WorldWideScience

Sample records for intrinsic cns neurons

  1. Selective rab11 transport and the intrinsic regenerative ability of CNS axons.

    Science.gov (United States)

    Koseki, Hiroaki; Donegá, Matteo; Lam, Brian Yh; Petrova, Veselina; van Erp, Susan; Yeo, Giles Sh; Kwok, Jessica Cf; Ffrench-Constant, Charles; Eva, Richard; Fawcett, James W

    2017-08-08

    Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.

  2. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion ...

  3. Learning intrinsic excitability in medium spiny neurons.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.

  4. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS

    Directory of Open Access Journals (Sweden)

    Andrea R. Yung

    2018-02-01

    Full Text Available During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR, and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.

  5. Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    2015-09-01

    Full Text Available Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS. Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.

  6. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair

    Science.gov (United States)

    Mandrekar-Colucci, Shweta; Hall, Jodie C.E.; Sweet, David R.; Schmitt, Philipp J.; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia

    2016-01-01

    due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies. PMID:27511021

  7. Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release.

    Science.gov (United States)

    Koudelka, Sigrid; Voas, Matthew G; Almeida, Rafael G; Baraban, Marion; Soetaert, Jan; Meyer, Martin P; Talbot, William S; Lyons, David A

    2016-06-06

    Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1-4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5-9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10-12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Studying neuronal biomechanics and its role in CNS development

    Science.gov (United States)

    Franze, Kristian; Svoboda, Hanno; da F. Costa, Luciano; Guck, Jochen; Holt, Christine

    2013-03-01

    During the development of the nervous system, neurons migrate and grow over great distances. Currently, our understanding of nervous tissue development is, in large part, based on studies of biochemical signaling. Despite the fact that forces are involved in any kind of cell motion, mechanical aspects have so far rarely been considered. Here we used deformable cell culture substrates, traction force microscopy and calcium imaging to investigate how neurons probe and respond to their mechanical environment. While the growth rate of retinal ganglion cell axons was increased on stiffer substrates, their tendency to grow in bundles, which they show in vivo, was significantly enhanced on more compliant substrates. Moreover, if grown on substrates incorporating linear stiffness gradients, neuronal axons were repelled by stiff substrates. Mechanosensing involved the application of forces driven by the interaction of actin and myosin II, and the activation of stretch-activated ion channels leading to calcium influxes into the cells. Applying a modified atomic force microscopy techniquein vivo, we found mechanical gradients in developing brain tissue along which neurons grow. The application of chondroitin sulfate, which is a major extracellular matrix component in the developing brain, changed tissue mechanics and disrupted axonal pathfinding. Hence, our data suggest that neuronal growth is not only guided by chemical signals - as it is currently assumed - but also by the nervous tissue's mechanical properties.

  9. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  10. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Emma V. Jones

    2018-02-01

    Full Text Available The proper formation and maintenance of functional synapses in the central nervous system (CNS requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO in vivo and oxygen-glucose deprivation (OGD in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.

  11. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection.

    Science.gov (United States)

    Bráz, João M; Wang, Fan; Basbaum, Allan I

    2015-01-01

    Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat.

  12. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection.

    Directory of Open Access Journals (Sweden)

    João M Bráz

    Full Text Available Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN of the central nervous system (CNS, there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat.

  13. CNS Neurons Deposit Laminin α5 to Stabilize Synapses

    Directory of Open Access Journals (Sweden)

    Mitchell H. Omar

    2017-10-01

    Full Text Available Summary: Synapses in the developing brain are structurally dynamic but become stable by early adulthood. We demonstrate here that an α5-subunit-containing laminin stabilizes synapses during this developmental transition. Hippocampal neurons deposit laminin α5 at synapses during adolescence as connections stabilize. Disruption of laminin α5 in neurons causes dramatic fluctuations in dendritic spine head size that can be rescued by exogenous α5-containing laminin. Conditional deletion of laminin α5 in vivo increases dendritic spine size and leads to an age-dependent loss of synapses accompanied by behavioral defects. Remaining synapses have larger postsynaptic densities and enhanced neurotransmission. Finally, we provide evidence that laminin α5 acts through an integrin α3β1-Abl2 kinase-p190RhoGAP signaling cascade and partners with laminin β2 to regulate dendritic spine density and behavior. Together, our results identify laminin α5 as a stabilizer of dendritic spines and synapses in the brain and elucidate key cellular and molecular mechanisms by which it acts. : In the developing brain, synaptic structure transitions from dynamic to stable by early adulthood. Omar et al. identify a laminin molecule deposited at synapses in the brain that is essential for dendritic spine structural regulation and synapse stability between early postnatal development and adulthood. Keywords: extracellular matrix, ECM, synapse maturation, adhesion, Lama5, Lamb2, synapse loss, stability, structural plasticity, motility

  14. Intrinsic properties of larval zebrafish neurons in ethanol.

    Science.gov (United States)

    Ikeda, Hiromi; Delargy, Alison H; Yokogawa, Tohei; Urban, Jason M; Burgess, Harold A; Ono, Fumihito

    2013-01-01

    The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+)] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

  15. Intrinsic properties of larval zebrafish neurons in ethanol.

    Directory of Open Access Journals (Sweden)

    Hiromi Ikeda

    Full Text Available The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

  16. Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.

    Science.gov (United States)

    Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig

    2014-03-11

    Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.

  17. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.

    Science.gov (United States)

    Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G

    2016-08-10

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic

  18. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.

    Science.gov (United States)

    Noda, Mami

    2018-01-01

    The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.

  19. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  20. Comparing the different response of PNS and CNS injured neurons to mesenchymal stem cell treatment.

    Science.gov (United States)

    Monfrini, Marianna; Ravasi, Maddalena; Maggioni, Daniele; Donzelli, Elisabetta; Tredici, Giovanni; Cavaletti, Guido; Scuteri, Arianna

    2018-01-01

    Mesenchymal stem cells (MSCs) are adult bone marrow-derived stem cells actually proposed indifferently for the therapy of neurological diseases of both the Central (CNS) and the Peripheral Nervous System (PNS), as a panacea able to treat so many different diseases by their immunomodulatory ability and supportive action on neuronal survival. However, the identification of the exact mechanism of MSC action in the different diseases, although mandatory to define their real and concrete utility, is still lacking. Moreover, CNS and PNS neurons present many different biological properties, and it is still unclear if they respond in the same manner not only to MSC treatment, but also to injuries. For these reasons, in this study we compared the susceptibility of cortical and sensory neurons both to toxic drug exposure and to MSC action, in order to verify if these two neuronal populations can respond differently. Our results demonstrated that Cisplatin (CDDP), Glutamate, and Paclitaxel-treated sensory neurons were protected by the co-culture with MSCs, in different manners: through direct contact able to block apoptosis for CDDP- and Glutamate-treated neurons, and by the release of trophic factors for Paclitaxel-treated ones. A possible key soluble factor for MSC protection was Glutathione, spontaneously released by these cells. On the contrary, cortical neurons resulted more sensitive than sensory ones to the toxic action of the drugs, and overall MSCs failed to protect them. All these data identified for the first time a different susceptibility of cortical and sensory neurons, and demonstrated a protective action of MSCs only against drugs in peripheral neurotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  2. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C

    2011-05-03

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master equation formulation of stochastic neurodynamics represents the state of each population by the number of currently active neurons, and the state transitions are chosen so that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit. We apply phase reduction and averaging methods to a corresponding Langevin approximation of the master equation in order to determine how intrinsic noise disrupts synchronization of the population oscillators driven by a common extrinsic noise source. We illustrate our analysis by considering one of the simplest networks known to generate limit cycle oscillations at the population level, namely, a pair of mutually coupled excitatory (E) and inhibitory (I) subpopulations. We show how the combination of intrinsic independent noise and extrinsic common noise can lead to clustering of the population oscillators due to the multiplicative nature of both noise sources under the Langevin approximation. Finally, we show how a similar analysis can be carried out for another simple population model that exhibits limit cycle oscillations in the deterministic limit, namely, a recurrent excitatory network with synaptic depression; inclusion of synaptic depression into the neural master equation now generates a stochastic hybrid system.

  3. Intrinsic response of thoracic propriospinal neurons to axotomy

    Directory of Open Access Journals (Sweden)

    Stelzner Dennis J

    2010-06-01

    Full Text Available Abstract Background Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury. Results Utilizing laser microdissection, gene-microarray, qRT-PCR, and immunohistochemistry, we focused on the intrinsic post-axotomy response of specifically labelled thoracic propriospinal neurons at periods from 3-days to 1-month following T9 spinal cord injury. We found a strong and early (3-days post injury, p.i upregulation in the expression of genes involved in the immune/inflammatory response that returned towards normal by 1-week p.i. In addition, several regeneration associated and cell survival/neuroprotective genes were significantly up-regulated at the earliest p.i. period studied. Significant upregulation of several growth factor receptor genes (GFRa1, Ret, Lifr also occurred only during the initial period examined. The expression of a number of pro-apoptotic genes up-regulated at 3-days p.i. suggest that changes in gene expression after this period may have resulted from analyzing surviving TPS neurons after the cell death of the remainder of the axotomized TPS neuronal population. Conclusions Taken collectively these data demonstrate that thoracic propriospinal (TPS neurons mount a very dynamic response following low thoracic axotomy that includes a strong regenerative response, but also results in the cell death of many axotomized TPS neurons in the first week after spinal cord injury. These data also suggest that the immune/inflammatory response may have an important role in mediating the early strong

  4. Intrinsic and Extrinsic Neuronal Mechanisms in Temporal Coding: A Further Look at Neuronal Oscillations

    Science.gov (United States)

    Lestienne, Rémy

    1999-01-01

    Many studies in recent years have been devoted to the detection of fast oscillations in the Central Nervous System (CNS), interpreting them as synchronizing devices. We should, however, refrain from associating too closely the two concepts of synchronization and oscillation. Whereas synchronization is a relatively well-defined concept, by contrast oscillation of a population of neurones in the CNS looks loosely defined, in the sense that both its frequency sharpness and the duration of the oscillatory episodes vary widely from case to case. Also, the functions of oscillations in the brain are multiple and are not confined to synchronization. The paradigmatic instantiation of oscillation in physics is given by the harmonic oscillator, a device particularly suited to tell the time, as in clocks. We will thus examine first the case of oscillations or cycling discharges of neurones, which provide a clock or impose a “tempo” for various kinds of information processing. Neuronal oscillators are rarely just clocks clicking at a fixed frequency. Instead, their frequency is often adjustable and controllable, as in the example of the “chattering cells” discovered in the superficial layers of the visual cortex. Moreover, adjustable frequency oscillators are suitable for use in “phase locked loops” (PLL) networks, a device that can convert time coding to frequency coding; such PLL units have been found in the somatosensory cortex of guinea pigs. Finally, are oscillations stricto sensu necessary to induce synchronization in the discharges of downstream neurones? We know that this is not the case, at least not for local populations of neurones. As a contribution to this question, we propose that repeating patterns in neuronal discharges production may be looked at as one such alternative solution in relation to the processing of information. We review here the case of precisely repeating triplets, detected in the discharges of olfactory mitral cells of a freely

  5. Somatostatin receptors in rat hippocampus: localization to intrinsic neurons

    International Nuclear Information System (INIS)

    Palacios, J.M.; Reubi, J.C.; Maurer, R.

    1986-01-01

    The effect of neurotoxic chemical and electrolytical lesions on somatostatin (SS) receptor binding in the septo-hippocampal afferents, pyramidal and granule cells of the rat hippocampus was examined by autoradiography using the stable SS analogue 125 I-204-090 as radioligand. Electrolytical lesions of the septum did not result in modification of SS binding in the hippocampus. In contrast, both granule cell lesion with colchicine and pyramidal or pyramidal and granule cell lesions with increasing kainic acid doses did result in a specific decrease of binding in the dentate gyrus and hippocampus (CA 1 and CA 3 ). These results suggest that SS receptors in the hippocampus are probably associated with elements from intrinsic neurons. (Author)

  6. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.

    Science.gov (United States)

    Geoffroy, Cédric G; Meves, Jessica M; Zheng, Binhai

    2017-06-23

    Age is an important consideration for recovery and repair after spinal cord injury. Spinal cord injury is increasingly affecting the middle-aged and aging populations. Despite rapid progress in research to promote axonal regeneration and repair, our understanding of how age can modulate this repair is rather limited. In this review, we discuss the literature supporting the notion of an age-dependent decline in axonal growth after central nervous system (CNS) injury. While both neuron-intrinsic and extrinsic factors are involved in the control of axon growth after injury, here we focus on possible intrinsic mechanisms for this age-dependent decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    Science.gov (United States)

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    Science.gov (United States)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  9. Respiratory neuron characterization reveals intrinsic bursting properties in isolated adult turtle brainstems (Trachemys scripta).

    Science.gov (United States)

    Johnson, Stephen M; Hedrick, Michael S; Krause, Bryan M; Nilles, Jacob P; Chapman, Mark A

    2016-04-01

    It is not known whether respiratory neurons with intrinsic bursting properties exist within ectothermic vertebrate respiratory control systems. Thus, isolated adult turtle brainstems spontaneously producing respiratory motor output were used to identify and classify respiratory neurons based on their firing pattern relative to hypoglossal (XII) nerve activity. Most respiratory neurons (183/212) had peak activity during the expiratory phase, while inspiratory, post-inspiratory, and novel pre-expiratory neurons were less common. During synaptic blockade conditions, ∼10% of respiratory neurons fired bursts of action potentials, with post-inspiratory cells (6/9) having the highest percentage of intrinsic burst properties. Most intrinsically bursting respiratory neurons were clustered at the level of the vagus (X) nerve root. Synaptic inhibition blockade caused seizure-like activity throughout the turtle brainstem, which shows that the turtle respiratory control system is not transformed into a network driven by intrinsically bursting respiratory neurons. We hypothesize that intrinsically bursting respiratory neurons are evolutionarily conserved and represent a potential rhythmogenic mechanism contributing to respiration in adult turtles. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Learning Enhances Intrinsic Excitability in a Subset of Lateral Amygdala Neurons

    Science.gov (United States)

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R., Jr.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little…

  11. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  12. Statistics of neuronal identification with open and closed loop measures of intrinsic excitability

    Directory of Open Access Journals (Sweden)

    Ted eBrookings

    2012-04-01

    Full Text Available In complex nervous systems patterns of neuronal activity and measures of intrinsic neuronal excitability are often used as criteria for identifying and/or classifying neurons. We asked how well identification of neurons by conventional measures of intrinsic excitability compares with a measure of neuronal excitability derived from a neuron’s behavior in a dynamic clamp constructed two cell network. We used four cell types from the crab stomatogastric ganglion, the Pyloric Dilator (PD, Lateral Pyloric (LP, Gastric Mill (GM, and Dorsal Gastric (DG neurons. Each neuron was evaluated for six conventional measures of intrinsic excitability (Intrinsic Properties; IPs. Additionally, each neuron was coupled by reciprocal inhibitory synapses made with the dynamic clamp to a Morris-Lecar model neuron and the resulting network was assayed for four measures of network activity (network activity properties; NAPs. We searched for linear combinations of IPs that correlated with each NAP, and combinations of NAPs that correlated with each IP. In the process we developed a method to correct for multiple correlations while searching for correlating features. When properly controlled for multiple correlations, four of the IPs were correlated with NAPs, and all four NAPs were correlated with IPs. Neurons were classified into cell types by training a linear classifier on sets of properties, or using k-medoids clustering. The IPs were modestly successful in classifying the neurons, and the NAPs were more successful. Combining the two measures did better than either measure alone, but not well enough to classify neurons with perfect accuracy, thus reiterating the need to combine electrophysiology with another, independent criterion for cell identification.

  13. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Clément N David

    2016-06-01

    Full Text Available The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection.

  14. Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture

    DEFF Research Database (Denmark)

    Guertin, Pierre A; Hounsgaard, Jørn

    2006-01-01

    Although intrinsic neuronal properties in invertebrates are well known to undergo specific adaptive changes in culture, long-term adaptation of similar properties in mature vertebrate neurons remain poorly understood. To investigate this, we used an organotypic slice preparation from the spinal...... cord of adult turtles maintainable for several weeks in culture conditions. N-methyl-D-aspartate (NMDA)-induced-tetrodotoxin (TTX)-resistant voltage oscillations in motoneurons were approximately 10 times faster in culture than in acute preparations. Oscillations in culture were abolished by NMDA...... to understanding further the potential for plasticity of mature vertebrate neurons....

  15. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  16. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  17. Neuronal Activity Drives Localized Blood-Brain-Barrier Transport of Serum Insulin-like Growth Factor-I into the CNS

    OpenAIRE

    Nishijima, T.; Piriz, Joaquin; Duflot, Sylvie; Fernández García, Ana María; Gaitán, Gema; Gómez-Pinedo, Ulises; García-Verdugo, José M.; Leroy, Félix; Soya, Hideaki; Núñez Molina, Ángel; Torres Alemán, Ignacio

    2010-01-01

    Upon entry into the central nervous system (CNS), serum insulin-like growth factor-1 (IGF-I) modulates neuronal growth, survival, and excitability. Yet mechanisms that trigger IGF-I entry across the blood-brain barrier remain unclear. We show that neuronal activity elicited by electrical, sensory, or behavioral stimulation increases IGF-I input in activated regions. Entrance of serum IGF-I is triggered by diffusible messengers (i.e., ATP, arachidonic acid derivatives) released during neurovas...

  18. Intrinsic and Extrinsic Neuronal Mechanisms in Temporal Coding: A Further Look at Neuronal Oscillations

    Directory of Open Access Journals (Sweden)

    Rémy Lestienne

    1999-01-01

    case to case. Also, the functions of oscillations in the brain are multiple and are not confined to synchronization. The paradigmatic instantiation of oscillation in physics is given by the harmonic oscillator, a device particularly suited to tell the time, as in clocks. We will thus examine first the case of oscillations or cycling discharges of neurones, which provide a clock or impose a “tempo” for various kinds of information processing. Neuronal oscillators are rarely just clocks clicking at a fixed frequency. Instead, their frequency is often adjustable and controllable, as in the example of the “chattering cells” discovered in the superficial layers of the visual cortex. Moreover, adjustable frequency oscillators are suitable for use in “phase locked loops” (PLL networks, a device that can convert time coding to frequency coding; such PLL units have been found in the somatosensory cortex of guinea pigs. Finally, are oscillations stricto sensu necessary to induce synchronization in the discharges of downstream neurones? We know that this is not the case, at least not for local populations of neurones. As a contribution to this question, we propose that repeating patterns in neuronal discharges production may be looked at as one such alternative solution in relation to the processing of information. We review here the case of precisely repeating triplets, detected in the discharges of olfactory mitral cells of a freely breathing rat under odor stimulation.

  19. Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.

    Science.gov (United States)

    Wellmer, Jörg; Su, Hailing; Beck, Heinz; Yaari, Yoel

    2002-07-01

    A single episode of status epilepticus (SE) induces neuropathological changes in the brain that may lead to the development of a permanent epileptic condition. Most studies of this plasticity have focused on the hippocampus, where both synaptic function and intrinsic neuronal excitability have been shown to be persistently modified by SE. However, many other brain structures are activated during SE and may also be involved in the subsequent epileptogenic process. Here we have investigated whether SE, induced in rats with pilocarpine and terminated after 40 min with diazepam, persistently modifies the intrinsic excitability of pyramidal neurons in the subiculum. Subicular slices were prepared from control and SE-experienced rats (2-5 weeks after SE). In the control group, only 4% of the neurons fired bursts in response to intrasomatic, threshold-straddling depolarizing current pulses (low-threshold bursters). The remaining neurons either fired bursts in response to strong (3x threshold) depolarizations (35%; high-threshold bursters) or fired in a completely regular mode (61%; nonbursters). In the SE-experienced group, the fractions of low- and high-threshold bursters markedly increased to 29% and 53%, respectively. This change in firing behaviour was associated with a marked increase in the size of the spike after depolarization, particularly in low-threshold bursters. Experimental suppression of Ca2+ currents selectively blocked low-threshold bursting but did not affect high-threshold bursting, suggesting that a dual Ca2+- dependent and Ca2+- independent mechanism controls bursting in these neurons. The persistent up-regulation of intrinsic bursting in the subiculum, in concert with similar changes in the hippocampus, undoubtedly contributes to epileptogenesis following pilocarpine-induced SE.

  20. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation.

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2016-11-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. Copyright © 2016 the American Physiological Society.

  1. Extrinsic and intrinsic determinants of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Toby A. Ferguson

    2011-01-01

    Full Text Available After central nervous system (CNS injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.

  2. Frequency-domain analysis of intrinsic neuronal properties using high-resistant electrodes

    Directory of Open Access Journals (Sweden)

    Christian Rössert

    2009-08-01

    Full Text Available Intrinsic cellular properties of neurons in culture or slices are usually studied by the whole cell clamp method using low-resistant patch pipettes. These electrodes allow detailed analyses with standard electrophysiological methods such as current- or voltage-clamp. However, in these preparations large parts of the network and dendritic structures may be removed, thus preventing an adequate study of synaptic signal processing. Therefore, intact in vivo preparations or isolated in vitro whole brains have been used in which intracellular recordings are usually made with sharp, high-resistant electrodes to optimize the impalement of neurons. The general non-linear resistance properties of these electrodes, however, severely limit accurate quantitative studies of membrane dynamics especially needed for precise modelling. Therefore, we have developed a frequency-domain analysis of membrane properties that uses a Piece-wise Non-linear Electrode Compensation (PNEC method. The technique was tested in second-order vestibular neurons and abducens motoneurons of isolated frog whole brain preparations using sharp potassium chloride- or potassium acetate-filled electrodes. All recordings were performed without online electrode compensation. The properties of each electrode were determined separately after the neuronal recordings and were used in the frequency-domain analysis of the combined measurement of electrode and cell. This allowed detailed analysis of membrane properties in the frequency-domain with high-resistant electrodes and provided quantitative data that can be further used to model channel kinetics. Thus, sharp electrodes can be used for the characterization of intrinsic properties and synaptic inputs of neurons in intact brains.

  3. Cell intrinsic control of axon regeneration

    Science.gov (United States)

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  4. Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo

    Directory of Open Access Journals (Sweden)

    Chih-ming Chen

    2009-07-01

    Full Text Available RNA interference (RNAi is an evolutionarily conserved mechanism for sequence-specific gene silencing. Recent advances in our understanding of RNAi machinery make it possible to reduce protein expression by introducing short hairpin RNA (shRNA into cells of many systems, however, the efficacy of RNAi-mediated protein knockdown can be quite variable, especially in intact animals, and this limits its application. We built adaptable molecular tools, pSilencer (pSi and pReporter (pRe constructs, to evaluate the impact of different promoters, shRNA structures and overexpression of Ago2, the key enzyme in the RNA-induced silencing complex (RISC, on the efficiency of RNAi. The magnitude of RNAi knockdown was evaluated in cultured cells and intact animals by comparing fluorescence intensity levels of GFP, the RNAi target, relative to mCherry, which was not targeted. Co-expression of human Ago2 with shRNA significantly enhanced efficiency of GFP knockdown in cell lines and in neurons of intact Xenopus tadpoles. Human H1- and U6-promotors alone or the U6-promotor with an enhancer element were equally effective at driving GFP knockdown. shRNA derived from the microRNA-30 design (shRNAmir30 enhanced the efficiency of GFP knockdown. Expressing pSi containing Ago2 with shRNA increased knockdown efficiency of an endogenous neuronal protein, the GluR2 subunit of the AMPA receptor, functionally accessed by recording AMPA receptor-mediated spontaneous synaptic currents in Xenopus CNS neurons. Our data suggest that co-expression of Ago2 and shRNA is a simple method to enhance RNAi in intact animals. While morpholino antisense knockdown is effective in Xenopus and Zebrafish, a principle advantage of the RNAi method is the possibility of spatial and temporal control of protein knockdown by use of cell type specific and regulatable pol II promoters to drive shRNA and Ago2. This should extend the application of RNAi to study gene function of intact brain circuits.

  5. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  6. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits

    Science.gov (United States)

    2016-01-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rate are essential for normal brain function, and observations suggest that multiple such processes may operate simultaneously in the same network. We pose two questions: why might a diversity of homeostatic pathways be necessary, and how can they operate in concert without opposing and undermining each other? To address these questions, we perform a computational and analytical study of cell-intrinsic homeostasis and synaptic homeostasis in single-neuron and recurrent circuit models. We demonstrate analytically and in simulation that when two such mechanisms are controlled on a long time scale by firing rate via simple and general feedback rules, they can robustly operate in tandem to tune the mean and variance of single neuron's firing rate to desired goals. This property allows the system to recover desired behavior after chronic changes in input statistics. We illustrate the power of this homeostatic tuning scheme by using it to regain high mutual information between neuronal input and output after major changes in input statistics. We then show that such dual homeostasis can be applied to tune the behavior of a neural integrator, a system that is notoriously sensitive to variation in parameters. These results are robust to variation in goals and model parameters. We argue that a set of homeostatic processes that appear to redundantly regulate mean firing rate may work together to control firing rate mean and variance and thus maintain performance in a parameter-sensitive task such as integration. PMID:27306675

  7. Unsuspected Intrinsic Property of Melanin to Dissociate Water Can Be Used for the Treatment of CNS Diseases.

    Science.gov (United States)

    Herrera, Arturo Solís; del Carmen Arias Esparza, María; Solís Arias, Paola Eugenia; Ávila-Rodriguez, Marco; Barreto, George Emilio; Li, Yi; Bachurin, Sergey Olegovich; Aliev, Gjumrakch

    2016-01-01

    Retinal adhesion mechanisms in mammals are quite complex and multifactorial in nature. To date, these mechanisms are incompletely understood due to a variety of chemical, physical, and physiological forces impinging upon retinal tissue: retinal pigment epithelium, nearby tissues as sclera and vitreous, the subretinal space, and the highly complex interphotoreceptor matrix that fills subretinal space. The adhesion of the retina to the choroid, rather than anatomical, is a dynamic process, as the retina detaches a few minutes after life ceases. The adhesion mechanisms described in the literature, such as intraocular pressure and the oncotic pressure of the choroid that seems to push the retina towards the choroid, the delicate anatomical relationships between the rod and cone photoreceptors, the retinal pigment epithelium, the existence of a complex material called interphotoreceptor matrix, as well as other metabolic and structural factors, still cannot explain the remarkable features observed in the adhesion mechanisms between the photoreceptor layer and retinal pigment epithelium cells. The unexpected intrinsic property of melanin to absorb light energy and transform it into chemically based free energy can explain normal adhesion of the sensory retina to the pigment epithelium. In this article, we explore and highlight this explanation, which states that it is definitely able to provide a new treatment avenue against devastating neurodegenerative properties.

  8. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice

    Directory of Open Access Journals (Sweden)

    Francesco eTamagnini

    2015-10-01

    Full Text Available Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ species in the brain’s parenchyma and is a key histopathological hallmark of Alzheimer’s disease (AD. Work on transgenic mice that overexpress A suggests that elevated A levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene compared to their age-matched WT littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated sag were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective reduction and increase of Na+ and K+ voltage-gated channels maximal conductances. Finally, the after-hyperpolarization (AHP, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice.These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP, they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time

  9. Intrinsic frequency response patterns in mechano-sensory neurons of the leech

    Directory of Open Access Journals (Sweden)

    Linda Fischer

    2017-07-01

    Full Text Available Animals employ mechano-sensory systems to detect and explore their environment. Mechano-sensation encompasses stimuli such as constant pressure, surface movement or vibrations at various intensities that need to be segregated in the central nervous system. Besides different receptor structures, sensory filtering via intrinsic response properties could provide a convenient way to solve this problem. In leech, three major mechano-sensory cell types can be distinguished, according to their stimulus sensitivity, as nociceptive, pressure and touch cells. Using intracellular recordings, we show that the different mechano-sensory neuron classes in Hirudo medicinalis differentially respond supra-threshold to distinct frequencies of sinusoidal current injections between 0.2 and 20 Hz. Nociceptive cells responded with a low-pass filter characteristic, pressure cells as high-pass filters and touch cells as an intermediate band-pass filter. Each class of mechano-sensory neurons is thus intrinsically tuned to a specific frequency range of voltage oscillation that could help segregate mechano-sensory information centrally.

  10. Intrinsic frequency response patterns in mechano-sensory neurons of the leech.

    Science.gov (United States)

    Fischer, Linda; Scherbarth, Frank; Chagnaud, Boris; Felmy, Felix

    2017-07-15

    Animals employ mechano-sensory systems to detect and explore their environment. Mechano-sensation encompasses stimuli such as constant pressure, surface movement or vibrations at various intensities that need to be segregated in the central nervous system. Besides different receptor structures, sensory filtering via intrinsic response properties could provide a convenient way to solve this problem. In leech, three major mechano-sensory cell types can be distinguished, according to their stimulus sensitivity, as nociceptive, pressure and touch cells. Using intracellular recordings, we show that the different mechano-sensory neuron classes in Hirudo medicinalis differentially respond supra-threshold to distinct frequencies of sinusoidal current injections between 0.2 and 20 Hz. Nociceptive cells responded with a low-pass filter characteristic, pressure cells as high-pass filters and touch cells as an intermediate band-pass filter. Each class of mechano-sensory neurons is thus intrinsically tuned to a specific frequency range of voltage oscillation that could help segregate mechano-sensory information centrally. © 2017. Published by The Company of Biologists Ltd.

  11. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...... min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold...... NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers...

  12. The use of thallium diethyldithiocarbamate for mapping CNS potassium metabolism and neuronal activity: Tl+ -redistribution, Tl+ -kinetics and Tl+ -equilibrium distribution.

    Science.gov (United States)

    Wanger, Tim; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2012-07-01

    The potassium (K(+)) analogue thallium (Tl(+)) can be used as a tracer for mapping neuronal activity. However, because of the poor blood-brain barrier (BBB) K(+) -permeability, only minute amounts of Tl(+) enter the brain after systemic injection of Tl(+) -salts like thallium acetate (TlAc). We have recently shown that it is possible to overcome this limitation by injecting animals with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC), that crosses the BBB and releases Tl(+) prior to neuronal or glial uptake. TlDDC can thus be used for mapping CNS K(+) metabolism and neuronal activity. Here, we analyze Tl(+) -kinetics in the rodent brain both experimentally and using simple mathematical models. We systemically injected animals either with TlAc or with TlDDC. Using an autometallographic method we mapped the brain Tl(+) -distribution at various time points after injection. We show that the patterns and kinetics of Tl(+) -redistribution in the brain are essentially the same irrespective of whether animals have been injected with TlAc or TlDDC. Data from modeling and experiments indicate that transmembrane Tl(+) -fluxes in cells within the CNS in vivo equilibrate at similar rates as K(+) -fluxes in vitro. This equilibration is much faster than and largely independent of the equilibration of Tl(+) -fluxes across the BBB. The study provides further proof-of-concept for the use of TlDDC for mapping neuronal activity and CNS K(+) -metabolism. A theoretical guideline is given for the use of K(+) -analogues for imaging neuronal activity with general implications for the use of metal ions in neuroimaging. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  13. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  14. A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug Onchidium

    Directory of Open Access Journals (Sweden)

    Tsukasa Gotow

    2009-12-01

    Full Text Available Simple photoreceptors, namely intrinsically light-sensitive neurons without microvilli and/or cilia, have long been known to exist in the central ganglia of crayfish, Aplysia, Onchidium, and Helix. These simple photoreceptors are not only first-order photosensory cells, but also second-order neurons (interneurons, relaying several kinds of sensory synaptic inputs. Another important issue is that the photoresponses of these simple photoreceptors show very slow kinetics and little adaptation. These characteristics suggest that the simple photoreceptors of the Onchidium have a function in non-image-forming vision, different from classical eye photoreceptors used for cording dynamic images of vision. The cited literature provides evidence that the depolarizing and hyperpolarizing photoresponses of simple photoreceptors play a role in the long-lasting potentiation of synaptic transmission of excitatory and inhibitory sensory inputs, and as well as in the potentiation and the suppression of the subsequent behavioral outputs. In short, we suggest that simple photoreceptors operate in the general potentiation of synaptic transmission and subsequent motor output; i.e., they perform a new photosensory function.

  15. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Kjaerulff, O; Tresch, M C

    2000-01-01

    showing that the neonatal rat spinal cord can produce a stable motor rhythm in the absence of spike activity in premotor interneuronal networks. These coordinated motor neuron oscillations are dependent on NMDA-evoked pacemaker properties, which are synchronized across gap junctions. We discuss...... the functional relevance for such coordinated oscillations in immature and mature spinal motor systems.......Motor neurons are endowed with intrinsic and conditional membrane properties that may shape the final motor output. In the first half of this paper we present data on the contribution of I(h), a hyperpolarization-activated inward cation current, to phase-transition in motor neurons during rhythmic...

  16. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Kjaerulff, O; Tresch, M C

    2000-01-01

    Motor neurons are endowed with intrinsic and conditional membrane properties that may shape the final motor output. In the first half of this paper we present data on the contribution of I(h), a hyperpolarization-activated inward cation current, to phase-transition in motor neurons during rhythmic...... firing. Motor neurons were recorded intracellularly during locomotion induced with a mixture of N-methyl-D-aspartate (NMDA) and serotonin, after pharmacological blockade of I(h). I(h) was then replaced by using dynamic clamp, a computer program that allows artificial conductances to be inserted into real...... neurons. I(h) was simulated with biophysical parameters determined in voltage clamp experiments. The data showed that electronic replacement of the native I(h) caused a depolarization of the average membrane potential, a phase-advance of the locomotor drive potential, and increased motor neuron spiking...

  17. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors.

    Science.gov (United States)

    Zhang, D; Wang, X; Wang, B; Garza, J C; Fang, X; Wang, J; Scherer, P E; Brenner, R; Zhang, W; Lu, X-Y

    2017-07-01

    Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD.

  18. TNF-α Mediates the Intrinsic and Extrinsic Pathway in Propofol-Induced Neuronal Apoptosis Via PI3K/Akt Signaling Pathway in Rat Prefrontal Cortical Neurons.

    Science.gov (United States)

    Deng, Xiaoyuan; Chen, Bo; Wang, Bin; Zhang, Junfang; Liu, Hongliang

    2017-10-01

    Propofol can cause developing neuronal apoptosis in both in vivo and in vitro studies, and the mechanism is unclear till now. Our previous study has demonstrated that propofol can increase the TNF-α expression in the prefrontal cortex in rat developing brain, the TNF-α antagonist, etanercept, can inhibit propofol-induced neuronal apoptosis, but little is known about how TNF-α mediates that process. This study reveals that propofol at clinically relevant concentrations increases the TNF-α synthesis and release in neurons, and induces neuronal apoptosis; etanercept significantly reduces neuronal apoptosis, the elevation of cleaved caspase-8 and cleaved caspase-9, or the Akt phosphorylation induced by propofol, while the selective PI3K antagonist blocks the neuroprotection of etanercept. Propofol does not change the expression of P2X7 receptor in neurons, and the P2X7 receptor antagonist cannot affect the TNF-α synthesis or release after propofol treatment. These results suggest that propofol can increase the synthesis and release of TNF-α in the primary cultured prefrontal cortical neurons, TNF-α contributes to the intrinsic and extrinsic pathway in propofol-induced neuronal apoptosis via PI3K/Akt signaling pathway, and P2X7R is not involved in the synthesis and release of TNF-α induced by propofol.

  19. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available Neonatal white matter injury (nWMI is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life

  20. Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species.

    Science.gov (United States)

    Schroedl, Falk; De Stefano, M Egle; Reese, Sven; Brehmer, Axel; Neuhuber, Winfried L

    2004-02-01

    Intrinsic choroidal neurons (ICN) represent a peculiar feature of eyes in higher primates and birds. They account for up to 2000 in human and duck eyes but are virtually absent or rare in all other mammalian species investigated so far. It has been suggested that ICN are involved in regulation of ocular blood supply, hence influencing intraocular pressure, and changes in choroidal thickness, thus influencing accommodation. The present study was undertaken in order to compare differences in various avian species with respect to ICN as well as to provide data on some avian species relevant for experimental ophthalmic research, i.e. chicken and quail. Choroids from 12 avian species were processed for NADPH-diaphorase histochemistry or, in some cases, neuronal nitric oxide synthase immunocytochemistry. ICN were quantified and normalized to mean choroidal area. Three choroids of each galliformes (i.e. chicken, quail, turkey) and anseriformes (i.e. Muscovy duck, Mallard duck, goose) were rastered in squares of 1 mm2 and x/y coordinates were transferred into a 3D-diagram with the amount of ICN represented in the z-axis. ICN were detected in all species investigated. They were predominantly small cells with soma diameters of 20-30 microm. In turkey, and to a lesser amount in chicken, a subpopulation of ICN with somal diameters of up to 70 microm was observed. Highest mean cell counts were found in goose (6195.4; turkey 3558.4; chicken 1681.4; Muscovy duck 785.4; Mallard duck 640.8; quail 440.2). Normalized to choroidal area, highest mean cell counts were (per mm2): 12.62 in goose, 4.42 in both chicken and turkey, 2.86 in quail, 2.66 in Mallard duck and 1.89 in Muscovy duck. In galliformes, ICN were found to be accumulated temporo-cranial, while in anseriformes they were arranged in a more belt-like fashion, passing from cranio-nasal to temporo-caudal. Our results show that besides Muscovy duck, other avian species appear as suitable models for further functional

  1. CNS and inflammation

    African Journals Online (AJOL)

    EL-HAKIM

    overproduction8. The most intense interest in inflammation in the. CNS has arisen from its potential role in diseases including acute brain injury, stroke, epilepsy, multiple sclerosis, motor neurone disease, movement disorders, and more recently some psychiatric disorders such as depression, anxiety and schizophrenia.

  2. A Ground-Based Analog for CNS Exposure to Space Radiation: A System for Integrating Microbeam Technology and Neuronal Culture

    Data.gov (United States)

    National Aeronautics and Space Administration — Problem Statement: The connection between radiation-induced neuronal damage and deficits in behavior and cellular function is still largely unknown. Previous studies...

  3. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  4. Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences.

    Directory of Open Access Journals (Sweden)

    Andreas M Grabrucker

    Full Text Available Intact synaptic function and plasticity are fundamental prerequisites to a healthy brain. Therefore, synaptic proteins are one of the major targets for drugs used as neuro-chemical therapeutics. Unfortunately, the majority of drugs is not able to cross the blood-brain barrier (BBB and is therefore distributed within the CNS parenchyma. Here, we report the development of novel biodegradable Nanoparticles (NPs, made of poly-lactide-co-glycolide (PLGA conjugated with glycopeptides that are able to cross the BBB and deliver for example Zn(2+ ions. We also provide a thorough characterization of loaded and unloaded NPs for their stability, cellular uptake, release properties, toxicity, and impact on cell trafficking. Our data reveal that these NPs are biocompatible, and can be used to elevate intracellular levels of Zn(2+. Importantly, by engineering the surface of NPs with antibodies against NCAM1 and CD44, we were able to selectively target neurons or glial cells, respectively. Our results indicate that these biodegradable NPs provide a potential new venue for the delivery Zn(2+ to the CNS and thus a means to explore the influence of altered zinc levels linked to neuropsychological disorders such as depression.

  5. Calcium-sensing receptor antagonist NPS2390 attenuates neuronal apoptosis though intrinsic pathway following traumatic brain injury in rats.

    Science.gov (United States)

    Xue, Zhaoliang; Song, Zhengfei; Wan, Yingfeng; Wang, Kun; Mo, Lianjie; Wang, Yirong

    2017-04-29

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. Previous study indicates that calcium-sensing receptor (CaSR) activation contributes to neuron death in focal cerebral ischemia-reperfusion mice, however, its role in neuronal apoptosis after TBI is not well-established. Using a controlled cortical impact model in rats, the present study was designed to determine the effect of CaSR inhibitor NPS2390 upon neuronal apoptosis after TBI. Rats were randomly distributed into three groups undergoing the sham surgery or TBI procedure, and NPS2390 (1.5 mg/kg) was infused subcutaneously at 30 min and 120 min after TBI. All rats were sacrificed at 24 h after TBI. Our data indicated that NPS2390 significantly reduced the brain edema and improved the neurological function after TBI. In addition, NPS2390 decreased caspase-3 levels and the number of apoptotic neurons. Furthermore, NPS2390 up-regulated anti-apoptotic protein Bcl-2 expression and down-regulated pro-apoptotic protein Bax, and reduced subsequent release of cytochrome c into the cytosol. In summary, this study indicated that inhibition of CaSR by NPS2390 attenuates neuronal apoptosis after TBI, in part, through modulating intrinsic apoptotic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 125I-labelled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS

    International Nuclear Information System (INIS)

    Dimpfel, W.; Neale, J.H.; Habermann, E.; National Inst. of Child Health and Human Development, Bethesda, Md.

    1975-01-01

    Primary cultures derived from embryonic mouse brain and spinal cord were exposed to 125 I-labelled tetanus toxin and subjected to autoradioraphy. Cells with neuronal, bur not glial, morphology selectively accumulated the toxin. The distribution of the grains over these cells and their processes was not uniform, discrete processes showing heavier labelling. (orig.) [de

  7. Analysis of the role of the low threshold currents IT and Ih in intrinsic delta oscillations of thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Yimy eAmarillo

    2015-05-01

    Full Text Available Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.

  8. Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus and Vesicular Stomatitis Virus Replication in Sensory Neurons and Fibroblasts

    Science.gov (United States)

    Rosato, Pamela C.

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence

  9. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Directory of Open Access Journals (Sweden)

    Ouafa Benzina

    Full Text Available Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  10. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Science.gov (United States)

    Benzina, Ouafa; Cloitre, Thierry; Martin, Marta; Raoul, Cédric; Gergely, Csilla; Scamps, Frédérique

    2014-01-01

    Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  11. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients' responsiveness to lithium.

    Science.gov (United States)

    Stern, S; Santos, R; Marchetto, M C; Mendes, A P D; Rouleau, G A; Biesmans, S; Wang, Q-W; Yao, J; Charnay, P; Bang, A G; Alda, M; Gage, F H

    2017-02-28

    Bipolar disorder (BD) is a progressive psychiatric disorder with more than 3% prevalence worldwide. Affected individuals experience recurrent episodes of depression and mania, disrupting normal life and increasing the risk of suicide greatly. The complexity and genetic heterogeneity of psychiatric disorders have challenged the development of animal and cellular models. We recently reported that hippocampal dentate gyrus (DG) neurons differentiated from induced pluripotent stem cell (iPSC)-derived fibroblasts of BD patients are electrophysiologically hyperexcitable. Here we used iPSCs derived from Epstein-Barr virus-immortalized B-lymphocytes to verify that the hyperexcitability of DG-like neurons is reproduced in this different cohort of patients and cells. Lymphocytes are readily available for research with a large number of banked lines with associated patient clinical description. We used whole-cell patch-clamp recordings of over 460 neurons to characterize neurons derived from control individuals and BD patients. Extensive functional analysis showed that intrinsic cell parameters are very different between the two groups of BD neurons, those derived from lithium (Li)-responsive (LR) patients and those derived from Li-non-responsive (NR) patients, which led us to partition our BD neurons into two sub-populations of cells and suggested two different subdisorders. Training a Naïve Bayes classifier with the electrophysiological features of patients whose responses to Li are known allows for accurate classification with more than 92% success rate for a new patient whose response to Li is unknown. Despite their very different functional profiles, both populations of neurons share a large, fast after-hyperpolarization (AHP). We therefore suggest that the large, fast AHP is a key feature of BD and a main contributor to the fast, sustained spiking abilities of BD neurons. Confirming our previous report with fibroblast-derived DG neurons, chronic Li treatment reduced

  12. Neurons under viral attack: victims or warriors?

    Science.gov (United States)

    Chakraborty, Swarupa; Nazmi, Arshed; Dutta, Kallol; Basu, Anirban

    2010-01-01

    When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Griffey, Megan A; Wozniak, David; Wong, Michael; Bible, Ellen; Johnson, Kendra; Rothman, Steven M; Wentz, Annie E; Cooper, Jonathan D; Sands, Mark S

    2006-03-01

    The neuronal ceroid lipofuscinoses (Batten disease) are a group of inherited neurodegenerative diseases characterized by the progressive intralysosomal accumulation of autofluorescent material in many cells, visual defects, seizures, cognitive deficits, and premature death. Infantile neuronal ceroid lipofuscinosis (INCL) has the earliest onset ( approximately 1.5 years of age) and is caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). Currently there is no effective treatment for children with INCL. In this study, newborn PPT1-deficient mice received two (cortex), four (cortex and hippocampus), or six (cortex, hippocampus, and cerebellum) bilateral intracranial injections of AAV2-PPT1. The AAV-treated animals had localized increases in PPT1 activity, decreased autofluorescent material, improved histologic parameters, and increased brain mass. In addition, the treated animals had dose-dependent improvements in a battery of behavioral tests and improved interictal electroencephalographic tracings. However, there was neither a significant decrease in seizure frequency nor an increase in longevity even in INCL animals receiving six injections. These data suggest that early treatment of INCL using gene transfer techniques can be efficacious. However, higher levels or a broader distribution of PPT1 expression, or both, will be required for more complete correction of this neurodegenerative disease.

  14. Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral Sclerosis Patient-Derived Motor Neurons

    Directory of Open Access Journals (Sweden)

    Brian J. Wainger

    2014-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1, C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.

  15. Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sonja Kallendrusch

    Full Text Available The endocannabinoid 2-arachidonoyl glycerol (2-AG acts as a retrograde messenger and modulates synaptic signaling e. g. in the hippocampus. 2-AG also exerts neuroprotective effects under pathological situations. To better understand the mechanism beyond physiological signaling we used Organotypic Entorhino-Hippocampal Slice Cultures (OHSC and investigated the temporal regulation of 2-AG in different cell subsets during excitotoxic lesion and dendritic lesion of long range projections in the enthorhinal cortex (EC, dentate gyrus (DG and the cornu ammonis region 1 (CA1.2-AG levels were elevated 24 h after excitotoxic lesion in CA1 and DG (but not EC and 24 h after perforant pathway transection (PPT in the DG only. After PPT diacylglycerol lipase alpha (DAGL protein, the synthesizing enzyme of 2-AG was decreased when Dagl mRNA expression and 2-AG levels were enhanced. In contrast to DAGL, the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MAGL showed no alterations in total protein and mRNA expression after PPT in OHSC. MAGL immunoreaction underwent a redistribution after PPT and excitotoxic lesion since MAGL IR disappeared in astrocytes of lesioned OHSC. DAGL and MAGL immunoreactions were not detectable in microglia at all investigated time points. Thus, induction of the neuroprotective endocannabinoid 2-AG might be generally accomplished by down-regulation of MAGL in astrocytes after neuronal lesions.Increase in 2-AG levels during secondary neuronal damage reflects a general neuroprotective mechanism since it occurred independently in both different lesion models. This intrinsic up-regulation of 2-AG is synergistically controlled by DAGL and MAGL in neurons and astrocytes and thus represents a protective system for neurons that is involved in dendritic reorganisation.

  16. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  17. Mechanisms of gain control by voltage-gated channels in intrinsically-firing neurons.

    Directory of Open Access Journals (Sweden)

    Ameera X Patel

    Full Text Available Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density of voltage-gated channels increased (Ca2+ channel, reduced (K+ channels, or produced little effect (h-type channel on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing. For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other

  18. Mechanisms of gain control by voltage-gated channels in intrinsically-firing neurons.

    Science.gov (United States)

    Patel, Ameera X; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems.

  19. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  20. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    Science.gov (United States)

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used in this study showed that extrinsic and intrinsic cardiac neurones which possess P2 receptors can greatly enhance cardiac myocyte contractile rate when activated by ATP. Since adenosine reduced contractile rate in both types of co-cultures while not affecting non-innervated myocytes, it is concluded that some of these neurones possess P1 receptors.

  1. Dopamine Inhibits High-Frequency Stimulation-Induced Long-Term Potentiation of Intrinsic Excitability in CA1 Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Chun-ling Wei

    2012-09-01

    Full Text Available The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate of learning. Besides, behavioral learning often involves action of reinforcement or rewarding mediated by dopamine (DA. Here, we examined how DA influences the intrinsic plasticity of CA1 hippocampal pyramidal neurons when high-frequency stimulation (HFS was applied to Schaffer collaterals. The results showed that DA inhibits the decrease in rheobase and increase in mean firing rate of pyramidal neurons induced by HFS, and that this inhibition was abolished by the D1-like receptor antagonist SCH23390 but not by the D2-like receptor antagonist sulpiride. The results suggest that DA inhibits the potentiation of excitability induced by presynaptic HFS, and that this inhibition depends on the activation of D1-like receptors.

  2. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus

    Science.gov (United States)

    Gu, Changgui; Yang, Huijie; Wang, Man

    2017-11-01

    Living beings on the Earth are subjected to and entrained (synchronized) to the natural 24-h light-dark cycle. Interestingly, they can also be entrained to an external artificial cycle of non-24-h periods. The range of these periods is called the entrainment range and it differs among species. In mammals, the entrainment range is regulated by a main clock located in the suprachiasmatic nucleus (SCN) which is composed of 10 000 neurons in the brain. Previous works have found that the entrainment range depends on the cellular coupling strength in the SCN. In particular, the entrainment range decreases with the increase of the cellular coupling strength, provided that all the neuronal oscillators are identical. However, the SCN neurons differ in the intrinsic periods that follow a normal distribution in a range from 22 to 28 h. In the present study, taking the dispersion of the intrinsic neuronal periods into account, we examined the relationship between the entrainment range and the coupling strength. Results from numerical simulations and theoretical analyses both show that the relationship is altered to be paraboliclike if the intrinsic neuronal periods are nonidentical, and the maximal entrainment range is obtained with a suitable coupling strength. Our results shed light on the role of the cellular coupling in the entrainment ability of the SCN network.

  3. Learning intrinsic excitability in medium spiny neurons [v2; ref status: indexed, http://f1000r.es/30b

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2014-02-01

    Full Text Available We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP. The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.

  4. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L.

    2015-01-01

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC–BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted fear conditioning. SIGNIFICANCE STATEMENT Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change

  5. Supratentorial CNS malformations

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2012-01-01

    Full text: Clinical suspicion of a developmental anomaly of the central nervous system (CNS) is a frequent indication for performing and magnetic resonance imaging (MRI) examination of the brain. Classification systems for malformation of the CNS are constantly revised according to newer scientific research. Developmental abnormalities can be classified in two main types. The first category consists of disorders of organogenesis in which genetic defects or any ischemic, metabolic, toxic or infectious insult to the developing brain can cause malformation. These malformations result from abnormal neuronal and glial proliferation and from anomalies of neuronal migration and or cortical organization. They are divided into supra- and infratentorial and may involve grey or white matter or both. The second category of congenital brain abnormalities is disorders of histogenesis which result from abnormal cell differentiation with a relatively normal brain appearance. Supratentorial CNS malformations could be divided into anomalies in telencephalic commissure, holoprosencephalies and malformations in cortical development. There are three main telencephalic commissures: the anterior commissure, the hippocampal commissure and the corpus callosum. Their morphology (hypoplasia, hyperplasia, agenesis, dysgenesis, even atrophy) reflects the development of the brain. Their agenesis, complete or partial, is one of the most commonly observed features in the malformations of the brain and is a part of many syndromes. Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development. The common clinical presentation is refractory epilepsy and or developmental delay. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria, schizencephaly, pachygyria and lizencephaly. The exact knowledge of the brain anatomy and embryology is mandatory to provide a better apprehension of the

  6. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    Directory of Open Access Journals (Sweden)

    Min Jung Kwon

    2016-01-01

    Full Text Available Axons in central nervous system (CNS do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif ligand 2 (CCL2 seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs. Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  7. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice.

    Science.gov (United States)

    Snow, Wanda M; Anderson, Judy E; Fry, Mark

    2014-01-01

    Cerebellar subregions are recognized as having specialized roles, with lateral cerebellum considered crucial for cognitive processing, whereas vermal cerebellum is more strongly associated with motor control. In human Duchenne muscular dystrophy, loss of the cytoskeletal protein dystrophin is thought to cause impairments in cognition, including learning and memory. Previous studies demonstrate that loss of dystrophin causes dysfunctional signaling at γ-aminobutyric acid (GABA) synapses on Purkinje neurons, presumably by destabilization of GABAA receptors. However, potential differences in the intrinsic electrophysiological properties of Purkinje neurons, including membrane potential and action potential firing rates, have not been investigated. Here, using a 2×2 analysis of variance (ANOVA) experimental design, we employed patch clamp analysis to compare membrane properties and action potentials generated by acutely dissociated Purkinje neurons from vermal and lateral cerebellum in wild-type (WT) mice and mdx dystrophin-deficient mice. Compared to Purkinje neurons from WT mice, neurons from mdx mice exhibited more irregular action potential firing and a hyperpolarization of the membrane potential. Firing frequency was also lower in Purkinje neurons from the lateral cerebellum of mdx mice relative to those from WT mice. Several action potential waveform parameters differed between vermal and lateral Purkinje neurons, irrespective of dystrophin status, including action potential amplitude, slope (both larger in the vermal region), and duration (shorter in the vermal region). Moreover, the membrane potential of Purkinje neurons from the vermal region of WT mice exhibited a significant hyperpolarization and concurrent reduction in the frequency of spontaneous action potentials compared to Purkinje neurons from the lateral region. This regional hyperpolarization and reduction in spontaneous action potential frequency was abolished in mdx mice. These results from mice

  8. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Neonatal Hippocampal Neurons from PrP−/− Mice

    Directory of Open Access Journals (Sweden)

    Jing eFan

    2016-03-01

    Full Text Available Genetic ablation of cellular prion protein (PrPC has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR function. Here, we focused on the effect of PRNP gene knock-out (KO on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN channel blocker ZD7288 (100 µM. HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih, was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  9. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  10. Neuronal correlates of "free will" are associated with regional specialization in the human intrinsic/default network.

    Science.gov (United States)

    Goldberg, Ilan; Ullman, Shimon; Malach, Rafael

    2008-09-01

    Recently, we proposed a fundamental subdivision of the human cortex into two complementary networks-an "extrinsic" one which deals with the external environment, and an "intrinsic" one which largely overlaps with the "default mode" system, and deals with internally oriented and endogenous mental processes. Here we tested this hypothesis by contrasting decision making under external and internally-derived conditions. Subjects were presented with an external cue, and were required to either follow an external instruction ("determined" condition) or to ignore it and follow a voluntary decision process ("free-will" condition). Our results show that a well defined component of the intrinsic system-the right inferior parietal cortex-was preferentially activated during the "free-will" condition. Importantly, this activity was significantly higher than the base-line resting state. The results support a self-related role for the intrinsic system and provide clear evidence for both hemispheric and regional specialization in the human intrinsic system.

  11. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  12. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis.

    Science.gov (United States)

    Scekic-Zahirovic, Jelena; Oussini, Hajer El; Mersmann, Sina; Drenner, Kevin; Wagner, Marina; Sun, Ying; Allmeroth, Kira; Dieterlé, Stéphane; Sinniger, Jérôme; Dirrig-Grosch, Sylvie; René, Frédérique; Dormann, Dorothee; Haass, Christian; Ludolph, Albert C; Lagier-Tourenne, Clotilde; Storkebaum, Erik; Dupuis, Luc

    2017-06-01

    Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.

  13. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    Directory of Open Access Journals (Sweden)

    Mary J. Eaton

    2012-01-01

    Full Text Available Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA and serotonin (5HT, respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury and CNS (spinal cord injury damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.

  14. Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts

    NARCIS (Netherlands)

    Armour, JA; Linderoth, B; Arora, RC; DeJongste, MJL; Ardell, JL; Kingma, JG; Hill, M; Foreman, RD

    2002-01-01

    Electrical excitation of the dorsal aspect of the rostral thoracic spinal cord imparts long-term therapeutic benefits to patients with angina pectoris. Such spinal cord stimulation also induces short-term suppressor effects on the intrinsic cardiac nervous system. The purpose of this study was to

  15. Role of ongoing, intrinsic activity of neuronal populations for quantitative neuroimaging of functional magnetic resonance imaging-based networks.

    Science.gov (United States)

    Hyder, Fahmeed; Herman, Peter; Sanganahalli, Basavaraju G; Coman, Daniel; Blumenfeld, Hal; Rothman, Douglas L

    2011-01-01

    A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI-conducted with or without tasks-is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMR(O2)). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMR(O2) and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMR(O2).

  16. Role of Ongoing, Intrinsic Activity of Neuronal Populations for Quantitative Neuroimaging of Functional Magnetic Resonance Imaging–Based Networks

    Science.gov (United States)

    Herman, Peter; Sanganahalli, Basavaraju G.; Coman, Daniel; Blumenfeld, Hal; Rothman, Douglas L.

    2011-01-01

    Abstract A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI—conducted with or without tasks—is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMRO2). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMRO2 and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMRO2. PMID:22433047

  17. Inflammation in CNS Neurodegenerative Diseases.

    Science.gov (United States)

    Stephenson, Jodie; Nutma, Erik; van der Valk, Paul; Amor, Sandra

    2018-03-07

    Neurodegenerative diseases, the leading cause of morbidity and disability is gaining increased attention as it imposes a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies e.g. infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. ABC transporters in the CNS - an inventory.

    Science.gov (United States)

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  19. Rapid eye movement sleep loss induces neuronal apoptosis in the rat brain by noradrenaline acting on alpha 1-adrenoceptor and by triggering mitochondrial intrinsic pathway

    Directory of Open Access Journals (Sweden)

    Bindu I Somarajan

    2016-03-01

    cytochrome c to activate intrinsic pathway for inducing neuronal apoptosis in REMS deprived rat brain.

  20. Role of the intraluminal contents and the continuity of intrinsic neurons in intracolonic capsaicin-induced contraction and defecation in dogs.

    Science.gov (United States)

    Kikuchi, Daisuke; Shibata, Chikashi; Imoto, Hirofumi; Someya, Soutoku; Miyachi, Tomohiro; Miura, Koh; Naitoh, Takeshi; Unno, Michiaki

    2014-01-01

    We, herein, examined the role of the intraluminal contents and continuity of colonic intrinsic neurons in intracolonic capsaicin-induced enhancement of colonic motility and defecation. Five beagle dogs were equipped with three strain gauge force transducers throughout the colon. The colonic contractile activity in response to intracolonic capsaicin was studied in intact dogs, dogs after colonic cleansing and dogs with transection/re-anastomosis (T/R) between the proximal and middle colon. The effects of intravenous yohimbine, a α2 adrenergic antagonist, on the colonic motility and defecation were also studied in the same models. In intact dogs, capsaicin (10 mg) and yohimbine (2 mg/kg) immediately induced contractions throughout the colon, with defecation occurring in all experiments. In dogs after colonic cleansing and T/R, the capsaicin (10 mg)-induced enhancement of colonic motility was decreased in the middle and distal colon, and capsaicin-induced defecation was observed in 0-20 % of experiments (p continuity of the colonic intrinsic nerves as well as the intraluminal contents appear to play an important role in the colonic motor response to intracolonic capsaicin.

  1. A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera)

    Science.gov (United States)

    Farris, Sarah M.; Pettrey, Colleen; Daly, Kevin C.

    2010-01-01

    Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca. PMID:21040804

  2. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    Science.gov (United States)

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  3. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    Science.gov (United States)

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  4. Gas Diffusion in the CNS.

    Science.gov (United States)

    Rodriguez-Grande, Beatriz; Konsman, Jan-Pieter

    2018-02-01

    Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH 3 and discuss the possible implications of NH 3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology. © 2017 Wiley Periodicals, Inc.

  5. Neuronal and glial purinergic receptors functions in neuron development and brain disease.

    Directory of Open Access Journals (Sweden)

    Ana edel Puerto

    2013-10-01

    Full Text Available Brain development requires the interaction of complex signalling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of CNS development, these cells fulfilling an intrinsic programme that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron-glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of Nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the

  6. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development.

    Science.gov (United States)

    Le Berre-Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel; Boudin, Hélène

    2017-01-15

    Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were

  7. CNS repair and axon regeneration: Using genetic variation to determine mechanisms.

    Science.gov (United States)

    Tedeschi, Andrea; Omura, Takao; Costigan, Michael

    2017-01-01

    The importance of genetic diversity in biological investigation has been recognized since the pioneering studies of Gregor Johann Mendel and Charles Darwin. Research in this area has been greatly informed recently by the publication of genomes from multiple species. Genes regulate and create every part and process in a living organism, react with the environment to create each living form and morph and mutate to determine the history and future of each species. The regenerative capacity of neurons differs profoundly between animal lineages and within the mammalian central and peripheral nervous systems. Here, we discuss research that suggests that genetic background contributes to the ability of injured axons to regenerate in the mammalian central nervous system (CNS), by controlling the regulation of specific signaling cascades. We detail the methods used to identify these pathways, which include among others Activin signaling and other TGF-β superfamily members. We discuss the potential of altering these pathways in patients with CNS damage and outline strategies to promote regeneration and repair by combinatorial manipulation of neuron-intrinsic and extrinsic determinants. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. CNS Macrophages Control Neurovascular Development via CD95L

    Directory of Open Access Journals (Sweden)

    Si Chen

    2017-05-01

    Full Text Available The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.

  9. CNS Tumors in Neurofibromatosis.

    Science.gov (United States)

    Campian, Jian; Gutmann, David H

    2017-07-20

    Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.

  10. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  11. Management of CNS tumors

    International Nuclear Information System (INIS)

    Griem, M.L.

    1987-01-01

    The treatment of tumors of the CNS has undergone a number of changes based on the impact of CT. The use of intraoperative US for the establishment of tumor location and tumor histology is demonstrated. MR imaging also is beginning to make an impact on the diagnosis and treatment of tumors of the CNS. Examples of MR images are shown. The authors then discuss the important aspects of tumor histology as it affects management and newer concepts in surgery, radiation, and chemotherapy on tumor treatment. The role of intraoperative placement of radioactive sources, the utilization of heavy particle radiation therapy, and the potential role of other experimental radiation therapy techniques are discussed. The role of hyperfractionated radiation and of neutrons and x-ray in a mixed-beam treatment are discussed in perspective with standard radiation therapy. Current chemotherapy techniques, including intraarterial chemotherapy, are discussed. The complications of radiation therapy alone and in combination with chemotherapy in the management of primary brain tumors, brain metastases, and leukemia are reviewed. A summary of the current management of pituitary tumors, including secreting pituitary adenomas and chromophobe adenomas, are discussed. The treatment with heavy particle radiation, transsphenoidal microsurgical removal, and combined radiotherapeutic and surgical management are considered. Tumor metastasis management of lesions of the brain and spinal cord are considered

  12. Role of purinergic receptors in CNS function and neuroprotection.

    Science.gov (United States)

    Tozaki-Saitoh, Hidetoshi; Tsuda, Makoto; Inoue, Kazuhide

    2011-01-01

    The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Flavonoids and the CNS

    DEFF Research Database (Denmark)

    Jäger, Anna Katharina; Saaby, Lasse

    2011-01-01

    Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure....... Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic ß-glucocidase. The absorbed aglycone is then conjugated by methylation......, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABA(A)-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine...

  14. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors.

    Science.gov (United States)

    Bedi, Supinder S; Lago, Michael T; Masha, Luke I; Crook, Robyn J; Grill, Raymond J; Walters, Edgar T

    2012-03-20

    Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.

  15. Isolated vasculitis of the CNS

    International Nuclear Information System (INIS)

    Block, F.; Reith, W.

    2000-01-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [de

  16. Intrinsic Motivation.

    Science.gov (United States)

    the activity. There has been very little research and theorizing which considers the topic of intrinsic motivation , yet there is a substantial amount...reported within the framework of intrinsic motivation , yet the paper reinterprets the work within that framework. It considers several approaches of

  17. Flavonoids and the CNS

    Directory of Open Access Journals (Sweden)

    Anna K. Jäger

    2011-02-01

    Full Text Available Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure. Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic β-glucocidase. The absorbed aglycone is then conjugated by methylation, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABAA-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine oxidase A or B, thereby working as anti-depressants or to improve the conditions of Parkinson’s patients. Flavanols, flavanones and anthocyanidins have protective effects preventing inflammatory processes leading to nerve injury. Flavonoids seem capable of influencing health and mood.

  18. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently......, there is no cure for MS, however a standard first-line therapy is recombinant interferon (IFN)-beta. IFN-beta belongs to the family of type I IFNs, which also include IFN-alpha. These engage to one common receptor, IFNAR. Type I IFNs can be induced by several innate immune receptors, including toll-like receptors...... mass homeostasis. Whether RANK-signaling is capable of inducing type I IFNs within the CNS has not yet been studied. Preliminary data from IFN-beta-luciferase reporter mice already show that RANK-signaling by intrathecally applied RANKL can induce CNS-endogenous IFN-beta. Experiments in IFN...

  19. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Moldovan, Mihai; Marklund, Stefan L.

    2010-01-01

    Aim: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motoneurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motoneurones in various superoxide dismutase-1 (SOD1) mutant mi...... of an increased PIC and less spike frequency adaptation which may contribute to excitotoxity of these neurones as the disease progresses.......Aim: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motoneurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motoneurones in various superoxide dismutase-1 (SOD1) mutant mice...

  20. Application of empowerment theory for CNS practice.

    Science.gov (United States)

    Carlson-Catalano, J M

    1993-11-01

    Power is necessary for the clinical nurse specialist (CNS) to successfully conduct objectives of practice in bureaucratic hospital settings. To obtain power, the CNS could use strategies of an empowerment theory to fully operationalize roles in hospitals. This article will discuss how the CNS may be empowered utilizing strategies in four empowering categories. In addition, the many benefits of empowering the CNS are reviewed.

  1. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  2. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam

    Science.gov (United States)

    Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung

    2012-01-01

    Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636

  3. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    Science.gov (United States)

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  4. Motor neurons and the generation of spinal motor neurons diversity

    Directory of Open Access Journals (Sweden)

    Nicolas eStifani

    2014-10-01

    Full Text Available Motor neurons (MNs are neuronal cells located in the central nervous system (CNS controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal motor neurons (SpMNs that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate.Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate.This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.

  5. Information processing in the CNS: a supramolecular chemistry?

    Science.gov (United States)

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  6. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    Science.gov (United States)

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  7. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling.

    Science.gov (United States)

    Crompton, Lucy A; Byrne, Meg L; Taylor, Hannah; Kerrigan, Talitha L; Bru-Mercier, Gilles; Badger, Jennifer L; Barbuti, Peter A; Jo, Jihoon; Tyler, Sue J; Allen, Shelley J; Kunath, Tilo; Cho, Kwangwook; Caldwell, Maeve A

    2013-11-01

    Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development. © 2013.

  8. On the resemblance of synapse formation and CNS myelination.

    Science.gov (United States)

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway in vitro.

    Science.gov (United States)

    Song, Zhiwen; Han, Xiu; Shen, Liming; Zou, Hongjun; Zhang, Bin; Liu, Jinbo; Gong, Aihua

    2018-02-15

    The failure of neuronal proliferation and differentiation is a major obstacle for neural repair and regeneration after traumatic central nervous system (CNS) injury. PTEN acts as an intrinsic brake on the neuronal cells, but its roles and mechanism still remain to be clarified. Herein, for the first time we confirmed that PTEN had a dual effect on the neuronal cells in vitro. Firstly, we found that PTEN knockdown significantly promoted cell proliferation and differentiation. Then, PTEN knockdown activated PI3K/Akt and Wnt/β-catenin pathways in vitro. Further evidence revealed that GSK3β as a key node involved in PTEN controlling cell proliferation and differentiation in PC12 cells. In addition, we identified that PTEN-GSK3β pathway modulated neuronal proliferation via β-catenin. Taken together, these results suggest that PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway that it may be a promising therapeutic approach for CNS injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Long-living RNA in the CNS of terrestrial snail.

    Science.gov (United States)

    Ierusalimsky, Victor N; Balaban, Pavel M

    2018-02-01

    Click-iT method can be used to trace the neurons where the newly synthesized RNA transcripts occur. Our experiments performed with the CNS of terrestrial mollusk Helix demonstrate that 5-ethynyluridine (EU) is selectively incorporated in RNA but not in DNA. The time of EU accumulation necessary for its detection was about several hours. EU was injected into the body cavity of adult mollusks, and was detectable in neurons for several days. In juveniles, EU was introduced via bathing of snails in the EU-containing saline, and was reliably detected within time period of several weeks. Our data suggest that short-living forms of RNA cannot be detected by Click-iT method, while the long-living forms of RNA can be spatially detected in individual neurons.

  11. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length.

    Science.gov (United States)

    Hamilton, Nicola B; Clarke, Laura E; Arancibia-Carcamo, I Lorena; Kougioumtzidou, Eleni; Matthey, Moritz; Káradóttir, Ragnhildur; Whiteley, Louise; Bergersen, Linda H; Richardson, William D; Attwell, David

    2017-02-01

    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABA A receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABA A receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321. © 2016 The Authors Glia Published by Wiley Periodicals, Inc.

  12. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily...... on the autoimmune disease multiple sclerosis, as well as conditions in which an inflammatory response makes a secondary contribution to tissue injury or repair, such as neurodegeneration, ischemia and trauma....

  13. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    , a process referred to as reactive astrogliosis/ astrocytosis. In addition, the review will discuss (3) the role of astrocytes as an abundant cellular source for immunoregulatory (cytokines) factors, and their fundamental roles in the type and extent of CNS immune and inflammatory responses. (4) Recent......Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  14. Successful optic nerve regeneration in the senescent zebrafish despite age-related decline of cell intrinsic and extrinsic response processes.

    Science.gov (United States)

    Van Houcke, Jessie; Bollaerts, Ilse; Geeraerts, Emiel; Davis, Benjamin; Beckers, An; Van Hove, Inge; Lemmens, Kim; De Groef, Lies; Moons, Lieve

    2017-12-01

    Dysfunction of the central nervous system (CNS) in neurodegenerative diseases or after brain lesions seriously affects life quality of a growing number of elderly, since the adult CNS lacks the capacity to replace or repair damaged neurons. Despite intensive research efforts, full functional recovery after CNS disease and/or injury remains challenging, especially in an aging environment. As such, there is a rising need for an aging model in which the impact of aging on successful regeneration can be studied. Here, we introduce the senescent zebrafish retinotectal system as a valuable model to elucidate the cellular and molecular processes underlying age-related decline in axonal regeneration capacities. We found both intrinsic and extrinsic response processes to be altered in aged fish. Indeed, expression levels of growth-associated genes are reduced in naive and crushed retinas, and the injury-associated increase in innate immune cell density appears delayed, suggesting retinal inflammaging in old fish. Strikingly, however, despite a clear deceleration in regeneration onset and early axon outgrowth leading to an overall slowing of optic nerve regeneration, reinnervation of the optic tectum and recovery of visual function occurs successfully in the aged zebrafish retinotectal system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  16. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  17. Distinct tachykinin NK(1) receptor function in primate nucleus tractus solitarius neurons is dysregulated after second-hand tobacco smoke exposure.

    Science.gov (United States)

    Sekizawa, Shin-Ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C

    2011-06-01

    Second-hand tobacco smoke (SHS) exposure in children increases the risk of asthma and sudden infant death syndrome. Epidemiological and experimental data have suggested SHS can alter neuroplasticity in the CNS, associated with substance P. We hypothesized that exposure to SHS in young primates changed the effect of substance P on the plasticity of neurons in the nucleus tractus solitarius (NTS), where airway sensory information is first processed in the CNS. Thirteen-month-old rhesus monkeys were exposed to filtered air (FA, n= 5) or SHS (n= 5) for >6 months from 50 days of their fetal age. Whole-cell patch-clamp recordings were performed on NTS neurons in brainstem slices from these animals to record the intrinsic cell excitability in the absence or presence of the NK(1) receptor antagonist, SR140333 (3 µM). Neurons were electrophysiologically classified based on their spiking onset from a hyperpolarized membrane potential into two phenotypes: rapid-onset spiking (RS) and delayed-onset spiking (DS) types. In RS neurons, SR140333 reduced the spiking response, similarly in both FA- and SHS-exposed animals. In DS neurons, SR140333 almost abolished the spiking response in FA-exposed animals, but had no effect in SHS-exposed animals. The contribution of NK(1) receptors to cell excitability depended on firing phenotype of primate NTS neurons and was disrupted by SHS exposure, specifically in DS neurons. Our findings reveal a novel NK(1) receptor function in the primate brainstem and support the hypothesis that chronic exposure to SHS in children causes tachykinin-related neuroplastic changes in the CNS. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Distinct tachykinin NK1 receptor function in primate nucleus tractus solitarius neurons is dysregulated after second-hand tobacco smoke exposure

    Science.gov (United States)

    Sekizawa, Shin-ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C

    2011-01-01

    BACKGROUND AND PURPOSE Second-hand tobacco smoke (SHS) exposure in children increases the risk of asthma and sudden infant death syndrome. Epidemiological and experimental data have suggested SHS can alter neuroplasticity in the CNS, associated with substance P. We hypothesized that exposure to SHS in young primates changed the effect of substance P on the plasticity of neurons in the nucleus tractus solitarius (NTS), where airway sensory information is first processed in the CNS. EXPERIMENTAL APPROACH Thirteen-month-old rhesus monkeys were exposed to filtered air (FA, n = 5) or SHS (n = 5) for >6 months from 50 days of their fetal age. Whole-cell patch-clamp recordings were performed on NTS neurons in brainstem slices from these animals to record the intrinsic cell excitability in the absence or presence of the NK1 receptor antagonist, SR140333 (3 µM). KEY RESULTS Neurons were electrophysiologically classified based on their spiking onset from a hyperpolarized membrane potential into two phenotypes: rapid-onset spiking (RS) and delayed-onset spiking (DS) types. In RS neurons, SR140333 reduced the spiking response, similarly in both FA- and SHS-exposed animals. In DS neurons, SR140333 almost abolished the spiking response in FA-exposed animals, but had no effect in SHS-exposed animals. CONCLUSIONS AND IMPLICATIONS The contribution of NK1 receptors to cell excitability depended on firing phenotype of primate NTS neurons and was disrupted by SHS exposure, specifically in DS neurons. Our findings reveal a novel NK1 receptor function in the primate brainstem and support the hypothesis that chronic exposure to SHS in children causes tachykinin-related neuroplastic changes in the CNS. PMID:21323902

  19. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS

    DEFF Research Database (Denmark)

    Reinert, Line S; Lopušná, Katarína; Winther, Henriette

    2016-01-01

    -induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS-STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication...... is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS-STING pathway...

  20. Microglia in neuronal plasticity: Influence of stress.

    Science.gov (United States)

    Delpech, Jean-Christophe; Madore, Charlotte; Nadjar, Agnes; Joffre, Corinne; Wohleb, Eric S; Layé, Sophie

    2015-09-01

    The central nervous system (CNS) has previously been regarded as an immune-privileged site with the absence of immune cell responses but this dogma was not entirely true. Microglia are the brain innate immune cells and recent findings indicate that they participate both in CNS disease and infection as well as facilitate normal CNS function. Microglia are highly plastic and play integral roles in sculpting the structure of the CNS, refining neuronal circuitry and connectivity, and contribute actively to neuronal plasticity in the healthy brain. Interestingly, psychological stress can perturb the function of microglia in association with an impaired neuronal plasticity and the development of emotional behavior alterations. As a result it seemed important to describe in this review some findings indicating that the stress-induced microglia dysfunction may underlie neuroplasticity deficits associated to many mood disorders. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle.

    Science.gov (United States)

    Engelhardt, Britta; Coisne, Caroline

    2011-01-18

    Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle

  2. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle

    Directory of Open Access Journals (Sweden)

    Engelhardt Britta

    2011-01-01

    Full Text Available Abstract Neuronal activity within the central nervous system (CNS strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB and the epithelial blood-cerebrospinal fluid barrier (BCSFB prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against

  3. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    The elements can be interpreted in terms of the taste organ from which the projections originate, the structures from which they originate, and the quality of taste information that they represent. The extensive diversity in projection patterns provides an anatomical basis for functional diversity in responses elicited by different ...

  4. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    2014-07-08

    Montell 2009), in part because it allows incisive analysis of basic principles of sensory function, but also because it provides a model for studying how feeding decisions are made by insects that devour massive quantities.

  5. The signaling role for chloride in the bidirectional communication between neurons and astrocytes.

    Science.gov (United States)

    Wilson, Corinne S; Mongin, Alexander A

    2018-01-09

    It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl - ) fluxes via the inhibitory GABA A and glycine receptors. Here, we discuss the putative contribution of Cl - fluxes and intracellular Cl - to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl - in cellular physiology, (ii) recaps molecular identities and properties of Cl - transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl - in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl - levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl - conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl - cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl - /anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl - ] i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABA A and glycine receptor/Cl - channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl - ] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl - in information processing within the CNS is expected to be significantly updated. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  7. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    , it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN...... responses to HSV, but astrocytes were defective in HSV-induced type I IFN production. Thus, TLR3 acts in astrocytes to sense HSV-2 infection immediately after entry into the CNS, possibly preventing HSV from spreading beyond the neurons mediating entry into the CNS.......Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation...

  8. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Sekizawa, Shin-ichi; Joad, Jesse P.; Pinkerton, Kent E.; Bonham, Ann C.

    2010-01-01

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  9. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    Science.gov (United States)

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus.

    Science.gov (United States)

    Das, Trina; Jaffar-Bandjee, Marie Christine; Hoarau, Jean Jacques; Krejbich Trotot, Pascale; Denizot, Melanie; Lee-Pat-Yuen, Ghislaine; Sahoo, Renubala; Guiraud, Pascale; Ramful, Duksha; Robin, Stephanie; Alessandri, Jean Luc; Gauzere, Bernard Alex; Gasque, Philippe

    2010-06-01

    Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes an acute symptomatic illness with fever, skin rash, and incapacitating arthralgia, which can evolve into chronic rheumatoid arthritis in elderly patients. This is a tropical disease originally described in central/east Africa in the 1960s, but its 2004 re-emergence in Africa and rapid spread in lands in and around the Indian Ocean (Reunion island, India, Malaysia) as well as Europe (Italy) led to almost 6 million cases worldwide. The risk of importation and spreading diseases with long-term sequelae is even greater today given the global distribution of the vectors (including in the Americas), increased tourism and the apparent capacity of CHIKV to produce high levels of viremia (10(9)-10(12) virus/ml of blood) and new mutants. CHIKV-associated neuropathology was described early in the 1960s, but it is the unprecedented incidence rate in Indian Ocean areas with efficient clinical facilities that allowed a better description of cases with severe encephalitis, meningoencephalitis, peripheral neuropathies and deaths among newborns (mother-to-child infection), infants and elderly patients. Death rates following CHIKV infection were estimated at 1:1000 cases in la Reunion's outbreak. These clinical observations have been corroborated by experimental infection in several mouse models, leading to CNS pathologies. We further describe in this review the capacity of CHIKV to infect neurons and glial cells, delineate the fundamental innate (intrinsic) immune defence mechanisms to protect from infection and argue about the possible mechanisms involved in the encephalopathy. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Nanotechnology—novel therapeutics for CNS disorders

    Science.gov (United States)

    Srikanth, Maya; Kessler, John A.

    2013-01-01

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration. PMID:22526003

  12. INS/CNS/GNSS integrated navigation technology

    CERN Document Server

    Quan, Wei; Gong, Xiaolin; Fang, Jiancheng

    2015-01-01

    This book not only introduces the principles of INS, CNS and GNSS, the related filters and semi-physical simulation, but also systematically discusses the key technologies needed for integrated navigations of INS/GNSS, INS/CNS, and INS/CNS/GNSS, respectively. INS/CNS/GNSS integrated navigation technology has established itself as an effective tool for precise positioning navigation, which can make full use of the complementary characteristics of different navigation sub-systems and greatly improve the accuracy and reliability of the integrated navigation system. The book offers a valuable reference guide for graduate students, engineers and researchers in the fields of navigation and its control. Dr. Wei Quan, Dr. Jianli Li, Dr. Xiaolin Gong and Dr. Jiancheng Fang are all researchers at the Beijing University of Aeronautics and Astronautics.

  13. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    Science.gov (United States)

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  14. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    OpenAIRE

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-ind...

  15. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.

    Science.gov (United States)

    Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F

    2017-09-01

    The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few

  16. Gold Nanoparticles for Imaging and Drug Transport to the CNS.

    Science.gov (United States)

    Male, D; Gromnicova, R; McQuaid, C

    2016-01-01

    Gold nanoparticles with a core size of 2nm covalently coated with glycans to maintain solubility, targeting molecules for brain endothelium, and cargo molecules hold great potential for delivery of therapies into the CNS. They have low toxicity, pass through brain endothelium in vitro and in vivo, and move rapidly through the brain parenchyma. Within minutes of infusion the nanoparticles can be detected in neurons and glia. These nanoparticles are relatively easy to synthesize in association with their surface ligands. They can be detected by electron microscopy, ICP-mass spectrometry, and spectroscopy. However, modification of the basic gold nanoparticle is required for in vivo imaging by MR or radioactive methods. Depending on their surface coat, the nanoparticles cross the brain endothelium by the plasma membrane/cytosolic route (passive transport) or by vesicular transcytosis (active transport). A primary aim of current research is to improve the biodistribution of the nanoparticles for CNS drug delivery. Smaller gold nanoparticles are removed rapidly via the kidney, while larger nanoparticles are taken up by mononuclear phagocytes in various tissues. Receptors selectively located on brain endothelium can act as targets for the nanoparticles, to increase their delivery to the brain. © 2016 Elsevier Inc. All rights reserved.

  17. Flaviviruses are neurotropic, but how do they invade the CNS?

    Science.gov (United States)

    Neal, J W

    2014-09-01

    Flaviruses (FV) are RNA viruses carried by mosquitoes. Neurological signs including acute encephalitis, meningitis and acute flaccid paralysis develop in a small percentage of infected individuals; long term sequlae are, Parkinsonism, dystonias and cognitive changes. FV neuroinfection is neurotropic involving subcortical nuclei (substantia nigra and thalamus) anterior horn neurons and neocortex. Glycosylation of the FV E envelope protein is one determinant of neuroinvasion, increasing both axonal and trans-epithelial transportation. Neutralizing antibodies against the E and NS proteins prevents FV uptake into several cell types, including axons. CD8+ T cells are vital for clearance of WNF infected cells from the CNS, whereas TLR-3 and TLR-7 mediated anti-virus response through increased serum inflammatory cytokines to disrupt the BBB providing infected leucocytes and free virus access to the CNS (so called Trojan horse) Cellular virus attachment factors, promoting FV cell entry are widely distributed and include DC-SIGN (that detects complex carbohydrate molecules); Glycosamino glycans (GAG), Heparan sulphate(HSPG) Semaphorin 7A, Low Density Lipid receptors (LDLR); these are not FV specific virus entry receptors. The FV also crosses epithelial and endothelial barriers by disrupting Tight Junction complexes to increase BBB permeability. This review describes the multiple pathways responsible for the neuroinvasive properties of the Flaviviruses. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system.

    Science.gov (United States)

    Lear, B C; Skeath, J B; Patel, N H

    1999-11-01

    In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fate alterations ('A/B' to 'A/A') occur infrequently or do not occur in some sibling pairs; we have determined that depletion of both maternal and zygotic numb causes sibling neurons to acquire equalized fates ('A/A') with near-complete expressivity. In rca1, numb mutant embryos, we observe binary cell fate changes ('B' to 'A') in several GMCs as well. Finally, we have demonstrated that expression of Delta in the mesoderm is sufficient to attain both sibling fates. Our results indicate that the intrinsic determinant Numb is absolutely required to attain differential sibling neuron fates. While the extrinsic factors Notch and Delta are also required to attain both fates, our results indicate that Delta signal can be received from outside the sibling pair.

  19. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  20. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  1. Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla.

    Science.gov (United States)

    Hofer, Stefanie C; Ralvenius, William T; Gachet, M Salomé; Fritschy, Jean-Marc; Zeilhofer, Hanns Ulrich; Gertsch, Jürg

    2015-11-01

    The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼ 40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissues. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All

  2. Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation

    DEFF Research Database (Denmark)

    Brännvall, Karin; Corell, Mikael; Forsberg-Nilsson, Karin

    2008-01-01

    Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination...

  3. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly stomoxys calcitrans L. (Diptera: muscidae)

    Science.gov (United States)

    Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR)to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stab...

  4. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

    -I+II) are regulated and expressed coordinately and are currently the best characterized MT isoforms. This review will focus on the expression and roles of MT-I+II in the CNS. MT-I+II are implicated in diverse physiological and pathophysiological functions, such as metal ion metabolism, regulation of the CNS...... inflammatory response, protection against reactive oxygen species (ROS) and oxidative stress, reduction of apoptotic cell death, and stimulation of neuroregeneration and brain tissue repair in vivo. Accordingly, brain tissue damage and neurodegeneration during pathological conditions and the accompanying...

  5. Astrocyte Regulation of CNS Inflammation and Remyelination

    Directory of Open Access Journals (Sweden)

    Stephen J. Crocker

    2013-07-01

    Full Text Available Astrocytes regulate fundamentally important functions to maintain central nervous system (CNS homeostasis. Altered astrocytic function is now recognized as a primary contributing factor to an increasing number of neurological diseases. In this review, we provide an overview of our rapidly developing understanding of the basal and inflammatory functions of astrocytes as mediators of CNS responsiveness to inflammation and injury. Specifically, we elaborate on ways that astrocytes actively participate in the pathogenesis of demyelinating diseases of the CNS through their immunomodulatory roles as CNS antigen presenting cells, modulators of blood brain barrier function and as a source of chemokines and cytokines. We also outline how changes in the extracellular matrix can modulate astrocytes phenotypically, resulting in dysregulation of astrocytic responses during inflammatory injury. We also relate recent studies describing newly identified roles for astrocytes in leukodystrophies. Finally, we describe recent advances in how adapting this increasing breadth of knowledge on astrocytes has fostered new ways of thinking about human diseases, which offer potential to modulate astrocytic heterogeneity and plasticity towards therapeutic gain. In summary, recent studies have provided improved insight in a wide variety of neuroinflammatory and demyelinating diseases, and future research on astrocyte pathophysiology is expected to provide new perspectives on these diseases, for which new treatment modalities are increasingly necessary.

  6. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification

    Directory of Open Access Journals (Sweden)

    McGavern Dorian B

    2007-06-01

    Full Text Available Abstract Once a virus infection establishes persistence in the central nervous system (CNS, it is especially difficult to eliminate from this specialized compartment. Therefore, it is of the utmost importance to fully understand scenarios during which a persisting virus is ultimately purged from the CNS by the adaptive immune system. Such a scenario can be found following infection of adult mice with an immunosuppressive variant of lymphocytic choriomeningitis virus (LCMV referred to as clone 13. In this study we demonstrate that following intravenous inoculation, clone 13 rapidly infected peripheral tissues within one week, but more slowly inundated the entire brain parenchyma over the course of a month. During the establishment of persistence, we observed that genetically tagged LCMV-specific cytotoxic T lymphocytes (CTL progressively lost function; however, the severity of this loss in the CNS was never as substantial as that observed in the periphery. One of the most impressive features of this model system is that the peripheral T cell response eventually regains functionality at ~60–80 days post-infection, and this was associated with a rapid decline in virus from the periphery. Coincident with this "reanimation phase" was a massive influx of CD4 T and B cells into the CNS and a dramatic reduction in viral distribution. In fact, olfactory bulb neurons served as the last refuge for the persisting virus, which was ultimately purged from the CNS within 200 days post-infection. These data indicate that a functionally revived immune response can prevail over a virus that establishes widespread presence both in the periphery and brain parenchyma, and that therapeutic enhancement of an existing response could serve as an effective means to thwart long term CNS persistence.

  7. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Directory of Open Access Journals (Sweden)

    Jennifer H Campbell

    2014-12-01

    Full Text Available Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab once a week for three weeks beginning on 28 days post-infection (late. Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS, and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+ in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  8. GNSS real time performance monitoring and CNS/ATM implementation

    Science.gov (United States)

    2006-07-01

    The global transition to communications, navigation, surveillance / air traffic management (CNS/ATM) technology is moving forward at an increasing pace. A critical part of the CNS/ATM concept is the ability to monitor, analyze, and distribute aeronau...

  9. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  10. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  11. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  12. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  13. Cerebral blood flow variations in CNS lupus

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. (Univ. of Pennsylvania Medical Center, Philadelphia (USA))

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  14. Engineering progress of CNS concept in Hanaro

    International Nuclear Information System (INIS)

    Choi, C.O.; Park, K.N.; Park, S.H.

    1997-01-01

    The Korea Atomic Energy research Institute (KAERI) strives to provide utilizing facilities on and around the Hanaro reactor in order to activate advanced researches by neutron application. As one of the facilities to be installed, the conceptual design work of CNS was started in 1996 with a project schedule of 5 years so that its installation work can be finished by the year 2000. And the major engineering targets of this CNS facility are established for a minimum physical interference with the present facilities of the Hanaro, a reach-out of very-high-gain factors in the cold neutron flux, a simplicity of the maintenance of the facility, and a safety in the operation of the facility as well as the reactor. For the conceptual design of Hanaro CNS, the experience of utilization and production of cold neutron at WWR-M reactor Gatchina, Russia has been used with that of elaborations for PIK reactor in design for neutron guide systems and instruments. (author)

  15. Selective rab11 transport and the intrinsic regenerative ability of CNS axons

    Czech Academy of Sciences Publication Activity Database

    Koseki, H.; Donegá, M.; Lam, B.Y.H.; Petrová, V.; van Erp, S.; Yeo, G.S.H.; Kwok, Jessica; Ffrench-Constant, Ch.; Eva, R.; Fawcett, James

    2017-01-01

    Roč. 6, aug (2017), e26956 ISSN 2050-084X R&D Projects: GA MŠk(CZ) EF15_003/0000419 Institutional support: RVO:68378041 Keywords : spinal-cord-injury * chondroitin sulfate proteoglycans * growth cone Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 7.725, year: 2016

  16. Cug2 is essential for normal mitotic control and CNS development in zebrafish

    Directory of Open Access Journals (Sweden)

    Kim Nam-Soon

    2011-08-01

    Full Text Available Abstract Background We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2, which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models. Results To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS. Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate. Conclusions Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders.

  17. Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration.

    Science.gov (United States)

    Meeker, Rick B; Hudson, Lola

    2017-03-06

    Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.

  18. Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration

    Science.gov (United States)

    Meeker, Rick B.; Hudson, Lola

    2017-01-01

    Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity. PMID:29056673

  19. Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Rick B. Meeker

    2017-03-01

    Full Text Available Feline Immunodeficiency virus (FIV, similar to its human analog human immunodeficiency virus (HIV, enters the central nervous system (CNS soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND. Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.

  20. Prophylactic CNS therapy in childhood leukemia

    International Nuclear Information System (INIS)

    Yokoyama, Takashi; Hiyoshi, Yasuhiko; Fujimoto, Takeo

    1982-01-01

    This study was designed to evaluate the efficacy of CNS-prophylaxis with high-dose methotrexate (MTX). Seventy children with previously untreated acute lymphoblastic leukemia (ALL) entered to this study between July 1978 and December 1980. According to initial white blood count (WBC), they were stratified to induce remission with; vincristine and prednine in low initial WBC ( lt 25,000/mm 3 ) group and these two agents plus adriamycin in high initial WBC ( gt 25,000/mm 3 ) group. After inducing remission, 62 children who achieved CR, received different CNS-prophlaxis; using a regimen of three doses of weekly high-dose MTX (1,000 mg/m 2 ) 6-hour infusion, which was repeated every 12 weeks-Group A (n = 14); high-dose MTX followed by 2400 rad cranial irradiation plus three doses of i.t. MT X-Group B (n = 15), 2400 rad cranial irradiation plus three doses of i.t. MTX-Group C (n = 16), and in 17 patients with high initial WBC, same as in Group A-Group D (n = 17). During an intravenous 6-h infusion of MTX at a dose of 1,000 mg/m 2 , the CSF concentration of MTX rose to 2.3 +- 2.4 x 10 -6 M after initiation of infusion and remained in 10 -7 M level for 48 hours. CNS-leukemia terminated complete remission in one of 14 children in Group A, two of 15 in Group B, two of 16 in Group C and two of 17 in Group D. The cumulative incidence of CNS-leukemia at 20 months calculated by the technique of Kaplan and Meier was 0% i n Group A, 18.1% in Group B, 7.1% in Group C and 50.8% in Group D. There was no statistical difference among Groups A, B and C. These data suggested that CNS-prophylaxis with high-dose intravenous MTX was effective as well as 2400 rad cranial irradiation plus three doses of i.t. MTX in childhood ALL with low initial WBC. (author)

  1. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  2. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  3. Neuronal sources ofhedgehogmodulate neurogenesis in the adult planarian brain.

    Science.gov (United States)

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx , which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand ( Smed-hh ), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  4. Agile delivery of protein therapeutics to CNS.

    Science.gov (United States)

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  6. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  7. Acquired CNS lesions in fetal MRI

    International Nuclear Information System (INIS)

    Reith, W.; Pogledic, I.

    2013-01-01

    Acquired central nervous system (CNS) lesions are often subtle; therefore, the prenatal diagnosis of these lesions is extremely important. The fetal ultrasound examination and magnetic resonance imaging (MRI) are two important imaging methods that give an insight into these types lesions. The method of choice during pregnancy is still fetal ultrasound; however, fetal MRI is important when there are certain pathologies, e.g. periventricular leukomalacia (PVL) or malformations of the vein of Galen. In this manner clinicians can plan further therapy after childbirth in advance (e.g. cerebral angiography or embolization). (orig.) [de

  8. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    Science.gov (United States)

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  9. Paraneoplastic and non-paraneoplastic autoimmunity to neurons in the central nervous system

    OpenAIRE

    Melzer, Nico; Meuth, Sven G.; Wiendl, Heinz

    2012-01-01

    Autoimmune central nervous system (CNS) inflammation occurs both in a paraneoplastic and non-paraneoplastic context. In a widening spectrum of clinical disorders, the underlying adaptive (auto) immune response targets neurons with a divergent role for cellular and humoral disease mechanisms: (1) in encephalitis associated with antibodies to intracellular neuronal antigens, neuronal antigen-specific CD8+ T cells seemingly account for irreversible progressive neuronal cell death and neurologica...

  10. Intrinsic contractures of the hand.

    Science.gov (United States)

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS

    Science.gov (United States)

    Reinert, Line S.; Lopušná, Katarína; Winther, Henriette; Sun, Chenglong; Thomsen, Martin K.; Nandakumar, Ramya; Mogensen, Trine H.; Meyer, Morten; Vægter, Christian; Nyengaard, Jens R.; Fitzgerald, Katherine A.; Paludan, Søren R.

    2016-01-01

    Herpes simplex encephalitis (HSE) is the most common form of acute viral encephalitis in industrialized countries. Type I interferon (IFN) is important for control of herpes simplex virus (HSV-1) in the central nervous system (CNS). Here we show that microglia are the main source of HSV-induced type I IFN expression in CNS cells and these cytokines are induced in a cGAS–STING-dependent manner. Consistently, mice defective in cGAS or STING are highly susceptible to acute HSE. Although STING is redundant for cell-autonomous antiviral resistance in astrocytes and neurons, viral replication is strongly increased in neurons in STING-deficient mice. Interestingly, HSV-infected microglia confer STING-dependent antiviral activities in neurons and prime type I IFN production in astrocytes through the TLR3 pathway. Thus, sensing of HSV-1 infection in the CNS by microglia through the cGAS–STING pathway orchestrates an antiviral program that includes type I IFNs and immune-priming of other cell types. PMID:27830700

  12. American Society of Clinical Oncology 2011 CNS tumors update.

    Science.gov (United States)

    Ahluwalia, Manmeet S

    2011-10-01

    A number of important studies were presented at the CNS tumors section of the 2011 American Society of Clinical Oncology Annual Meeting. There was particular interest in RTOG 0525, a Phase III study of newly diagnosed glioblastoma treated with different schedules of temozolomide. Prognostic factors for response, survival and chemotherapy-related toxicity in primary CNS lymphoma from the German randomized Phase III trial in newly diagnosed primary CNS lymphoma were also presented.

  13. The role of nucleotides in the neuron--glia communication responsible for the brain functions.

    Science.gov (United States)

    Inoue, Kazuhide; Koizumi, Schuichi; Tsuda, Makoto

    2007-09-01

    Accumulating findings indicate that nucleotides play an important role in cell-to-cell communication through P2 purinoceptors, even though ATP is recognized primarily to be a source of free energy and nucleotides are key molecules in cells. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X(1)-P2X(7)) contain intrinsic pores that open by binding with ATP. P2Y (8 types; P2Y(1, 2, 4, 6, 11, 12, 13,) and (14)) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. One of the most exciting cells in non-excitable cells is the glia cells, which are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of P2 purinoceptors and release the 'gliotransmitter' ATP to communicate with neurons, microglia and the vascular walls of capillaries. Microglia also express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as 'warning molecules' especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain and show phagocytosis through nucleotide-evoked activation of P2X(4) and P2Y(6) receptors, respectively. Such strong molecular, cellular and system-level evidence for extracellular nucleotide signaling places nucleotides in the central stage of cell communications in glia/CNS.

  14. Predicting Intrinsic Motivation

    Science.gov (United States)

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the…

  15. Frustration-induced protein intrinsic disorder.

    Science.gov (United States)

    Matsushita, Katsuyoshi; Kikuchi, Macoto

    2013-03-14

    Spontaneous folding into a specific native structure is the most important property of protein to perform their biological functions within organisms. Spontaneous folding is understood on the basis of an energy landscape picture based on the minimum frustration principle. Therefore, frustration seemingly only leads to protein functional disorder. However, frustration has recently been suggested to have a function in allosteric regulation. Functional frustration has the possibility to be a key to our deeper understanding of protein function. To explore another functional frustration, we theoretically examined structural frustration, which is designed to induce intrinsic disorder of a protein and its function through the coupled folding and binding. We extended the Wako-Saitô-Muñoz-Eaton model to take into account a frustration effect. With the model, we analyzed the binding part of neuron-restrictive silencer factor and showed that designed structural frustration in it induces intrinsic disorder. Furthermore, we showed that the folding and the binding are cooperative in interacting with a target protein. The cooperativity enables an intrinsically disordered protein to exhibit a sharp switch-like folding response to binding chemical potential change. Through this switch-like response, the structural frustration may contribute to the regulation function of interprotein interaction of the intrinsically disordered protein.

  16. Detection of microRNAs in microglia by real-time PCR in normal CNS and during neuroinflammation.

    Science.gov (United States)

    Veremeyko, Tatiana; Starossom, Sarah-Christine; Weiner, Howard L; Ponomarev, Eugene D

    2012-07-23

    Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)(1). These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)(2). Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers(3). The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation(4) and pathologies such as inflammation(5). MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages(6) and microglia(7). In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during

  17. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Kashi, Brenda B.; Celia, Samuel A.; Tamrazian, Eric [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Pepinsky, R. Blake [BiogenIdec, Inc., 14 Cambridge Center, Cambridge, MA 02142 (United States); Fishman, Paul S. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Brown, Robert H. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Francis, Jonathan W., E-mail: jwfrancisby@gmail.com [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States)

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

  18. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    International Nuclear Information System (INIS)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Kashi, Brenda B.; Celia, Samuel A.; Tamrazian, Eric; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-01-01

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFRα-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

  19. Transplanting oligodendrocyte progenitors into the adult CNS

    International Nuclear Information System (INIS)

    Franklin, R.J.M.; Blakemore, W.F.; Cambridge Univ.

    1997-01-01

    This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate in to astrocytes as will oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oligodendrocyte progenitor cell line CG4) are described. (author)

  20. Biomarkers for CNS involvement in pediatric lupus

    Science.gov (United States)

    Rubinstein, Tamar B; Putterman, Chaim; Goilav, Beatrice

    2015-01-01

    CNS disease, or central neuropsychiatric lupus erythematosus (cNPSLE), occurs frequently in pediatric lupus, leading to significant morbidity and poor long-term outcomes. Diagnosing cNPSLE is especially difficult in pediatrics; many current diagnostic tools are invasive and/or costly, and there are no current accepted screening mechanisms. The most complicated aspect of diagnosis is differentiating primary disease from other etiologies; research to discover new biomarkers is attempting to address this dilemma. With many mechanisms involved in the pathogenesis of cNPSLE, biomarker profiles across several modalities (molecular, psychometric and neuroimaging) will need to be used. For the care of children with lupus, the challenge will be to develop biomarkers that are accessible by noninvasive measures and reliable in a pediatric population. PMID:26079959

  1. Spike Frequency Adaptation in Neurons of the Central Nervous System.

    Science.gov (United States)

    Ha, Go Eun; Cheong, Eunji

    2017-08-01

    Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (K Ca ) channels such as BK Ca and SK Ca channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these K Ca channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca 2+ -activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

  2. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study.

    Science.gov (United States)

    Del Giudice, Ennio; Macca, Marina; Imperati, Floriana; D'Amico, Alessandra; Parent, Philippe; Pasquier, Laurent; Layet, Valerie; Lyonnet, Stanislas; Stamboul-Darmency, Veronique; Thauvin-Robinet, Christel; Franco, Brunella

    2014-05-10

    Oral-facial-digital type 1 syndrome (OFD1; OMIM 311200) belongs to the expanding group of disorders ascribed to ciliary dysfunction. With the aim of contributing to the understanding of the role of primary cilia in the central nervous system (CNS), we performed a thorough characterization of CNS involvement observed in this disorder. A cohort of 117 molecularly diagnosed OFD type I patients was screened for the presence of neurological symptoms and/or cognitive/behavioral abnormalities on the basis of the available information supplied by the collaborating clinicians. Seventy-one cases showing CNS involvement were further investigated through neuroimaging studies and neuropsychological testing. Seventeen patients were molecularly diagnosed in the course of this study and five of these represent new mutations never reported before. Among patients displaying neurological symptoms and/or cognitive/behavioral abnormalities, we identified brain structural anomalies in 88.7%, cognitive impairment in 68%, and associated neurological disorders and signs in 53% of cases. The most frequently observed brain structural anomalies included agenesis of the corpus callosum and neuronal migration/organisation disorders as well as intracerebral cysts, porencephaly and cerebellar malformations. Our results support recent published findings indicating that CNS involvement in this condition is found in more than 60% of cases. Our findings correlate well with the kind of brain developmental anomalies described in other ciliopathies. Interestingly, we also described specific neuropsychological aspects such as reduced ability in processing verbal information, slow thought process, difficulties in attention and concentration, and notably, long-term memory deficits which may indicate a specific role of OFD1 and/or primary cilia in higher brain functions.

  3. [What mirror neurons have revealed: revisited].

    Science.gov (United States)

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  4. The Isolation of Pure Populations of Neurons by Laser Capture Microdissection: Methods and Application in Neuroscience.

    Science.gov (United States)

    Morris, Renée; Mehta, Prachi

    2018-01-01

    In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.

  5. Intrinsic and Extrinsic Motivation

    OpenAIRE

    Roland Bénabou; Jean Tirole

    2003-01-01

    A central tenet of economics is that individuals respond to incentives. For psychologists and sociologists, in contrast, rewards and punishments are often counterproductive, because they undermine "intrinsic motivation". We reconcile these two views, showing how performance incentives offered by an informed principal (manager, teacher, parent) can adversely impact an agent's (worker, child) perception of the task, or of his own abilities. Incentives are then only weak reinforcers in the short...

  6. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    Science.gov (United States)

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  7. CNS cell-type localization and LPS response of TLR signaling pathways [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gizelle M. McCarthy

    2017-07-01

    Full Text Available Background: Innate immune signaling in the brain has emerged as a contributor to many central nervous system (CNS pathologies, including mood disorders, neurodegenerative disorders, neurodevelopmental disorders, and addiction. Toll-like receptors (TLRs, a key component of the innate immune response, are particularly implicated in neuroimmune dysfunction. However, most of our understanding about TLR signaling comes from the peripheral immune response, and it is becoming clear that the CNS immune response is unique. One controversial aspect of neuroimmune signaling is which CNS cell types are involved. While microglia are the CNS cell-type derived from a myeloid lineage, studies suggest that other glial cell types and even neurons express TLRs, although this idea is controversial. Furthermore, recent work suggests a discrepancy between RNA and protein expression within the CNS. Methods: To elucidate the CNS cell-type localization of TLRs and their downstream signaling molecules, we isolated microglia and astrocytes from the brain of adult mice treated with saline or the TLR4 ligand lipopolysaccharide (LPS. Glial mRNA and protein expression was compared to a cellular-admixture to determine cell-type enrichment. Results: Enrichment analysis revealed that most of the TLR pathway genes are localized in microglia and changed in microglia following immune challenge. However, expression of Tlr3 was enriched in astrocytes, where it increased in response to LPS. Furthermore, attempts to determine protein cell-type localization revealed that many antibodies are non-specific and that antibody differences are contributing to conflicting localization results. Conclusions: Together these results highlight the cell types that should be looked at when studying TLR signaling gene expression and suggest that non-antibody approaches need to be used to accurately evaluate protein expression.

  8. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  10. Enteric neurons show a primary cilium.

    Science.gov (United States)

    Luesma, Ma José; Cantarero, Irene; Castiella, Tomás; Soriano, Mario; Garcia-Verdugo, José Manuel; Junquera, Concepción

    2013-01-01

    The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells. © 2012 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  11. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel

    2005-01-01

    Urotensin II (UII) is a cyclic neuropeptide with strong vasoconstrictive activity in the peripheral vasculature. UII receptor mRNA is also expressed in the CNS, in particular in cholinergic neurons located in the mesopontine tegmental area, including the pedunculopontine tegmental (PPT) and later...... brainstem neurons....

  12. A philosophy for CNS radiotracer design.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  13. Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases

    Directory of Open Access Journals (Sweden)

    Paulo Renato Yamasaki

    2012-10-01

    Full Text Available Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer’s, Parkinson’s, epilepsy and in the damage of retinal neurons. This review describes the  CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.

  14. Transplantation of autologous bone marrow stromal cells (BMSC for CNS disorders – Strategy and tactics for clinical application

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroda

    2010-01-01

    Full Text Available Background – There is increasing evidence that the transplanted bone marrow stromal cells (BMSC significantly promote functional recovery after central nervous system (CNS damage in the animal models of various kinds of CNS disorders, including cerebral infarct, brain contusion and spinal cord injury. However, there are several shortages of information when considering clinical application of BMSC transplantation for patients with neurological disorders. In this paper, therefore, we discuss what we should clarify to establish cell transplantation therapy in clinical situation and describe our recent works for this purpose.Methods and Results – The BMSC have the ability to alter their gene expression profile and phenotype in response to the surrounding circumstances and to protect the neurons by producing some neurotrophic factors. They also promote neurite extension and rebuild the neural circuits in the injured CNS. Using optical imaging and MRI techniques, the transplanted BMSC can non-invasively be tracked in the living animals for at least 8 weeks after transplantation. Functional imaging such as PET scan may have the potential to assess the beneficial effects of BMSC transplantation. The BMSC can be expanded using the animal protein-free culture medium, which would maintain their potential of proliferation, migration, and neural differentiation.Conclusion – It is urgent issues to develop clinical imaging technique to track the transplanted cells in the CNS and evaluate the therapeutic significance of BMSC transplantation in order to establish it as a definite therapeutic strategy in clinical situation in the future

  15. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  16. Fifth CNS international steam generator conference

    International Nuclear Information System (INIS)

    2006-01-01

    The Fifth CNS International Steam Generator Conference was held on November 26-29, 2006 in Toronto, Ontario, Canada. In contrast with other conferences which focus on specific aspects, this conference provided a wide ranging forum on nuclear steam generator technology from life-cycle management to inspection and maintenance, functional and structural performance characteristics to design architecture. The 5th conference has adopted the theme: 'Management of Real-Life Equipment Conditions and Solutions for the Future'. This theme is appropriate at a time of transition in the industry when plants are looking to optimize the performance of existing assets, prevent costly degradation and unavailability, while looking ahead for new steam generator investments in life-extension, replacements and new-build. More than 50 technical papers were presented in sessions that gave an insight to the scope: life management strategies; fouling, cleaning and chemistry; replacement strategies and new build design; materials degradation; condition assessment/fitness for service; inspection advancements and experience; and thermal hydraulic performance

  17. Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen.

    Science.gov (United States)

    Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R

    2017-07-04

    Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.

  18. Noisy Neurons

    Indian Academy of Sciences (India)

    IAS Admin

    Nerves are fibres that conduct electrical signals and hence pass on information from and to the brain. Nerves are made of nerve cells called neurons (Figure 1). Instructions in our body are sent via electrical signals that present themselves as variations in the potential across neuronal membranes. These potential differences ...

  19. Analysis of perfusion weighted image of CNS lymphoma

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik

    2010-01-01

    Purpose: It is difficult to differentiate CNS lymphoma from other tumors such as malignant gliomas, metastases, or meningiomas with conventional MR imaging, because the imaging findings are overlapped between these tumors. The purpose of this study is to investigate the perfusion weighted MR imaging findings of CNS lymphomas and to compare the relative cerebral blood volume ratios between CNS lymphomas and other tumors such as high grade gliomas, metastases, or meningiomas. Materials and methods: We retrospectively reviewed MRI findings and clinical records in 13 patients with pathologically proven CNS lymphoma between January 2006 and November 2008. We evaluated the relative cerebral blood volume ratios of tumor, which were obtained by dividing the values obtained from the normal white matter on MRI. Results: Total 13 patients (M:F = 8:5; age range 46-67 years, mean age 52.3 years) were included. The CNS lymphomas showed relatively low values of maximum relative CBV ratio in most patients regardless of primary or secondary CNS lymphoma. Conclusion: Perfusion weighted image may be helpful in the diagnosis of CNS lymphoma in spite of primary or secondary or B cell or T cell.

  20. Autoimmune process in CNS under Cs-137 inner irradiation

    International Nuclear Information System (INIS)

    Lisyany, N.I.; Liubich, L.D.

    1996-01-01

    Autoimmune hypothesis as to the development of radiation-induced brain injuries stands high among the concepts of the CNS post-radiation damage pathogenesis. To study the changes occurring in a living organism affected by a small-dose radiation due to incorporated radionuclides as well as to create adequate models are of critical importance in the post-Chernobyl period. The effects of chronic small-dose inner radiation on the development of autoimmune responses were evaluated by determining the level of the CNS proteins and protein-induced antibodies to the CNS components. (author)

  1. 3rd ENRI International Workshop on ATM/CNS

    CERN Document Server

    2014-01-01

    The Electronic Navigation Research Institute (ENRI) held its third International Workshop on ATM / CNS in 2013 with the theme of "Drafting the future sky". There is worldwide activity taking place in the research and development of modern air traffic management (ATM) and its enabling technologies in Communication, Navigation and Surveillance (CNS). Pioneering work is necessary to contribute to the global harmonization of air traffic management and control. At this workshop, leading experts in  research, industry and academia from around the world met to share their ideas and approaches on ATM/CNS related topics.

  2. Poliovirus replication and spread in primary neuron cultures.

    Science.gov (United States)

    Daley, John K; Gechman, Lisa A; Skipworth, Jason; Rall, Glenn F

    2005-09-15

    While some neurotropic viruses cause rapid central nervous system (CNS) disease upon entry into the brain parenchyma, other viruses that are cytolytic in the periphery either result in little neuropathology or are associated with a protracted course of CNS disease consistent with persistent infection. One such virus, poliovirus (PV), is an extremely lytic RNA virus that requires the expression of CD155, the poliovirus receptor (PVR), for infection. To compare the kinetics of PV infection in neuronal and non-neuronal cell types, primary hippocampal neurons and fibroblasts were isolated from CD155+ transgenic embryos and infected with the Mahoney and Sabin strains of PV. Despite similar levels of infection in these ex vivo cultures, PV-infected neurons produced 100-fold fewer infectious particles as compared to fibroblasts throughout infection, and death of PV-infected neurons was delayed approximately 48 h. Spread in neurons occurred primarily by trans-synaptic transmission and was CD155-dependent. Together, these results demonstrate that the magnitude and speed with which PV replication, spread, and subsequent cell death occur in neurons is decreased as compared to non-neuronal cells, implicating cell-specific effects on replication that may then influence viral pathogenesis.

  3. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  4. Positron emission tomography in patients with primary CNS lymphomas

    NARCIS (Netherlands)

    Roelcke, U; Leenders, KL

    This article reviews possible clinical applications of positron emission tomography (PET) in patients with CNS lymphomas. PET allows quantitative assessment of brain tumor pathophysiology and biochemistry in vivo. Therefore, it provides different information about tumors when compared to

  5. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers.

    Science.gov (United States)

    Collazos-Castro, Jorge E; García-Rama, Concepción; Alves-Sampaio, Alexandra

    2016-04-15

    Electroactive systems that promote directional axonal growth and migration of glial progenitor cells (GPC) are needed for the treatment of neurological injuries. We report the functionalization of electroconducting microfibers with multiple biomolecules that synergistically stimulate the proliferation and migration of GPC, which in turn induce axonal elongation from embryonic cerebral cortex neurons. PEDOT doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] was synthesized on carbon microfibers and used for covalent attachment of molecules to the electroactive surface. The molecular complexes that promoted GPC proliferation and migration, followed by axonal extension, were composed of polylysine, heparin, basic fibroblast growth factor (bFGF), and matricellular proteins; the combination of bFGF with vitronectin or fibronectin being indispensable for sustained glial and axonal growth. The rate of glial-induced axonal elongation was about threefold that of axons growing directly on microfibers functionalized with polylysine alone. Electrical stimuli applied through the microfibers released bFGF and fibronectin from the polymer surface, consequently reducing GPC proliferation and promoting their differentiation into astrocytes, without causing cell detachment or toxicity. These results suggest that functionalized electroactive microfibers may provide a multifunctional tool for controlling neuron-glia interactions and enhancing neural repair. We report a multiple surface functionalization strategy for electroconducting microfibers (MFs), in order to promote proliferation and guided migration of glial precursor cells (GPC) and consequently create a permissive substrate for elongation of central nervous system (CNS) axons. GPC divided and migrated extensively on the functionalized MFs, leading to fast elongation of embryonic cerebral cortex axons. The application of electric pulses thorough the MFs controlled glial cell division and differentiation. The

  6. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  7. Brain abscess with an unexpected finding: Actinomyces meyeri CNS infection

    DEFF Research Database (Denmark)

    Eiset, Andreas Halgreen; Thomsen, Marianne Kragh; Wejse, Christian

    Background: CNS infection caused by Actinomyces spp. is rare and the subtype Actinomyces meyeri even rarer. Risk factors include periodontal disease and alcohol overuse. We present a case report of a 54-year-old female with dental and lung foci. Case history: A female was hospitalised with tonic...... antibiotics. The optimal treatment of A. meyeri CNS infection has not yet been established – case reports are important in reaching this goal....

  8. Nanotechnology for CNS Delivery of Bio-Therapeutic Agents

    OpenAIRE

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-01-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve ...

  9. Mesenchymal Stem Cells for Treatment of CNS Injury

    OpenAIRE

    Azari, Michael F; Mathias, Louisa; Ozturk, Ezgi; Cram, David S; Boyd, Richard L; Petratos, Steven

    2010-01-01

    Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy. A variety of stem cell treatments have been examined in animal models of CNS trauma. Many of these studies have used stem cells as...

  10. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  11. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  12. Sleep disorders in children after treatment for a CNS tumour.

    Science.gov (United States)

    Verberne, Lisa M; Maurice-Stam, Heleen; Grootenhuis, Martha A; Van Santen, Hanneke M; Schouten-Van Meeteren, Antoinette Y N

    2012-08-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with clinical characteristics and daily performance (fatigue and psychosocial functioning). In a cross-sectional study at the outpatient clinic of the Emma Children's Hospital AMC (February-June 2010), sleep, fatigue and psychosocial functioning were analysed in 31 CNS tumour patients (mean age: 11.8years; 20 boys) and compared with 78 patients treated for a non-CNS malignancy (mean age: 9.7years; 41 boys) and norm data. Questionnaires applied were the Sleep Disorder Scale for Children, the Epworth Sleepiness Scale, the Pediatric Quality of Life Inventory, and the Strengths and Difficulties Questionnaire. Sleeping habits and endocrine deficiencies were assessed with a self-developed questionnaire. Increased somnolence was found in CNS tumour patients compared with those with a non-CNS malignancy (8.8±2.8 versus 7.5±2.7; Psleep. No specific risk factors were identified for a sleep disorder in CNS tumour patients, but their excessive somnolence was correlated with lower fatigue related quality of life (QoL) (r=-0.78, Psleep quality and diminish fatigue. © 2011 European Sleep Research Society.

  13. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  14. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The central nervous system (CNS insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP. MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  15. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  16. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  17. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  18. Intrinsically dynamic population models

    Directory of Open Access Journals (Sweden)

    Robert Schoen

    2005-03-01

    Full Text Available Intrinsically dynamic models (IDMs depict populations whose cumulative growth rate over a number of intervals equals the product of the long term growth rates (that is the dominant roots or dominant eigenvalues associated with each of those intervals. Here the focus is on the birth trajectory produced by a sequence of population projection (Leslie matrices. The elements of a Leslie matrix are represented as straightforward functions of the roots of the matrix, and new relationships are presented linking the roots of a matrix to its Net Reproduction Rate and stable mean age of childbearing. Incorporating mortality changes in the rates of reproduction yields an IDM when the subordinate roots are held constant over time. In IDMs, the birth trajectory generated by any specified sequence of Leslie matrices can be found analytically. In the Leslie model with 15 year age groups, the constant subordinate root assumption leads to reasonable changes in the age pattern of fertility, and equations (27 and (30 provide the population size and structure that result from changing levels of net reproduction. IDMs generalize the fixed rate stable population model. They can characterize any observed population, and can provide new insights into dynamic demographic behavior, including the momentum associated with gradual or irregular paths to zero growth.

  19. Adult Neural Stem Cells: Redefining the Physio- and Pathology of the CNS

    Science.gov (United States)

    Taupin, Philippe

    2008-01-01

    Stem cells are the “building blocks” of the body; they are self-renewing undifferentiated cells that give rise to the specialized cells of the tissues. In adult, stem cells are multipotent, they contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs) reside in the adult central nervous system (CNS) suggests that the adult brain has the potential to regenerate and may be amenable to repair. The advent of adult neurogenesis and NSC research will redefine our understanding of the physio- and pathology of the nervous system, and provide new avenues and opportunities to treat a broad range of neurological diseases, disorders and injuries. Adult NSC-based therapies will involve cellular therapy, but also pharmacology. PMID:23675059

  20. Functional conservation of atonal and Math1 in the CNS and PNS

    Science.gov (United States)

    Ben-Arie, N.; Hassan, B. A.; Bermingham, N. A.; Malicki, D. M.; Armstrong, D.; Matzuk, M.; Bellen, H. J.; Zoghbi, H. Y.

    2000-01-01

    To determine the extent to which atonal and its mouse homolog Math1 exhibit functional conservation, we inserted (beta)-galactosidase (lacZ) into the Math1 locus and analyzed its expression, evaluated consequences of loss of Math1 function, and expressed Math1 in atonal mutant flies. lacZ under the control of Math1 regulatory elements duplicated the previously known expression pattern of Math1 in the CNS (i.e., the neural tube, dorsal spinal cord, brainstem, and cerebellar external granule neurons) but also revealed new sites of expression: PNS mechanoreceptors (inner ear hair cells and Merkel cells) and articular chondrocytes. Expressing Math1 induced ectopic chordotonal organs (CHOs) in wild-type flies and partially rescued CHO loss in atonal mutant embryos. These data demonstrate that both the mouse and fly homologs encode lineage identity information and, more interestingly, that some of the cells dependent on this information serve similar mechanoreceptor functions.

  1. “Targeting astrocytes in CNS injury and disease: A translational research approach”

    Science.gov (United States)

    Filous, Angela R.; Silver, Jerry

    2016-01-01

    Astrocytes are a major constituent of the central nervous system. These glia play a major role in regulating blood-brain barrier function, the formation and maintenance of synapses, glutamate uptake, and trophic support for surrounding neurons and glia. Therefore, maintaining the proper functioning of these cells is crucial to survival. Astrocyte defects are associated with a wide variety of neuropathological insults, ranging from neurodegenerative diseases to gliomas. Additionally, injury to the CNS causes drastic changes to astrocytes, often leading to a phenomenon known as reactive astrogliosis. This process is important for protecting the surrounding healthy tissue from the spread of injury, while it also inhibits axonal regeneration and plasticity. Here, we discuss the important roles of astrocytes after injury and in disease, as well as potential therapeutic approaches to restore proper astrocyte functioning. PMID:27026202

  2. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    Science.gov (United States)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  3. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jan Winchenbach

    2016-12-01

    Full Text Available Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  4. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    events. Immunological control of HSV involves activation of innate immune pattern-recognition receptors such as TLR3, which detects double-stranded RNA and induces type I IFN expression. Humans with defects in the TLR3/IFN pathway have an elevated susceptibility to HSV infections of the CNS. However......Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation...

  5. Auditory system physiology (CNS) : behavioral studies psychoacoustics

    CERN Document Server

    Neff, William

    1975-01-01

    nerve; subsequently, however, they concluded that the recordings had been from aberrant cells of the cochlear nucleus lying central to the glial margin of the VIII nerve (GALAMBOS and DAVIS, 1948). The first successful recordmgs from fibres of the cochlear nerve were made by TASAKI (1954) in the guinea pig. These classical but necessarily limited results were greatly extended by ROSE, GALAMBOS, and HUGHES (1959) in the cat cochlear nucleus and by KATSUKI and co-workers (KATSUKI et at. , 1958, 1961, 1962) in the cat and monkey cochlear nerve. Perhaps the most significant developments have been the introduction of techniques for precise control of the acoustic stimulus and the quantitative analysis of neuronal response patterns, notably by the laboratories of KIANG (e. g. GERSTEIN and KIANG, 1960; KIANG et at. , 1962b, 1965a, 1967) and ROSE (e. g. ROSE et at. , 1967; HIND et at. , 1967). These developments have made possible a large number of quanti­ tative investigations of the behaviour of representative num...

  6. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    DEFF Research Database (Denmark)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H

    2016-01-01

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally...... diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated...... with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration...

  7. Dynamics of globally coupled inhibitory neurons with heterogeneity

    Science.gov (United States)

    Golomb, David; Rinzel, John

    1993-12-01

    A model of many heterogeneous excitable neurons with a global slowly decaying inhibitory coupling is studied. When neuronal intrinsic excitability parameters are randomly distributed, the system exhibits four regimes of behavior. In addition to synchronized periodic and asynchronous regimes, we obtain two aperiodic regimes, with bursting rate a staircaselike function of neuron excitability. In one regime, the system is partially synchronized and in the second, partially antisynchronized. The transition between these two regimes is discontinuous as the disorder increases.

  8. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  9. CNS Anticancer Drug Discovery and Development Conference White Paper.

    Science.gov (United States)

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Isolated vasculitis of the CNS; Isolierte Vaskulitis des ZNS

    Energy Technology Data Exchange (ETDEWEB)

    Block, F. [RWTH Aachen (Germany). Neurologische Klinik; Reith, W. [Universitaet des Saarlandes, Homburg/Saar (Germany). Radiologische Klinik

    2000-11-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [German] Vaskulitiden sind eine seltene Ursache fuer Erkrankungen des ZNS. Die Vaskulitiden lassen sich in primaere und sekundaere einteilen, von denen sich die ueberwiegende Mehrzahl an verschiedenen Organsystemen einschliesslich dem ZNS manifestieren kann. Die isolierte ZNS-Vaskulitis ist auf das ZNS beschraenkt, bei ihr stehen klinisch-neurologisch wie bei den anderen Vaskulitisformen Kopfschmerzen, Enzephalopathie, fokale Defizite und epileptische Anfaelle im Vordergrund. Ein Kriterium der isolierten ZNS-Vaskulitis ist der klinische und laborchemische Ausschluss anderer Vaskulitiden bzw. der Beteiligung anderer Organsysteme. Multiple Kaliberspruenge intrakranieller Arterien in der zerebralen Angiographie und multiple, kleine, z.T. kontrastmittelaufnehmende Laesionen in der MRT des Schaedels sind vaskulitistypische Befunde, die allerdings auch bei anderen Vaskulitiden zu finden sind. Einzig beweisend ist eine Hirnhaut- und Hirnparenchymbiopsie. Besonders vor dem Hintergrund der therapeutischen Option, Immunsuppression mit Kortison und Cyclophosphamid, ist eine moeglichst genaue Diagnose erforderlich. (orig.)

  11. A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.

    2014-01-01

    SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365

  12. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  13. Intrinsic gain modulation and adaptive neural coding.

    Directory of Open Access Journals (Sweden)

    Sungho Hong

    2008-07-01

    Full Text Available In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate versus current (f-I curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.

  14. Prospects for the development of epigenetic drugs for CNS conditions.

    Science.gov (United States)

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  15. Metallothionein Expression and Roles During Neuropathology in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    and apoptotic cell death after brain injury, while astroglia is stimulated. This indicates that MT-I+II function independently of species of origin. Previously, we showed that MT-I+II also ameliorate autoimmune, excitotoxic and inflammatory CNS disorders, and independent groups have confirmed this and have...... and apoptotic cell death, whereby the delayed (secondary) tissue damage was inhibited after brain injury and 6-AN-toxicity. MT-I+II also diminish the primary CNS toxicity caused directly by 6-AN and the clinical outcome (mortality). Additionally, MT-I+II stimulate astrogliosis; expression of growth factors......, their receptors and neurotrophins (TGFb, TGFb-Receptor, bFGF, bFGF-Receptor, VEGF, NT-3, NT-4/5, NGF); angiogenesis; and growth cone formation. Hence, MT-I+II enhance CNS tissue repair as seen clearly after the cryogenic injury, after which MT-I+II promote substitution of the necrotic lesion cavity with a glial...

  16. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  17. Noisy Neurons

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 1. Noisy Neurons: Hodgkin-Huxley Model and Stochastic Variants. Shurti Paranjape. General Article Volume 20 Issue 1 January 2015 pp 34-43. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Lee

    Full Text Available Signal transducers and activators of transcription (STATs are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5, the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF.

  19. Mechanisms of magnetic stimulation of central nervous system neurons.

    Science.gov (United States)

    Pashut, Tamar; Wolfus, Shuki; Friedman, Alex; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2011-03-01

    Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  20. Mechanisms of magnetic stimulation of central nervous system neurons.

    Directory of Open Access Journals (Sweden)

    Tamar Pashut

    2011-03-01

    Full Text Available Transcranial magnetic stimulation (TMS is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  1. Intrinsically Passive Handling and Grasping

    NARCIS (Netherlands)

    Stramigioli, Stefano; Scherpen, Jacquelien M.A.; Khodabandehloo, Koorosh

    2000-01-01

    The paper presents a control philosophy called Intrinsically Passive Control, which has the feature to properly behave during interaction with any passive objects. The controlled robot will never become unstable due to the physical structure of the controller.

  2. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  3. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?

    Directory of Open Access Journals (Sweden)

    Janelle Drouin-Ouellet

    2017-09-01

    Full Text Available Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i what constitutes an iN cell, ii which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.

  4. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis.

    Science.gov (United States)

    Huang, Yung-An; Kao, Chun-Wei; Liu, Kuang-Kai; Huang, Hou-Syun; Chiang, Ming-Han; Soo, Ching-Ren; Chang, Huan-Cheng; Chiu, Tzai-Wen; Chao, Jui-I; Hwang, Eric

    2014-11-05

    Nanodiamond (ND) has emerged as a promising carbon nanomaterial for therapeutic applications. In previous studies, ND has been reported to have outstanding biocompatibility and high uptake rate in various cell types. ND containing nitrogen-vacancy centers exhibit fluorescence property is called fluorescent nanodiamond (FND), and has been applied for bio-labeling agent. However, the influence and application of FND on the nervous system remain elusive. In order to study the compatibility of FND on the nervous system, neurons treated with FNDs in vitro and in vivo were examined. FND did not induce cytotoxicity in primary neurons from either central (CNS) or peripheral nervous system (PNS); neither did intracranial injection of FND affect animal behavior. The neuronal uptake of FNDs was confirmed using flow cytometry and confocal microscopy. However, FND caused a concentration-dependent decrease in neurite length in both CNS and PNS neurons. Time-lapse live cell imaging showed that the reduction of neurite length was due to the spatial hindrance of FND on advancing axonal growth cone. These findings demonstrate that FNDs exhibit low neuronal toxicity but interfere with neuronal morphogenesis, and should be taken into consideration when applications involve actively growing neurites (e.g. nerve regeneration).

  5. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Science.gov (United States)

    Kornfeld, Samantha F; Lynch-Godrei, Anisha; Bonin, Sawyer R; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  6. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  7. Merging Transport Data for Choroid Plexus with Blood-Brain Barrier to Model CNS Homeostasis and Disease More Effectively.

    Science.gov (United States)

    Johanson, Conrad; Johanson, Nancy

    2016-01-01

    Robust modeling of CNS transport integrates molecular fluxes at the microvascular blood-brain barrier and epithelial choroid plexus blood-cerebrospinal fluid (CSF) barrier. Normal activity of solute transporters, channels and aquaporins, in the cerebral endothelium and choroidal epithelium, sets the microenvironment composition for neurons and glia. Conversely, perturbed transport/permeability at the barrier interfaces causes interstitial fluid dyshomeostasis (e.g. edema) arising in neural disorders. Critically-important transependymal solute/water distribution between brain and CSF needs more attention. This treatise encourages procuring transport data simultaneously for blood-brain barrier, blood-CSF barrier and CSF. In situ perfusion and multicompartmental analyses (tracers, microdialysis) provide dynamic assessments of molecular transfer among various CNS regions. Diffusion, active transport and convection are distorted by disease- and age-associated alterations in barrier permeability and CSF turnover (sink action). Clinical complications result from suboptimal conveyance of micronutrients (folate), catabolites (β-amyloid) and therapeutic agents (antibiotics) within the CNS. Neurorestorative therapies for stroke, traumatic brain injury, multiple sclerosis and brain tumors are facilitated by insight on molecular and cellular trafficking through the choroid plexus-CSF nexus. Knowledge is needed about fluxes of growth factors, neurotrophins, hormones and leukocytes from ventricular CSF into the hippocampus, subventricular zone and hypothalamus. CSF and brain removal of potentially toxic catabolites and neuropeptides merits further investigation to manage the degeneration of Alzheimer's disease and normal pressure hydrocephalus. Novel therapies will rely on delineating peptide and drug distributions across the blood-brain barrier and choroid plexus-CSF, and how they modulate the intervening neural-glial networks and neurogenic sites. Multicompartmental transport

  8. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  9. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function

    Directory of Open Access Journals (Sweden)

    William C. Spencer

    2017-07-01

    Full Text Available The brain serotonin (5-hydroxytryptamine; 5-HT system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory

  10. Molecularly-Driven Doublet Therapy for Recurrent CNS Malignant Neoplasms

    Science.gov (United States)

    2018-02-20

    Anaplastic Astrocytoma; Anaplastic Ependymoma; Anaplastic Ganglioglioma; Anaplastic Meningioma; Anaplastic Oligodendroglioma; Pleomorphic Xanthoastrocytoma, Anaplastic; Atypical Teratoid/Rhabdoid Tumor; Brain Cancer; Brain Tumor; Central Nervous System Neoplasms; Choroid Plexus Carcinoma; CNS Embryonal Tumor With Rhabdoid Features; Ganglioneuroblastoma of Central Nervous System; CNS Tumor; Embryonal Tumor of CNS; Ependymoma; Glioblastoma; Glioma; Glioma, Malignant; Medulloblastoma; Medulloblastoma; Unspecified Site; Medulloepithelioma; Neuroepithelial Tumor; Neoplasms; Neoplasms, Neuroepithelial; Papillary Tumor of the Pineal Region (High-grade Only); Pediatric Brain Tumor; Pineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only); Pineoblastoma; Primitive Neuroectodermal Tumor; Recurrent Medulloblastoma; Refractory Brain Tumor; Neuroblastoma. CNS; Glioblastoma, IDH-mutant; Glioblastoma, IDH-wildtype; Medulloblastoma, Group 3; Medulloblastoma, Group 4; Glioma, High Grade; Neuroepithelial Tumor, High Grade; Medulloblastoma, SHH-activated and TP53 Mutant; Medulloblastoma, SHH-activated and TP53 Wildtype; Medulloblastoma, Chromosome 9q Loss; Medulloblastoma, Non-WNT Non-SHH, NOS; Medulloblastoma, Non-WNT/Non-SHH; Medulloblastoma, PTCH1 Mutation; Medulloblastoma, WNT-activated; Ependymoma, Recurrent; Glioma, Recurrent High Grade; Glioma, Recurrent Malignant; Embryonal Tumor, NOS; Glioma, Diffuse Midline, H3K27M-mutant; Embryonal Tumor With Multilayered Rosettes (ETMR); Ependymoma, NOS, WHO Grade III; Ependymoma, NOS, WHO Grade II; Medulloblastoma, G3/G4; Ependymoma, RELA Fusion Positive

  11. Problems of prophylactic CNS radiotherapy in acute children's leukemia

    International Nuclear Information System (INIS)

    Bek, V.; Pribylova, O.; Abrahamova, J.; Hynieova, H.; Hrodek, O.

    1980-01-01

    The prophylactic treatment of the CNS was conducted by cobalt teletherapy of the cranium and by intrathecal application of MTX after the induction of primary remission in 70 children with acute leukemia throughout 5 years up to the end of 1978. The method of the combined radio- and chemoprophylaxis of the CNS was being changed during the years, especially as far as the radiation dose for the cranium was concerned. A detailed analysis made in a group of 59 children with the minimum interval of 18 months from the beginning of the treatment showed the best results after the application of a dose of 24 Gy/3 weeks. Following this procedure the relapse of leukemia in the CNS occurred in 9% only, whereas on the application of doses of 20 Gy and lower it occurred in 35 to 40%. On the whole 24 out of 59 children, i.e. 41%, are surviving, 35 children, i.e. 59%, died. Mostly complete, but only temporary, epilation was an invariable consequence of the irradiation of the cranium. The somnolence syndrome was only sporadically observed. It cannot be excluded, however, that some of its forms in patients discharged from hospital escaped attention. No case was recorded of serious impairment of the CNS of the leukoencephalopathic type. Up to now the psychomotor, intellectual and emotional development of the surviving children has been normal. (author)

  12. Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    NARCIS (Netherlands)

    S. Grisariu (Sigal); B. Avni (Batia); T.T. Batchelor (Tracy); M.J. van den Bent (Martin); F. Bokstein (Felix); D. Schiff (David); O. Kuittinen (Outi); M.C. Chamberlain (Marc C.); P. Roth (Patrick); A. Nemets (Anatoly); E. Shalom (Edna); D. Ben-Yehuda (Dina); T. Siegal (Tali)

    2010-01-01

    textabstractNeurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%.

  13. Identification of new therapeutic targets for prevention of CNS inflammation

    DEFF Research Database (Denmark)

    Owens, Trevor

    2002-01-01

    Multiple sclerosis (MS) is a disease of complex pathologies, which involves infiltration by CD4(+) and CD8(+) T cells of and response within the central nervous system. Expression in the CNS of cytokines, reactive nitrogen species and costimulator molecules have all been described in MS. Notably,...

  14. Sleep disorders in children after treatment for a CNS tumour

    NARCIS (Netherlands)

    Verberne, Lisa M.; Maurice-Stam, Heleen; Grootenhuis, Martha A.; van Santen, Hanneke M.; Schouten-van Meeteren, Antoinette Y. N.

    2012-01-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with

  15. Commentary on Special Issue : CNS Diseases and the Immune System

    NARCIS (Netherlands)

    't Hart, Bert A.; den Dunnen, Wilfred F.

    In an increasing number of central nervous system (CNS) diseases a pathogenic contribution of the immune system is proposed. However, the exact underlying mechanisms are often poorly understood. The collection of articles in this special issue presents a state-of-the-art review of adaptive and

  16. CNS Anticancer Drug Discovery and Development: 2016 conference insights.

    Science.gov (United States)

    Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M

    2017-07-18

    CNS Anticancer Drug Discovery and Development November 2016, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669-286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points.

  17. CNS and inflammation | Tomoum | Egyptian Journal of Pediatric ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 5, No 1 (2007) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. CNS and inflammation. Hoda Y ...

  18. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord

    Science.gov (United States)

    Morsch, Marco; Radford, Rowan; Lee, Albert; Don, Emily K.; Badrock, Andrew P.; Hall, Thomas E.; Cole, Nicholas J.; Chung, Roger

    2015-01-01

    Microglia are specialized phagocytes in the vertebrate central nervous system (CNS). As the resident immune cells of the CNS they play an important role in the removal of dying neurons during both development and in several neuronal pathologies. Microglia have been shown to prevent the diffusion of damaging degradation products of dying neurons by engulfment and ingestion. Here we describe a live imaging approach that uses UV laser ablation to selectively stress and kill spinal neurons and visualize the clearance of neuronal remnants by microglia in the zebrafish spinal cord. In vivo imaging confirmed the motile nature of microglia within the uninjured spinal cord. However, selective neuronal ablation triggered rapid activation of microglia, leading to phagocytic uptake of neuronal debris by microglia within 20–30 min. This process of microglial engulfment is highly dynamic, involving the extension of processes toward the lesion site and consequently the ingestion of the dying neuron. 3D rendering analysis of time-lapse recordings revealed the formation of phagosome-like structures in the activated microglia located at the site of neuronal ablation. This real-time representation of microglial phagocytosis in the living zebrafish spinal cord provides novel opportunities to study the mechanisms of microglia-mediated neuronal clearance. PMID:26379496

  19. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes.

    Science.gov (United States)

    Karussis, Dimitrios; Petrou, Panayiota

    2014-03-01

    A wide variety of inflammatory diseases temporally associated with the administration of various vaccines, has been reported in the literature. A PubMed search from 1979 to 2013 revealed seventy one (71) documented cases. The most commonly reported vaccinations that were associated with CNS demyelinating diseases included influenza (21 cases), human papilloma virus (HPV) (9 cases), hepatitis A or B (8 cases), rabies (5 cases), measles (5 cases), rubella (5 cases), yellow fever (3 cases), anthrax (2 cases),meningococcus (2 cases) and tetanus (2 cases). The vast majority of post-vaccination CNS demyelinating syndromes, are related to influenza vaccination and this could be attributed to the high percentage of the population that received the vaccine during the HI1N1 epidemia from 2009 to 2012. Usually the symptoms of the CNS demyelinating syndrome appear few days following the immunization (mean: 14.2 days) but there are cases where the clinical presentation was delayed (more than 3 weeks or even up to 5 months post-vaccination) (approximately a third of all the reported cases). In terms of the clinical presentation and the affected CNS areas, there is a great diversity among the reported cases of post-vaccination acute demyelinating syndromes. Optic neuritis was the prominent clinical presentation in 38 cases, multifocal disseminated demyelination in 30, myelitis in 24 and encephalitis in 17. Interestingly in a rather high proportion of the patients (and especially following influenza and human papiloma virus vaccination-HPV) the dominant localizations of demyelination were the optic nerves and the myelon, presenting as optic neuritis and myelitis (with or without additional manifestations of ADEM), reminiscent to neuromyelitic optica (or, more generally, the NMO-spectrum of diseases). Seven patients suffered an NMO-like disease following HPV and we had two similar cases in our Center. One patient with post-vaccination ADEM, subsequently developed NMO. Overall, the

  20. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  1. Learning to learn - intrinsic plasticity as a metaplasticity mechanism for memory formation.

    Science.gov (United States)

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2013-10-01

    "Use it or lose it" is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity - a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability - this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but

  2. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

    Science.gov (United States)

    O’Donovan, Kevin J.; Ma, Kaijie; Guo, Hengchang; Wang, Chen; Sun, Fang; Han, Seung Baek; Kim, Hyukmin; Wong, Jamie K.; Charron, Jean; Zou, Hongyan; Son, Young-Jin; He, Zhigang

    2014-01-01

    Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems. PMID:24733831

  3. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats

    Directory of Open Access Journals (Sweden)

    Zhang Licai

    2009-03-01

    Full Text Available Abstract Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of dCSF-CNs

  4. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  5. Neurosemantics, neurons and system theory.

    Science.gov (United States)

    Breidbach, Olaf

    2007-08-01

    Following the concept of internal representations, signal processing in a neuronal system has to be evaluated exclusively based on internal system characteristics. Thus, this approach omits the external observer as a control function for sensory integration. Instead, the configuration of the system and its computational performance are the effects of endogenous factors. Such self-referential operation is due to a strictly local computation in a network and, thereby, computations follow a set of rules that constitute the emergent behaviour of the system. These rules can be shown to correspond to a "logic" that is intrinsic to the system, an idea which provides the basis for neurosemantics.

  6. A systematic approach to selecting task relevant neurons.

    Science.gov (United States)

    Kahn, Kevin; Saxena, Shreya; Eskandar, Emad; Thakor, Nitish; Schieber, Marc; Gale, John T; Averbeck, Bruno; Eden, Uri; Sarma, Sridevi V

    2015-04-30

    Since task related neurons cannot be specifically targeted during surgery, a critical decision to make is to select which neurons are task-related when performing data analysis. Including neurons unrelated to the task degrade decoding accuracy and confound neurophysiological results. Traditionally, task-related neurons are selected as those with significant changes in firing rate when a stimulus is applied. However, this assumes that neurons' encoding of stimuli are dominated by their firing rate with little regard to temporal dynamics. This paper proposes a systematic approach for neuron selection, which uses a likelihood ratio test to capture the contribution of stimulus to spiking activity while taking into account task-irrelevant intrinsic dynamics that affect firing rates. This approach is denoted as the model deterioration excluding stimulus (MDES) test. MDES is compared to firing rate selection in four case studies: a simulation, a decoding example, and two neurophysiology examples. The MDES rankings in the simulation match closely with ideal rankings, while firing rate rankings are skewed by task-irrelevant parameters. For decoding, 95% accuracy is achieved using the top 8 MDES-ranked neurons, while the top 12 firing-rate ranked neurons are needed. In the neurophysiological examples, MDES matches published results when firing rates do encode salient stimulus information, and uncovers oscillatory modulations in task-related neurons that are not captured when neurons are selected using firing rates. These case studies illustrate the importance of accounting for intrinsic dynamics when selecting task-related neurons and following the MDES approach accomplishes that. MDES selects neurons that encode task-related information irrespective of these intrinsic dynamics which can bias firing rate based selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. WNT signalling in neuronal maturation and synaptogenesis

    Directory of Open Access Journals (Sweden)

    Silvana Beatriz Rosso

    2013-07-01

    Full Text Available The Wnt signaling pathway plays a role in the development of the central nervous system (CNS and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.

  8. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  9. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  10. Peripheral synapses and giant neurons in whip spiders.

    Science.gov (United States)

    Foelix, Rainer; Troyer, David; Igelmund, Peter

    2002-08-15

    Among invertebrates the synapses between neurons are generally restricted to ganglia, i.e., to the central nervous system (CNS). As an exception, synapses occur in the sensory nerves of arachnid legs, indicating that some nervous integration is already taking place far out in the periphery. In the antenniform legs of whip spiders (Amblypygi), a very special synaptic circuit is present. These highly modified legs contain several large interneurons (giant neurons) that receive mechanosensory input from 700-1,500 tarsal bristles. Some of the sensory cell axons contact a giant neuron at its short, branched dendrite, a few at the soma, but most synapse onto the long giant axon. The fine structure of these synapses resembles that of typical chemical synapses in other arthropods. Although thousands of sensory fibers converge on a single giant neuron, there is no reduction in the actual number of sensory fibers, because these afferent fibers continue their course to the CNS after having made several en passant synapses onto the giant neuron. Touching a single tarsal bristle is sufficient to elicit action potentials in a giant neuron. Owing to the large diameter of the giant axon (10-20 microm), the action potentials reach the CNS within 55 ms, at conduction velocities of up to 7 m/s. However, mechanical stimulation of the tarsal bristles does not elicit a fast escape response, in contrast to giant fiber systems in earthworms, certain insects, and crayfishes. A quick escape is observed in whip spiders, but only after stimulation of the filiform hairs (trichobothria) on the regular walking legs. Although the giant fiber system in the antenniform legs undoubtedly provides a fast sensory pathway, its biological significance is not clearly understood at the moment. Copyright 2002 Wiley-Liss, Inc.

  11. Differential Regulation of Apical-basolateral Dendrite Outgrowth by Activity in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Yang eYuan

    2015-08-01

    Full Text Available Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized by structurally and functionally distinct apical and basolateral dendrites. The ability of the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs received are critically dependent on dendrite architecture. Little is known about the role of neuronal activity in guiding maintainance of dendrite asymmetry. Our data indicate that dendrite asymmetry is established and maintained early during development. Further, our results indicate that cell intrinsic and global alterations of neuronal activity have differential effects on net extension of apical and basolateral dendrites. Thus, apical and basolateral dendrite extension may be independently regulated by cell intrinsic and network neuronal activity during development, suggesting that individual dendrites may have autonomous control over net extension. We propose that regulated individual dendrite extension in response to cell intrinsic and neuronal network activity may allow temporal control of synapse specificity in the developing hippocampus.

  12. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  13. PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals.

    Science.gov (United States)

    Gou, Zhaoyu; Mi, Yajing; Jiang, Fengliang; Deng, Bin; Yang, Jun; Gou, Xingchun

    2014-06-01

    A major barrier to axonal regeneration in mammals is the unfavorable extracellular environment that develops following injury to the central nervous system (CNS). In particular, three myelin-associated inhibitory proteins (MAIs) - Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) - are known to inhibit axonal regeneration and functional recovery. These MAIs share a common receptor, glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, paired immunoglobulin-like receptor B (PirB) - which was originally identified as a receptor for class I major histocompatibility complex (MHCI) in the immune system - is also expressed in neurones and plays a similarly inhibitory role in axonal regeneration and synaptic plasticity following CNS injury through its association with MAIs. Importantly, suppression of PirB activity through antibody antagonism or genetic means can partially relieve the inhibition of neurite outgrowth in vitro and in vivo. In this review, we present the molecular features, expression patterns and known signaling pathways of PirB, and we specifically focus on putative roles for PirB in the CNS and its potential as a target of molecular therapies for enhancing axonal regeneration and synaptic plasticity following CNS injury.

  14. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials...... is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv...

  15. Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States

    OpenAIRE

    Larsen, Hege E.; Bardsley, Emma N.; Lefkimmiatis, Konstantinos; Paterson, David J.

    2016-01-01

    Hypertension is associated with impaired nitric oxide (NO)–cyclic nucleotide (CN)-coupled intracellular calcium (Ca2+) homeostasis that enhances cardiac sympathetic neurotransmission. Because neuronal membrane Ca2+ currents are reduced by NO-activated S-nitrosylation, we tested whether CNs affect membrane channel conductance directly in neurons isolated from the stellate ganglia of spontaneously hypertensive rats (SHRs) and their normotensive controls. Using voltage-clamp and cAMP–protein kin...

  16. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    Directory of Open Access Journals (Sweden)

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  17. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury

    NARCIS (Netherlands)

    Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R.; Ljubkovic, Marko; Mueller, Samantha J.; Stucky, Cheryl L.; Hogan, Quinn H.

    2013-01-01

    The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of

  18. Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically-Based Pharmacokinetic Model

    NARCIS (Netherlands)

    Yamamoto, Yumi; Välitalo, Pyry A; Huntjens, Dymphy R; Proost, Johannes H; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W; van den Berg, Dirk-Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G C; de Lange, Elizabeth C M

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS

  19. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Targeting α4β2 nAChRs in CNS disorders: Perspectives on positive allosteric modulation as a therapeutic approach

    DEFF Research Database (Denmark)

    Grupe, Morten; Grunnet, Morten; Bastlund, Jesper F.

    2015-01-01

    The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional character...... clinical advantages and concerns of PAMs are discussed in the light of the role of α4β2 nAChRs as key regulators of fast synaptic transmission.......The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional...... be used as a treatment approach in various CNS disorders. As subtype-selective agonists and other cholinergic ligands have only shown limited therapeutic success, the focus of recent drug development endeavours has largely shifted to positive allosteric modulators (PAMs). By potentiating the action...

  1. HIV, opiates, and enteric neuron dysfunction.

    Science.gov (United States)

    Galligan, J J

    2015-04-01

    Human immune deficient virus (HIV) is an immunosuppressive virus that targets CD4(+) T-lymphocytes. HIV infections cause increased susceptibility to opportunistic infections and cancer. HIV infection can also alter central nervous system (CNS) function causing cognitive impairment. HIV does not infect neurons but it does infect astrocytes and microglia in the CNS. HIV can also infect enteric glia initiating an intestinal inflammatory response which causes enteric neural injury and gut dysfunction. Part of the inflammatory response is HIV induced production of proteins including, Transactivator of transcription (Tat) which contribute to neuronal injury after release from HIV infected glial cells. A risk factor for HIV infection is intravenous drug use with contaminated needles and chronic opiate use can exacerbate neural injury in the nervous system. While most research focuses on the actions of Tat and other HIV related proteins and opiates on the brain, recent data indicate that Tat can cause intestinal inflammation and disruption of enteric neuron function, including alteration of Na(+) channel activity and action potential generation. A paper published in this issue of Neurogastroenterology and Motility extends these findings by identifying an interaction between Tat and morphine on enteric neuron Na(+) channels and on intestinal motility in vivo using a Tat expressing transgenic mouse model. These new data show that Tat protein can enhance the inhibitory actions of morphine on action potential generation and propulsive motility. These findings are important to our understanding of how HIV causes diarrhea in infected patients and for the use of opioid drugs to treat HIV-induced diarrhea. © 2015 John Wiley & Sons Ltd.

  2. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2017-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  3. Reliable activation of immature neurons in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Lucas A Mongiat

    Full Text Available Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing.

  4. Tendencies the treatment of the central nervous system (CNS) tumors

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Jimenez Medina, Jose

    2004-01-01

    It is known that the treatment of the central nervous system (CNS) tumors is based on the use of surgery and radiotherapy (RT) and that chemotherapy (QMT) is used even more, as well as the other drugs. A bibliographic review was made to update the knowledge on the current trends and perspectives of RT applied to CNS tumors. The following were found among them: a) combinations of RT and CMT; b) radiosensitizers incorporated to the radiant treatment; c) angiogenesis inhibitors associated with RT; d) the scale-up or increase of the RT doses thanks to the development of new technologies, such as 3 D conformal radiotherapy, intensity- modulated radiotherapy, surgery and others. Another field of research is that of the changes in the rhythm or fractioning of the RT: hyperfractionated, accelerated, combinations of both, etc., which will allow mainly to increase the dosage scale-up

  5. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease......, a process referred to as reactive astrogliosis/ astrocytosis. In addition, the review will discuss (3) the role of astrocytes as an abundant cellular source for immunoregulatory (cytokines) factors, and their fundamental roles in the type and extent of CNS immune and inflammatory responses. (4) Recent...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  6. Characterization of Partial Intrinsic Symmetries

    NARCIS (Netherlands)

    Shehu, Aurela; Brunton, Alan; Wuhrer, Stefanie; Wand, Michael

    2014-01-01

    We present a mathematical framework and algorithm for characterizing and extracting partial intrinsic symmetries of surfaces, which is a fundamental building block for many modern geometry processing algorithms. Our goal is to compute all “significant” symmetry information of the shape, which we

  7. Reading: Intrinsic versus Extrinsic Motivation.

    Science.gov (United States)

    Ediger, Marlow

    Much debate centers on motivating student in reading achievement. Should students feel motivated from within (intrinsic motivation), or is it better to have extrinsic motivation whereby external stimuli are used to help learners achieve optimally in reading? This paper aims to analyze the two points of view about motivating students in reading…

  8. Intrinsic volumes of symmetric cones

    OpenAIRE

    Amelunxen, Dennis; Bürgisser, Peter

    2012-01-01

    We compute the intrinsic volumes of the cone of positive semidefinite matrices over the real numbers, over the complex numbers, and over the quaternions, in terms of integrals related to Mehta's integral. Several applications for the probabilistic analysis of semidefinite programming are given.

  9. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  10. Intrinsic Motivation in Physical Education

    Science.gov (United States)

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  11. CNS relapse in a low risk acute promyelocytic leukemia patient treated with ATRA-based regimen: is there a role for prophylactic CNS therapy in acute promyelocytic leukemia?

    OpenAIRE

    Gangadharan, K. V.; Prabhu, Raghuveer; Mampilly, Neena

    2009-01-01

    Though the incidence of CNS relapse in acute promyelocytic leukemia (AML-M3 FAB classification) has increased following the advent of all-trans retinoic acid (ATRA), still CNS relapse accounts for only 2–3% of all relapses in AML-M3 trated with standard ATRA plus chemotherapy regimen. We report a case of low risk AML-M3 treated with standard therapy, developing CNS relapse while on maintenance therapy with ATRA + 6-mercaptopurine (6-MP) + methotrexate (MTX).

  12. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  13. Morphological evaluation of fetus CNS and its related anomalies

    International Nuclear Information System (INIS)

    Oi, Shizuo; Tamaki, Norihiko; Matsumoto, Satoshi; Katayama, Kazuaki; Mochizuki, Matsuto

    1989-01-01

    The fetus central nervous system was evaluated morphologically by ultrasonography (US), magnetic resonance imaging (MRI), and CT scan to analyze the prenatal diagnostic value for CNS anomalies. A total of 31 patients with 42 lesions had been diagnosed during the preceding 7 years. The patients included 24 with hydrocephalus, three with anencephaly, three with myeloschisis, three with holoprosencephaly, three with an encephalocele, two with a Dandy-Walker cyst, one with hydroencephalodysplasia, one with an intracranial neoplasm, one with sacrococcygeal teratoma, and one with sacral agenesis. Compared with US and MRI, CT proved to be more accurate in the detection of spine and cranium-bone morphology. This finding seems to be valuable in the diagnosis of spina bifida, cranium bifidum and some cases of hypertensive hydrocephalus, especially in the axial view. MRI was definitely superior in the anatomico-pathological diagnosis of cerebral dysgenesis, ventriculomegaly, intracranial tumors, and other brain parenchymal changes in view of multi-dimensional analysis. The most considerable disadvantage of MRI in the diagnosis of a fetus CNS anomaly is the poor information about spine and cranium morphology. A super-conducting MRI system is still insufficient to demonstrate the spinal cord of a fetus. US was routinely used, and the multidimensional slices were useful for screening the CNS abnormalies. Some of the fetus brain lesions, such as intracranial hematomas, had a specific echogenecity on US. However, US sometimes failed to demarcate the cerebral parenchymal or subdural morphological changes because its artifacts had hyperchoic shadows. While US, MRI, and CT were valuable diagnostic tools in the morphological evaluation of fetus CNS and its related anomalies, each modality has different diagnostic advantages and disadvantages. Improvement can be expected when these diagnostic imaging modalities are complementary, depending upon the nature of the anatomy. (J.P.N.)

  14. 4th ENRI International Workshop on ATM/CNS

    CERN Document Server

    2017-01-01

    This book is a compilation of selected papers from the 4th ENRI International Workshop on ATM/CNS (EIWAC2015). The work focuses on novel techniques for aviation infrastructure in air traffic management (ATM) and communications, navigation, surveillance, and informatics (CNSI) domains. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of aviation authorities. As well, readers will encounter new ideas for realizing a more efficient and safer aviation system. .

  15. Myelin Damage and Repair in Pathologic CNS: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Arsalan eAlizadeh

    2015-07-01

    Full Text Available Injury to the central nervous system (CNS results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells (OPCs and neural stem/progenitor cells (NPCs contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i low levels of factors that promote oligodendrogenesis; (ii cell death among newly generated oligodendrocytes, (iii inhibitory factors in the post-injury milieu that impede remyelination, and (iv deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: 1 the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; 2 underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; 3 the endogenous mechanisms of oligodendrocyte replacement; 4 the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and 5 the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of

  16. Relationship between CNS and immunology, in relation to psychology.

    Science.gov (United States)

    Ashraf, Ghulam Md; Azhar, Asim; Ali, Ashraf; Rehan, Mohd; Zia, Qamar; Owais, Mohammad; Alexiou, Athanasios; Rauf, Ahmar; Ganash, Magdah; Kamal, Muhammad Amjad

    2018-01-29

    Higher animals, especially the human beings have the privilege of employing advanced central nervous system (CNS) as well as the evolved immune system to ward off various onslaughts throughout their life. Alterations in inflammatory and neural regulatory pathways lead to several disorders that are now becoming the cause of concern across the world. Deregulation in bidirectional network, particularly in aging population, leads to several neurodegenerative diseases such as having dementia as a one of the major characteristics. Interestingly, research updates have signified the role of abrupt immune regulation in several brain diseases, establishing a link between altered immune system and CNS related diseases. In the later period of life time, the role has altered the immune response in the pathogenesis of major psychiatric disorders, which has become more visible. Recent research advances have indicated a close relationship between emotion and psychology to diseases and immunology, proclaiming the need of providing enhanced attention on mechanistic aspect of psychoneuroimmunological disorders. In the present manuscript, we present a synopsis on the linkage of CNS and immune system with respect to psychology, with the aim to further understand the biological machinery of psychoneuroimmunological disorders. The immune system of human beings plays an important role in keeping pathogen onslaughts on bay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress.

    Science.gov (United States)

    Wang, Xinkun; Zaidi, Asma; Pal, Ranu; Garrett, Alexander S; Braceras, Rogelio; Chen, Xue-wen; Michaelis, Mary L; Michaelis, Elias K

    2009-02-19

    Oxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches. In this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons. Low energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.

  19. Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization.

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    Full Text Available In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium's intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency.

  20. Intrinsic properties of mouse lumbar motoneurons revealed by intracellular recording in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Sukiasyan, Natalya; Zhang, Mengliang

    2010-01-01

    identified circuits in the spinal cord. Forty-one motoneurons with antidromic spike potentials (>50 mV) from the sciatic nerve were investigated. We recorded the intrinsic properties of the neurons, including input resistance (mean: 2.4 +/- 1.2 MOmega), rheobase (mean: 7.1 +/- 5.9 nA), and the duration...

  1. GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis.

    Science.gov (United States)

    Walkley, S U; Siegel, D A; Dobrenis, K; Zervas, M

    1998-06-19

    One of the most profound events in the life of a neuron in the mammalian CNS is the development of a characteristic dendritic tree, yet little is understood about events controlling this process. Pyramidal neurons of the cerebral cortex are known to undergo a single explosive burst of dendritic sprouting immediately after completing migration to the cortical mantle, and following maturation there is no evidence that new, primary dendrites are initiated. Yet in one group of rare genetic diseases--Tay-Sachs disease and related neuronal storage disorders--cortical pyramidal neurons undergo a second period of dendritogenesis. New dendritic membrane is generated principally at the axon hillock and in time is covered with normal-appearing spines and synapses. In our studies of normal brain development and storage diseases we consistently find one feature in common in cortical pyramidal neurons undergoing active dendritogenesis: They exhibit dramatically increased expression of GM2 ganglioside localized to cytoplasmic vacuoles within neuronal perikarya and proximal dendrites. There is also evidence that the increase in GM2 precedes dendritic spouting, and that after dendritic maturation is complete (in normal brain) the GM2 levels in neurons become substantially reduced. These findings are consistent with GM2 ganglioside playing a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.

  2. A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons

    Directory of Open Access Journals (Sweden)

    Vogt Weisenhorn Daniela M

    2010-12-01

    Full Text Available Abstract Background Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2 for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX promoter, which is specific for immature neuronal cells in the CNS. Results In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus. Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. Conclusions This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular

  3. Temporal structure of neuronal population oscillations with empirical model decomposition

    International Nuclear Information System (INIS)

    Li Xiaoli

    2006-01-01

    Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation

  4. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury

    Science.gov (United States)

    Martens, Lauren Herl; Zhang, Jiasheng; Barmada, Sami J.; Zhou, Ping; Kamiya, Sherry; Sun, Binggui; Min, Sang-Won; Gan, Li; Finkbeiner, Steven; Huang, Eric J.; Farese, Robert V.

    2012-01-01

    Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn–/–) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn–/– neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn–/– mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn–/– microglia treated with LPS/IFN-γ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation. PMID:23041626

  5. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech.

    Science.gov (United States)

    Arafah, Karim; Croix, Dominique; Vizioli, Jacopo; Desmons, Annie; Fournier, Isabelle; Salzet, Michel

    2013-04-01

    The medicinal leech is notable for its capacity to regenerate its central nervous system (CNS) following mechanical trauma. Using an electrochemical nitric oxide (NO)-selective electrode to measure NO levels, we found that the time course of NO release in the injured leech CNS is partially under the control of endocannabinoids, namely, N-arachidonyl ethanolamide (AEA) and 2-arachidonyl glycerol (2-AG). Relative quantification of these endocannabinoids was performed by stable isotope dilution (2AGd8 and AAEd8) coupled to mass spectrometry in course of regeneration process or adenosine triphosphate (ATP) treatment. Data show that 2-AG levels rose to a maximum about 30 min after injury or ATP treatment, and returned to baseline levels 4 h after injury. In same conditions, AEA levels also rapidly (within 5 min) dropped after injury or ATP treatment to the nerve cord, but did not fully return to baseline levels within 4 h of injury. In correlation with these data, chemoattraction activities of endocannabinoids on isolated leech microglial cells have been shown in vitro and in vivo reflecting that control over NO production is accompanied by the controlled chemoattraction of microglia directed from the periphery to the lesion site for neuronal repair purposes. Taken together, our results show that in the leech, after injury concurrent with ATP production, purinergic receptor activation, NO production, microglia recruitment, and accumulation to lesion site, a fine imbalance occurs in the endocannabinoid system. These events can bring explanations about the ability of the leech CNS to regenerate after a trauma and the key role of endocannabinoids in this phenomenon. Copyright © 2013 Wiley Periodicals, Inc.

  6. Intrinsic disorder in the BK channel and its interactome.

    Directory of Open Access Journals (Sweden)

    Zhenling Peng

    Full Text Available The large-conductance Ca2+-activated K+ (BK channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal and smooth muscles, exocrine cells, and sensory cells of the inner ear. Previous studies suggest that BK channels are promiscuous binders involved in a multitude of protein-protein interactions. To gain a better understanding of the potential mechanisms underlying BK interactions, we analyzed the abundance, distribution, and potential mechanisms of intrinsic disorder in 27 BK channel variants from mouse cochlea, 104 previously reported BK-associated proteins (BKAPS from cytoplasmic and membrane/cytoskeletal regions, plus BK β- and γ-subunits. Disorder was evaluated using the MFDp algorithm, which is a consensus-based predictor that provides a strong and competitive predictive quality and PONDR, which can determine long intrinsically disordered regions (IDRs. Disorder-based binding sites or molecular recognition features (MoRFs were found using MoRFpred and ANCHOR. BKAP functions were categorized based on Gene Ontology (GO terms. The analyses revealed that the BK variants contain a number of IDRs. Intrinsic disorder is also common in BKAPs, of which ∼ 5% are completely disordered. However, intrinsic disorder is very differently distributed within BK and its partners. Approximately 65% of the disordered segments in BK channels are long (IDRs (>50 residues, whereas >60% of the disordered segments in BKAPs are short IDRs that range in length from 4 to 30 residues. Both α and γ subunits showed various amounts of disorder as did hub proteins of the BK interactome. Our analyses suggest that intrinsic disorder is important for the function of BK and its BKAPs. Long IDRs in BK are engaged in protein-protein and protein-ligand interactions, contain multiple post-translational modification sites, and are subjected to alternative splicing. The disordered structure of BK and its BKAPs suggests one of the underlying

  7. Retrograde influences of SCG axotomy on uninjured preganglionic neurons.

    Science.gov (United States)

    Gannon, Sean M; Hawk, Kiel; Walsh, Brian F; Coulibaly, Aminata; Isaacson, Lori G

    2018-04-18

    There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons. Copyright © 2018. Published by Elsevier B.V.

  8. Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation.

    Science.gov (United States)

    Aguirre, Adam; Maturana, Carola J; Harcha, Paloma A; Sáez, Juan C

    2013-01-01

    In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca(2+) influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.

  9. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease.

    Science.gov (United States)

    Norden, Diana M; Muccigrosso, Megan M; Godbout, Jonathan P

    2015-09-01

    Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Possible Involvement of TLRs and Hemichannels in Stress-Induced CNS Dysfunction via Mastocytes, and Glia Activation

    Directory of Open Access Journals (Sweden)

    Adam Aguirre

    2013-01-01

    Full Text Available In the central nervous system (CNS, mastocytes and glial cells (microglia, astrocytes and oligodendrocytes function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.

  11. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  12. Clinical manifestations of CNS infections caused by enterovirus type 71

    Directory of Open Access Journals (Sweden)

    Cheol Soon Choi

    2011-01-01

    Full Text Available Purpose: Enterovirus 71, one of the enteroviruses that are responsible for both hand-foot-and-mouth disease and herpangina, can cause neural injury. During periods of endemic spread of hand-foot-andmouth disease caused by enterovirus 71, CNS infections are also frequently diagnosed and may lead to increased complications from neural injury, as well as death. We present the results of our epidemiologic research on the clinical manifestations of children with CNS infections caused by enterovirus 71. Methods: The study group consisted of 42 patients admitted for CNS infection by enterovirus 71 between April 2009 and October 2009 at the Department of Pediatrics of 5 major hospitals affiliated with the Catholic University of Korea. We retrospectively reviewed initial symptoms and laboratory findings on admission, the specimen from which enterovirus 71 was isolated, fever duration, admission period, treatment and progress, and complications. We compared aseptic meningitis patients with encephalitis patients. Results: Of the 42 patients (23 men, 19 women, hand-foot-and-mouth disease was most prevalent (n=39, followed by herpangina (n=3, upon initial clinical diagnosis. Among the 42 patients, 15 (35.7% were classified as severe, while 27 (64.3% were classified as mild. Factors such as age, fever duration, presence of seizure, and use of intravenous immunoglobulin (IVIG were statistically different between the 2 groups. Conclusion: Our results indicate that patients with severe infection caused by enterovirus 71 tended to be less than 3 years old, presented with at least 3 days of fever as well as seizure activity, and received IVIG treatment.

  13. Blood volume changes after radiotherapy of the CNS

    International Nuclear Information System (INIS)

    Wenz, F.; Fuss, M.; Scholdei, R.; Essig, M.; Lohr, F.; Rempp, K.; Brix, G.; Knopp, M.V.; Engenhart, R.; Wannenmacher, M.

    1996-01-01

    The pathogenesis of late delayed radiation damage in normal brain tissue is most likely due to damage to the vascular endothelium. The mitotic activity of gliomas was shown to correlate with the tumor induced angiogenesis. Dynamic susceptibility contrast MR imaging (DSC MRI) allows the measurement of the cerebral hemodynamics based on the indicator dilution theory. We describe theory and technique of the method and present our experience with blood volume measurements after irradiation of the CNS. We established a double slice technique on a standard 1.5 T MR system without hardware modifications, which allows an absolute quantification of the blood volume in regions of interest (ROI) within the brain. Fifty-five T2* weighted double slice images were acquired before, during and after bolus injection of Gd-DTPA (0.1 mmol/kg in 5 sec.) using a SD FLASH sequence (simultaneous dual fast low angle shot, TR/TE1/TE2 31/16/25, flip angle 10 ). Concentration-time curves were calculated from the measured signal-time curves. Blood volume values in tissue were normalised and calculated in absolute values (ml/100 g) based on the knowledge of the arterial input function (AIF), which was measured in the brain supplying arteries. The whole procedure requires only 2 to 3 minutes, the time for post processing is about 15 to 20 minutes. Blood volume parameter images of representative cases demonstrate the blood volume changes after radiotherapy. A reduction in blood volume could be observed in normal brain tissue and low-grade gliomas, while recurrent tumors were accompanied by a local increase in blood volume. Radiation induced blood volume changes in the CNS can be measured using dynamic susceptibility contrast MR imaging. The measurements in normal brain tissue allow a functional in-vivo analysis of late delayed radiation reactions of the CNS. (orig.) [de

  14. Physiological roles of CNS muscarinic receptors gained from knockout mice

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Sørensen, Gunnar; Dencker, Ditte

    2017-01-01

    , knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics...... receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains...

  15. Information transmission with spiking Bayesian neurons

    International Nuclear Information System (INIS)

    Lochmann, Timm; Deneve, Sophie

    2008-01-01

    Spike trains of cortical neurons resulting from repeatedpresentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output variability. In particular, does this variability imply spike generation to be intrinsically stochastic? We consider a model neuron that estimates optimally the current state of a time-varying binary variable (e.g. presence of a stimulus) by integrating incoming spikes. The unit signals its current estimate to other units with spikes whenever the estimate increased by a fixed amount. As shown previously, this computation results in integrate and fire dynamics with Poisson-like output spike trains. This output variability is entirely due to the stochastic input rather than noisy spike generation. As a result such a deterministic neuron can transmit most of the information about the time varying stimulus. This contrasts with a standard model of sensory neurons, the linear-nonlinear Poisson (LNP) model which assumes that most variability in output spike trains is due to stochastic spike generation. Although it yields the same firing statistics, we found that such noisy firing results in the loss of most information. Finally, we use this framework to compare potential effects of top-down attention versus bottom-up saliency on information transfer with spiking neurons

  16. Detecting Nosocomial Intrinsic Infections through Relating Bacterial ...

    African Journals Online (AJOL)

    Sierra Leone Journal of Biomedical Research ... Surgical procedures often lead to both intrinsic and extrinsic infections. ... This study demonstrated surgical procedures as precursory to intrinsic infections and that bacterial pathogens found on wounds and endogenous indicators of surgery are links to intrinsic infection.

  17. Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tissues. However, although HDAC proteins have shown to be expressed in the developing vertebrate neural tube, their specific role in CNS neural progenitor fate specification remains unclear. Prior work from our lab showed that the Tcf7l2/Tcf4 transcription factor plays a key role in ventral progenitor lineage segregation by differential repression of two key specification factors, Nkx2.2 and Olig2. In this study, we found that administration of HDAC inhibitors (Valproic Acid (VPA, Trichostatin-A (TSA, or sodium butyrate in chick embryos in ovo disrupted normal progenitor gene segregation in the developing neural tube, indicating that HDAC activity is required for this process. Further, using functional and pharmacological approaches in vivo, we found that HDAC activity is required for the differential repression of Nkx2.2 and Olig2 by Tcf7l2/Tcf4. Finally, using dominant-negative functional assays, we provide evidence that Tcf7l2/Tcf4 repression also requires Gro/TLE/Grg co-repressor factors. Together, our data support a model where the transcriptional repressor activity of Tcf7l2/Tcf4 involves functional interactions with both HDAC and Gro/TLE/Grg co-factors at specific target gene regulatory elements in the developing neural tube, and that this activity is required for the proper segregation of the Nkx2.2 (p3 and Olig2 (pMN expressing cells from a common progenitor pool.

  18. Primary CNS Lymphoma vs. Tumefactive Multiple Sclerosis: A Diagnostic Challenge.

    Science.gov (United States)

    Naeem, Sameen Bin; Niazi, Farheen; Baig, Atif; Sadiq, Hina; Sattar, Mubbasher

    2018-01-01

    Primary CNS (central nervous system) lymphoma is a rare condition with the incidence of less than 1% of all non-Hodgkin lymphomas (NHLs) and approximately 2% of all primary brain tumours. Diagnosis can be challenging and necessitates brain biopsy for definitive diagnosis. A 41-year male presented with history of impaired cognition, facial asymmetry, visual impairment and left sided body weakness. MRI brain demonstrated multiple enhancing lesions with one larger lesion in right basal ganglia with surrounding oedema and mass effect. These findings suggested the differential diagnoses of tumefactive multiple sclerosis (MS), primary CNS lymphoma (PCNSL) and tuberculosis. The patient had normal CT chest, abdomen and pelvis, normal CSF examination and cytology, negative CSF oligoclonal bands (OCBs) and negative HIV screening. It was impossible to differentiate between tumefactive MS and PCNSL without undertaking brain biopsy. Diffuse large B cell lymphoma (DLBCL) was the final diagnosis. Diagnosing PCNSL can be challenging and brain biopsy should not be delayed for definitive diagnosis and targeted treatment.

  19. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  20. CNS syndromes associated with antibodies against metabotropic receptors.

    Science.gov (United States)

    Lancaster, Eric

    2017-06-01

    Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.

  1. Glibenclamide for the Treatment of Acute CNS Injury

    Directory of Open Access Journals (Sweden)

    J. Marc Simard

    2013-10-01

    Full Text Available First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.

  2. Phytocannabinoids as novel therapeutic agents in CNS disorders.

    Science.gov (United States)

    Hill, Andrew J; Williams, Claire M; Whalley, Benjamin J; Stephens, Gary J

    2012-01-01

    The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Logarithmic distributions prove that intrinsic learning is Hebbian.

    Science.gov (United States)

    Scheler, Gabriele

    2017-01-01

    In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain) for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum), neurotransmitter (GABA (striatum) or glutamate (cortex)) or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei) turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.

  4. Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders.

    Science.gov (United States)

    Malykh, Andrei G; Sadaie, M Reza

    2010-02-12

    There is an increasing interest in nootropic drugs for the treatment of CNS disorders. Since the last meta-analysis of the clinical efficacy of piracetam, more information has accumulated. The primary objective of this systematic survey is to evaluate the clinical outcomes as well as the scientific literature relating to the pharmacology, pharmacokinetics/pharmacodynamics, mechanism of action, dosing, toxicology and adverse effects of marketed and investigational drugs. The major focus of the literature search was on articles demonstrating evidence-based clinical investigations during the past 10 years for the following therapeutic categories of CNS disorders: (i) cognition/memory; (ii) epilepsy and seizure; (iii) neurodegenerative diseases; (iv) stroke/ischaemia; and (v) stress and anxiety. In this article, piracetam-like compounds are divided into three subgroups based on their chemical structures, known efficacy and intended clinical uses. Subgroup 1 drugs include piracetam, oxiracetam, aniracetam, pramiracetam and phenylpiracetam, which have been used in humans and some of which are available as dietary supplements. Of these, oxiracetam and aniracetam are no longer in clinical use. Pramiracetam reportedly improved cognitive deficits associated with traumatic brain injuries. Although piracetam exhibited no long-term benefits for the treatment of mild cognitive impairments, recent studies demonstrated its neuroprotective effect when used during coronary bypass surgery. It was also effective in the treatment of cognitive disorders of cerebrovascular and traumatic origins; however, its overall effect on lowering depression and anxiety was higher than improving memory. As add-on therapy, it appears to benefit individuals with myoclonus epilepsy and tardive dyskinesia. Phenylpiracetam is more potent than piracetam and is used for a wider range of indications. In combination with a vasodilator drug, piracetam appeared to have an additive beneficial effect on various

  5. Counting contacts between neurons in 3D in confocal laser scanning images

    NARCIS (Netherlands)

    Wouterlood, F.G.; Boekel, A.J.; Kajiwara, R.; Belien, J.A.M.

    2008-01-01

    Study of neuronal networks requires an inventory of the neurons, knowledge of fiber in- and output, and qualitative and quantitative data on the intrinsic connectivity. For this purpose we combined in rat hippocampus fluorescence neuroanatomical tracing and intracellular fluorochrome injection of

  6. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  7. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  8. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS. Recent studies have established the significance of atypical protein kinase C (aPKC and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.

  9. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  10. Ultrastructural localization of NADPH diaphorase and nitric oxide synthase in the neuropils of the snail CNS.

    Science.gov (United States)

    Nacsa, Kálmán; Elekes, Károly; Serfőző, Zoltán

    2015-08-01

    Comparative studies on the nervous system revealed that nitric oxide (NO) retains its function through the evolution. In vertebrates NO can act in different ways: it is released solely or as a co-transmitter, released from presynaptic or postsynaptic site, spreads as a volumetric signal or targets synaptic proteins. In invertebrates, however, the possible sites of NO release have not yet been identified. Therefore, in the present study, the subcellular distribution of the NO synthase (NOS) was examined in the central nervous system (CNS) of two gastropod species, the terrestrial snail, Helix pomatia and the pond snail, Lymnaea stagnalis, which are model species in comparative neurobiology. For the visualization of NOS NADPH-diaphorase histochemistry and an immunohistochemical procedure using a universal anti-NOS antibody were applied. At light microscopic level both techniques labeled identical structures in sensory tracts ramifying in the neuropils of central ganglia and cell bodies of the Lymnaea and Helix CNS. At ultrastructural level NADPH-d reactive/NOS-immunoreactive materials were localized on the nuclear envelope and membrane segments of the rough and smooth endoplasmic reticulum, as well as the cell membrane and axolemma of positive perikarya. NADPH-d reactive and NOS-immunoreactive varicosities connected to neighboring neurons with both unspecialized and specialized synaptic contacts. In the varicosities, the majority of the NADPH-d reactive/NOS-immunoreactive membrane segments were detected in round and pleomorph agranular vesicles of small size (50-200 nm). However, only a small portion (16%) of the vesicles displayed the NADPH-d reactivity/NOS-immunoreactivity. No evidence for the postsynaptic location of NOS was found. Our results suggest that the localization of NADPH-diaphorase and NOS is identical in the snail nervous system. In contrast to vertebrates, however, NO seems to act exclusively in an anterograde way possibly released from membrane

  11. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly Stomoxys calcitrans L. (Diptera: Muscidae).

    Science.gov (United States)

    Liu, Samuel S; Li, Andrew Y; Witt, Colleen M; Pérez de León, Adalberto A

    2011-08-01

    Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults. © 2011 Wiley-Liss, Inc.

  12. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice.

    Science.gov (United States)

    Hao, Marlene M; Bornstein, Joel C; Young, Heather M

    2013-10-01

    Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time. © 2013 Wiley Periodicals, Inc.

  13. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    International Nuclear Information System (INIS)

    2015-01-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  14. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  15. Neuronal ceroid-lipofuscinosis and hydrocephalus in a chihuahua.

    Science.gov (United States)

    Kuwamura, M; Hattori, R; Yamate, J; Kotani, T; Sasai, K

    2003-05-01

    A two-year-old, female chihuahua presented with a six-month history of visual dysfunction. Computed tomography revealed dilation of the lateral ventricles in the central nervous system (CNS). The dog was tentatively diagnosed as having hydrocephalus and a month later was euthanased at the owner's request. The skull was expanded and dome-like in shape and an open fontanelle was observed on postmortem examination. Histologically, swollen neurons possessing yellowish pigment granules in the cytoplasm were observed throughout the CNS. These storage materials stained positively with periodic acid Schiff, Schmorl method for lipofuscin and oil red O for lipid, and showed autofluorescence under fluorescence microscopy. Ultrastructurally, the storage materials consisted of dense lamellar structures. This case was unique in having ceroid-lipofuscinosis in association with hydrocephalus.

  16. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases.

    Science.gov (United States)

    Nizzardo, M; Rizzuti, M

    2017-01-01

    The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.

  17. Inhibition of Intrinsic Thrombin Generation

    Directory of Open Access Journals (Sweden)

    Thomas W. Stief MD

    2006-01-01

    Full Text Available Background The contact phase of coagulation is of physiologic/pathophysiologic importance, whenever unphysiologic polynegative substances such as cell fragments (microparticles get in contact with blood. There are several clinically used inhibitors of intrinsic thrombin generation. Here the inhibitory concentrations 50% (IC50 of these anticoagulants are measured by the highly specific thrombin generation assay INCA. Methods Unfrozen pooled normal citrated plasma in polystyrole tubes was supplemented at 23°C in duplicate with 0–2 IU/ml low molecular weight heparin (dalteparin, 0–2 IU/ml unfractionated heparin, 0–500 KIU/ml aprotinin, or 0–40 mM arginine. 50 μl plasma or 1 IU/ml thrombin standard were pipetted into a polystyrole microtiter plate with flat bottom. 5 μl SiO 2 /CaCl 2 - reagent (INCA activator were added and after 0–30 min incubation at 37°C 100 μl 2.5 M arginine, pH 8.6, were added; arginine inhibits hemostasis activation and depolymerizes generated fibrin within 20 min at 23°C. The in the physiologic 37°C incubation phase generated thrombin was then chromogenically detected. The intra-assay CV values were < 5%. Results and Discussion The approximate IC50 were 0.01 IU/ml dalteparin, 0.02 IU/ml heparin, 25 KIU/ml aprotinin, and 12 mM arginine. The efficiency of any anticoagulant on intrinsic thrombin generation should be measured for each individual patient. Abbreviations IIa, thrombin; δA, increase in absorbance; APTT, activated partial thromboplastin time; CRT, coagulation reaction time (at 37°C in water-bath; F-wells, polystyrole microtiter plates with flat bottom; IC50, inhibitory concentration 50%; INCA, intrinsic coagulation activity assay; IU, international units; KIU, kallikrein inhibiting unis; LMWH, low molecular weight heparin; mA, milli-absorbance units; PSL, pathromtin SL®; RT, room temperature (23°C; U-wells, polystyrole microtiter plates with round bottom.

  18. Noise and neuronal populations conspire to encode simple waveforms reliably

    Science.gov (United States)

    Parnas, B. R.

    1996-01-01

    Sensory systems rely on populations of neurons to encode information transduced at the periphery into meaningful patterns of neuronal population activity. This transduction occurs in the presence of intrinsic neuronal noise. This is fortunate. The presence of noise allows more reliable encoding of the temporal structure present in the stimulus than would be possible in a noise-free environment. Simulations with a parallel model of signal processing at the auditory periphery have been used to explore the effects of noise and a neuronal population on the encoding of signal information. The results show that, for a given set of neuronal modeling parameters and stimulus amplitude, there is an optimal amount of noise for stimulus encoding with maximum fidelity.

  19. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  20. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.

    Science.gov (United States)

    Ribotta, M G; Menet, V; Privat, A

    2004-01-01

    Astrocytes play an active role in the brain and spinal cord. For example, they have a function in formation and maintenance of the blood-brain barrier, ion homeostasis, neurotransmitter transport, production of extracellular matrix, and neuromodulation. Moreover, they play a role in preserving or even restoring the structural and physiological integrity after tissue injury. Currently, the function of astrocytes was studied with regard to the controversially discussed aspects of permissivity on the one-hand-side and inhibition of the other side exerted by reactive astrocytes for axonal regrowth in the adult CNS. Accordingly, knock-out mice deficient in vimentin (VIM) and/or glial fibrillary acidic protein (GFAP), the two major IF-proteins of astrocytes, were investigated. In addition, in vitro studies were carried out, on whether the absence of one or both proteins (VIM, GFAP) influences axonal regeneration. In experimental animals, a hemisection of the spinal cord was performed utilizing the above mentioned double-mutant mice. The knock-out mice were generated by gene targeting. Double-mutants were obtained by crossing single null mice. The in vitro results indicate that both VIM and GFAP were absent in astrocytic cultures obtained from double-mutant mice. On the other side, the proteins were detected in more than 85%, of cultured cells from wild types. Co-culture of mutant mice astrocytes with neurons revealed that the neuronal density was different from that obtained in culture with wild type astrocytes. On the other side, there was a marked increase in neuronal density in co-cultures utilizing both GFAP knock-out- or double-mutant mice astrocytes again as compared to co-cultures with wild type astrocytes. Moreover, the neurite length of neurons was significantly increased in experiments with neurons growing on astrocytes from GFAP-knock-out or double-mutant mice. The in vivo experiments demonstrate an increase of nestin (NES) immunoreactivity at three days in

  1. Neuronal response impedance mechanism implementing cooperative networks with low firing rates and μs precision.

    Science.gov (United States)

    Vardi, Roni; Goldental, Amir; Marmari, Hagar; Brama, Haya; Stern, Edward A; Sardi, Shira; Sabo, Pinhas; Kanter, Ido

    2015-01-01

    Realizations of low firing rates in neural networks usually require globally balanced distributions among excitatory and inhibitory links, while feasibility of temporal coding is limited by neuronal millisecond precision. We show that cooperation, governing global network features, emerges through nodal properties, as opposed to link distributions. Using in vitro and in vivo experiments we demonstrate microsecond precision of neuronal response timings under low stimulation frequencies, whereas moderate frequencies result in a chaotic neuronal phase characterized by degraded precision. Above a critical stimulation frequency, which varies among neurons, response failures were found to emerge stochastically such that the neuron functions as a low pass filter, saturating the average inter-spike-interval. This intrinsic neuronal response impedance mechanism leads to cooperation on a network level, such that firing rates are suppressed toward the lowest neuronal critical frequency simultaneously with neuronal microsecond precision. Our findings open up opportunities of controlling global features of network dynamics through few nodes with extreme properties.

  2. 6. CNS international conference on CANDU maintenance. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The 6th CNS International Conference on CANDU Maintenance took place in Toronto, Ontario on November 16-18, 2003. The theme for the conference was 'Maintenance for Life'. About 270 delegates attended the conference held by the Canadian Nuclear Society. The conference consisted of four parallel sessions, a pattern that continued throughout the conference. Papers were grouped under the following headings: Fuel Channels and End Fittings - Assessments; Fuel Channels and End Fittings - Inspections; Fuel Channels and End Fittings - Maintenance; Fuel Channels and End Fittings - Universal Delivery Machine; Water Upgrading; Performance and Plant Life Improvement; Steam Generator Life Management; Steam Generator Modifications; Steam Generators - Inspections; Steam Generators - Assessments; Maintenance Programs; Feeder Inspections; Feeder Assessment and Mitigation; Valve Maintenance; Instrumentation and Control; Inspection Technology; and Fuel Handling

  3. Potential medicinal plants for CNS disorders: an overview.

    Science.gov (United States)

    Kumar, Vikas

    2006-12-01

    Although very few drugs are currently approved by regulatory authorities for treating multi-factorial ailments and disorders of cognition such as Alzheimer's disease, certain plant-derived agents, including, for example, galantamine and rivastigmine (a semi-synthetic derivative of physostigmine) are finding an application in modern medicine. However, in Ayurveda, the Indian traditional system of medicine which is more than 5000 years old, selected plants have long been classified as 'medhya rasayanas', from the Sanskrit words 'medhya', meaning intellect or cognition, and 'rasayana', meaning 'rejuvenation'. These plants are used both in herbal and conventional medicine and offer benefits that pharmaceutical drugs lack. In the present article, an attempt has been made to review the most important medicinal plants, including Ginkgo biloba, St John's wort, Kava-kava, Valerian, Bacopa monniera and Convolvulus pluricaulis, which are widely used for their reputed effectiveness in CNS disorders.

  4. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  5. Effect on the HANARO CNS under a HRS Malfunction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Lee, Kye Hong; Kim, Hark Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Dong Gil [GNEC, Daejeon (Korea, Republic of)

    2007-07-01

    Owing to national research demands on a cold neutron beam utilization, the Cold Neutron Research Facility project has been carried out since July 2003 and is now at the completion stage of the detail design for the HANARO cold neutron source. The cold neutron source (CNS) facility, one of the main parts of the CNRF, includes the in-pool assembly (IPA) and related systems to moderate thermal neutrons through a cryogenic moderator, liquid hydrogen, into cold neutrons with the generation of a nuclear heat load, about 500 W. In order to acquire the information about the IPA integrity under a helium refrigeration system (HRS) malfunction, a thermo-siphon mock-up test has been performed using liquid hydrogen as a working fluid. Of the pressure and temperature in the IPA, the experimental results are reported in this paper to determine whether the integrity of the IPA is maintained under an abnormal condition.

  6. Gene therapy for CNS diseases – Krabbe disease

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2016-06-01

    Full Text Available This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases.

  7. Structural Remodeling of Astrocytes in the Injured CNS

    Science.gov (United States)

    Sun, Daniel; Jakobs, Tatjana C.

    2013-01-01

    Astrocytes respond to all forms of CNS insult and disease by becoming reactive, a nonspecific but highly characteristic response that involves various morphological and molecular changes. Probably the most recognized aspect of reactive astrocytes is the formation of a glial scar that impedes axon regeneration. Although the reactive phenotype was first suggested more than 100 years ago based on morphological changes, the remodeling process is not well understood. We know little about the actual structure of a reactive astrocyte, how an astrocyte remodels during the progression of an insult, and how populations of these cells reorganize to form the glial scar. New methods of labeling astrocytes, along with transgenic mice, allow the complete morphology of reactive astrocytes to be visualized. Recent studies show that reactivity can induce a remarkable change in the shape of a single astrocyte, that not all astrocytes react in the same way, and that there is plasticity in the reactive response. PMID:21982954

  8. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources.

    Science.gov (United States)

    Lazar, Aurel A; Zhou, Yiyin

    2014-01-01

    We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1.

  9. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources

    Directory of Open Access Journals (Sweden)

    Aurel A Lazar

    2014-09-01

    Full Text Available We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a nonlinear dendritic stimulus processor (DSP cascaded with a biophysical spike generator (BSG. The nonlinear dendritic processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits.We investigate two intrinsic noise sources arising (i in the active dendritic trees underlying the DSPs, and (ii in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements.For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1.

  10. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources

    Science.gov (United States)

    Lazar, Aurel A.; Zhou, Yiyin

    2014-01-01

    We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1. PMID:25225477

  11. Preliminary Results of Management for Primary CNS Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seung Do; Chang, Hye Sook; Choi, Eun Kyong [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1993-06-15

    From October 1989 to March 1992, ten patients diagnosed as primary central nervous system(CNS) lymphoma were treated with radiation therapy at Asan Medical Center. To obtain pathologic diagnosis, five patients had stereotactic biopsy and the others underwent craniotomy and tumor removal. According to the classification by International Working Formulation, seven of 10 patients showed diffuse large cell types and the remaining 3 had diffuse mixed cell types. Computed tomographic scans of the brain disclosed solitary (6 cases) or multiple (4 cases) intracranial lesions. All patients received 4000cGy/20 fx to the whole brain followed by an additional 2000cGy/10 fx boost to the primary lesion. Six patients with initial cerebrospinal fluid (CSF) involvement were treated with whole brain irradiation and intrathecal Methotrexate(IT-MTX) chemotherapy. One of them received an additional spinal irradiation after 3 cycles of IT-MTX chemotherapy because of MTX induced arachnoiditis. One patient received 3 cycles of systemic chemotherapy prior to radiation therapy and one received 5 cycles of salvage chemotherapy for recurrence. With a median follow up time of 8 months, all patients were followed from 7 to 26 months. Radiologically seven patients showed complete remission and the remaining three showed partial remission at one month after radiotherapy. The 1 and 2 year survival rate was 86% and 69% respectively. Until now, two patients expired at 7 and 14 months. These patients developed extensive CSF seeding followed by local failure. Considering initial good response to radiation therapy and low incidence of extraneural dissemination in primary CNS lymphoma, we propose to increase total tumor dose to the primary lesion by hyperfractionated radiotherapy or stereotactic radiosurgery. For the patients with CSF involvement at diagnosis, we propose craniospinal irradiation with IT MTX chemotherapy.

  12. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders.

    Science.gov (United States)

    Maqsood, Raeesah; Stone, Trevor W

    2016-11-01

    Gastro-intestinal (GI) microbiota and the 'gut-brain axis' are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-D-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders.

  13. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  14. Reliable neuronal systems: the importance of heterogeneity.

    Directory of Open Access Journals (Sweden)

    Johannes Lengler

    Full Text Available For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.

  15. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Science.gov (United States)

    Lonardoni, Davide; Amin, Hayder; Di Marco, Stefano; Maccione, Alessandro; Berdondini, Luca; Nieus, Thierry

    2017-07-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  16. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  17. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Michelle; Sharma, Shashank [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McDevitt, Niamh; O' Leary, Claire [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland); Joshi, Lokesh [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McMahon, Siobhan S., E-mail: siobhan.mcmahon@nuigalway.ie [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  18. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    International Nuclear Information System (INIS)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O’Leary, Claire; Joshi, Lokesh; McMahon, Siobhán S.

    2012-01-01

    Highlights: ► Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. ► Neuronal glycosylation in injury and after ChABC treatment is unknown. ► In silico mining verified that glyco-related genes were differentially regulated after SCI. ► In vitro model system revealed abnormal sialylation in an injured environment. ► The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining

  19. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.

    Science.gov (United States)

    Garcia-Garcia, Martha G; Bergquist, Austin J; Vargas-Perez, Hector; Nagai, Mary K; Zariffa, Jose; Marquez-Chin, Cesar; Popovic, Milos R

    2017-11-01

    Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility. The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.

  20. NEURON and Python

    OpenAIRE

    Michael Hines; Andrew P Davison; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  1. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  2. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  3. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    Science.gov (United States)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  4. Incentives and intrinsic motivation in healthcare

    Directory of Open Access Journals (Sweden)

    Mikel Berdud

    2016-11-01

    Conclusions: The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated.

  5. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab., NM (USA))

    1990-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intrinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. (author).

  6. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intrinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. (author)

  7. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis

    Science.gov (United States)

    2013-01-01

    Background Environmental toxins are suspected to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In an attempt to determine which pathways these toxins can use to enter motor neurons we compared the distribution of mercury in the CNS of a human and of mice that had been exposed to inorganic mercury. Results In the human who had been exposed to metallic mercury, mercury was seen predominantly in the locus ceruleus and corticomotor neurons, as well as in scattered glial cells. In mice that had been exposed to mercury vapor or mercuric chloride, mercury was present in lower motor neurons in the spinal cord and brain stem. Conclusions In humans, inorganic mercury can be taken up predominantly by corticomotor neurons, possibly when the locus ceruleus is upregulated by stress. This toxin uptake into corticomotor neurons is in accord with the hypothesis that ALS originates in these upper motor neurons. In mice, inorganic mercury is taken up predominantly by lower motor neurons. The routes toxins use to enter motor neurons depends on the nature of the toxin, the duration of exposure, and possibly the amount of stress (for upper motor neuron uptake) and exercise (for lower motor neuron uptake) at the time of toxin exposure. PMID:24252585

  8. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption

    NARCIS (Netherlands)

    ten Kulve, Jennifer S.; Veltman, Dick J.; van Bloemendaal, Liselotte; Groot, Paul F. C.; Ruhe, Henricus G.; Barkhof, Frederik; Diamant, Michaela; Ijzerman, Richard G.

    Glucagon-like peptide-1 (GLP1) affects appetite, supposedly mediated via the central nervous system (CNS). In this study, we investigate whether modulation of CNS responses to palatable food consumption may be a mechanism by which GLP1 contributes to the central regulation of feeding. Using

  9. CNS metastasis from malignant uveal melanoma: a clinical and histopathological characterisation

    DEFF Research Database (Denmark)

    Holfort, S K; Lindegaard, J; Isager, P

    2008-01-01

    was observed in two cases (14%). The amount of tumour infiltrating lymphocytes was pronounced in three cases (23%). CONCLUSION: The proportion of uveal melanoma patients having CNS metastasis was 0.7%. Eleven patients had multiple organ metastases, and the average time from the initial CNS symptoms to death...

  10. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  11. Effectiveness of Prescription-Based CNS Stimulants on Hospitalization in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Rohde, Christopher; Polcwiartek, Christoffer; Asztalos, Marton

    2018-01-01

    OBJECTIVE: Negative symptoms and cognitive deficits are main features of schizophrenia but with limited treatment options. Earlier studies have suggested that central nervous system (CNS) stimulants have a small effect on these domains, but with inconclusive results. As the first study to date, we...... aimed to investigate whether CNS stimulants improve naturalistic outcomes (psychiatric admissions and antipsychotic use) in patients with schizophrenia. METHODS: By using extensive health registers all patients with schizophrenia and their use of CNS stimulants in Denmark were identified. Two models...... were used to investigate the effectiveness of CNS stimulants in patients with schizophrenia between 1995 and 2014; a mirror-image model with 605 individuals, using paired t tests and Wilcoxon signed rank tests, and a follow-up study with 789 individuals, using a conditional risk-set model. RESULTS: CNS...

  12. The VD1/RPD2 neuronal system in the central nervous system of the pond snail Lymnaea stagnalis studied by in situ hybridization and immunocytochemistry.

    Science.gov (United States)

    Kerkhoven, R M; Croll, R P; Ramkema, M D; Van Minnen, J; Bogerd, J; Boer, H H

    1992-03-01

    VD1 and RPD2 are two giant neuropeptidergic neurons in the central nervous system (CNS) of the pond snail Lymnaea stagnalis. We wished to determine whether other central neurons in the CNS of L. stagnalis express the VD1/RPD2 gene. To this end, in situ hybridization with the cDNA probe of the VD1/RPD2 gene and immunocytochemistry with antisera specific to VD1 and RPD2 (the alpha 1-antiserum, Mab4H5 and ALMA 6) and to R15 (the alpha 1 and 16-mer antisera) were performed on alternate tissue sections. A VD1/RPD2 neuronal system comprising three classes of neurons (A1-A3) was found. All neurons of the system express the gene. Division into classes is based on immunocytochemical characteristics. Class A1 neurons (VD1 and RPD2) immunoreact with the alpha 1-antiserum, Mab4H5 and ALMA 6. Class A2 neurons (1-5 small and 1-5 medium sized neurons in the visceral and right parietal ganglion, and two clusters of small neurons and 5 medium-sized neurons in the cerebral ganglia) immunoreact with the alpha 1-antiserum and Mab4H5, but not with ALMA 6. Class A3 neurons (3-4 medium-sized neurons and a cluster of 4-5 small neurons located in the pedal ganglion) immunoreact with the alpha 1-antiserum only. All neurons of the system are immunonegative to the R15 antisera. The observations suggest that the neurons of the VD1/RPD2 system produce different sets of neuropeptides. A group of approximately 15 neurons (class B), scattered in the ganglia, immunostained with one or more of the antisera, but did not react with the cDNA probe in in situ hybridization.

  13. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  14. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  15. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  16. The N-terminal cytoplasmic region of NCBE displays features of an intrinsic disordered structure and represents a novel target for specific drug screening

    Science.gov (United States)

    Bjerregaard-Andersen, Kaare; Perdreau-Dahl, Harmonie; Guldsten, Hanne; Praetorius, Jeppe; Jensen, Jan K.; Morth, Jens P.

    2013-01-01

    The sodium dependent bicarbonate transporter NCBE/NBCn2 is predominantly expressed in the central nervous system (CNS). The highest protein concentrations are found in the choroid plexus. The primary function of this integral plasma membrane transport protein is to regulate intracellular neuronal pH and also probably to maintain the pH homeostasis across the blood-cerebrospinal fluid barrier. NCBE is predicted to contain at least 10 transmembrane helices. The N- and C- termini are both cytoplasmic, with a large N-terminal domain (Nt-NCBE) and a relatively small C-terminal domain (Ct-NCBE). The Nt-NCBE is likely to be involved in bicarbonate recognition and transport and contains key areas of regulation involving pH sensing and protein-protein interactions. Intrinsic disordered protein regions (IDPRs) are defined as protein regions having no rigid three-dimensional structure under physiological conditions. They are believed to be involved in signaling networks in which specific, low affinity, protein-protein interactions play an important role. We predict that NCBE and other SoLute Carrier 4 (SLC4) family members have a high level of intrinsic disorder in their cytoplasmic regions. To provide biophysical evidence for the IDPRs predicted in Nt-NCBE, we produced pure (>99%), recombinant Nt-NCBE using E. coli as the expression host. The protein was used to perform differential scanning fluorescence spectroscopy (DSF), in order to search for small molecules that would induce secondary or tertiary structure in the IDPRs. We expect this to assist the development of selective pharmaceutical compounds against individual SLC4 family members. We have also determined a low resolution (4 Å) X-ray crystal structure of the N-terminal core domain. The N-terminal cytoplasmic domain (cdb3) of anion exchanger 1 (AE1) shares a similar fold with the N-terminal core domain of NCBE. Crystallization conditions for the full-length N-terminal domain have been sought, but only the core

  17. Therapy of CNS leukemia with intraventricular chemotherapy and low-dose neuraxis radiotherapy

    International Nuclear Information System (INIS)

    Steinherz, P.; Jereb, B.; Galicich, J.

    1985-01-01

    Successful treatment of CNS leukemic relapse has been frustrated by frequent local recurrence and eventual marrow relapse. The authors describe the treatment of meningeal leukemia in 39 children with intrathecal remission induction followed by the placement of an Ommaya reservoir to facilitate the administration and distribution of chemotherapeutic agents into the CSF. Six hundred or 900 rad of craniospinal radiation and maintenance intraventricular and intrathecal chemotherapy was then administered. Systemic reinduction therapy was added in the later cases. Sixteen children (41%) experienced no further events, with 17+ months to 13+ years (median, 25 months) follow-up . Eleven patients (28%) had CNS recurrence, nine (23%) bone marrow (BM) relapse, and two (5%) testicular relapse as the next adverse event. The course of patients with first isolated CNS relapse differed from that of the others. Eleven (69%) of 16 patients treated for first isolated CNS relapse are alive and 9 are event free, while only 35% of patients whose CNS relapse occurred simultaneously or after recurrent disease at other sites are alive (P = .04). Seven of 23 in the later group are event free. The difference is due to the increased incidence of BM relapse in the later group (30% v 6%; P = .04). For patients with first isolated CNS relapse, the life-table median CNS remission duration is 42 months. The projected CNS relapse-free survival and event-free survival 8 to 10 years after CNS relapse are 40% and 32%, respectively. Headache, nausea, and emesis of short duration were frequent during therapy. In three patients, the reservoir had to be removed for infection. No patient suffered neurologic deficit related to the reservoir. The therapy described can reduce the CNS relapse rate with manageable toxicity

  18. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence.

    Science.gov (United States)

    Lai, N Y; Mills, K; Chiu, I M

    2017-07-01

    Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  19. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup Phase III BIG 02-98 Trial

    DEFF Research Database (Denmark)

    Pestalozzi, B.C.; Francis, P.; Quinaux, E.

    2008-01-01

    for these patients. RESULTS: CNS relapse occurred in 4.0% of control patients and 3.7% of docetaxel-treated patients. CNS relapse occurred in 27% of deceased patients in both treatment groups. CNS relapse was usually accompanied by neurologic symptoms (90%), and 25% of patients with CNS relapse died without evidence...... of extra-CNS relapse. Only 20% of patients survived 1 year from the diagnosis of CNS relapse. Prognosis of CNS relapse was worse for patients with meningeal carcinomatosis when compared with brain metastases. Unexpected findings included a higher rate of positive cerebrospinal fluid cytology (8% versus 3......%) and more frequent use of magnetic resonance imaging for diagnosis (47% versus 30%) in the docetaxel-treated patients. CONCLUSION: There is no evidence that adjuvant docetaxel treatment is associated with an increased frequency of CNS relapse Udgivelsesdato: 2008/11...

  20. Neuronal background of activation of estivated snails, with special attention to the monoaminergic system: a biochemical, physiological, and neuroanatomical study.

    Science.gov (United States)

    Hernádi, L; Vehovszky, A; Gyori, J; Hiripi, L

    2008-02-01

    Osmotic stimulation activates both estivated and inactivated specimens of Helix pomatia and increases their central arousal. High-pressure liquid chromatography has shown that, during activation, the level of both serotonin and dopamine decreases in the central nervous system (CNS) but increases in the foot and heart, organs that are involved in the eversion of the body. In isolated CNS from activated animals, the firing frequency of the heart-modulator serotonergic (RPas) neurons is significantly higher than that in the CNS of estivated or inactivated animals. These neurons innervate both the heart and the anterior aorta. In semi-intact preparations, distilled water (an osmotic stimulus) applied to the mantle collar increases their firing frequency, whereas tactile stimulation evokes their inhibition. Extracellularly applied monoamines mimic the effect of peripheral stimuli: serotonin (0.1-10 microM) increases the activity of the RPas neurons, whereas dopamine (0.1-10 microM) inhibits their activity. Tyrosine-hydroxylase immunocytochemistry and retrograde neurobiotin tracing have revealed similar bipolar receptor cells in the mantle collar and tail, organs that are exposed to environmental stimuli in estivated animals. Serotonin immunocytochemistry carried out on the same tissues does not visualize receptor cells but labels a dense network of fibers that appear to innervate neurobiotin-labeled receptor cells. The combination of neurobiotin-labeling of RPas neurons and immunolabeling suggests that RPas neurons receive direct dopaminergic inputs from receptor cells and serotonergic inputs from central serotonergic neurons, indicating that central serotonergic neurons are interconnected. Thus, the RPas neurons may belong to neuronal elements of the arousal system.

  1. Better Targeting, Better Efficiency for Wide-scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    2016-11-01

    Full Text Available Widespread genetic modification of cells in the central nervous system (CNS with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin hybrid (CBA promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered AAV-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS-related protein TDP-43 with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  2. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    Science.gov (United States)

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  3. LEADERSHIP STYLE AND EMPLOYEES' INTRINSIC JOB ...

    African Journals Online (AJOL)

    Abstract. This study investigates the impact of leadership style on employees' intrinsic job satisfaction in the Cross River State Newspaper Corporation, Calabar,. Nigeria. The study examined the problem of dissatisfaction in the work place as far as intrinsic factors of job satisfaction are concerned. Structured questionnaire ...

  4. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  5. Differential scanning microcalorimetry of intrinsically disordered proteins.

    Science.gov (United States)

    Permyakov, Sergei E

    2012-01-01

    Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.

  6. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  7. An Intrinsic Coordinate System for Fingerprint Matching

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.; Bigun, J.; Smeraldi, F.

    2001-01-01

    In this paper, an intrinsic coordinate system is proposed for fingerprints. First the fingerprint is partitioned in regular regions, which are regions that contain no singular points. In each regular region, the intrinsic coordinate system is defined by the directional field. When using the

  8. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  9. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Science.gov (United States)

    Fogarty, Matthew J; Smallcombe, Karen L; Yanagawa, Yuchio; Obata, Kunihiko; Bellingham, Mark C; Noakes, Peter G

    2013-01-01

    Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E) day 13 and birth (postnatal day 0). Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study). For respiratory-based motor neurons (hypoglossal and phrenic motor pools), we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic) and muscle innervations (55% decrease). By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase) and muscle innervations (99% increase); however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar) regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to that of

  10. Lentiviral vectors for treating and modeling human CNS disorders.

    Science.gov (United States)

    Azzouz, Mimoun; Kingsman, Susan M; Mazarakis, Nicholas D

    2004-09-01

    Vectors based on lentiviruses efficiently deliver genes into many different types of primary neurons from a broad range of species including man and the resulting gene expression is long term. These vectors are opening up new approaches for the treatment of neurological diseases such as Parkinson's disease (PD), Huntington's disease (HD), and motor neuron diseases (MNDs). Numerous animal studies have now been undertaken with these vectors and correction of disease models has been obtained. Lentiviral vectors also provide a new strategy for in vivo modeling of human diseases; for example, the lentiviral-mediated overexpression of mutated human alpha-synuclein or huntingtin genes in basal ganglia induces neuronal pathology in animals resembling PD and HD in man. These vectors have been refined to a very high level and can be produced safely for the clinic. This review will describe the general features of lentiviral vectors with particular emphasis on vectors derived from the non-primate lentivirus, equine infectious anemia virus (EIAV). It will then describe some key examples of genetic correction and generation of genetic animal models of neurological diseases. The prospects for clinical application of lentiviral vectors for the treatment of PD and MNDs will also be outlined. Copyright 2004 John Wiley & Sons, Ltd.

  11. Interactions of the histamine and hypocretin systems in CNS disorders.

    Science.gov (United States)

    Shan, Ling; Dauvilliers, Yves; Siegel, Jerome M

    2015-07-01

    Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep-wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.

  12. Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Demestre, M

    2005-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS). EAE and MS are characterized by CNS inflammation, demyelination and neurodegeneration. The inflammatory response occurring within the CNS leads to glial activation, dysfunction and death, as well...

  13. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on V-Fluctuations during Network Activity

    DEFF Research Database (Denmark)

    Kolind, Jens; Hounsgaard, Jørn Dybkjær; Berg, Rune W

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (V(m)) and spike timing. The conductance increase is commonly attributed to synaptic...... conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential...... input we find that the magnitude of the membrane fluctuations uniquely determines the relative contribution of synaptic and intrinsic conductance. We also quantify how V(m)-fluctuations vary with synaptic correlations for fixed ratios of synaptic and intrinsic conductance. Interestingly, the levels of V...

  14. Intrinsic innervation of the urinary bladder of kangaroo and albino rats.

    Science.gov (United States)

    Mostafa, F A; Nassar, A M; MPAHRAN, Z Y; El-Mahallawi, M N

    1975-01-01

    A comparative study of the intrinsic innervation in desert rodents (kangaroo rats) and others (albino rats) was carried out in an attempt to understand the functional anatomy of the bladder in these animals which are known to sustain severe water restraint. The bladder of the albino rat was innervated by predominantly thin nerves, more numerous beaded endings and few ganglia. That of the kangaroo rat had more numerous thick nerves (pre-ganglionic), large verve trunks, and ganglia which were extensively distributed in the wall. These findings indicate that the bladder of the albino rat depends mainly on the intrinsic innervation and facilatory micturition reflexes, while that of the kangaroo rat is intrinsically regulated, depending on a short neuron system. It was concluded that all the structural differences found might be essential for constant urine retention.

  15. Rumor management in nursing systems: role of the psychiatric CNS.

    Science.gov (United States)

    Chase, P; Stuart, G W

    1995-11-01

    RUMOR MANAGEMENT AND control is particularly important in nursing systems during times of change. In this article, a brief history of the study of rumor and the rumor process is given and applied to nursing, systems thinking and the CNS, and three types of rumor are described. Examples are given and strategies and approaches for managing rumor are prescribed. The first approach, used when a final decision about a planned change has not been made, helps avoid "trickle down" and builds trust and empowerment by soliciting and using input from those who will be affected by the proposed change. The intent of the second approach, used when a decision has been finalized or an event has occurred and rumor has preceded an official announcement, is to debrief from the occurrence or transform the decision. The last approach is used to interrupt a pattern of misinformation and to clarify or inform. The nurse leader or manager must stay in the communication loop and refrain from blaming a speculated source in order to correct information.

  16. Human abuse liability evaluation of CNS stimulant drugs.

    Science.gov (United States)

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Electrophysiological CNS-processes related to associative learning in humans.

    Science.gov (United States)

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. VP-shunt dysfunction caused by malaria CNS infection.

    Science.gov (United States)

    Fehrenbach, Michael Karl; Bernhard, Matthias; Siekmeyer, Manuela; Lippmann, Norman; Kiess, Wieland; Nestler, Ulf; Meixensberger, Jürgen; Preuss, Matthias

    2016-04-01

    Malaria is a widespread mosquito-borne infectious disease with over 300 million cases and roughly 900 thousand deaths in 2013. Cerebral involvement of malaria causes 50 % of all infection-associated deaths, especially in children below the age of 5 years. Hydrocephalus is a medical condition with abnormal accumulation of cerebrospinal fluid in physiological cavities and ventricles. Standard treatment is the implantation of a cerebrospinal fluid shunt device. A common problem associated with shunt treatment especially in pediatric patients is infection and consecutive shunt dysfunction caused by bacteriae or high protein levels clogging the valve. In these cases, Staphylococcus aureus and Staphylococcus epidermidis are predominantly found in CSF cultures. We present a case of a 2-year old boy from Saudi Arabia with a ventriculoperitoneal (VP)-shunt-dependent congenital hydrocephalus who suffered from cerebral malaria and developed consecutive shunt failure. To the best of our knowledge, shunt failure caused by malaria CNS infection with Plasmodium falciparum has not yet been reported in the literature and should be considered as a rare cause of VP-shunt failure in patients with atypical VP-shunt infections living in or traveling from endemic areas.

  19. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  20. Stress preconditioning of spreading depression in the locust CNS.

    Directory of Open Access Journals (Sweden)

    Corinne I Rodgers

    Full Text Available Cortical spreading depression (CSD is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG of locusts. Using K(+ -sensitive microelectrodes, we measured extracellular K(+ concentration ([K(+](o in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+/K(+ ATPase impairment, K(+ injection was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+ that was not linked to changes in ATP levels or total Na(+/K(+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.

  1. Cortical neuronal cytoskeletal changes associated with FIV infection

    Science.gov (United States)

    Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.

    1997-01-01

    HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.

  2. Intrinsic plasticity complements LTP in parallel fiber input gain control in cerebellar Purkinje cells

    Science.gov (United States)

    Belmeguenai, Amor; Hosy, Eric; Bengtsson, Fredrik; Pedroarena, Christine; Piochon, Claire; Teuling, Eva; He, Qionger; Ohtsuki, Gen; De Jeu, Marcel T.G.; Elgersma, Ype; De Zeeuw, Chris I.; Jörntell, Henrik; Hansel, Christian

    2010-01-01

    Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF) to Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinase A (PKA) and casein kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei (DCN), but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, non-potentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output. PMID:20943904

  3. Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination.

    Science.gov (United States)

    Bercury, Kathryn K; Dai, JinXiang; Sachs, Hilary H; Ahrendsen, Jared T; Wood, Teresa L; Macklin, Wendy B

    2014-03-26

    During CNS development, oligodendrocytes, the myelinating glia of the CNS, progress through multiple transitory stages before terminating into fully mature cells. Oligodendrocyte differentiation and myelination is a tightly regulated process requiring extracellular signals to converge to elicit specific translational and transcriptional changes. Our lab has previously shown that the protein kinases, Akt and mammalian Target of Rapamycin (mTOR), are important regulators of CNS myelination in vivo. mTOR functions through two distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, by binding to either Raptor or Rictor, respectively. To establish whether the impact of mTOR on CNS myelination results from unique functions of mTORC1 or mTORC2 during CNS myelination, we conditionally ablated either Raptor or Rictor in the oligodendrocyte lineage, in vivo. We show that Raptor (mTORC1) is a positive regulator of developmental CNS mouse myelination when mTORC2 is functional, whereas Rictor (mTORC2) ablation has a modest positive effect on oligodendrocyte differentiation, and very little effect on myelination, when mTORC1 is functional. Also, we show that loss of Raptor in oligodendrocytes results in differential dysmyelination in specific areas of the CNS, with the greatest impact on spinal cord myelination.

  4. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  5. Neuron-macrophage crosstalk in the intestine: a ‘microglia’ perspective

    Directory of Open Access Journals (Sweden)

    Simon eVerheijden

    2015-10-01

    Full Text Available Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS, where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (submucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1, a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.

  6. GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility

    OpenAIRE

    Guan, Xinfu; Shi, Xuemei; Li, Xiaojie; Chang, Benny; Wang, Yi; Li, Depei; Chan, Lawrence

    2012-01-01

    Glucagon-like peptides (GLP-1/2) are cosecreted from endocrine L cells in the gut and preproglucagonergic neurons in the brain. Peripheral GLP-2 action is essential for maintaining intestinal homeostasis, improving absorption efficiency and blood flow, promoting immune defense, and producing efficacy in treatment of gastrointestinal diseases. However, it is unknown if CNS GLP-2 plays a physiological role in the control of energy homeostasis. Since GLP-1/2 are cotranslated from preproglucagong...

  7. The role of proopiomelanocortin (POMC neurones in feeding behaviour

    Directory of Open Access Journals (Sweden)

    Millington George WM

    2007-09-01

    Full Text Available Abstract The precursor protein, proopiomelanocortin (POMC, produces many biologically active peptides via a series of enzymatic steps in a tissue-specific manner, yielding the melanocyte-stimulating hormones (MSHs, corticotrophin (ACTH and β-endorphin. The MSHs and ACTH bind to the extracellular G-protein coupled melanocortin receptors (MCRs of which there are five subtypes. The MC3R and MC4R show widespread expression in the central nervous system (CNS, whilst there is low level expression of MC1R and MC5R. In the CNS, cell bodies for POMC are mainly located in the arcuate nucleus of the hypothalamus and the nucleus tractus solitarius of the brainstem. Both of these areas have well defined functions relating to appetite and food intake. Mouse knockouts (ko for pomc, mc4r and mc3r all show an obese phenotype, as do humans expressing mutations of POMC and MC4R. Recently, human subjects with specific mutations in β-MSH have been found to be obese too, as have mice with engineered β-endorphin deficiency. The CNS POMC system has other functions, including regulation of sexual behaviour, lactation, the reproductive cycle and possibly central cardiovascular control. However, this review will focus on feeding behaviour and link it in with the neuroanatomy of the POMC neurones in the hypothalamus and brainstem.

  8. Joint statistics of strongly correlated neurons via dimensionality reduction

    Science.gov (United States)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  9. Alpha/Beta Interferon Protects against Lethal West Nile Virus Infection by Restricting Cellular Tropism and Enhancing Neuronal Survival

    OpenAIRE

    Samuel, Melanie A.; Diamond, Michael S.

    2005-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-α/β) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-α/β receptor-deficient (IFN- α/βR−/−) mice and primary neuronal cultures. IFN-α/βR−/− mice were acutely su...

  10. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  11. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kent Imaizumi

    2015-12-01

    Full Text Available The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P and dorsoventral (D-V axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS and Alzheimer’s disease (AD by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs.

  12. The Potential of the CNS as a Reservoir for HIV-1 Infection: Implications for HIV Eradication.

    Science.gov (United States)

    Fois, Alessandro F; Brew, Bruce J

    2015-06-01

    The ability of HIV-1 to establish latent infection is a key obstacle to its eradication despite the existence of effective antiretroviral drugs. The brain has been postulated as a reservoir for latent infection, but its role in HIV persistence remains unclear. In this review, we discuss the evidence surrounding the role of the central nervous system (CNS) as a viral reservoir and the potential challenges this might present in eradicating HIV. The strategies for eradication of HIV and their application to latent CNS infection are explored. Finally, we outline new developments in drug delivery and new therapeutic modalities designed to target HIV infection in the CNS.

  13. Structural predictions of neurobiologically relevant G-protein coupled receptors and intrinsically disordered proteins.

    Science.gov (United States)

    Rossetti, Giulia; Dibenedetto, Domenica; Calandrini, Vania; Giorgetti, Alejandro; Carloni, Paolo

    2015-09-15

    G protein coupled receptors (GPCRs) and intrinsic disordered proteins (IDPs) are key players for neuronal function and dysfunction. Unfortunately, their structural characterization is lacking in most cases. From one hand, no experimental structure has been determined for the two largest GPCRs subfamilies, both key proteins in neuronal pathways. These are the odorant (450 members out of 900 human GPCRs) and the bitter taste receptors (25 members) subfamilies. On the other hand, also IDPs structural characterization is highly non-trivial. They exist as dynamic, highly flexible structural ensembles that undergo conformational conversions on a wide range of timescales, spanning from picoseconds to milliseconds. Computational methods may be of great help to characterize these neuronal proteins. Here we review recent progress from our lab and other groups to develop and apply in silico methods for structural predictions of these highly relevant, fascinating and challenging systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.

    Science.gov (United States)

    Trautmann, Samantha M; Sharkey, Keith A

    2015-01-01

    Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions. © 2015 Elsevier Inc. All rights reserved.

  15. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

    DEFF Research Database (Denmark)

    Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T

    2010-01-01

    The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...... of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low...

  16. Pluripotent stem cells for the study of CNS development

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2011-10-01

    Full Text Available The mammalian central nervous system is a complex neuronal meshwork consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into the diverse neuronal subtypes remains a significant challenge. A firmer knowledge of the fundamental aspects of developmental neuroscience will allow us to better study the vast array of neurodevelopmental diseases. The advent of stem cell technologies has expedited our ability to generate and isolate populations of distinct interneuron subtypes. To date, researchers have successfully developed protocols to derive many types of neural cells from pluripotent stem cells, with varying degrees of efficiencies and reproducibility. The stem cell field is devoted to the potential of stem cell-derived neurons for the treatment of disease, highlighted by the ability to create patient specific induced pluripotent stem cells. However, another application that is often overlooked is the use of stem cell technology for studying normal neural development. This is especially important for human neurodevelopment, since obtaining embryonic tissue presents numerous technical and ethical challenges. In this review, we will explore the use of pluripotent stem cells for the study of neural development. We will review the different classes of pluripotent stem cells and focus on the types of neurodevelopmental questions that stem cell technologies can help address. In addition to covering the different neural cells derived from stem cells to date, we will detail the derivation and characterization of three of the more thoroughly studied cell groups. We hope that this review encourages researchers to develop innovative strategies for using pluripotent stem cells for the study of mammalian, and specifically human

  17. Corticospinal mirror neurons

    OpenAIRE

    Kraskov, A.; Philipp, R.; Waldert, S.; Vigneswaran, G.; Quallo, M. M.; Lemon, R. N.

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like p...

  18. Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus

    Science.gov (United States)

    Albisetti, Gioele W.; Ghanem, Alexander; Foster, Edmund

    2017-01-01

    Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used. SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology. PMID:28951448

  19. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  20. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig.

  1. Selective neuronal vulnerability to oxidative stress in the brain

    Directory of Open Access Journals (Sweden)

    Xinkun Wang

    2010-03-01

    Full Text Available Oxidative stress (OS, caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS, plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer’s disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.

  2. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network.

    Science.gov (United States)

    Ford, Lenzie; Crossley, Michael; Williams, Thomas; Thorpe, Julian R; Serpell, Louise C; Kemenes, György

    2015-05-29

    Amyloid beta (Aβ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer's disease (AD). Although Aβ-induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ-induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment.

  3. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    International Nuclear Information System (INIS)

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-01-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice

  4. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  5. Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.

    Directory of Open Access Journals (Sweden)

    Dario Greco

    Full Text Available In the mammalian central nervous system (CNS an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.

  6. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Andersen, Jens V

    2017-01-01

    precursor used by neurons to sustain the pool of glutamate, but glutamine is also vividly oxidized for support of energy metabolism. This study investigates the role of GDH in neuronal metabolism by employing the Cns- Glud1-/- mouse, lacking GDH in the brain (GDH KO) and metabolic mapping using 13C......-labelled glutamine and glucose. We observed a severely reduced oxidative glutamine metabolism during glucose deprivation in synaptosomes and cultured neurons not expressing GDH. In contrast, in the presence of glucose, glutamine metabolism was not affected by the lack of GDH expression. Respiration fuelled...... by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during...

  7. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner.

    Science.gov (United States)

    Mitew, Stanislaw; Gobius, Ilan; Fenlon, Laura R; McDougall, Stuart J; Hawkes, David; Xing, Yao Lulu; Bujalka, Helena; Gundlach, Andrew L; Richards, Linda J; Kilpatrick, Trevor J; Merson, Tobias D; Emery, Ben

    2018-01-22

    Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.

  8. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    ) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  9. Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Botzinger complex of neonatal mice.

    Science.gov (United States)

    Picardo, Maria Cristina D; Weragalaarachchi, Krishanthi T H; Akins, Victoria T; Del Negro, Christopher A

    2013-05-15

    Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the pre-Bötzinger complex (preBötC) of the lower brainstem. A substantial subset of putative rhythm-generating preBötC neurons derive from a single genetic line that expresses the transcription factor Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. To elucidate these mechanisms, we carried out a comparative analysis of Dbx1-expressing neurons (Dbx1(+)) and non-Dbx1-derived (Dbx1(-)) neurons in the preBötC. Whole-cell recordings in rhythmically active newborn mouse slice preparations showed that Dbx1(+) neurons activate earlier in the respiratory cycle and discharge greater magnitude inspiratory bursts compared with Dbx1(-) neurons. Furthermore, Dbx1(+) neurons required less input current to discharge spikes (rheobase) in the context of network activity. The expression of intrinsic membrane properties indicative of A-current (IA) and hyperpolarization-activated current (Ih) tended to be mutually exclusive in Dbx1(+) neurons. In contrast, there was no such relationship in the expression of currents IA and Ih in Dbx1(-) neurons. Confocal imaging and digital morphological reconstruction of recorded neurons revealed dendritic spines on Dbx1(-) neurons, but Dbx1(+) neurons were spineless. The morphology of Dbx1(+) neurons was largely confined to the transverse plane, whereas Dbx1(-) neurons projected dendrites to a greater extent in the parasagittal plane. The putative rhythmogenic nature of Dbx1(+) neurons may be attributable, in part, to a higher level of intrinsic excitability in the context of network synaptic activity. Furthermore, Dbx1(+) neuronal morphology may facilitate temporal summation and integration of local synaptic inputs from other Dbx1(+) neurons, taking place largely in the dendrites, which could be important for initiating and maintaining bursts and synchronizing activity during the inspiratory phase.

  10. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    Science.gov (United States)

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-02

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.

  11. Intrinsic endometriosis of ureter: a case report

    International Nuclear Information System (INIS)

    Hong, Myung Sun; Kim, Ho Chul; Yun, Ku Sup; Choi, Chul Soon; Bae, Sang Hoon; Kim, Sung Yong; Shin, Hyung Sik

    1995-01-01

    Endometriosis is a rare cause of an ureteral obstruction. We report a case of intrinsic ureteral endometriosis resulting in severe hydroureteronephrosis. The diagnosis of ureteral endometriosis may be considered in women with flank pain and ureteric obstruction within true pelvis

  12. The Intrinsic Dynamics of Psychological Process

    NARCIS (Netherlands)

    Vallacher, Robin R.; van Geert, Paul; Nowak, Andrzej

    2015-01-01

    Psychological processes unfold on various timescales in accord with internally generated patterns. The intrinsic dynamism of psychological process is difficult to investigate using traditional methods emphasizing cause–effect relations, however, and therefore is rarely incorporated into social

  13. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  14. ESTROGEN RECEPTOR-alpha IMMUNOREACTIVE NEURONS IN THE BRAINSTEM AND SPINAL CORD OF THE FEMALE RHESUS MONKEY : SPECIES-SPECIFIC CHARACTERISTICS

    NARCIS (Netherlands)

    Vanderhorst, V. G. J. M.; Terasawa, E.; Ralston, H. J.

    2009-01-01

    The distribution pattern of estrogen receptors in the rodent CNS has been reported extensively, but mapping of estrogen receptors in primates is incomplete. In this study we describe the distribution of estrogen receptor alpha immunoreactive (ER-alpha 1R) neurons in the brainstem and spinal cord of

  15. Development of Chemosensitivity in Neurons from the Nucleus Tractus Solitarii (NTS) of Neonatal Rats

    Science.gov (United States)

    Conrad, Susan C.; Nichols, Nicole L.; Ritucci, Nick A.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the development of chemosensitivity during the neonatal period in rat Nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO2) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164±4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (neurons that respond to hypercapnia or the magnitude of that response. PMID:19056522

  16. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...... immune system, namely macrophages. We used a lentiviral-mediated gene therapy approach to deliver IL-25 to the central nervous system (CNS) in two mouse models of neuroinflammation, entorhinal cortex lesion and experimental autoimmune encephalomyelitis. In both, we found that IL-25 gene therapy was able...... to modulate CNS myeloid cells, either infiltrating macrophages or resident microglia, towards an anti-inflammatory, tissue-protective phenotype, as testified by the increase in markers such as Arginase-1 (Arg1), Mannose receptor 1 (CD206) and Chitinase 3-like 3 (Ym1). As a consequence, neuroinflammation...

  17. CAMKII activation is not required for maintenance of learning-induced enhancement of neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Ori Liraz

    Full Text Available Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC and extracellular regulated kinase (ERK activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.

  18. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Panpan Yu

    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS. Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ labeling, strong cation exchange chromatography (SCX fractionation, immobilized metal affinity chromatography (IMAC and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.

  19. Intrinsic and acquired resistance mechanisms in enterococcus

    Science.gov (United States)

    Hollenbeck, Brian L.; Rice, Louis B.

    2012-01-01

    Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options. PMID:23076243

  20. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  1. Incentives and intrinsic motivation in healthcare.

    Science.gov (United States)

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alternations in CNS Development

    Science.gov (United States)

    2012-10-01

    2007) Iron in fetal and neonatal nutrition . Semin Fetal Neonatal Med 12: 54-63 Raymond GV, Bauman ML, Kemper TL (1996) Hippocampus in autism : a...phenotype for Autism and related alternations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D... Autism and related alternations in CNS development 5b. GRANT NUMBER W81XWH-08-1-0702 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  3. CLIPPERS among patients diagnosed with non-specific CNS neuroinflammatory diseases

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, B M; Lindelof, Mette; Illes, Zsolt

    2014-01-01

    Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) is an inflammatory CNS disorder characterized by 1) subacute onset of cerebellar and brainstem symptoms, 2) peripontine contrast-enhancing perivascular lesions with a "salt-and-pepper" appeara......Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) is an inflammatory CNS disorder characterized by 1) subacute onset of cerebellar and brainstem symptoms, 2) peripontine contrast-enhancing perivascular lesions with a "salt...

  4. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  5. Cautionary notes on the use of NF-κB p65 and p50 antibodies for CNS studies

    Directory of Open Access Journals (Sweden)

    Listwak Samuel J

    2011-10-01

    Full Text Available Abstract Background The characterization and cellular localization of transcription factors like NF-κB requires the use of antibodies for western blots and immunohistochemistry. However, if target protein levels are low and the antibodies not well characterized, false positive data can result. In studies of NF-κB activity in the CNS, antibodies detecting NF-κB proteins have been used to support the finding that NF-κB is constitutively active in neurons, and activity levels are further increased by neurotoxic treatments, glutamate stimulation, or elevated synaptic activity. The specificity of the antibodies used was analyzed in this study. Methods Selectivity and nonselectivity of commonly used commercial and non-commercial p50 and p65 antibodies were demonstrated in western blot assays conducted in tissues from mutant gene knockout mice lacking the target proteins. Results A few antibodies for p50 and p65 each mark a single band at the appropriate molecular weight in gels containing proteins from wildtype tissue, and this band is absent in proteins from knockout tissues. Several antibodies mark proteins that are present in knockout tissues, indicating that they are nonspecific. These include antibodies raised against the peptide sequence containing the nuclear localization signals of p65 (MAB3026; Chemicon and p50 (sc-114; Santa Cruz. Some antibodies that recognize target proteins at the correct molecular weight still fail in western blot analysis because they also mark additional proteins and inconsistently so. We show that the criterion for validation by use of blocking peptides can still fail the test of specificity, as demonstrated for several antibodies raised against p65 phosphorylated at serine 276. Finally, even antibodies that show specificity in western blots produce nonspecific neuronal staining by immunohistochemistry. Conclusions We note that many of the findings in the literature about neuronal NF-κB are based on data garnered

  6. Generation of Pet1210-Cre Transgenic Mouse Line Reveals Non-Serotonergic Expression Domains of Pet1 Both in CNS and Periphery

    Science.gov (United States)

    Pelosi, Barbara; Migliarini, Sara; Pacini, Giulia; Pratelli, Marta; Pasqualetti, Massimo

    2014-01-01

    Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non

  7. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  8. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons.

    Science.gov (United States)

    Kress, Geraldine J; Dowling, Margaret J; Eisenman, Lawrence N; Mennerick, Steven

    2010-04-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the Na(V)1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. (c) 2009 Wiley-Liss, Inc.

  9. Pharmacological studies on drug dependence in rodents: dependence on opioids and CNS depressants.

    Science.gov (United States)

    Suzuki, T

    1990-01-01

    Physical and psychic dependence on opioids and CNS depressants in rodents were examined using the drug-admixed food (DAF) method. A comparison of several methods for developing physical dependence on opioids was made. The DAF method has the advantage of rapidly inducing a high degree of physical dependence without causing morbidity or mortality. When morphine-dependent rats were pretreated with several opioids, naloxone-precipitated weight loss was suppressed in a dose-dependent manner. A procedure for the development of severe physical dependence on CNS depressants was also established. Drug concentrations were rapidly increased until animals showed moderate to severe CNS depression, and then this condition was maintained for at least 10 days. With this procedure, animals became severely dependent on CNS depressants. Another technique, intermittent infusion, was developed that has been used to quantify short-acting CNS depressant dependence potential. The sedative effects of pentobarbital were used as an index in the determination of the injection intervals. These results suggest that the DAF method and the new approaches are useful tools for assessing the physical dependence potential of new drugs. Moreover, oral self-administration and weight pulling procedures were utilized along with the DAF method. Procedures for the oral self-administration of opioids and CNS depressants were established. Opioid-dependent rats pulled the weight to obtain the DAF even though they had free access to normal food. This weight-pulling procedure may be useful for assessing the degree of reinforcing effects for drugs in rats.

  10. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  11. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  12. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism.

    Science.gov (United States)

    Haghiri, Saeed; Ahmadi, Arash; Saif, Mehrdad

    2017-02-01

    Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.

  13. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization.

    Directory of Open Access Journals (Sweden)

    John P Norman

    Full Text Available Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1 is ultimately refractory to highly active antiretroviral therapy (HAART because of failure of complete virus eradication in the central nervous system (CNS, and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR, followed by the unfolded protein response (UPR and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.

  14. CNS fatigue provoked by prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Nybo, Lars

    2010-01-01

    to the brain. However, exercise with superimposed hyperthermia is not only a challenge to the brain it also provides an excellent model for studying factors of importance for central fatigue. Excessive heat storage within the brain appears to be the primary cause for the central fatigue during exercise......Exercise-induced hyperthermia is associated with central fatigue as indicated by an impaired ability to sustain maximal motor activation during prolonged voluntary efforts. Therefore, exercise in hot environments challenges not only to the cardiorespiratory and locomotive systems but also...... to aggravate central fatigue and degrade exercise performance. Hyperthermia mediated central fatigue may include other cerebral perturbations such as reduced perfusion of the brain, accumulation of ammonia or depletion of neuronal energy stores, but further research is needed to elucidate their possible...

  15. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    DEFF Research Database (Denmark)

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E

    2015-01-01

    Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human...... diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white...... adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating...

  16. The extracellular space in the CNS: Its regulation, volume and geometry in normal and pathological neuronal function

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    1997-01-01

    Roč. 3, č. 1 (1997), s. 28-41 ISSN 1073-8584 R&D Projects: GA ČR(CZ) GA309/96/0884 Institutional research plan: CEZ:AV0Z5039906 Keywords : apparent diffusion coefficient diffusion * glia * extracellular volume Subject RIV: FH - Neurology

  17. Health-related quality of life of significant others of patients with malignant CNS versus non-CNS tumors: a comparative study

    NARCIS (Netherlands)

    Boele, F.W.; Heimans, J.J.; Aaronson, N.K.; Taphoorn, M.J.B.; Postma, T.J.; Reijneveld, J.C.; Klein, M.

    2013-01-01

    It is often assumed that brain tumor patients’ significant others (SOs: partners, other family members or close friends) may face greater stress than those of patients with malignancies not involving the central nervous system (CNS), due to progressive changes in neurological and cognitive

  18. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  19. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Science.gov (United States)

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  20. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Bauer, Matthias; Szulc, Jolanta; Meyer, Morten

    2008-01-01

    Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown...... function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation...... neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation...

  1. Characterization of the chemosensitive response of individual solitary complex neurons from adult rats

    Science.gov (United States)

    Nichols, Nicole L.; Mulkey, Daniel K.; Wilkinson, Katherine A.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the CO2/H+-chemosensitive responses of individual solitary complex (SC) neurons f