinical radiosensitivity. Methods and Materials: Sixty-two women with cervical or endometrial cancer treated with RT were included in the study. According to the Common Terminology Criteria for Adverse Events, version 3.0, scale, 22 patients showed late adverse RT reactions. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays were performed to examine polymorphic sites, the G2 assay was used to measure chromosomal radiosensitivity, and patient groups were compared using actuarial methods. Results: The XRCC3 IVS5-14 polymorphic allele was significantly associated with the risk of developing late RT reactions (odds ratio 3.98, p = 0.025), and the XRCC1 codon 194 variant showed a significant protective effect (p = 0.028). Patients with three or more risk alleles in XRCC1 and XRCC3 had a significantly increased risk of developing normal tissue reactions (odds ratio 10.10, p = 0.001). The mean number of chromatid breaks per cell was significantly greater in patients with normal tissue reactions than in patients with no reactions (1.16 and 1.34, respectively; p = 0.002). Patients with high chromosomal radiosensitivity showed a 9.2-fold greater annual risk of complications than patients with intermediate chromosomal radiosensitivity. Combining the G2 analysis with the risk allele model allowed us to identify 23% of the patients with late normal tissue reactions, without false-positive results. Conclusion: The results of the present study showed that clinical radiosensitivity is associated with an enhanced G2 chromosomal radiosensitivity and is significantly associated with a combination of different polymorphisms in

  1. Experimental studies on the radiosensitizing agents against cultured human glioblastoma and human neurinoma

    International Nuclear Information System (INIS)

    Sawatari, Yutaka

    1976-01-01

    The radiosensitivity increasing effect of bromo-2'-deoxyuridine (BUdR) and 5-fluorouracil (5-FU), alone and in combination, was studied comparatively using tissue culture of brain tumor cells (No. 60 cells originating in human glioblastoma and N cells originating in human neurinoma) with colony formation and growth curve as the quantitative indices and the phase contrast microscope and scanning electron microscope for morphological observation. The inhibitive effect of BUdR on growth of the N cells was above 4μg/ml, while 3000μg/ml was required in the case of the No. 60 cells. This indicates that there is a large difference between the sensitivities of these two cell types against BUdR. Increased sensitivity can be anticipated by pretreatment of the No. 60 cells or the N cells with BUdR with a dose of no growth inhibition effect. N cells have a lower radiosensitivity than No. 60 cells; but when both cells are pretreated with BUdR, N cells have a higher radiosensitivity than No. 60 cells. This increasing radiosensitivity of the N cells, which is clinically benign, suggests the possibility of wider application for radiotherapy in the future. A dose of 2μg/ml of 5-FU alone showed no growth inhibiting effect on either the N cells or the No. 60 cells, but it intensified the effect of BUdR. Using a phase contrast microscope and a scanning electron microscope for morphological observation of the No. 60 cells and the N cells which had been exposed to BUdR+5-FU+X-ray, unique findings were observed on the surface structures of these two kinds of cells. (J.P.N.)

  2. The relation of mothers' controlling vocalizations to children's intrinsic motivation.

    Science.gov (United States)

    Deci, E L; Driver, R E; Hotchkiss, L; Robbins, R J; Wilson, I M

    1993-04-01

    Twenty-six mother-child dyads played together in a laboratory setting. Play sessions were surreptitiously videotaped (with mothers' permission), and each maternal vocalization was transcribed and coded, first into 1 of 24 categories and then ipso facto into one of three supercategories--namely, controlling, autonomy supportive, and neutral. The degree of mothers' controllingness was calculated as the percentage of vocalizations coded as controlling. This index was correlated with the intrinsic motivation of their 6- or 7-year-old children, as assessed primarily by the free-choice behavioral measure and secondarily by a child self-report measure of interest and liking for the task. Both correlations were significantly negative, thereby suggesting that the robust laboratory findings of a negative relation between controlling contexts and individuals' intrinsic motivation are directly generalizable to the domain of parenting. Results are discussed in terms of the processes that undermine intrinsic motivation and the means through which parental controllingness is communicated.

  3. Electron microscopic study on radiosensitivity of uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, S; Shiozawa, K; Tsukamoto, T; Noguchi, H; Tsukahara, Y [Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine

    1974-11-01

    The effects of 1000 R of tele-cobalt upon the changes in the primary lesions of uterine cervical cancer with time were studied with an electron microscope. In addition, twenty cases which were proven to have cancer tissues (10 cases of IInd stage of cancer, 8 cases of IIIrd stage of cancer and 2 cases of IVth stage of cancer) were studied. Four cases were favourably sensitive, 7 cases moderately sensitive and 9 cases unfavourably sensitive to radiation. In favourably radio-sensitive cases, the changes in the cancer cells first appeared in the nucleus. There were other changes such as local clumping of chromatin and, specifically, vacuolization of the nucleus. The changes in the endoplasmic reticulum appeared somewhat late. In addition, the disturbance of mitochondria and the decrease or disappearance of ribosomes were specifically due to radiation injury. From the point of view of changes with time, Golgi's apparatus was enlarged and the membrane of the endoplasmic reticulum was degenerated at the 1st day. At the 3rd day, vacuolization of the nucleus appeared, the nuclear corpuscles were increased, the nucleoplasm became thin, and mitochondria was enlarged and degenerated. At the 5th day, the nuclear membrane disappeared, the nucleus was destroyed, large vacuolization of the endoplasmic reticulum was seen, free ribosomes were decreased, and changes around the endoplasmic reticulum were observed. At the 7th day, collagen around the endoplasmic reticulum appeared. In favourably radiosensitive cases, individual tumor cells showed the same degeneration, which fairly corresponded to that evaluated by the histological observation. The disturbance of the cells was caused by radiation, so-called ''burning'' of the cells. Radiation protection of the cells against burning was considered in terms of their radiosensitivity.

  4. Hypoxia-selective radiosensitization of mammalian cells by nitracrine, an electron-affinic DNA intercalator

    International Nuclear Information System (INIS)

    Roberts, P.B.; Anderson, R.F.; Wilson, W.R.

    1987-01-01

    NC (1-nitroacridine nitracine) radiosensitization was evaluated in CHO cultures at 4 0 C. Under hypoxia, submicromolar concentrations resulted in sensitization (SER=1.6 at μ mol dm -3 ). In aerobic conditions, a concentration more than 10-fold higher was required. In aerobic cultures, NC radiosensitization was independent of time of exposure. Postirradiation sensitization was not observed under hypoxia. Time dependence of NC uptake and development of radiosensitization were similar, suggesting that sensitization is due to unmetabolized drug. NC was about 1700 times more potent than misonidazole, (accounted for by the electron affinity of NC (E(1) value at pH 7 of -275 mV versus NHE)) and by its accumulation in cells to give intracellular concentrations approximately 30 times greater than in the medium. Concentrations of free NC appear to be low in AA8 cells, presumably due to DNA binding. If radioisensitization by NC is due to bound rather than free drug, it is suggested that intercalated NC can interact efficiently with DNA target radicals, despite a binding ratio in the cell, estimated as less than 1 NC molecule/400 base pairs under conditions providing efficient sensitization. (U.K.)

  5. Individual response to ionising radiation: What predictive assay(s) to choose?

    International Nuclear Information System (INIS)

    Granzotto, A.; Viau, M.; Devic, C.; Maalouf, M.; Thomas, Ch.; Vogin, G.; Foray, N.; Granzotto, A.; Vogin, G.; Balosso, J.; Joubert, A.; Maalouf, M.; Vogin, G.; Colin, C.; Malek, K.; Balosso, J.; Colin, C.

    2011-01-01

    Individual response to ionizing radiation is an important information required to apply an efficient radiotherapy treatment against tumour and to avoid any adverse effects in normal tissues. In 1981, Fertil and Malaise have demonstrated that the post-irradiation local tumor control determined in vivo is correlated with clonogenic cell survival assessed in vitro. Furthermore, these authors have reminded the relevance of the concept of intrinsic radiosensitivity that is specific to each individual organ (Fertil and Malaise, 1981) [1]. To date, since clonogenicity assays are too time-consuming and do not provide any other molecular information, a plethora of research groups have attempted to determine the molecular bases of intrinsic radiosensitivity in order to propose reliable and faster predictive assays. To this aim, several approaches have been developed. Notably, the recent revolution in genomic and proteomics technologies is providing a considerable number of data but their link with radiosensitivity still remains to be elucidated. On another hand, the systematic screening of some candidate genes potentially involved in the radiation response is highlighting the complexity of the molecular and cellular mechanisms of DNA damage sensing and signalling and shows that an abnormal radiation response is not necessarily due to the impairment of one single protein. Finally, more modest approaches consisting in focusing some specific functions of DNA repair seem to provide more reliable clues to predict over-acute reactions caused by radiotherapy. In this review, we endeavored to analyse the contributions of these major approaches to predict human radiosensitivity. (authors)

  6. Individual response to ionising radiation: What predictive assay(s) to choose?; Reponse individuelle aux radiations ionisantes: quel(s) test(s) predictif(s) choisir?

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, A.; Viau, M.; Devic, C.; Maalouf, M.; Thomas, Ch.; Vogin, G.; Foray, N. [Inserm, U836, groupe de radiobiologie, institut des neurosciences, chemin Fortune-Ferrini, 38042 Grenoble (France); Granzotto, A.; Vogin, G.; Balosso, J. [Centre de hadrontherapie Etoile, 69008 Lyon (France); Joubert, A. [Societe Magelis, 84160 Cadenet (France); Maalouf, M. [Centre national d' etudes spatiales, 75001 Paris (France); Vogin, G.; Colin, C. [EA 3738, faculte de medecine, Lyon-Sud, 69921 Oullins (France); Malek, K.; Balosso, J. [Service de radiotherapie, CHU A.-Michallon, 38042 Grenoble (France); Colin, C. [Service de radiologie, CHU Lyon-Sud, 69490 Pierre-Benite (France)

    2011-02-15

    Individual response to ionizing radiation is an important information required to apply an efficient radiotherapy treatment against tumour and to avoid any adverse effects in normal tissues. In 1981, Fertil and Malaise have demonstrated that the post-irradiation local tumor control determined in vivo is correlated with clonogenic cell survival assessed in vitro. Furthermore, these authors have reminded the relevance of the concept of intrinsic radiosensitivity that is specific to each individual organ (Fertil and Malaise, 1981) [1]. To date, since clonogenicity assays are too time-consuming and do not provide any other molecular information, a plethora of research groups have attempted to determine the molecular bases of intrinsic radiosensitivity in order to propose reliable and faster predictive assays. To this aim, several approaches have been developed. Notably, the recent revolution in genomic and proteomics technologies is providing a considerable number of data but their link with radiosensitivity still remains to be elucidated. On another hand, the systematic screening of some candidate genes potentially involved in the radiation response is highlighting the complexity of the molecular and cellular mechanisms of DNA damage sensing and signalling and shows that an abnormal radiation response is not necessarily due to the impairment of one single protein. Finally, more modest approaches consisting in focusing some specific functions of DNA repair seem to provide more reliable clues to predict over-acute reactions caused by radiotherapy. In this review, we endeavored to analyse the contributions of these major approaches to predict human radiosensitivity. (authors)

  7. Radiosensitivity and parameters for its measurement in some cucurbits

    Energy Technology Data Exchange (ETDEWEB)

    Vishnoi, A.K.; Joshi, M.C. (Defence Research and Development Organization, Almora (India). Agricultural Research Unit)

    1981-12-01

    Treatment with gamma-rays resulted in a significant reduction in the germination percentage and root and shoot lengths in Luffa cylindrica (inn). M. Roem, Momordica charantia Linn. Lagenaria siceraria (Mol.) Standl. and Cylanthera pedata Schrad., but radiation had no significant effect on nuclear volume. Species having higher value of nuclear volume had more radiosensitivity.

  8. Radiosensitivity and parameters for its measurement in some cucurbits

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Joshi, M.C.

    1981-01-01

    Treatment with gamma-rays resulted in a significant reduction in the germination percentage and root and shoot lengths in Luffa cylindrica (inn). M. Roem, Momordica charantia Linn. Lagenaria siceraria (Mol.) Standl. and Cylanthera pedata Schrad., but radiation had no significant effect on nuclear volume. Species having higher value of nuclear volume had more radiosensitivity. (author)

  9. Quantification of the In Vitro Radiosensitivity of Mung Bean Sprout Elongation to 6MV X-Ray: A Revised Target Model Study.

    Directory of Open Access Journals (Sweden)

    Tzu Hwei Wang

    Full Text Available In this study, a revised target model for quantifying the in vitro radiosensitivity of mung bean sprout elongation to 6-MV X-rays was developed. The revised target model, which incorporated the Poisson prediction for a low probability of success, provided theoretical estimates that were highly consistent with the actual data measured in this study. The revised target model correlated different in vitro radiosensitivities to various effective target volumes and was successfully confirmed by exposing mung beans in various elongation states to various doses of 6-MV X-rays. For the experiment, 5,000 fresh mung beans were randomly distributed into 100 petri dishes, which were randomly divided into ten groups. Each group received an initial watering at a different time point prior to X-ray exposure, resulting in different effective target volumes. The bean sprouts were measured 70 hr after X-ray exposure, and the average length of the bean sprouts in each group was recorded as an index of the mung bean in vitro radiosensitivity. Mung beans that received an initial watering either six or sixteen hours before X-ray exposure had the shortest sprout length, indicating that the maximum effective target volume was formed within that specific time period. The revised target model could be also expanded to interpret the "two-hit" model of target theory, although the experimental data supported the "one-hit" model. If the "two-hit" model was sustained, theoretically, the target size would be 2.14 times larger than its original size to produce the same results.

  10. ATM induction insufficiency in a radiosensitive breast-cancer patient

    International Nuclear Information System (INIS)

    Clarke, R.A.; Fang, Z.H.; Marr, P.J.; Kearsley, J.H.; Papadatos, G.; Lee, C.S.; University of Sydney, Camperdown, NSW

    2002-01-01

    ATM induction insufficiency in a radiosensitive breast-cancer patient The ataxia telangiectasia (A-T) gene (ATM) is a dominant breast cancer gene with tumour suppressor activity. ATM also regulates cellular sensitivity to ionising radiation (IR) presumably through its role as a facilitator of DNA repair. In normal cells and tissues the ATM protein is rapidly induced by IR to threshold/maximum levels. The kinase function of the ATM protein is also rapidly activated in response to IR. The fact that women carriers of ATM mutations can have an increased risk of developing breast cancer and that many sporadic breast tumours have reduced levels of the ATM protein broadens the scope of ATM's tumour suppressor within the breast. This report describes the downregulation of ATM protein levels in a radiosensitive breast cancer patient. Postinduction ATM levels were up to tenfold lower in the patient's fresh tissues compared to normal controls. These results might indicate a much broader role for ATM anomalies in breast cancer aetiology. Copyright (2002) Blackwell Science Pty Ltd

  11. Radiosensitization in vitro and in vivo by 3-nitrotriazoles

    International Nuclear Information System (INIS)

    Shibamoto, Y.; Sakano, K.; Kimura, R.; Nishidai, T.; Nishimoto, S.; Ono, K.; Kagiya, T.; Abe, M.

    1986-01-01

    A series of 3-nitro-1,2,4-triazole derivatives bearing various types of side chain (R) at the N1-position (AK-2000 series) were synthesized and their radiosensitizing effect and toxicity in vitro and in vivo were investigated, in comparison with those of Misonidazole (MISO), SR-2508, and RSU-1069. Of the fifteen 3-nitrotriazoles tested, all had sensitizing effects in vitro on hypoxic V79 cells. Also, all but one had definite effects on solid EMT6/KU and SCCVII tumors in vivo. For many of the triazole compounds, the degree of radiosensitization in vitro and in vivo appeared identical. However, they were generally less efficient, both in vitro and in vivo, than the corresponding 2-nitroimidazoles, whereas their aerobic cytotoxicity and toxicity to mice (LD50/7) were comparable to those of the 2-nitroimidazoles. Considering the sensitizing effect and toxicity, AK-2123 (R = CH 2 CONHC 2 H 4 OCH 3 ) may be as useful as MISO, but none of the triazoles have been proved to be superior to SR-2508

  12. Radiosensitivity of Hela cells in various O2 concentrations and consideration of oxygen effect in radiotherapy

    International Nuclear Information System (INIS)

    Kuroda, Yoshikazu; Nyunoya, Koichiro

    1979-01-01

    The aim of this paper is the study of the radiosensitivity of HeLa cells in vitro in various oxygen concentrations and the consideration of the utilization of oxygen effect in radiation therapy, based on the data of HeLa cells and tumor oxygen tension. Survival curves of HeLa cells are found to be exponential as a function of radiation dose and the radiosensitivity is dependent on oxygen tension of culture medium. Relative radiosensitivity decreases remarkably at low level of oxygen, especially under 9 mmHg pO 2 . The utilization of oxygen effect in radiation may be useful in hyperbaric oxygen inhalation and not useful under local tissue hypoxia induced by tourniquet application. Reoxygenation occurs with shrinkage of tumor after irradiation and this phenomenon will diminish the value of hyperbaric oxygen in radiation therapy. (author)

  13. Types of repair in radiosensitive organs of mice subjected to continuous γ-irradiation

    International Nuclear Information System (INIS)

    Li Yuanmin; Hu Fenghua; Gao Yabin

    1990-01-01

    LACA mice were whole-body irradiated with 1 Gy continuous γ-irradiation for 22 hours daily. Animals were divided into groups according to different cumulative doses of 10, 15, 20, 25 and 30 Gy, and were sacrificed at different intervals after the termination of irradiation when the above doses were reached. Radiosensitive organs were stduied by determination of quantitative indices and microscopic examination of histopathological sections. Three types of repair of radiation damages were found in radiosensitive organs, i.e. (1) full repair during irradiation in small intestines, (2) repair only after cessation of irradiation in hemopoietic and lymphoid tissues, and (3) continuing damage even after cessation of irradiation in testes

  14. The influence of autologous tumor fibroblasts on the radiosensitivity of squamous cell carcinoma megacolonies

    International Nuclear Information System (INIS)

    Kummermehr, Johann; Malinen, Eirik; Freykowski, Sabine; Sund, Malte; Trott, Klaus-Ruediger

    2001-01-01

    Purpose: To study the influence of tumor fibroblasts on radiosensitivity and stem cell fraction of tumor cells in squamous cell carcinoma megacolonies by determining colony cure and clonogen survival. Methods and Materials: Murine squamous cell carcinoma cells (AT478c) grown as flat but multilayered megacolonies were co-cultured with pre-irradiated tumor fibroblasts derived from the same carcinoma, and irradiated with 1, 2, 4, or 8 fractions. Recurrent clones and their growth pattern in situ were recorded. From megacolony cure data and clonogen survival data, the clonogen number and the parameters of cellular radiosensitivity were calculated. Results: The curability of the co-cultured megacolonies, as determined by TCD50 values, was significantly increased compared to the megacolonies without fibroblasts (p<0.01). Both the megacolony cure and clonogen survival data suggested a decrease of the clonogen fraction in the co-cultured megacolonies. Conclusion: The presence of tumor fibroblasts increases megacolony radiosensitivity. This is due to a decrease in the fraction of clonogens in the tumor megacolony, apparently caused by a downregulation of the stem cell fraction of the tumor cells

  15. Evaluation of combination effects of 2-methoxyoestradiol and methoxyamine on IUdR-induced radiosensitization in glioma spheroids

    International Nuclear Information System (INIS)

    Neshasteh-Riz, A.; Babaloui, S.; Khoei, S.

    2010-01-01

    Glioblastoma is the most common and most malignant cancer of central nervous system. Targeted radiotherapy is an effective method toward its treatment. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue known to be effective as a radiosensitizer in human cancer therapy. In this study we have evaluated the combination effects of 2-Methoxyoestradiol, an inhibitor of hypoxia inducible factor 1α (HIF-1α) and Methoxyamine, an inhibitor of base excision repair pathway on radiosensitization of Iododeoxyuridine in glioblastoma spheroid culture. Materials and Methods: The cytotoxic damages of DNA in U87MG cell line were compared using colony formation assay. Experiments were performed in large spheroids with a diameter of approximately 350μm. Results: Evaluation of the effects of Iododeoxyuridine with 2ME2 and MX pretreatment on spheroid cultured cell followed by ionizing irradiation showed more enhancemented (p≤0.001) Iododeoxyuridine induced-radiosensitization. These results introduced a key role for 2ME2 in Iododeoxyuridine related studies. Conclusion: Pretreatment of tumor cells with Iododeoxyuridine, MX and 2ME2 before Irradiation enhances tumor radiosensitization and may improve therapeutic index for Iododeoxyuridine and 2ME2.

  16. In vitro radiosensitization by oxaliplatin and 5-fluorouracil in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Kjellstroem, Johan; Kjellen, Elisabeth; Johnsson, Anders

    2005-01-01

    The current study was designed to compare the radiosensitizing effects of oxaliplatin and 5-fluorouracil (5FU) in a human colon cancer cell line. A human colon cancer cell line (S1) was treated with various doses of oxaliplatin, 5FU, radiation, and combinations thereof. Various clinically used schedules were mimicked. 5FU was either incubated during 1 h ('bolus') or 24 h ('continuous infusion'). When combining oxaliplatin and 5FU, an isobologram analysis revealed synergistic effects, regardless of 5FU schedule. The IC 10 and IC 50 -doses for the drugs where then combined with radiotherapy. With equitoxic drug doses (IC 50 ), radiosensitization was observed in the following order: oxaliplatin>5FU 24 h>5FU 1 h exposure. The degree of potentiation corresponded to approximately 0.8 Gy, 0.7 Gy, and 0.2 Gy, respectively. In this experimental setting, oxaliplatin seemed to be a better radiosensitizer than 5FU, and longer incubation time with 5FU was better than short exposure

  17. Radiosensitivity evaluation of human tumor cell lines by detecting 4977 bp deletion in mitochondrial DNA and comet assay

    International Nuclear Information System (INIS)

    Chu Liping; Liu Qiang; Wang Qin; Li Jin; Yue Jingyin; Mu Chuanjie; Fan Feiyue

    2008-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA 4977 bp deletion and comet assay. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA 4977 bp deletion and DNA damage were detected by MTY assay, nested PCR technique and comet assay, respectively. Results: The results of MTT assay showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. The ratio of mtDNA 4977 bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7 (P 2 and EC-9706 was higher than that of MCF-7. The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusions: Combination of many biological parameter is helpful to evaluate the radiosensitivity of tumor cells more accurately. (authors)

  18. Increased radiosensitivity of a subpopulation ot T-lymphocyte progenitors from patients with Fanconi's anemia

    International Nuclear Information System (INIS)

    Knox, S.J.; Wilson, F.D.; Greenberg, B.R.; Shifrine, M.; Rosenblatt, L.S.; Reeves, J.D.; Misra, H.

    1981-01-01

    In vitro radiation survival of peripheral blood T lymphocytes was studied in 15 clinically normal adults and 4 patients with Fanconi's anemia. Tritiated thymidine incorporation in a whole blood lymphocyte stimulation test (LST) and a newly developed whole blood T-lymphocyte colony assay were used to measure lymphocyte blastogenesis and colony formation in response to phytohemagglutinin (PHA) or concanavalin-A (Con-A) stimulation. Lymphocyte colony formation was found to be consistently more sensitive than the LST for detection of low-level radiation effects using both normal cells and lymphocytes from Fanconi's anemia patients. Lymphocytes from patients with Fanconi's anemia were significantly more sensitive to in vitro x-irradiation than lymphocytes from clinically normal individuals as measured by their ability to divide when stimulated by PHA in the LST (patients, D37 . 198 R; normals, D37 . 309 R, p . 0.057) and colony formation assay (patients, D37 . 53 R; normals, D37 . 109 R, p . 0.016). No significant difference in the radiosensitivity of the Con-A response was observed between the two groups. The PHA-responsive T-lymphocyte subpopulation in Fanconi's anemia patients appears to be intrinsically defective. The nature of this defect, significance in the disease process, and relevancy of these findings to the establishment of radiation protection standards are discussed

  19. Voltammetry of hypoxic cells radiosensitizer etanidazole radical anion in water

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Hromadová, Magdaléna; Pospíšil, Lubomír; Híveš, J.; Sokolová, Romana; Kolivoška, Viliam; Kocábová, Jana

    2010-01-01

    Roč. 78, č. 2 (2010), s. 118-123 ISSN 1567-5394 R&D Projects: GA ČR GP203/09/P502 Institutional research plan: CEZ:AV0Z40400503 Keywords : etanidazole * radiosensitizer * electron transfer * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 3.520, year: 2010

  20. Relationship between variations in the level of endogenous thiols and antioxidant activity of lipids and radiosensitivity of animals of different species

    International Nuclear Information System (INIS)

    Burlakova, E.B.; Graevskaya, B.M.; Ivanenko, G.F.; Shishkina, L.N.; AN SSSR, Moscow. Inst. Ehvolyutsionnoj Morfologii i Ehkologii Zhivotnykh)

    1978-01-01

    Initial levels of total and nonprotein sulfhydryl groups and antioxidant activity (AOA) of lipids of the spleen and liver are measured in animals of different species. Radiosensitivity of animals is assessed by the value of LDsub(50/30). No reliable correlation has been revealed between initial levels of endogenous thiols and AOA of lipids. There is a positive correlation between AOA of the spleen lipids and LDsub(50/30) as well as between the level of endogenous thiols and radioresistance of the animal species under study. It is likely that the level of endogenous thiols and AOA of lipids reflect various aspects of cellular metabolism which is responsible for radioresistance of the organism

  1. Increased Chromosomal Radiosensitivity in Women Carrying BRCA1/BRCA2 Mutations Assessed With the G2 Assay

    International Nuclear Information System (INIS)

    Ernestos, Beroukas; Nikolaos, Pandis; Koulis, Giannoukakos; Eleni, Rizou; Konstantinos, Beroukas; Alexandra, Giatromanolaki; Michael, Koukourakis

    2010-01-01

    Purpose: Several in vitro studies suggest that BRCA1 and BRCA2 mutation carriers present increased sensitivity to ionizing radiation. Different assays for the assessment of deoxyribonucleic acid double-strand break repair capacity have been used, but results are rather inconsistent. Given the concerns about the possible risks of breast screening with mammography in mutation carrier women and the potentially damaging effects of radiotherapy, the purpose of this study was to further investigate the radiosensitivity of this population. Methods and Materials: The G2 chromosomal radiosensitivity assay was used to assess chromosomal breaks in lymphocyte cultures after exposure to 1 Gy. A group of familiar breast cancer patients carrying a mutation in the BRCA1 or BRCA2 gene (n = 15) and a group of healthy mutation carriers (n = 5) were investigated and compared with a reference group of healthy women carrying no mutation (n = 21). Results: BRCA1 and BRCA2 mutation carriers had a significantly higher number of mean chromatid breaks per cell (p = 0.006) and a higher maximum number of breaks (p = 0.0001) as compared with their matched controls. Both healthy carriers and carriers with a cancer history were more radiosensitive than controls (p = 0.002 and p = 0.025, respectively). Age was not associated with increased radiosensitivity (p = 0.868). Conclusions: Our results indicate that BRCA1 and BRCA2 mutation carriers show enhanced radiosensitivity, presumably because of the involvement of the BRCA genes in deoxyribonucleic acid repair and cell cycle control mechanisms.

  2. G{sub 2} radiosensitivity of cells derived from cancer-prone individuals

    Energy Technology Data Exchange (ETDEWEB)

    Darroudi, F.; Vyas, R.C.; Vermeulen, S.; Natarajan, A.T. [J.A. Cohen Institute of Radiopathology and Radiation Protection, Interuniversity Institute, Leiden (Netherlands)

    1995-04-01

    The potential of enhanced chromatid damage, observed after X-irradiation of G{sub 2} phase, has been used to detect individuals genetically predisposed to cancer, utilising fibroblasts/lymphocytes from these patients as well as fibroblasts derived from human tumours. Fibroblasts and/or lymphocyte samples of two autosomal recessive syndromes (xeroderma pigmentosum (XP), Fanconi`s anaemia (FA)) and one congenital or acquired disorder, aplastic anaemia (AA), were employed for the G{sub 2} radiosensitivity assay. In addition, we have estimated the frequencies of spontaneously occurring chromosomal aberrations as well as G{sub 2} radiosensitivity of eight samples of fibroblasts/fibroblast-like cells (two normal, two colorectal carcinoma, two Wilms` tumour, one retinoblastoma and one polyposis coli), and three samples of lymphocytes (two normal and one from a lymphoma patient). The results obtained indicate that there were no differences between fibroblast cells derived from patients or tumours, except FA patients, in the frequency of spontaneously occurring chromosomal aberrations when compared to normal cells. Following X-irradiation we did not observe any significantly increased G{sub 2} radiosensitivity in FA and XP cells. Lymphocytes from AA and lymphoma patients, and all tumour cell lines except retinoblastoma, responded with increased frequencies of aberrations following G{sub 2} X-irradiation in comparison to cells derived from normal individuals. In our hands, the G{sub 2} sensitivity assay could not always discriminate cells from cancer-prone individuals from those of controls.

  3. Protracted postnatal neurogenesis and radiosensitivity in the rabbit's dentate gyrus

    International Nuclear Information System (INIS)

    Gueneau, G.; Baille, V.; Dubos, M.; Court, L.

    1986-01-01

    In the hippocampal formation of a 3-month-old rabbit submitted to a 4.5 Gy gamma irradiation a cytologic study with light and electron microscopy allowed us to make clear the dentate gyrus particular radiosensitivity as soon as the first hours after irradiation. The pycnosis lesion observed in the subgranular zone has drawn our attention in particular. We apply ourselves to describe and precise the lesion and its evolution; thanks to an autoradiographic study, we have shown its link with late postnatal neurogenesis which goes on in this zone and at last we have used the subgranular cells 'radiosensitivity as a biological test allowing to compare the various rays' effects (gamma and neutron rays). In the brain of a one-month-old monkey submitted to a 4 Gy total irradiation the same pycnotic lesion is observed: 1) in the dentate gyrus's subgranular zone and 2) in the cerebellum's outer granular layer. These two postnatal proliferative zones remain particularly sensitive to ionizing radiations. (orig.)

  4. Survey of radiosensitivity in a variety of human cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Harcourt, S.A.

    1980-03-01

    Gamma-ray sensitivity for cell killing was assayed in 54 human cell strains, including some derived from individuals suffering from certain hereditary diseases. The overall range of Do values in this study was 38 to 180 rads, indicating a considerable range of variability in humans. The normal sensitivity was described by a range of Do values of 97 to 180 rads. All ten ataxia telangiectasia cell strains tested proved radiosensitive and gave a mean Do value of 57 +- 15 (S.E.) rads, and these represent the most radiosensitive human skin fibroblasts currently available. Representative cell strains from familial retinoblastoma, Fanconi's anemia, and Hutchinson-Gilford progeria occupied positions of intermediate sensitivity, as did one of two ataxia telangiectasia heterozygotes. Six xeroderma pigmentosum cell strains together with two Cockayne's syndrome cell strains (all known to be sensitive to ultraviolet light) fell into the normal range, indicating an absence of cross-sensitivity between ultraviolet light and gamma-irradiation.

  5. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Cao, Rubo; Ding, Qian; Li, Pindong; Xue, Jun; Zou, Zhenwei; Huang, Jing; Peng, Gang

    2013-01-01

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  6. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  7. Radiobiological properties of radiosensitive XR-1 Chinese hamster cells and hybrids from these and human A-T cells

    International Nuclear Information System (INIS)

    Bahari, I.B.

    1989-01-01

    Results indicate that XR-1 cells were very radiosensitive to gamma-irradiation compared to its parental type, and that this radiosensitivity is cell cycle dependent. Irradiating the cells the G 1 or plateau phase did not induce any delay entering S-phase but mitotic delays were observed in both XR-1 and the wild-type cells. The delays per unit dose were much longer for XR-1. A delay in subculture from plateau phase reduced the mitotic delay in both cell lines. Unlike the wild-type cells which expressed virtually all chromosome-type aberrations after irradiation of G 1 cells, the XR-1 cells expressed both chromatid- as well as chromosome-type aberrations. There was a one-to-one correlation between total aberrations induced and lethality for both cells. Many of these radiobiological properties of XR-1 cells relative to the wild-type cells, mimic the response of A-T cells relative to the normal human cells. However, the restoration of radioresistance and cytogenetic response in the XR1/AT5BI(4) hybrid cells suggest that the XR-1 and A-T cells have different defects because of the complementation in the hybrids. It also appears that this genetic defect is recessive in nature

  8. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  9. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    Science.gov (United States)

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  10. Impact of various parameters in detecting chromosomal aberrations by FISH to describe radiosensitivity

    International Nuclear Information System (INIS)

    Keller, U.; Mueller, E.; Grabenbauer, G.; Sauer, R.; Distel, L.; Kuechler, A.; Liehr, T.

    2004-01-01

    Background and purpose: analysis of radiation-induced chromosomal aberrations is regarded as the ''gold standard'' for classifying individual radiosensitivity. A variety of different parameters can be used. The crucial question, however, is to explore which parameter is suited best to describe the differences between patients with increased radiosensitivity and healthy individuals. Patients and methods: in this study, five patients with severe radiation-induced late effects of at least grade 3, classified according to the Radiation Therapy Oncology Group (RTOG), and eleven healthy individuals were examined retrospectively. Peripheral blood lymphocytes were irradiated in vitro with 0.7 Gy and 2.0 Gy prior to cultivation and stained by means of three-color fluorescence in situ hybridization (FISH). The detailed analysis was focused on the number of breaks per metaphase, on breaks from complex chromosomal rearrangements per metaphase, as well as on the percentage of translocations, dicentric chromosomes, breaks, and excess acentric fragments - each in comparison with the total number of mitoses analyzed. Results: using the number of breaks from complex chromosomal rearrangements after 2.0 Gy, radiosensitive patients as endpoint were clearly to be distinguished (p = 0.001) from healthy individuals. Translocations (p = 0.001) as well as breaks per metaphase (p = 0.002) were also suitable indicators for detecting differences between patients and healthy individuals. The parameters ''percentage of dicentric chromosomes'', ''breaks'', and ''excess acentric fragments'' in comparison to the total number of mitoses analyzed could neither serve as meaningful nor as significant criteria, since they showed a strong interindividual variability. Conclusion: to detect a difference in chromosomal aberrations between healthy and radiosensitive individuals, the parameters ''frequency of breaks per metaphase'', ''complex chromosomal rearrangements'', and ''translocations'' are most

  11. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Science.gov (United States)

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  12. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    Directory of Open Access Journals (Sweden)

    Patrick Maier

    2016-01-01

    Full Text Available During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  13. Influence of food diet in the radiosensitivity of spodoptera frugiperda smith abbot larvae

    International Nuclear Information System (INIS)

    Gonzalez, M.; Labrada, A.; Fundora, Z.; Herrera, A.

    1988-01-01

    To apply the traditional method in pest control it is needed to know the reaction capability of the insect in reference to radiations as well as the influence which can be exerted over it by different factors. The radiosensitivity of Spodoptera Frugiperda Smith Abbot larvae raised with two different diets (natural and artificial) was studied using doses between 20 and 100 Gy, in Co-60 gamma source with a dose power of 13.4 Gy/min survival, formation and dimensions of pupas, adult emergency and other interesting aspects were determined. The multiple analysis of results showed the influence of the food diet on radiosensitivity of larvae. results of both diets are statistically compared

  14. Chemical radiosensitizers with special reference to metronidazole

    International Nuclear Information System (INIS)

    Sharma, R.; Purohit, O.P.; Nair, C.R.; Dutta, T.K.

    1982-01-01

    An attempt at rationalisation of drug dose schedule for a radiosensitizer in a cancer clinic is attempted. A prospective analysis of tissue tolerance, response data and complications of the two groups of patients (treated by oral and high intermittent rectal routes) was made with matched control. The study group has definite use of metronidazole. It is further highlighted that there is an additional advantage of the rectal administration route of the drug as compared to that of the oral route. This is a preliminary communication. (author)

  15. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  16. Radiosensitizing potential of gemcitabine (2',2'-difluoro-2'-deoxycytidine) within the cell cycle in vitro

    International Nuclear Information System (INIS)

    Latz, Detlev; Fleckenstein, Katharina; Eble, Michael; Blatter, Johannes; Wannenmacher, Michael; Weber, Klaus J.

    1998-01-01

    Purpose: Gemcitabine (2',2'-difluorodeoxycytidine; dFdCyd) is a new deoxycitidine analog which exhibits substantial activity against solid tumors and radiosensitizing properties in vitro. To examine cell cycle-specific effects of a combined treatment with gemcitabine and radiation, the in vitro clonogenic survival of two different cell lines was measured for cells from log-phase culture, G1 and S-phase cells. Methods and Materials: Chinese hamster (V79) and human colon carcinoma (Widr) cells were exposed to different radiation doses and for different points of time relative to gemcitabine treatment (2 h). Experiments were also carried out with different cell-cycle populations obtained after mitotic selection (V79) or after serum stimulation of plateau-phase cells (Widr). The resulting survival curves were analyzed according to the LQ model, and mean inactivation doses (MID) and the cell cycle-specific enhancement ratios (ER) were calculated from the survival curve parameters. Results: Effectiveness of combined treatment of log-phase cells was greatest when cells were irradiated at the end of the gemcitabine exposure [ER: 1.28 (V79), 1.24 (Widr)]. For later times after the removal of the drug, radiosensitization declined, approaching independent toxicity. From the time course of interactive-type damage decay half-life values of 75 min (V79) and 92 min (Widr) were derived. Gemcitabine did not radiosensitize G1 Widr cells or V79 cells from the G1/S border, but substantial radiosensitization was observed for the S-phase cell preparations [ER: 1.45 (V79-lateS), 1.57 (Widr)]. Conclusions: Treatment of cells with gemcitabine immediately before irradiation eliminates, or at least greatly reduces, the variation in radiosensitivity during the cell cycle that is manifested by radioresistance during S phase. This reversal of S-phase radioresistance could imply that gemcitabine interferes with the potentially lethal damage repair/fixation pathway. Other approaches have been

  17. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2.

    Science.gov (United States)

    Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K

    2018-01-04

    Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

  18. Exfoliative cytology in study of radiosensitivity of uterine cervical cancer, (2)

    International Nuclear Information System (INIS)

    Tsukahara, Yoshiharu; Noguchi, Hiroshi; Tomita, Kazuhiko; Kotani, Toshio; Nakayama, Akiko

    1977-01-01

    In this paper, we discuss the possibility of cytological judgment of radiosensitivity of uterine cervical cancer by comparison between pre- and post-irradiation smears given 1,000 rads by telecobalt external test irradiation. The estimation of radiation effects on nuclei and the cytological presumption of histological typing in pre-irradiation smears have brought about satisfactory results; agreement between histological and cytological judgements of radiosensitivity was about 96.8%. Cytological criteria of good sensitivity are as follows; Disparity in size of chromatin particles and irregular distribution. Irregularity of nuclear membrane with nuclear wrinkling with diminution of thickness of nuclear membrane. Mature squamous cell carcinoma without pearl formation. Those of poor sensitivity are as follows; Existence of many unchanged viable cells and less disturbances of chromatines. Existence of cells exibiting adenocarcinoma and carcinoma of intermediate type. Clusters of cyanophilic cells having lacy, indistinct cell borders. (auth.)

  19. KIH-802: 2-nitroimidazole-1-acetohydroxamate as a hypoxic cell radiosensitizer

    International Nuclear Information System (INIS)

    Hori, H.; Murayama, C.; Mori, T.; Shibamoto, Y.; Abe, M.; Onoyama, Y.; Inayama, S.

    1989-01-01

    We have identified potassium 2-nitroimidazole-1-acetohydroxamate (KIH-802) as a hypoxic cell radiosensitizer potentially superior to Miso. The water-soluble acetohydroxamates of 2-nitroimidazole (KIH-802; free acid 801) and 4-nitroimidazole (KIH-852) were designed, synthesized, and evaluated by in vitro and in vivo screening against EMT6 cells. Enhancement ratios of KIH-802 and 801 were 1.92 and 1.68, respectively, compared with 1.58 for MISO all at 1 mM. These acetohydroxamates are also expected to be more effective in vitro than SR-2508 based on our previous experiments. In vivo ERs of KIH-802, 801, and 852 were 1.75, 1.50, and 1.35, respectively, compared with 1.57 for MISO all at the same dose of 200 mg/kg. The data clearly show that the addition of an acetohydroxamic acid moiety to the 2-nitroimidazole skeleton can enhance radiosensitizing ability

  20. Radiosensitivity in breast cancer assessed by the histone γ-H2AX and 53BP1 foci

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S; Elsner, Ines; Katzer, Astrid; Worschech, Eike; Distel, Luitpold V; Flentje, Michael; Polat, Bülent

    2013-01-01

    High expression of constitutive histone γ-H2AX, a sensitive marker of DNA damage, might be indicative of defective DNA repair pathway or genomic instability. 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. This study explores the relationship between the clinical radiosensitivity of tumor patients and the expression/induction of γ-H2AX and 53BP1 in vitro. Using immunostaining, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53 BP1 in peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=57) undergoing radiotherapy (RT). Cells from apparently healthy donors (n=12) served as references. Non-irradiated cells from controls and unselected BC patients exhibited similar baseline levels of DNA damage assessed by γ-H2AX and 53BP1 foci. At the same time, the γ-H2AX assay of in vitro irradiated cells revealed significant differences between the control group and the group of unselected BC patients with respect to the initial (0.5 Gy, 30 min) and residual (2 Gy, 24 h post-radiation) DNA damage. The numbers of 53BP1 foci analyzed in 35 BC patients were significantly higher than in controls only in case of residual DNA damage. A weak correlation was found between residual foci of both proteins tested. In addition, cells from cancer patients with an adverse acute skin reaction (grade 3) to RT showed significantly increased radiation-induced γ-H2AX foci and their protracted disappearance compared to the group of BC patients with normal skin reaction (grade 0–1). The mean number of γ-H2AX foci after 5 clinical fractions was significantly higher than that before RT, especially in clinically radiosensitive patients. The γ-H2AX assay may have potential for screening individual radiosensitivity of breast cancer patients.

  1. Mechanisms of oxygen radiosensitization in CHO cells

    International Nuclear Information System (INIS)

    Whillans, D.W.

    1981-01-01

    A model is presented for repair and fixation pathways when CHO cells are irradiated in the presence of O 2 . This analysis predicts that an increase in the repair path such as has been postulated for addition of a radioprotective sulfhydryl should increase OER/sub max/ in porportion to k prime, the new repair rate constant and also increase K with k prime. Any radiosensitizer which mimics the action of O 2 simply increases k prime 2 , so that the OER/sub max/ decreases at 1/k prime 2 but K increases as k prime 2 . These predictions have been tested in mammalian CHO cells making use of a Clark-type oxygen probe with defined conditions to ensure that O 2 is not depleted by radiation or cellular consumption, and so O 2 levels are known with accuracy. In a complementary study, the technique of rapid-mixing was used to measure the rate of development of O 2 sensitization in these same cells. By a variation of this rapid-mixing approach, the rate of diffusion into these cells has also been measured independently. Neither the dependence of OER on O 2 concentration nor the development of radiosensitivity with time of incubation in O 2 gives evidence in CHO cells for two components of sensitization indicative of two sites or two mechanisms of action, as seen in some V79 sublines. 13 references, 4 figures

  2. Experimental investigations on the relationship between radiation dose and sensitization of hypoxic cells by electron affinic compounds. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Revesz, L.

    1981-12-01

    The investigations concern experimental studies on the factors which determine the inherent radiation response of mammalian cells, and the mechanism by which treatment with radiation protectors and hypoxic sensitizers modifies the response. Several mammalian cell lines including some derived from humans, were used in the tests of the biological response to radiation. Especially, the establishment of glutathione-deficient cell lines opened new experimental approaches to the question on the role of aminothiols in determining cellular radiation response. As the endpoints for the effect of radiation, single-strand DNA breaks by means of the sucrose gradient centrifugation and the unwinding technique in weak alkali, and colony forming ability of the cells were chosen. Radical reactions were also studied by the pulse-radiolysis technique. The enhancement of cellular radiosensitivity by oxygen and hypoxic cell sensitizers was found to be directly related to the glutathione level in the cells. Some particular aminothiols could substitute for the effect of glutathione in protecting against sensitization by oxygen and oxygen mimic sensitizers. The post irradiation repair of some DNA lesions induced by oxygen or hypoxic cell sensitizers was also associated with the level of glutathione and some specific aminothiols in the cells. The experiments revealed an efficient cellular cooperation in the repair of radiation induced DNA damage. Pulse radiolysis studies showed radical reactions characteristic for glutathione and not shared by other naturally occurring aminothiols. Inherent glutathione appears to play an important role in determining the intrinsic radiosensitivity of cells and the result of treatment with radioprotective and radiosensitizing substances. In particular, glutathione participates in both immediate radical reactions following exposure to ionizing radiation, and in the subsequent biochemical processes, and functions in promoting repair of the radiation damage

  3. Alterations in gene expression profiles between radioresistant and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Zhou Fuxiang; Zhou Yunfeng; Xie Conghua; Dai Jing; Cao Zhen; Yu Haijun; Liao Zhengkai; Luo Zhiguo

    2007-01-01

    Objective: To study the-difference of gene expressions by the contrastive model including the cells with same pathological origin and genetic background, but definitely different radioresponse, and to find the main molecular targets related to radiosensitivity. Methods: Human larynx squamous carcinoma cell, Hep -2 was irradiated with dose of 637 cGy repeatedly to establish a radioresistant daughter cell line. The radiobiology characteristics were obtained using clone forming assay. The difference of gene expression between parent and daughter cells was detected by cDNA microarray using two different arrays including 14000 genes respectively. Results: A radioresistant cell strain Hep-2R was isolated from its parental strain Hep-2 cell. The SF 2 , D 0 , α, β for Hep-2R cell line were 0.6798, 3.24, 0.2951 and 0.0363, respectively, while 0.4148, 2.06, 0.1074 and 0.0405 for Hep-2, respectively (for SF 2 , χ 2 =63.957, P<0.001). Compared with Hep-2 cells, the expressions of 41 genes were significantly altered in the radioresistant Hep-2R cells, including 22 genes up-regulated and 19 genes down-regulated, which were involved in DNA repair, regulation of the cell cycle, cell proliferation, cytoskeleton, protein synthesis, cellular metabolism and especially apoptosis which is responsible for the different radiosensitivity between these two larynx cancer cells. The telomere protection protein gene, POT1, was the mostly up-regulated by 3.348 times. Conclusions: There is difference of gene expression between the radioresistant contrastive models. POT1 gene may be the target of radiosensitization. (authors)

  4. Change in radiosensitivity of seeds depending on their humidity data and methods of moistening

    International Nuclear Information System (INIS)

    Savin, B.N.; Labrada, A.R.

    1980-01-01

    Investigated was the change in readiosensitivity of maize seeds depending on their humidity, method of moistening and initial humidity before moistening. Maize seeds of Krasnodarskaya 303 TV breed were irradiated with γ-rays. It was shown that seeds of the same humidity had different radiosensitivity depending on the method of moistening. When moistening seeds in water, they had the highest radiostability at 20-24% humidity but when moistening them in exsiccator, this index was the highest at 15% humidity. Along with the method of moistening initial humidity before moistening also effected the radiosensitivity. The necessity to take this factor into account during presowing irradiation was noted

  5. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  6. Radiosensitivity study in rice (Oriza Sativa Lin.)

    International Nuclear Information System (INIS)

    Gonzalez, M.; Santana, N.; Diaz, R.

    1987-01-01

    Four rice varieties (J-104, Amistad-82, 6066 and IR-1529) were irradiated at doses of 10,15,20,25,30,35,40,45,50 and 55 Krad of gamma rays so as to determine radiosensitivity curves for each of the varieties for the following factors; seed germination percentage; survival percentage; height of the plant; length of roots. It was determined that IR-1529 variety is the one with the highest sensitivity and that radiations over 35 Krad should not be used for none of the varieties above mentioned

  7. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2012-12-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC. The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody on ESCC radiotherapy (RT and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3 in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (PP>0.05. In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029, and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  8. Radiosensitivity evaluation of Human tumor cell lines by detecting 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Zhang Yipei

    2009-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA4977bp deletion. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA4977bp deletion and DNA damage were detected by MTT assay and nested PCR technique respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4and 8Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. PCR method:The differences on mtDNA 4977bp deletion in mitochondrial DNA among HepG 2 , EC-9706 and MCF-7 were not significant after 1Gy and 4Gy γ-ray irradiation. The ratio of 4977bp deletion in mitochondrial DNA of HepG 2 and EC-9706 increased while that of MCF-7 decreased after 8Gy irradiation. The ratio of mtDNA 4977bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7, which implies that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF -7. Conclusion: As a new biological marker, mtDNA4977bp deletion may be hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  9. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, Deepak [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2016-09-09

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  10. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    International Nuclear Information System (INIS)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K.

    2016-01-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  11. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  12. Relation between number of hemopoietic stem cells in newborn mice and their radiosensitivity

    International Nuclear Information System (INIS)

    Sutter, T.; Maes, J.; Gerber, G.B.; Leonard, A.

    1985-01-01

    Fractionation of a radiation exposure causes greater damage in newborn mice than a single application since it induces radioresistant foetal hemopoietic stem cells to differentiate prematurely to more radiosensitive adult ones. In the present investigation, it was studied whether other agents that give rise to extensive stem cell destruction also lead to such a change in radiosensitivity. Indeed, treatment with cytostatic drugs which reduces the number of spleen colony forming units (CFU-s) and total cells also diminished the D 0 value of the surviving cells 3 days later. Adriamycin was most effective in causing damage to hemopoietic stem cells and in inducing micronuclei in bone marrow; it also had the most marked action on the D 0 of the surviving stem cells. (orig.)

  13. Cytogenetic damage and postradiation restoration of eye cornea epithelium of Rodentia characterizing by different radiosensitivity

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.

    1983-01-01

    Intensity of beam damage and reparation of eye cornea epithelium of animals inhabiting under different conditions and differing by radiosensitivity has been studied. Mice differing by high radiosensitivity have the hardest cytogenetic damage. Cornea epithelium of bank voles is more radiostable than that of mice. The most negligible damages of cornea epithelium is observed in Mongolian sandwort despite the fact that their total radiation stability is lower than that of bank voles. High protective-restoring properties of eye cornea epithelium of Mongolian sandwort are explained by the structure of epithelium cells diffe-- ring by a large number of cytoplasm

  14. Inhibition of STAT-3 results in radiosensitization of human squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background: Signal transducer and activator of transcription-3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein produces radiosensitization. Methods/Results: A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion: A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether the inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by the inhibition of EGFr.

  15. Diagnosis and therapy of cutaneous radiation syndrome. Individual radiosensitivity assessment in patients undergoing medical exposures presenting severe cutaneous radiation induced lesions

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Perez, Maria R.; Portas, Mercedes

    2007-01-01

    Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Burn Center) is one of the reference hospitals of the Medical Radiological Emergency Response Network of Argentina. In the frame of an agreement between the Burn Center and the Nuclear Regulatory Authority of Argentina, a research project for an approach based on diagnosis and therapy of cutaneous radiation induced lesions is in progress. Individual radiosensitivity assessment was conducted in patients included in this research protocol that showed acute and/or late cutaneous reactions with grades 3 and 4 of the Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC). DNA repair capacity and its kinetics were evaluated in human peripheral blood lymphocytes using alkaline comet assay and micronucleus test. In this paper, two representative cases, in which the research protocol was applied, are presented. Therapeutic response and its correlation with radiosensitivity test results are described. Case 1: female patient undergoing external radiotherapy for invasive ductal breast cancer that presented acute cutaneous radiotoxicity, grade 3 (confluent moist epithelitis, )that led to treatment break. Case 2: male patient undergoing coronary angioplasty (interventional radiology), which developed late cutaneous radiotoxicity, grade 4 (ulceration at the dorsal region). Patients were treated with: topic administration of trolamine and silver sulfadiazine with lidocaine, associated with systemic administration of pentoxiphiline and anti-oxidants. The therapeutic response was evaluated through clinical follow-up, serial photographic record and complementary tests (tele thermography and high frequency ultrasonography). Case 1 response was positive (favorable) with early local recovery and complete remission of signs and symptoms after 5 months. Both MN frequencies and comet assay showed values compatible with normal radiosensitivity

  16. ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions

    International Nuclear Information System (INIS)

    Xue Lian; Yu Dong; Furusawa, Yoshiya; Cao Jianping; Okayasu, Ryuichi; Fan Saijun

    2009-01-01

    Purpose: Low-dose hyper-radiosensitivity (HRS) and the later appearing radioresistance (termed induced radioresistance [IRR]) was mainly studied in low linear energy transfer (LET) radiation with survival observation. The aim of this study was to find out whether equivalent hypersensitivity occurred in high LET radiation, and the roles of ataxia telangiectasia mutated (ATM) kinase. Methods and Materials: Survival and mutation were measured by clonogenic assay and HPRT mutation assay. ATM Ser1981 activation was detected by Western blotting and immunofluorescent staining. Pretreatment of specific ATM inhibitor (10 μM KU55933) and activator (20 μg/mL chloroquine) before carbon radiation were adopted to explore the involvement of ATM. The roles of ATM were also investigated in its G2/M checkpoint function with histone H3 phosphorylation analysis and flow cytometric assay, and DNA double strand break (DSB) repair function measured using γ-H2AX foci assay. Results: HRS/IRR was observed with survival and mutation in normal human skin fibroblast cells by carbon ions, while impaired in cells with intrinsic ATM deficiency or normal cells modified with specific ATM activator or inhibitor before irradiation. The dose-response pattern of ATM kinase activation was concordant with the transition from HRS to IRR. The ATM-dependent 'early' G2 checkpoint arrest and DNA DSB repair efficiency could explain the difference between HRS and IRR. Conclusions: These data demonstrate that the HRS/IRR by carbon ion radiation is an ATM-dependent phenomenon in the cellular response to DNA damage.

  17. Expression of p210 BCR/ABl increases hematopoietic progenitor cell radiosensitivity

    International Nuclear Information System (INIS)

    Santucci, M.A.; Anklesaria, P.; Das, I.J.; Sakakeeny, M.A.; FitzGerald, T.J.; Greenberger, J.S.; Laneuville, P.

    1993-01-01

    The cytogenetic finding of the Ph1+ chromosome and its molecular biologic marker bcr/abl gene rearrangement in cells from patients with chronic myeloid leukemia are associated with a proliferative advantage of the Ph1+ clone in vivo. Although the transition to the acute terminal phase or blastic crisis is often associated with additional cytogenetic abnormalities, the molecular events which correlate the initial cytogenetic lesion with the terminal phase are poorly understood. Defective cellular DNA repair capacity is often associated with chromosomal instability, increased mutation frequency, and biologic alterations. The authors tested whether the protein product of the bcr/abl translocation (p210) could alter DNA repair after gamma-irradiation of murine cell lines expressing the bcr/abl cDNA. The 32D cl 3 parent, 32D cl 3 pYN (containing the control vector plasmid) and each of two sources of 32D cl 3 cells expressing p210 cDNA (32D-PC1 cell line and 32D-LG7 subclone) showed a D 0 of 1.62, 1.57, 1.16, and 1.27 Gy, respectively. Thus, expression of the p210 product induced a significant increase in radiosensitivity at the clinically relevant radiation therapy dose-rate. The increased radiosensitivity of p210-expressing cells persisted if cells were held before plating in a density-inhibited state for 8 hr after gamma-irradiation, indicating little effect on the repair of potentially lethal gamma-irradiation damage. The IL-3 dependent parent 32D cl 3 cells demonstrated programmed cell death in the absence of growth factor or following gamma-irradiation to 200 cGy. Expression of p210 cDNA in the 32D-PC1 and 32D-LG7 subclones abrogated IL-3 requirement of these cell lines and inhibited gamma-irradiation induced programmed cell death. These data suggest a role for p210 in amplifying gamma-irradiation DNA damage or broadly inhibiting DNA repair, conditions that may stimulate further cytogenetic alterations in hematopoietic cells. 43 refs., 3 figs., 1 tab

  18. DNA repair and the genetic control of radiosensitivity in yeast

    International Nuclear Information System (INIS)

    Haynes, R.H.

    1975-01-01

    The following topics are discussed: advantages of yeasts for easily manipulated model systems for studies on molecular biology of eukaryotes; induction of x-ray-resistant mutants by radiations and chemicals; genetics of uv-sensitive mutants; loci of genes affecting radiosensitivity; gene interactions in multiple mutants; liquid-holding recovery; mitotic and meiotic recombination; and repair of yeast mitochondrial DNA

  19. Is variation in human radiosensitivity real or artifactual?

    International Nuclear Information System (INIS)

    Nakamura, Nori; Kushiro, Jun-ichi; Sposto, R.; Akiyama, Mitoshi.

    1989-12-01

    Two methods of producing human T-lymphocyte colonies in vitro are described, as well as dose-survival experiments using these methods for the investigation of possible differential radiosensitivity among individuals. In one method, the cloning efficiency (CE) of nonirradiated lymphocytes was between 10 % and 40 % (method 1), whereas subsequent improvement in assay conditions (method 2) resulted in a CE greater than 30 %. In vitro X-irradiation of colonies produced using method 1 revealed that the dose required to kill 90 % of the cells (D 10 ) was 2.87±0.28 Gy (mean ±SD, n = 18) for repeated examinations of lymphocytes from one reference individual. Using method 2, the D 10 values were greater, viz., 3.66±0.21 Gy for 28 repeated tests of the same reference individual and 3.58±0.19 Gy for 31 different individuals. Analysis of variance to compare the data from repeated examinations of one person versus data from single examinations of different persons showed that variation in the D 10 value was not significantly greater in the latter group. These results support the hypothesis that individual variation in human radiosensitivity is quite small, if it exists at all, as far as can be determined by the loss of colony-forming ability of irradiated G 0 lymphocytes. (author)

  20. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually