WorldWideScience

Sample records for intrinsic bidirectional dynamic

  1. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.

    Science.gov (United States)

    Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J

    2017-01-01

    Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.

  2. The Intrinsic Dynamics of Psychological Process

    NARCIS (Netherlands)

    Vallacher, Robin R.; van Geert, Paul; Nowak, Andrzej

    2015-01-01

    Psychological processes unfold on various timescales in accord with internally generated patterns. The intrinsic dynamism of psychological process is difficult to investigate using traditional methods emphasizing cause–effect relations, however, and therefore is rarely incorporated into social

  3. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2016-02-23

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.

  4. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  5. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    Science.gov (United States)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  6. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen; Wang, Dongdong; Liu, Jin; Feng, Yitao; Weng, Jingwei; Li, Yu; Gao, Xin; Liu, Jianwei; Wang, Wenning

    2017-01-01

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a

  7. Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts

    International Nuclear Information System (INIS)

    Huo Haifeng; Li Wantong

    2009-01-01

    This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.

  8. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng; Djie, Hery Susanto; Hwang, James C. M.; Koch, Thomas L.; Lester, Luke F.; Ooi, Boon S.; Wang, Yang

    2011-01-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  9. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng

    2011-10-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  10. A dynamic birth-death model via Intrinsic Linkage

    Directory of Open Access Journals (Sweden)

    Robert Schoen

    2013-05-01

    Full Text Available BACKGROUND Dynamic population models, or models with changing vital rates, are only beginning to receive serious attention from mathematical demographers. Despite considerable progress, there is still no general analytical solution for the size or composition of a population generated by an arbitrary sequence of vital rates. OBJECTIVE The paper introduces a new approach, Intrinsic Linkage, that in many cases can analytically determine the birth trajectory of a dynamic birth-death population. METHODS Intrinsic Linkage assumes a weighted linear relationship between (i the time trajectory of proportional increases in births in a population and (ii the trajectory of the intrinsic rates of growth of the projection matrices that move the population forward in time. Flexibility is provided through choice of the weighting parameter, w, that links these two trajectories. RESULTS New relationships are found linking implied intrinsic and observed population patterns of growth. Past experience is "forgotten" through a process of simple exponential decay. When the intrinsic growth rate trajectory follows a polynomial, exponential, or cyclical pattern, the population birth trajectory can be expressed analytically in closed form. Numerical illustrations provide population values and relationships in metastable and cyclically stable models. Plausible projection matrices are typically found for a broad range of values of w, although w appears to vary greatly over time in actual populations. CONCLUSIONS The Intrinsic Linkage approach extends current techniques for dynamic modeling, revealing new relationships between population structures and the changing vital rates that generate them.

  11. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    Science.gov (United States)

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  12. Intrinsic information carriers in combinatorial dynamical systems

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features—"sites" for short—characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  13. Intrinsic information carriers in combinatorial dynamical systems.

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  14. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings.

    Science.gov (United States)

    Song, Kwang Yong; Yoon, Hyuk Jin

    2010-09-01

    We experimentally demonstrate that the reflection spectrum of a Brillouin dynamic grating in a polarization-maintaining fiber can be much narrower than the intrinsic linewidth of the stimulated Brillouin scattering, matching well with the theory of a fiber Bragg grating in terms of the linewidth and the reflectivity. A 3 dB bandwidth as narrow as 10.5 MHz is observed with the Brillouin dynamic grating generated in a 9 m uniform fiber.

  15. Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Wong, K.-W.; Yang Shizhong

    2003-01-01

    In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results

  16. Dynamical implications of bi-directional resource exchange within a meta-ecosystem.

    Science.gov (United States)

    Rodriguez, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel; Kang, Yun

    2018-05-05

    The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018. Published by Elsevier Inc.

  17. Dominance dynamics of competition between intrinsic and extrinsic grouping cues.

    Science.gov (United States)

    Luna, Dolores; Villalba-García, Cristina; Montoro, Pedro R; Hinojosa, José A

    2016-10-01

    In the present study we examined the dominance dynamics of perceptual grouping cues. We used a paradigm in which participants selectively attended to perceptual groups based on several grouping cues in different blocks of trials. In each block, single and competing grouping cues were presented under different exposure durations (50, 150 or 350ms). Using this procedure, intrinsic vs. intrinsic cues (i.e. proximity and shape similarity) were compared in Experiment 1; extrinsic vs. extrinsic cues (i.e. common region and connectedness) in Experiment 2; and intrinsic vs. extrinsic cues (i.e. common region and shape similarity) in Experiment 3. The results showed that in Experiment 1, no dominance of any grouping cue was found: shape similarity and proximity grouping cues showed similar reaction times (RTs) and interference effects. In contrast, in Experiments 2 and 3, common region dominated processing: (i) RTs to common region were shorter than those to connectedness (Exp. 2) or shape similarity (Exp. 3); and (ii) when the grouping cues competed, common region interfered with connectedness (Exp. 2) and shape similarity (Exp. 3) more than vice versa. The results showed that the exposure duration of stimuli only affected the connectedness grouping cue. An important result of our experiments indicates that when two grouping cues compete, both the non-attended intrinsic cue in Experiment 1, and the non-dominant extrinsic cue in Experiments 2 and 3, are still perceived and they are not completely lost. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.

    Science.gov (United States)

    Whitaker, Leslie R; Warren, Brandon L; Venniro, Marco; Harte, Tyler C; McPherson, Kylie B; Beidel, Jennifer; Bossert, Jennifer M; Shaham, Yavin; Bonci, Antonello; Hope, Bruce T

    2017-09-06

    Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP + ) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP - ). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP + neurons and decreased excitability of FosGFP - neurons. Increased excitability of FosGFP + neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP - neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos - non-ensembles. SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are

  19. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen

    2017-05-11

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a structured protein, while the Interaction between two IDPs is poorly understood. In this study, we combined NMR, smFRET, and molecular dynamics (MD) simulation to characterize the interaction between two IDPs, the C-terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by MD and mutagenesis studies. Our study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.

  20. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  1. Dynamics of a minimal consumer network with bi-directional influence

    Science.gov (United States)

    Ekaterinchuk, Ekaterina; Jungeilges, Jochen; Ryazanova, Tatyana; Sushko, Iryna

    2018-05-01

    We study the dynamics of a model of interdependent consumer behavior defined by a family of two-dimensional noninvertible maps. This family belongs to a class of coupled logistic maps with different nonlinearity parameters and coupling terms that depend on one variable only. In our companion paper we considered the case of independent consumers as well as the case of uni-directionally connected consumers. The present paper aims at describing the dynamics in the case of a bi-directional connection. In particular, we investigate the bifurcation structure of the parameter plane associated with the strength of coupling between the consumers, focusing on the mechanisms of qualitative transformations of coexisting attractors and their basins of attraction.

  2. Membrane dynamics in the intrinsic light-front coordinates

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.; Torrealba, R.

    1991-01-01

    The authors study the dynamics of the membrane, using internal light-front (LF) coordinates. The set of constraints, although equivalent to the standard one, is different. The intrinsic LF gauge is defined. Four additional, alternative gauge-fixing conditions are analyzed. Two of them polynomialize the system, while the other two are convenient for studying the initial-value problem. In particular, one of them is also extrinsically (i.e., in the ambient space) light-front. In this gauge, the system is shown to be consistently reduced to attain a canonical form in terms of pure transverse variables. Two constraints on these variables still hold, clearly showing the presence, as they must, of D - 3 degrees of freedom. Finally, the initial-value problem in this intrinsic-extrinsic. LF gauge is solved. Although the paper is based on the first-order action, the LF-Hamiltonian approach is discussed too

  3. Modelling the role of intrinsic electric fields in microtubules as an additional control mechanism of bi-directional intracellular transport.

    Science.gov (United States)

    Sataric, M V; Budinski-Petkovic, L; Loncarevic, I; Tuszynski, J A

    2008-01-01

    Active transport is essential for cellular function, while impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is clear that many types of cargo are moved by both sets of motors, and frequently in a reverse direction. The general question of how the direction of transport is regulated is still open. The mechanism of the cell's differential control of diverse cargos within the same cytoplasmic background is still unclear as is the answer to the question how endosomes and mitochondria move to different locations within the same cell. To answer these questions we postulate the existence of a local signaling mechanism used by the cell to specifically control different cargos. In particular, we propose an additional physical mechanism that works through the use of constant and alternating intrinsic (endogenous) electric fields as a means of controlling the speed and direction of microtubule-based transport. A specific model is proposed and analyzed in this paper. The model involves the rotational degrees of freedom of the C-termini of tubulin, their interactions and the coupling between elastic and dielectric degrees of freedom. Viscosity of the solution is also included and the resultant equation of motion is found as a nonlinear elliptic equation with dissipation. A particular analytical solution of this equation is obtained in the form of a kink whose properties are analyzed. It is concluded that this solution can be modulated by the presence of electric fields and hence may correspond to the observed behavior of motor protein transport along microtubules.

  4. Dynamic average modeling of a bidirectional solid state transformer for feasibility studies and real-time implementation

    OpenAIRE

    Martínez Velasco, Juan Antonio; Alepuz Menéndez, Salvador; Gonzalez Molina, Francisco; Martín Arnedo, Jacinto

    2014-01-01

    Detailed switching models of power electronics devices often lead to long computing times, limiting the size of the system to be simulated. This drawback is especially important when the goal is to implement the model in a real-time simulation platform. An alternative is to use dynamic average models (DAM) for analyzing the dynamic behavior of power electronic devices. This paper presents the development of a DAM for a bidirectional solid-state transformer and its implementation in a real-tim...

  5. Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.

    Science.gov (United States)

    Gladkov, Arseniy; Grinchuk, Oleg; Pigareva, Yana; Mukhina, Irina; Kazantsev, Victor; Pimashkin, Alexey

    2018-01-01

    The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms) small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz). The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.

  6. Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.

    Directory of Open Access Journals (Sweden)

    Arseniy Gladkov

    Full Text Available The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz. The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.

  7. The robustness in dynamics of out of equilibrium bidirectional transport systems with constrained entrances

    Science.gov (United States)

    Sharma, Natasha; Verma, Atul Kumar; Gupta, Arvind Kumar

    2018-05-01

    Macroscopic and microscopic long-distance bidirectional transfer depends on connections between entrances and exits of various transport mediums. Persuaded by the associations, we introduce a small system module of Totally Asymmetric Simple Exclusion Process including oppositely directed species of particles moving on two parallel channels with constrained entrances. The dynamical rules which characterize the system obey symmetry between the two species and are identical for both the channels. The model displays a rich steady-state behavior, including symmetry breaking phenomenon. The phase diagram is analyzed theoretically within the mean-field approximation and substantiated with Monte Carlo simulations. Relevant mean-field calculations are also presented. We further compared the phase segregation with those observed in previous works, and it is examined that the structure of phase separation in proposed model is distinguished from earlier ones. Interestingly, for phases with broken symmetry, symmetry with respect to channels has been observed as the distinct particles behave differently while the similar type of particles exhibits the same conduct in the system. For symmetric phases, significant properties including currents and densities in the channels are identical for both types of particles. The effect of symmetry breaking occurrence on the Monte Carlo simulation results has also been examined based on particle density histograms. Finally, phase properties of the system having strong size dependency have been explored based on simulations findings.

  8. MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Arun K. Rooj

    2017-06-01

    Full Text Available Large-scale transcriptomic profiling of glioblastoma (GBM into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128 in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking.

  9. Bidirectional dynamics of materialism and loneliness : Not just a vicious cycle

    NARCIS (Netherlands)

    Pieters, R.

    2013-01-01

    This research is the first to test the hypothesis that consumers face a “material trap” in which materialism fosters social isolation which in turn reinforces materialism. It provides evidence that materialism and loneliness are engaged in bidirectional relationships over time. Importantly, it finds

  10. Bimanual coordination and musical experience : The role of intrinsic dynamics and behavioral information

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on

  11. Dynamic analysis of stochastic bidirectional associative memory neural networks with delays

    International Nuclear Information System (INIS)

    Zhao Hongyong; Ding Nan

    2007-01-01

    In this paper, stochastic bidirectional associative memory neural networks model with delays is considered. By constructing Lyapunov functionals, and using stochastic analysis method and inequality technique, we give some sufficient criteria ensuring almost sure exponential stability, pth exponential stability and mean value exponential stability. The obtained criteria can be used as theoretic guidance to stabilize neural networks in practical applications when stochastic noise is taken into consideration

  12. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  13. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  14. Data sets for modeling: A retrospective collection of Bidirectional Reflectance and Forest Ecosystems Dynamics Multisensor Aircraft Campaign data sets

    Energy Technology Data Exchange (ETDEWEB)

    Walthall, C.L.; Kim, M. (Univ. of Maryland, College Park, MD (United States). Dept. of Geography); Williams, D.L.; Meeson, B.W.; Agbu, P.A.; Newcomer, J.A.; Levine, E.R.

    1993-12-01

    The Biospheric Sciences Branch, within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center, has assembled two data sets for free dissemination to the remote sensing research community. One data set, referred to as the Retrospective Bidirectional Reflectance Distribution Function (BRDF) Data Collection, is a collection of bidirectional reflectance and supporting biophysical measurements of surfaces ranging in diversity from bare soil to heavily forested canopies. The other data collection, resulting from measurements made in association with the Forest Ecosystems Dynamic Multisensor Aircraft Campaign (FED MAC), contains data that are relevant to ecosystem process models, particularly those which have been modified to incorporate remotely sensed data. Both of these collections are being made available to the science community at large in order to facilitate model development, validation, and usage. These data collections are subsets which have been compiled and consolidated from individual researcher or from several large data set collections including: the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE); FED MAC; the Superior National Forest Project (SNF); the Geologic Remote Sensing Field Experiment (GRSFE); and Agricultural Inventories through Space Applications of Remote Sensing (AgriStars). The complete, stand-along FED MAC Data Collection contains atmospheric, vegetation, and soils data acquired during field measurement campaigns conducted at international Papers' Northern Experimental Forest located approximately 40 km north of Bangor, Maine. Reflectance measurements at the canopy, branch, and needle level are available, along with the detailed canopy architectural measurements.

  15. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  16. Intrinsic and extrinsic drivers of source-sink dynamics

    Science.gov (United States)

    1. Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations, yet their relative contributions remain largely unexplored. 2. To help identify the...

  17. Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.

  18. The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer

    DEFF Research Database (Denmark)

    Danielsson, Jens; Liljedahl, Leena; Ba´ra´ny-Wallje, Elsa

    2008-01-01

    . Sml1 belongs to the class of intrinsically disordered proteins with a high degree of dynamics and very little stable structure. Earlier suggestions for a dimeric structure of Sml1 were confirmed, and from translation diffusion NMR measurements, a dimerization dissociation constant of 0.1 mM at 4...... natively disordered proteins....

  19. Intramolecular three-colour single pair FRET of intrinsically disordered proteins with increased dynamic range.

    Science.gov (United States)

    Milles, Sigrid; Koehler, Christine; Gambin, Yann; Deniz, Ashok A; Lemke, Edward A

    2012-10-01

    Single molecule observation of fluorescence resonance energy transfer can be used to provide insight into the structure and dynamics of proteins. Using a straightforward triple-colour labelling strategy, we present a measurement and analysis scheme that can simultaneously study multiple regions within single intrinsically disordered proteins.

  20. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    Science.gov (United States)

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  1. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    Science.gov (United States)

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  2. Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity

    Science.gov (United States)

    Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi

    2016-01-01

    Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971

  3. High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations

    Science.gov (United States)

    Lisenkov, S.; Ponomareva, I.

    2018-05-01

    We propose a computational methodology capable of harvesting isothermal heat and entropy change in molecular dynamics simulations. The methodology is applied to study high-frequency dynamics of the electrocaloric effect (ECE) in ferroelectric PbTiO3. ECE is associated with a reversible change in temperature under adiabatic application of electric field or with a reversible change in entropy under isothermal application of the electric field. Accurate assessment of electrocaloric performance requires the knowledge of three quantities: isothermal heat, isothermal entropy change, and adiabatic temperature change. Our methodology allows computations of all these quantities directly, that is, without restoring to the reversible thermodynamical models. Consequently, it captures both reversible and irreversible effects, which is critical for ECE simulations. The approach is well suited to address the dynamics of the ECE, which so far remains underexplored. We report the following basic features of the intrinsic dynamics of ECE: (i) the ECE is independent of the electric field frequency, rate of application, or field profile; (ii) the effect persists up to the frequencies associated with the onset of dielectric losses and deteriorates from there due to the creation of irreversible entropy; and (iii) in the vicinity of the phase transition and in the paraelectric phase the onset of irreversible dynamics occurs at lower frequency as compared to the ferroelectric phase. The latter is attributed to lower intrinsic soft-mode frequencies and and larger losses in the paraelectric phase.

  4. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  5. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    Science.gov (United States)

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  7. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.

    Science.gov (United States)

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2017-09-01

    This paper describes a new small signal parametric model of ankle joint intrinsic mechanics in normal subjects. We found that intrinsic ankle mechanics is a third-order system and the second-order mass-spring-damper model, referred to as IBK, used by many researchers in the literature cannot adequately represent ankle dynamics at all frequencies in a number of important tasks. This was demonstrated using experimental data from five healthy subjects with no voluntary muscle contraction and at seven ankle positions covering the range of motion. We showed that the difference between the new third-order model and the conventional IBK model increased from dorsi to plantarflexed position. The new model was obtained using a multi-step identification procedure applied to experimental input/output data of the ankle joint. The procedure first identifies a non-parametric model of intrinsic joint stiffness where ankle position is the input and torque is the output. Then, in several steps, the model is converted into a continuous-time transfer function of ankle compliance, which is the inverse of stiffness. Finally, we showed that the third-order model is indeed structurally consistent with agonist-antagonist musculoskeletal structure of human ankle, which is not the case for the IBK model.

  8. The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights From Bistable Perception

    Directory of Open Access Journals (Sweden)

    Teng Cao

    2018-04-01

    Full Text Available In bistable perception, constant input leads to alternating perception. The dynamics of the changing perception reflects the intrinsic dynamic properties of the “unconscious inferential” process in the brain. Under the same condition, individuals differ in how fast they experience the perceptual alternation. In this study, testing many forms of bistable perception in a large number of observers, we investigated the key question of whether there is a general and common mechanism or multiple and independent mechanisms that control the dynamics of the inferential brain. Bistable phenomena tested include binocular rivalry, vase-face, Necker cube, moving plaid, motion induced blindness, biological motion, spinning dancer, rotating cylinder, Lissajous-figure, rolling wheel, and translating diamond. Switching dynamics for each bistable percept was measured in 100 observers. Results show that the switching rates of subsets of bistable percept are highly correlated. The clustering of dynamic properties of some bistable phenomena but not an overall general control of switching dynamics implies that the brain’s inferential processes are both shared and independent – faster in constructing 3D structure from motion does not mean faster in integrating components into an objects.

  9. The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release

    Science.gov (United States)

    Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard

    2010-11-01

    In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.

  10. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  11. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple.

    Science.gov (United States)

    Gitto, Salvatore; Messina, Carmelo; Mauri, Giovanni; Aliprandi, Alberto; Sardanelli, Francesco; Sconfienza, Luca Maria

    2017-02-01

    Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches.

    Directory of Open Access Journals (Sweden)

    Ruben Perez-Carrasco

    2016-10-01

    Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can

  14. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

    Science.gov (United States)

    Page, Karen M.

    2016-01-01

    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively

  15. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    Science.gov (United States)

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  16. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  17. Extrinsic relative to intrinsic goal pursuits and peer dynamics: selection and influence processes among adolescents.

    Science.gov (United States)

    Duriez, Bart; Giletta, Matteo; Kuppens, Peter; Vansteenkiste, Maarten

    2013-10-01

    Self-Determination Theory discerns goals and values in terms of whether they are intrinsic or extrinsic in nature. Although research substantiates the importance of goal preferences for a host of outcomes, few studies examined how such preferences develop, and studies that did pay attention to this focused on parental influence processes. The present study focuses on the role of peers. Social network analyses on longitudinal data gathered among senior high-school students (N = 695) confirm that peer similarity in goal pursuit exists, and that, although this similarity partly originates from adolescents selecting friends on the basis of perceived goal pursuit similarity, it also results from peers actively influencing each other. Hence, friends tend to become more alike in terms of goal pursuit over time. Data also suggest that, although changes in goal pursuit at this age can be predicted from peer dynamics, they cannot be attributed to parental goal promotion efforts. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    Science.gov (United States)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  19. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Elio A Cino

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2, with a common binding partner, Kelch-like ECH-associated protein 1(Keap1, are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.

  20. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  1. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  2. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple

    International Nuclear Information System (INIS)

    Gitto, Salvatore; Messina, Carmelo; Mauri, Giovanni; Aliprandi, Alberto; Sardanelli, Francesco; Sconfienza, Luca Maria

    2017-01-01

    Highlights: • US allows for rapid, cost-effective, and non-invasive assessment of wrist ligaments. • Knowledge of landmarks and dynamic manoeuvres is basic for a systematic examination. • A sequential approach is effective, timesaving and feasible in clinical practice. - Abstract: Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique.

  3. Dynamic high-resolution ultrasound of intrinsic and extrinsic ligaments of the wrist: How to make it simple

    Energy Technology Data Exchange (ETDEWEB)

    Gitto, Salvatore, E-mail: sal.gitto@gmail.com [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano (Italy); Messina, Carmelo [Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano (Italy); Mauri, Giovanni [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Dipartimento di Radiologia Interventistica, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milano (Italy); Aliprandi, Alberto [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Sardanelli, Francesco [Servizio di Radiologia, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese (Italy); Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano (Italy); Sconfienza, Luca Maria [Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano (Italy); Unità Operativa di Radiologia/Diagnostica per Immagini con Servizio di Radiologia Interventistica, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano (Italy)

    2017-02-15

    Highlights: • US allows for rapid, cost-effective, and non-invasive assessment of wrist ligaments. • Knowledge of landmarks and dynamic manoeuvres is basic for a systematic examination. • A sequential approach is effective, timesaving and feasible in clinical practice. - Abstract: Wrist ligaments are crucial structures for the maintenance of carpal stability. They are classified into extrinsic ligaments, connecting the carpus with the forearm bones or distal radioulnar ligaments, and intrinsic ligaments, entirely situated within the carpus. Lesions of intrinsic and extrinsic ligaments of the wrist have been demonstrated to occur largely, mostly in patients with history of trauma and carpal instability, or rheumatoid arthritis. Ultrasound allows for rapid, cost-effective, non-invasive and dynamic evaluation of the wrist, and may represent a valuable diagnostic tool. Although promising results have been published, ultrasound of wrist ligaments is not performed in routine clinical practice, maybe due to its technical feasibility regarded as quite complex. This review article aims to enlighten readers about the normal sonographic appearance of intrinsic and extrinsic carpal ligaments, and describe a systematic approach for their sonographic assessment with detailed anatomic landmarks, dynamic manoeuvres and scanning technique.

  4. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    Science.gov (United States)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  5. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response

    NARCIS (Netherlands)

    Cino, E.A.; Wong-ekkabut, J.; Karttunen, M.E.J.; Choy, W.-Y.

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTa) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like

  6. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system.

    Science.gov (United States)

    Gu, Shuang; Shevchik, Vladimir E; Shaw, Rosie; Pickersgill, Richard W; Garnett, James A

    2017-10-01

    Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of bidirectional internal flow on fluid–structure interaction dynamics of conveying marine riser model subject to shear current

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen

    2012-03-01

    Full Text Available This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward on fluid–structure interaction (FSI dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid–structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

  8. Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Nair, A G C; Tomar, B S; Nathaniel, T N; Reddy, A V R; Singh, Gursharan

    2009-09-01

    Instrumental neutron activation analysis (INAA) of fluid catalytic cracking (FCC) catalyst samples was carried out with an objective to identify activable elements and evaluate its suitability for use as an intrinsic radiotracer for tracing catalyst itself in Fluid Catalytic Cracking Units (FCCUs) used in petroleum refining. Two catalyst samples obtained from two different refineries were analyzed. Twelve different elements were identified in each catalyst sample and their respective concentrations were determined. From the recorded gamma-ray spectra, it was found that lanthanum-140 ((140)La) and sodium-24 ((24)Na) were the predominantly present and suitable radionuclides that could be used as radiotracers for tracing catalyst in FCCUs. Lanthanum being present in much higher concentration forms the major component of the radiotracer after irradiation. Based on the results of INAA, appropriate quantities of the catalyst samples were irradiated with neutrons to produce the desired amount of activity of lanthanum-140 and sodium-24 to be used as radiotracers for tracing the catalyst itself in a pilot as well as an industrial-scale FCCU. The residence time distribution (RTD) of catalyst was measured and analyzed to determine mean residence time (MRT). The axial dispersion model (ADM) was used to simulate the measured RTD data and investigate the degree of axial mixing. The results of the experiments were used to improve the design of pilot-scale FCCU and optimize the performance of the industrial-scale FCCU.

  9. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  10. Intrinsic motivation, norms and environmental behaviour : The dynamics of overarching goals

    NARCIS (Netherlands)

    Steg, L.; Lindenberg, S.M.; Keizer, K.

    2016-01-01

    The understanding, prediction, and encouragement of pro-environmental behaviour (i.e., behaviour that impacts the environment as little as possible) depend to a large extent on understanding the motivational dynamics of pro-environmental behaviour. In this review paper, we discuss the state of the

  11. Intergenerational Transmission in a Bidirectional Context

    Directory of Open Access Journals (Sweden)

    Jan De Mol

    2013-07-01

    Full Text Available Traditional approaches to the study of parent-child relationships view intergenerational transmission as a top-down phenomenon in which parents transfer their values, beliefs, and practices to their children. Furthermore, the focus of these unidirectional approaches regarding children's internalisation processes is on continuity or the transmission of similar values, beliefs, and practices from parents to children. Analogous unidirectional perspectives have also influenced the domain of family therapy. In this paper a cognitive-bidirectional and dialectical model of dynamics in parent-child relationships is discussed in which the focus is on continual creation of novel meanings and not just reproduction of old ones in the bidirectional transmission processes between parents and children. Parents and children are addressed as full and equally agents in their interdependent relationship, while these relational dynamics are embedded within culture. This cultural context complicates bidirectional transmission influences in the parent-child relationship as both parents and children are influenced by many other contexts. Further, current research in the domain of parent-child relationships and current concepts of intergenerational transmission in family therapy are reviewed from a bidirectional cognitive-dialectical perspective.

  12. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  13. Intrinsic dynamics of heart regulatory systems on short timescales: from experiment to modelling

    International Nuclear Information System (INIS)

    Khovanov, I A; Khovanova, N A; McClintock, P V E; Stefanovska, A

    2009-01-01

    We discuss open problems related to the stochastic modelling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short timescales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modelling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics

  14. Analysis of intrinsic and extrinsic factors influencing the dynamics of bovine Eimeria spp. from central-eastern Poland.

    Science.gov (United States)

    Tomczuk, Krzysztof; Grzybek, Maciej; Szczepaniak, Klaudiusz; Studzińska, Maria; Demkowska-Kutrzepa, Marta; Roczeń-Karczmarz, Monika; Klockiewicz, Maciej

    2015-11-30

    Eimeria infections are common in cattle worldwide, however, little is known about the invasion dynamics of this unicellular parasite. Therefore, the aim of this study was to analyze intrinsic (host age) and extrinsic (herd size and management system) factors influencing the dynamics of Eimeria spp. found in calves from CE Poland. Fecal samples were collected from 356 calves from different types of management systems and from different herd sizes. Flotation and McMaster method were used for parasitological investigation. Oocysts were differentiated on the basis of morphological criteria. Eight Eimeria species were identified and mean species richness (MSR) was significantly affected by host age. The highest MSR was noted for middle age animals. There was an association between species, with a highly significant co-occurrence of Eimeria bovis with Eimeria zuernii. The presence of E. bovis significantly increased the percentage of individuals carrying E. zuernii. The presence of E. bovis significantly increased the percentage of individuals carrying Eimeria canadensis. The overall prevalence of Eimeria spp. reached 52.8% and was significantly affected by the age of cows, with the highest prevalence in animals between 5-10 months old. The most prevalent species were E. bovis (37.4%), E. zuernii (19.9%) and E. canadensis (12.1%). The prevalence of E. bovis was affected by host age (the highest prevalence in age class 2 animals) and management type (the highest prevalence in individuals raised in groups). The prevalence of E. zuernii was affected by age (the lowest prevalence was noted in the oldest individuals) and herd size (individuals infected were present only in the middle and large size herds), whereas the prevalence of E. canadensis was affected by all three factors. Overall, mean OPG of the combined Eimeria spp. was 458.84 (37.93) and differed significantly between age classes. Mean OPGs were generally low for young and mature animals but high for middle age

  15. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics.

    Directory of Open Access Journals (Sweden)

    Suryani Lukman

    Full Text Available The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD. In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs. Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3. Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart. Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1 a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2 possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site.

  16. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  17. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux.

    Directory of Open Access Journals (Sweden)

    Clare M Florence

    Full Text Available Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+](o and pH homeostasis. Pathological brain states that result in [K(+](o and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+](o (3 mM. Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3- ions as swelling was significantly decreased when the influx of HCO(3- was reduced. We found: 1 in HCO(3- free extracellular solution astrocytes swelled by 5.4±0.7%, 2 when the activity of the sodium-bicarbonate cotransporter (NBC was blocked the astrocytes swelled by 8.3±0.7%, and 3 in the presence of an extracellular carbonic anhydrase (CA inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3- efflux is known to occur through the γ-amino-butyric acid (GABA channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3- mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A channel agonist muscimol. Astrocyte shrinkage from GABA(A channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ. These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.

  18. ABOUT HYBRID BIDIRECTIONAL ASSOCIATIVE MEMORY NEURAL NETWORKS WITH DISCRETE DELAYS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, hybrid bidirectional associative memory neural networks with discrete delays is considered. By ingeniously importing real parameters di > 0(i = 1,2,···,n) which can be adjusted, we establish some new sufficient conditions for the dynamical characteristics of hybrid bidirectional associative memory neural networks with discrete delays by the method of variation of parameters and some analysis techniques. Our results generalize and improve the related results in [10,11]. Our work is significant...

  19. A Statistical Theory of Bidirectionality

    Science.gov (United States)

    DeLoach, Richard; Ulbrich, Norbert

    2013-01-01

    Original concepts related to the quantification and assessment of bidirectionality in strain-gage balances were introduced by Ulbrich in 2012. These concepts are extended here in three ways: 1) the metric originally proposed by Ulbrich is normalized, 2) a categorical variable is introduced in the regression analysis to account for load polarity, and 3) the uncertainty in both normalized and non-normalized bidirectionality metrics is quantified. These extensions are applied to four representative balances to assess the bidirectionality characteristics of each. The paper is tutorial in nature, featuring reviews of certain elements of regression and formal inference. Principal findings are that bidirectionality appears to be a common characteristic of most balance outputs and that unless it is taken into account, it is likely to consume the entire error budget of a typical balance calibration experiment. Data volume and correlation among calibration loads are shown to have a significant impact on the precision with which bidirectionality metrics can be assessed.

  20. Intrinsic Motivation.

    Science.gov (United States)

    Deci, Edward L.

    The paper draws together a wide variety of research which relates to the topic of intrinsic motivation; intrinsically motivated activities are defined as those which a person does for no apparent reward except the activity itself or the feelings which result from the activity. Most of this research was not originally reported within the framework…

  1. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  2. Diversification dynamics and transoceanic Eurasian-Australian disjunction in the genus Picris (Compositae) induced by the interplay of shifts in intrinsic/extrinsic traits and paleoclimatic oscillations.

    Science.gov (United States)

    Slovák, Marek; Kučera, Jaromír; Lack, Hans Walter; Ziffer-Berger, Jotham; Melicharková, Andrea; Záveská, Eliška; Vďačný, Peter

    2018-02-01

    Understanding transcontinental biogeographic patterns has been one of the main foci of the field of biogeography. While multiple explanations for transcontinental disjunctions have been proposed, little is still known about the relative importance of intrinsic and extrinsic traits for the diversification dynamics of disjunct taxa. Here, we study the evolutionary history of the genus Picris L. (Compositae), a great model for investigating the diversification dynamics of transoceanic bipolar disjunct organisms. Ancestral state reconstructions indicate that the most recent common ancestor (MRCA) of Picris was a semelparous and heterocarpic herb that lived in unpredictable environments of North Africa and West Asia. Diversification analyses suggest a significant shift in speciation ca. 1 million years ago, likely associated with the onset of the mid-Pleistocene revolution. Longevity characters are correlated with the evolution of particular fruit types and with environmental conditions. Heterocarpic species are mostly semelparous herbs strongly linked with unpredictable habitats, while homocarpic taxa are mostly iteroparous plants occurring in predictable environments. Binary-state speciation and extinction analyses suggest that homocarpy, iteroparity, and habitats predictability accelerate diversification. Although the combination of homocarpy and iteroparity evolved in several lineages, only members of the P. hieracioides group were able to colonise Eurasia and expand to Australia by transoceanic dispersal. Those findings indicate that large-scale colonisation events depend on a complex interplay of intrinsic and extrinsic factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bidirectional reachability-based modules

    CSIR Research Space (South Africa)

    Nortje, R

    2011-07-01

    Full Text Available The authors introduce an algorithm for MinA extraction in EL based on bidirectional reachability. They obtain a significant reduction in the size of modules extracted at almost no additional cost to that of extracting standard reachability...

  4. Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems--beyond the digital hegemony.

    Science.gov (United States)

    Crutchfield, James P; Ditto, William L; Sinha, Sudeshna

    2010-09-01

    How dynamical systems store and process information is a fundamental question that touches a remarkably wide set of contemporary issues: from the breakdown of Moore's scaling laws--that predicted the inexorable improvement in digital circuitry--to basic philosophical problems of pattern in the natural world. It is a question that also returns one to the earliest days of the foundations of dynamical systems theory, probability theory, mathematical logic, communication theory, and theoretical computer science. We introduce the broad and rather eclectic set of articles in this Focus Issue that highlights a range of current challenges in computing and dynamical systems.

  5. Aimed manipulation of fluxon dynamics in stacks of intrinsic Josephson-junctions out of Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Oehmichen, V.

    2007-01-01

    Goal of this thesis was to extend the knowledge of fluxon dynamics in intrinsic Josephson junctions out of BSCCO and to manipulate this dynamics in a purposeful way. New approaches to create ThZ-radiation were investigated. Step stacks out of BSCCO have been prepared with dimensions of 1-3 μm (width) and 3-10 μm (length). The necessary fabrication process was established based on Wang's double-sided technique. Transport measurements without and with magnetic field were realised on the so produced samples. The magnetic field of some Tesla was oriented parallel to the CuO 2 -double layers. Collective plasma resonances were observed. Those were more stable than the resonances in mesa-structures. The resonances in the low current range can be assigned to an out-of-phase configuration, whereas in the high current range there are some possible configurations. Flux-flow-oscillations measured at these step stacks support the arrangement of the fluxons in an out-of-phase configuration. The in-phase configuration couldn't be observed clearly, so two approaches were followed to manipulate aimingly the fluxon dynamics to create THz-radiation: * control current * geometric manipulation: width-modulated stack For electronic manipulation an additional current line (control current line) was prepared along the stack's bottom. During transport measurements in zero field a current of 0-30 μA was sent through this control current line. The so created inhomogeneity should have provoked fluxons without the help of a magnetic field. A visible effect couldn't be measured. Geometric manipulation of fluxon dynamics to reach in-phase configuration relys on modulation of the stack's width: it has periodic necks (comb structure). First measurements on comb structures prepared in double-side technique show promising hints, that manipulation on purpose of fluxon dynamics is possible using width-modulation. Simulations were performed for different depths of modulation, small and large stacks

  6. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group.

    Science.gov (United States)

    Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon

    2017-08-30

    Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.

  7. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  8. Design of PI Controlled Non Isolated Bidirectional DC to DC Converter for Electric Vehicle Application

    Science.gov (United States)

    Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.

    2018-04-01

    Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.

  9. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  10. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    International Nuclear Information System (INIS)

    Uyar, A; Kurkcuoglu, O; Doruker, P; Nilsson, L

    2011-01-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved

  11. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  12. Evaluation of complex gonioapparent samples using a bidirectional spectrometer.

    Science.gov (United States)

    Rogelj, Nina; Penttinen, Niko; Gunde, Marta Klanjšek

    2015-08-24

    Many applications use gonioapparent targets whose appearance depends on irradiation and viewing angles; the strongest effects are provided by light diffraction. These targets, optically variable devices (OVDs), are used in both security and authentication applications. This study introduces a bidirectional spectrometer, which enables to analyze samples with most complex angular and spectral properties. In our work, the spectrometer is evaluated with samples having very different types of reflection, concerning spectral and angular distributions. Furthermore, an OVD containing several different grating patches is evaluated. The device uses automatically adjusting exposure time to provide maximum signal dynamics and is capable of doing steps as small as 0.01°. However, even 2° steps for the detector movement showed that this device is more than capable of characterizing even the most complex reflecting surfaces. This study presents sRGB visualizations, discussion of bidirectional reflection, and accurate grating period calculations for all of the grating samples used.

  13. Personalized recommendation based on preferential bidirectional mass diffusion

    Science.gov (United States)

    Chen, Guilin; Gao, Tianrun; Zhu, Xuzhen; Tian, Hui; Yang, Zhao

    2017-03-01

    Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.

  14. Advances in Support of the CMAQ Bidirectional Science Option for the Estimation of Ammonia Flux from Agricultural cropland

    Science.gov (United States)

    Proposed Session: Emissions Inventories, Models and processes: Last year a new CMAQ bidirectional option for the estimation of ammonia flux (emission and deposition) was released. This option essentially replaces NEI crop ammonia emissions with emissions calculated dynamically...

  15. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    Science.gov (United States)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  16. Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-08-04

    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.

  17. Constrained bidirectional propagation and stroke segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S; Gillespie, W; Suen, C Y

    1983-03-01

    A new method for decomposing a complex figure into its constituent strokes is described. This method, based on constrained bidirectional propagation, is suitable for parallel processing. Examples of its application to the segmentation of Chinese characters are presented. 9 references.

  18. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    Science.gov (United States)

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  19. Image Captioning with Deep Bidirectional LSTMs

    OpenAIRE

    Wang, Cheng; Yang, Haojin; Bartz, Christian; Meinel, Christoph

    2016-01-01

    This work presents an end-to-end trainable deep bidirectional LSTM (Long-Short Term Memory) model for image captioning. Our model builds on a deep convolutional neural network (CNN) and two separate LSTM networks. It is capable of learning long term visual-language interactions by making use of history and future context information at high level semantic space. Two novel deep bidirectional variant models, in which we increase the depth of nonlinearity transition in different way, are propose...

  20. Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.

    Science.gov (United States)

    Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José

    2007-12-10

    This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.

  1. Comparative analyses of bidirectional promoters in vertebrates

    Directory of Open Access Journals (Sweden)

    Taylor James

    2008-05-01

    Full Text Available Abstract Background Orthologous genes with deep phylogenetic histories are likely to retain similar regulatory features. In this report we utilize orthology assignments for pairs of genes co-regulated by bidirectional promoters to map the ancestral history of the promoter regions. Results Our mapping of bidirectional promoters from humans to fish shows that many such promoters emerged after the divergence of chickens and fish. Furthermore, annotations of promoters in deep phylogenies enable detection of missing data or assembly problems present in higher vertebrates. The functional importance of bidirectional promoters is indicated by selective pressure to maintain the arrangement of genes regulated by the promoter over long evolutionary time spans. Characteristics unique to bidirectional promoters are further elucidated using a technique for unsupervised classification, known as ESPERR. Conclusion Results of these analyses will aid in our understanding of the evolution of bidirectional promoters, including whether the regulation of two genes evolved as a consequence of their proximity or if function dictated their co-regulation.

  2. Bidirectional Modulation of Recognition Memory.

    Science.gov (United States)

    Ho, Jonathan W; Poeta, Devon L; Jacobson, Tara K; Zolnik, Timothy A; Neske, Garrett T; Connors, Barry W; Burwell, Rebecca D

    2015-09-30

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30-40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30-40 Hz was not effective in increasing exploration of novel images. Stimulation at 10-15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. Significance statement: Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of

  3. Intrinsic and Extrinsic Reading Motivation as Predictors of Reading Literacy: A Longitudinal Study

    Science.gov (United States)

    Becker, Michael; McElvany, Nele; Kortenbruck, Marthe

    2010-01-01

    The purpose in this study was to examine the longitudinal relationships of intrinsic and extrinsic motivation with reading literacy development. In particular, the authors (a) investigated reading amount as mediator between motivation and reading literacy and (b) probed for bidirectional relationships between reading motivation and reading…

  4. Analytical investigation of bidirectional ductile diaphragms in multi-span bridges

    Science.gov (United States)

    Wei, Xiaone; Bruneau, Michel

    2018-04-01

    In the AASHTO Guide Specifications for Seismic Bridge Design Provisions, ductile diaphragms are identified as Permissible Earthquake-Resisting Elements (EREs), designed to help resist seismic loads applied in the transverse direction of bridges. When adding longitudinal ductile diaphragms, a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge's longitudinal and transverse axes. This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces (BRBs) in straight multi-span bridge with simply supported floating spans. The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered. Design procedures for the bidirectional ductile diaphragms are first proposed. An analytical model of the example bridge with bidirectional ductile diaphragms, designed based on the proposed methodology, is then built in SAP2000. Pushover and nonlinear time history analyses are performed on the bridge model, and corresponding results are presented. The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated, in order to better understand the impact on the bridge's dynamic performance.

  5. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  6. Bidirectional ventricular tachycardia of unknown etiology

    International Nuclear Information System (INIS)

    Ali, M.; Khan, J.A.; Masood, T.; Shamsi, F.; Dero, M.H.; Khan, S.

    2013-01-01

    A 45 years old male presented to the emergency department with palpitations, headache and apprehension. His electrocardiogram revealed bidirectional ventricular tachycardia. He remained vitally stable and responded to intravenous beta-blocker. Initially digitalis toxicity was suspected but history was negative for digitalis intake. The cause remained unidentified in patient despite detailed investigations. During a short follow-up (of 6 months) he remained asymptomatic and no cause was further identified during this period. Some other unseen causes of bidirectional ventricular tachycardia need to be explored. (author)

  7. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  8. A bidirectional Optimality Theoretic analysis of multiple negative ...

    African Journals Online (AJOL)

    IT

    6 All examples in this paper are colloquial Afrikaans unless otherwise ...... and bidirectional optimisation over these form-meaning pairs results in the selection of one or ..... Imperfective and perfective habituals in Polish: A bi-directional.

  9. Bidirectional communication using delay coupled chaotic directly ...

    Indian Academy of Sciences (India)

    A symmetric bidirectional coupling is identified as a suitable method for isochronal synchronization of such lasers. The optimum values of coupling and feedback strength that can provide maximum quality of synchronization are identified. This method is successfully employed for encoding/decoding both analog and digital ...

  10. Bidirectional ventricular tachycardia of unusual etiology

    Directory of Open Access Journals (Sweden)

    Praloy Chakraborty

    2015-11-01

    Full Text Available Bidirectional ventricular tachycardia (BDVT is a rare form of ventricular arrhythmia, characterized by changing QRS axis of 180 degrees. Digitalis toxicity is considered as commonest cause of BDVT; other causes include aconite toxicity, myocarditis, myocardial infarction, metastatic cardiac tumour and cardiac channelopathies. We describe a case of BDVT in a patient with Anderson-Tawil syndrome.

  11. Uncertainties in the Bidirectional Biodiesel Supply Chain

    NARCIS (Netherlands)

    Bot, Pieter; van Donk, Dirk Pieter; Pennink, Bartjan; Simatupang, Togar M.

    2015-01-01

    For remote areas, small-scale local biodiesel production is particularly attractive if producers and consumers are the same. Such supply chains are labeled as bidirectional. However, little is known on how raw material supply, transportation, logistics, production and operations uncertainties impact

  12. Network Coding in the Bidirectional Cross

    DEFF Research Database (Denmark)

    Ertli, Gergö; Paramanathan, Achuthan; Rein, Stephan Alexander

    2013-01-01

    This paper presents a detailed performance evaluation of inter-session network coding in wireless meshed networks in terms of throughput and energy consumption. A full analytical model is given for three different communication approaches for the bidirectional cross topology using an IEEE 802.11 ...

  13. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  14. Intrinsic Time Quantum Geometrodynamics

    OpenAIRE

    Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-01-01

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...

  15. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  16. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang

    2018-04-01

    Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.

  17. Bidirectional optimization of the melting spinning process.

    Science.gov (United States)

    Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping

    2014-02-01

    A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.

  18. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    Science.gov (United States)

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  19. Intrinsic, Functional, and Structural Properties of β-Thymosins and β-Thymosin/WH2 Domains in the Regulation and Coordination of Actin Self-Assembly Dynamics and Cytoskeleton Remodeling.

    Science.gov (United States)

    Renault, L

    2016-01-01

    β-Thymosins are a family of heat-stable multifunctional polypeptides that are expressed as small proteins of about 5kDa (~45 amino acids) almost exclusively in multicellular animals. They were first isolated from the thymus. As full-length or truncated polypeptides, they appear to stimulate a broad range of extracellular activities in various signaling pathways, including tissue repair and regeneration, inflammation, cell migration, and immune defense. However, their cell surface receptors and structural mechanisms of regulations in these multiple pathways remain still poorly understood. Besides their extracellular activities, they belong to a larger family of small, intrinsically disordered actin-binding domains called WH2/β-thymosin domains that have been identified in more than 1800 multidomain proteins found in different taxonomic domains of life and involved in various actin-based motile processes including cell morphogenesis, motility, adhesions, tissue development, intracellular trafficking, or pathogen infections. This review briefly surveys the main recent findings to understand how these small, intrinsically disordered but functional domains can interact with many unrelated partners and can thus integrate and coordinate various intracellular activities in actin self-assembly dynamics and cell signaling pathways linked to their cytoskeleton remodeling. © 2016 Elsevier Inc. All rights reserved.

  20. Numerical Simulation Bidirectional Chaotic Synchronization of Spiegel-Moore Circuit and Its Application for Secure Communication

    Science.gov (United States)

    Sanjaya, W. S. M.; Anggraeni, D.; Denya, R.; Ismail, N.

    2017-03-01

    Spiegel-Moore is a dynamical chaotic system which shows irregular variability in the luminosity of stars. In this paper present the performed the design and numerical simulation of the synchronization Spiegel-Moore circuit and applied to security system for communication. The initial study in this paper is to analyze the eigenvalue structures, various attractors, Bifurcation diagram, and Lyapunov exponent analysis. We have studied the dynamic behavior of the system in the case of the bidirectional coupling via a linear resistor. Both experimental and simulation results have shown that chaotic synchronization is possible. Finally, the effectiveness of the bidirectional coupling scheme between two identical Spiegel-Moore circuits in a secure communication system is presented in details. Integration of theoretical electronic circuit, the numerical simulation by using MATLAB®, as well as the implementation of circuit simulations by using Multisim® has been performed in this study.

  1. Generalized model of a bidirectional DC-DC converter

    Science.gov (United States)

    Hinov, Nikolay; Arnaudov, Dimitar; Penev, Dimitar

    2017-12-01

    The following paperwork presents models of bidirectional converters. A classic bidirectional converter and a new bidirectional circuit based on a ZCS resonant converter are investigated and compared. The developed models of these converters allow comparison between their characteristics showing their advantages and disadvantages. The models allow precise models of energy storage elements to be implemented as well, which is useful for examination of energy storage systems.

  2. Intrinsic contractures of the hand.

    Science.gov (United States)

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Bidirectional Relationship between Cognitive Function and Pneumonia

    Science.gov (United States)

    Shah, Faraaz Ali; Pike, Francis; Alvarez, Karina; Angus, Derek; Newman, Anne B.; Lopez, Oscar; Tate, Judith; Kapur, Vishesh; Wilsdon, Anthony; Krishnan, Jerry A.; Hansel, Nadia; Au, David; Avdalovic, Mark; Fan, Vincent S.; Barr, R. Graham

    2013-01-01

    Rationale: Relationships between chronic health conditions and acute infections remain poorly understood. Preclinical studies suggest crosstalk between nervous and immune systems. Objectives: To determine bidirectional relationships between cognition and pneumonia. Methods: We conducted longitudinal analyses of a population-based cohort over 10 years. We determined whether changes in cognition increase risk of pneumonia hospitalization by trajectory analyses and joint modeling. We then determined whether pneumonia hospitalization increased risk of subsequent dementia using a Cox model with pneumonia as a time-varying covariate. Measurements and Main Results: Of the 5,888 participants, 639 (10.9%) were hospitalized with pneumonia at least once. Most participants had normal cognition before pneumonia. Three cognition trajectories were identified: no, minimal, and severe rapid decline. A greater proportion of participants hospitalized with pneumonia were on trajectories of minimal or severe decline before occurrence of pneumonia compared with those never hospitalized with pneumonia (proportion with no, minimal, and severe decline were 67.1%, 22.8%, and 10.0% vs. 76.0%, 19.3%, and 4.6% for participants with and without pneumonia, respectively; P pneumonia, even in those with normal cognition and physical function before pneumonia (β = −0.02; P pneumonia were subsequently at an increased risk of dementia (hazard ratio, 2.24 [95% confidence interval, 1.62–3.11]; P = 0.01). Associations were independent of demographics, health behaviors, other chronic conditions, and physical function. Bidirectional relationship did not vary based on severity of disease, and similar associations were noted for those with severe sepsis and other infections. Conclusions: A bidirectional relationship exists between pneumonia and cognition and may explain how a single episode of infection in well-appearing older individuals accelerates decline in chronic health conditions and loss of

  4. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    Science.gov (United States)

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  5. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold

    2014-01-01

    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  6. Multistability in bidirectional associative memory neural networks

    International Nuclear Information System (INIS)

    Huang Gan; Cao Jinde

    2008-01-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results

  7. Multistability in bidirectional associative memory neural networks

    Science.gov (United States)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  8. Predicting Intrinsic Motivation

    Science.gov (United States)

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the…

  9. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  10. Bidirectional telemetry controller for neuroprosthetic devices.

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B; Han, Martin; Pikov, Victor

    2010-02-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s , allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes approximately 420 mW and operates without recharge for 8 h . It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 mus after the end of the stimulus pulse applied in the cochlear nucleus.

  11. Concepts of intrinsic safety

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A newly introduced Japanese reactor concept, ISER (Intrinsically Safe and Economical Reactor), is intended to be a reference intrinsically safe light water reactor. ISER is designed similarly to PIUS but with greater economy in mind such that any utility in any country can choose it for its power system. Social assimilation and acceptability in the Asia Pacific Region including the United States are the keys to the ISER with the hope of dramatic reductions of social costs due to safeguards, reliability, financiability, and infrastructure building, particularly in the third world, as well as reactor safety itself. In this respect and others, the ISER proposal is different from other vendor-proposed reactor concepts and is unique

  12. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  13. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  14. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C; Lai, Yi Ming

    2011-01-01

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master

  15. Bidirectional magnetic microactuators for uTAS

    Science.gov (United States)

    Hilbich, Daniel D.; Khosla, Ajit; Gray, Bonnie L.; Shannon, Lesley

    2011-02-01

    We present the design, fabrication and characterization of a novel bidirectional magnetic microactuator. The actuator has a planar structure and is easily fabricated using processes based on laser micromachining and soft lithography, allowing it to be readily integrated into microfluidic, microelectromechanical systems (MEMS) and lab-on-a-chip (LOC) designs. The new microactuator is a thin magnetic membrane with a central magnet feature. The membrane and magnet are both composed of a magnetic nanocomposite polymer (M-NCP) material that is fabricated by embedding magnetic powder in a polydimethysiloxane (PDMS) polymer matrix. The magnetic powder (MQP-12-5) has the chemical composition of (Nd0.7Ce0.3)10.5Fe83.9B5.6, and contains grains that are 5-6 microns in size. The powder is uniformly dispersed at a weight percentage of 75 wt-% in the PDMS matrix, and micropatterned using soft lithography micromolding to realize magnetic microstructures, which sit on a thinner magnetic PDMS membrane of the same material. The molds are fabricated by laser-etching into Poly (methyl methacrylate) (PMMA) using a Universal Laser System's VersaLASERlaser ablation system. The PDMS-based M-NCP is then poured and spun over the mold patterns, producing a thin polymer membrane to which the polymer micromagnets are attached, forming a one-piece actuator. The M-NCP is initially un-magnetized, but is then magnetized by placing it in a 2.5T magnetic field to produce permanent bidirectional magnetization that is polarized in the specified direction. To characterize the bidirectional actuators, a uniform magnetic field is established via a Helmholtz coil pair, and is characterized by applying varying currents. The magnetic field (and thus the actuator deflection) is controlled by regulating the current in the Helmholtz pair. Using this apparatus, deflection versus field characteristics are obtained, with maximum deflections varying as a function of actuator dimensions and the applied magnetic

  16. Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse

    International Nuclear Information System (INIS)

    Huang Zaitang; Luo Xiaoshu; Yang Qigui

    2007-01-01

    Many systems existing in physics, chemistry, biology, engineering and information science can be characterized by impulsive dynamics caused by abrupt jumps at certain instants during the process. These complex dynamical behaviors can be model by impulsive differential system or impulsive neural networks. This paper formulates and studies a new model of impulsive bidirectional associative memory (BAM) networks with finite distributed delays. Several fundamental issues, such as global asymptotic stability and existence and uniqueness of such BAM neural networks with impulse and distributed delays, are established

  17. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  18. Conformational Ensembles of an Intrinsically Disordered Protein pKID with and without a KIX Domain in Explicit Solvent Investigated by All-Atom Multicanonical Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-02-01

    Full Text Available The phosphorylated kinase-inducible activation domain (pKID adopts a helix–loop–helix structure upon binding to its partner KIX, although it is unstructured in the unbound state. The N-terminal and C-terminal regions of pKID, which adopt helices in the complex, are called, respectively, αA and αB. We performed all-atom multicanonical molecular dynamics simulations of pKID with and without KIX in explicit solvents to generate conformational ensembles. Although the unbound pKID was disordered overall, αA and αB exhibited a nascent helix propensity; the propensity of αA was stronger than that of αB, which agrees with experimental results. In the bound state, the free-energy landscape of αB involved two low free-energy fractions: native-like and non-native fractions. This result suggests that αB folds according to the induced-fit mechanism. The αB-helix direction was well aligned as in the NMR complex structure, although the αA helix exhibited high flexibility. These results also agree quantitatively with experimental observations. We have detected that the αB helix can bind to another site of KIX, to which another protein MLL also binds with the adopting helix. Consequently, MLL can facilitate pKID binding to the pKID-binding site by blocking the MLL-binding site. This also supports experimentally obtained results.

  19. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  20. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  1. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans

    DEFF Research Database (Denmark)

    Groppa, S; Bergmann, T O; Siems, C

    2010-01-01

    Constant transcranial direct stimulation (c-tDCS) of the primary motor hand area (M1(HAND)) can induce bidirectional shifts in motor cortical excitability depending on the polarity of tDCS. Recently, anodal slow oscillation stimulation at a frequency of 0.75 Hz has been shown to augment intrinsic...... slow oscillations during sleep and theta oscillations during wakefulness. To embed this new type of stimulation into the existing tDCS literature, we aimed to characterize the after effects of slowly oscillating stimulation (so-tDCS) on M1(HAND) excitability and to compare them to those of c-tDCS. Here...

  2. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  3. [Differences of bi-directional regulative effects between acu-moxibustion and Chinese materia medica interventions].

    Science.gov (United States)

    Cao, Xin; Yu, Zhi; Xu, Bin

    2012-10-01

    Bi-directional regulation is referred to a balancing effect of both acu-moxibustion and Chinese materia medica interventions when the human body is experiencing a hyperactivity or hypoactivity due to abnormal intrinsic or external factors. In the present paper, the authors analyze their identical and different characteristics from: 1) definition; 2) characters of regulative effects of acu-moxibustion therapy: A) differentiation of meridian and zangfu-organs being the basis of treatment, B) four factors (acupoint-location, body's functional state, acupoint-formula and needle-manipulation techniques) dependant, C) entirety regulation, and D) centrotaxis modulation; 3) characters of Chinese materia medica intervention: including a) correspondence between the drug property and the syndrome being the basis of the regulative effect, b) multi-factors [components (antagonist and agonist), combination, dosages and processing quality of Chinese materia medica, and functional state of the human body] dependant, c) entirety regulation, and d) both centrotaxis and deviation adjustment. In one word, the bi-directional regulation effect is one of the basic characteristics of both acu-moxibustion and Chinese materia medica in clinical practice, but their basis and modes for inducing effects are different.

  4. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  5. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  6. Effect of particle nonsphericity on bidirectional reflectance of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, M.I.; Rossow, W.B.; Macke, A.; Lacis, A.A. [Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    This paper describes the use of the fractal ice particle method to study the differences in bidirectional reflectance caused by the differences in the single scattering phase functions of spherical water droplets and nonspherical ice crystals.

  7. Bidirectional Prospective Associations between Cardiac Autonomic Activity and Inflammatory Markers

    NARCIS (Netherlands)

    Hu, Mandy X; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-01-01

    OBJECTIVE: Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic

  8. Compiling a Bidirectional Dictionary Bridging English and the Sotho ...

    African Journals Online (AJOL)

    rbr

    bi-directional Sesotho sa Leboa ↔ Sesotho, Sesotho sa Leboa ↔ Setswana and ... example, the 100 most frequently used words in Sesotho sa Leboa in ranking .... Consider in this regard a selection of such mutual lexical items with high.

  9. Encoding Strategy for Maximum Noise Tolerance Bidirectional Associative Memory

    National Research Council Canada - National Science Library

    Shen, Dan

    2003-01-01

    In this paper, the Basic Bidirectional Associative Memory (BAM) is extended by choosing weights in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set for BAM...

  10. Featurized Bidirectional GAN: Adversarial Defense via Adversarially Learned Semantic Inference

    OpenAIRE

    Bao, Ruying; Liang, Sihang; Wang, Qingcan

    2018-01-01

    Deep neural networks have been demonstrated to be vulnerable to adversarial attacks, where small perturbations are intentionally added to the original inputs to fool the classifier. In this paper, we propose a defense method, Featurized Bidirectional Generative Adversarial Networks (FBGAN), to capture the semantic features of the input and filter the non-semantic perturbation. FBGAN is pre-trained on the clean dataset in an unsupervised manner, adversarially learning a bidirectional mapping b...

  11. Bidirectional uncompressed HD video distribution over fiber employing VCSELs

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Vegas Olmos, Juan José; Rodes, G. A.

    2012-01-01

    We report on a bidirectional system in which VCSELs are simultaneously modulated with two uncompressed HD video signals. The results show a large power budget and a negligible penalty over 10 km long transmission links.......We report on a bidirectional system in which VCSELs are simultaneously modulated with two uncompressed HD video signals. The results show a large power budget and a negligible penalty over 10 km long transmission links....

  12. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    Science.gov (United States)

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  13. The intrinsic scale of Quantum Chromo Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    We are presently checking that the necessarily finite size of the simulated grid does not affect the decay constants at the level of our precision and we are connecting the coupling at the smallest scale μ to the decay constants through simulations at matching grid spacings. In the summer 2016 we will be able to put the SuperMUC results and the analysis of the running coupling together and present our high quality result at the summer conferences on particle physics. It will represent a milestone in lattice QCD: the scales μ reached are an order of magnitude higher than ever before in the three-flavour theory. Consequently the α{sup 2} correction is truly small for the first time. In addition there is full control of the continuum limit. The large volume simulations were carried out in a GAUSS project on both SuperMUC and Juqueen, using the most suitable architecture for each grid size. The many smaller volume simulations were done at HLRN with a much smaller number of cores per simulation. The combination of these supercomputing resources is essential for carrying out such a challenging project. Once there is again a jump in compute resources by a factor of order 10, we would like to simulate the 4-flavour theory in a way where the decoupling of the heaviest quark from the low-energy physics is used.

  14. Bidirectional associations between emotions and school adjustment.

    Science.gov (United States)

    Hernández, Maciel M; Eisenberg, Nancy; Valiente, Carlos; Spinrad, Tracy L; Berger, Rebecca H; VanSchyndel, Sarah K; Silva, Kassondra M; Diaz, Anjolii; Thompson, Marilyn S; Gal, Diana E; Southworth, Jody

    2017-11-24

    We examined the relations of children's (N = 301) observed expression of negative and positive emotion in classes or nonclassroom school contexts (i.e., lunch and recess) to school adjustment from kindergarten to first grade. Naturalistic observations of children's emotional expressivity were collected, as were teachers' reports of children's school engagement and relationship quality with teachers and peers. In longitudinal panel models, greater teacher-student conflict and lower student engagement in kindergarten predicted greater negative expressivity in both school contexts. School engagement and peer acceptance in kindergarten positively predicted first grade positive emotion in the classroom. Suggestive of possible bidirectional relations, there was also small unique prediction (near significant) from negative expressivity at lunch and recess to higher teacher-student conflict, from negative expressivity in the classroom to low peer acceptance, and from positive expressivity in the classroom to higher peer acceptance. The pattern of findings suggests that the quality of experience at school uniquely predicts children's emotional expressivity at school more consistently than vice versa-a finding that highlights the important role of school context in young children's emotionality at school. © 2017 Wiley Periodicals, Inc.

  15. Single coil bistable, bidirectional micromechanical actuator

    Science.gov (United States)

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  16. Electromigration failures under bidirectional current stress

    Science.gov (United States)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  17. Passive Resonant Bidirectional Converter with Galvanic Barrier

    Science.gov (United States)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  18. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  19. Ethnic Stigma, Academic Anxiety, and Intrinsic Motivation in Middle Childhood

    Science.gov (United States)

    Gillen-O’Neel, Cari; Ruble, Diane N.; Fuligni, Andrew J.

    2011-01-01

    Previous research addressing the dynamics of stigma and academics has focused on African-American adolescents and adults. The present study examined stigma awareness, academic anxiety, and intrinsic motivation among 451 young (ages 6–11) and diverse (African-American, Chinese, Dominican, Russian, and European-American) students. Results indicated that ethnic-minority children reported higher stigma awareness than European-American children. For all children, stigma awareness was associated with higher academic anxiety and lower intrinsic motivation. Despite these associations, ethnic-minority children reported higher levels of intrinsic motivation than their European-American peers. A significant portion of the higher intrinsic motivation among Dominican students was associated with their higher levels of school belonging, suggesting that supportive school environments may be important sources of intrinsic motivation among some ethnic-minority children. PMID:21883152

  20. A TTC upgrade proposal using bidirectional 10G-PON FTTH technology

    Science.gov (United States)

    Kolotouros, D. M.; Baron, S.; Soos, C.; Vasey, F.

    2015-04-01

    A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance.

  1. A TTC upgrade proposal using bidirectional 10G-PON FTTH technology

    International Nuclear Information System (INIS)

    Kolotouros, D.M.; Baron, S.; Soos, C.; Vasey, F.

    2015-01-01

    A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance

  2. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  3. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The intrinsic stochasticity of near-integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu

    1989-09-01

    Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).

  5. Intrinsic and extrinsic mortality reunited.

    Science.gov (United States)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Concerning the dynamic instability of actin homolog ParM

    International Nuclear Information System (INIS)

    Popp, David; Yamamoto, Akihiro; Iwasa, Mitsusada; Narita, Akihiro; Maeda, Kayo; Maeda, Yuichiro

    2007-01-01

    Using in vitro TIRF- and electron-microscopy, we reinvestigated the dynamics of native ParM, a prokaryotic DNA segregation protein and actin homolog. In contrast to a previous study, which used a cysteine ParM mutant, we find that the polymerization process of wild type ATP-ParM filaments consists of a polymerization phase and a subsequent steady state phase, which is dynamically unstable, like that of microtubules. We find that the apparent bidirectional polymerization of ParM, is not due to the intrinsic nature of this filament, but results from ParM forming randomly oriented bundles in the presence of crowding agents. Our results imply, that in the bacterium, ParM filaments spontaneously form bipolar bundles. Due to their intrinsic dynamic instability, ParM bundles can efficiently 'search' the cytoplasmic lumen for DNA, bind it equally well at the bipolar ends and segregate it approximately symmetrically, by the insertion of ParM subunits at either end

  7. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  8. Socio-Hydrology: Conceptual and Methodological Challenges in the Bidirectional Coupling of Human and Water Systems

    Science.gov (United States)

    Scott, C. A.

    2014-12-01

    This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.

  9. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    Science.gov (United States)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  10. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  11. Outpatient blood pressure monitoring using bi-directional text messaging.

    Science.gov (United States)

    Anthony, Chris A; Polgreen, Linnea A; Chounramany, James; Foster, Eric D; Goerdt, Christopher J; Miller, Michelle L; Suneja, Manish; Segre, Alberto M; Carter, Barry L; Polgreen, Philip M

    2015-05-01

    To diagnose hypertension, multiple blood pressure (BP) measurements are recommended. We randomized patients into three groups: EMR-only (patients recorded BP measurements in an electronic medical record [EMR] web portal), EMR + reminders (patients were sent text message reminders to record their BP measurements in the EMR), and bi-directional text messaging (patients were sent a text message asking them to respond with their current BP). Subjects were asked to complete 14 measurements. Automated messages were sent to each patient in the bi-directional text messaging and EMR + reminder groups twice daily. Among 121 patients, those in the bi-directional text messaging group reported the full 14 measurements more often than both the EMR-only group (P text messaging is an effective way to gather patient BP data. Text-message-based reminders alone are an effective way to encourage patients to record BP measurements. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Symplectic Structure of Intrinsic Time Gravity

    Directory of Open Access Journals (Sweden)

    Eyo Eyo Ita

    2016-08-01

    Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.

  13. Exact bidirectional X -wave solutions in fiber Bragg gratings

    Science.gov (United States)

    Efremidis, Nikolaos K.; Nye, Nicholas S.; Christodoulides, Demetrios N.

    2017-10-01

    We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters, the general bidirectional X -wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss additional waveforms that are obtained by interference of more than one solution. Depending on their parameters, such pulses can create a sharp focus with high contrast.

  14. A psychophysically validated metric for bidirectional texture data reduction

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Chantler, M.J.; Green, P.R.; Haindl, Michal

    2008-01-01

    Roč. 27, č. 5 (2008), s. 138:1-138:11 ISSN 0730-0301 R&D Projects: GA AV ČR 1ET400750407; GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bidirectional Texture Functions * texture compression Subject RIV: BD - Theory of Information Impact factor: 3.383, year: 2008 http://library.utia.cas.cz/separaty/2008/RO/haindl-a psychophysically validated metric for bidirectional texture data reduction.pdf

  15. Intrinsically Passive Handling and Grasping

    NARCIS (Netherlands)

    Stramigioli, Stefano; Scherpen, Jacquelien M.A.; Khodabandehloo, Koorosh

    2000-01-01

    The paper presents a control philosophy called Intrinsically Passive Control, which has the feature to properly behave during interaction with any passive objects. The controlled robot will never become unstable due to the physical structure of the controller.

  16. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  17. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    Science.gov (United States)

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. A new low threshold bi-directional wind vane and its potential impact on unplanned atmospheric release prediction

    International Nuclear Information System (INIS)

    Parker, M.J.

    1996-01-01

    At the Savannah River Site, the Environmental Transport Group (ETG) maintains and develops a comprehensive meteorological monitoring program which employs bi-directional wind vanes (bivanes) for the measurement of horizontal and vertical wind direction and turbulence. Wind data collected near and below instrument starting thresholds under stable nighttime conditions with these bivanes can result in artificially large standard deviations of horizontal wind direction (σA). In one hypothetical case, downwind concentrations could be underestimated by a factor of 40 by using artificially high σA data in a Gaussian dispersion model. In an effort to improve low wind speed measurements of wind direction, a Cooperative Research and Development Agreement (CRADA) between Met One Instruments and the Westinghouse Savannah River Company (WSRC) has been created to improve the dynamic performance of the Met One Model 1585 Bi-Directional Wind Vane

  19. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...

  20. Longitudinal Bidirectional Relations between Adolescents' Sympathy and Prosocial Behavior

    Science.gov (United States)

    Carlo, Gustavo; Padilla-Walker, Laura M.; Nielson, Matthew G.

    2015-01-01

    Despite the importance of understanding sympathy and prosocial behaviors, research on the development of these tendencies in adolescence remains relatively sparse. In the present study, we examined age trends and bidirectional longitudinal relations in sympathy and prosocial behaviors across early to middle adolescents. Participants were 500…

  1. Bidirectional Relations between Authoritative Parenting and Adolescents' Prosocial Behaviors

    Science.gov (United States)

    Padilla-Walker, Laura M.; Carlo, Gustavo; Christensen, Katherine J.; Yorgason, Jeremy B.

    2012-01-01

    This study examined the bidirectional relations between authoritative parenting and adolescents' prosocial behavior over a 1-year time period. Data were taken from Time 2 and 3 of the Flourishing Families Project, and included reports from 319 two-parent families with an adolescent child (M age of child at Time 2 = 12.34, SD = 1.06, 52% girls).…

  2. Bidirectional Associations among Sensitive Parenting, Language Development, and Social Competence

    Science.gov (United States)

    Barnett, Melissa A.; Gustafsson, Hanna; Deng, Min; Mills-Koonce, W. Roger; Cox, Martha

    2012-01-01

    Rapid changes in language skills and social competence, both of which are linked to sensitive parenting, characterize early childhood. The present study examines bidirectional associations among mothers' sensitive parenting and children's language skills and social competence from 24 to 36?months in a community sample of 174 families. In addition,…

  3. Bidirectional electrostatic linear shuffle motor with two degrees of freedom

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    We report on an electrostatic linear inchworm micromotor with two translational degrees-of-freedom. The motor employs built-in mechanical leverage to convert normal deflection of a flexible cross-plate into a small in-plane step and four electrostatic clamps to enable bidirectional inchworm motion

  4. Parenting and Children's Externalizing Behavior: Bidirectionality during Toddlerhood

    Science.gov (United States)

    Verhoeven, Marjolein; Junger, Marianne; van Aken, Chantal; Dekovic, Maja; van Aken, Marcel A. G.

    2010-01-01

    This study examined the bidirectional relationship between parenting and boys' externalizing behaviors in a four-wave longitudinal study of toddlers. Participants were 104 intact two-parent families with toddler sons. When their sons were 17, 23, 29, and 35 months of age, mothers and fathers reported on a broad range of parenting dimensions…

  5. Parenting and children's externalizing behavior: Bidirectionality during toddlerhood

    NARCIS (Netherlands)

    Verhoeven, Marjolein; Junger, Marianne; van Aken, Chantal; Dekovic, Maja; van Aken, Marcel A.G.

    2010-01-01

    This study examined the bidirectional relationship between parenting and boys' externalizing behaviors in a four-wave longitudinal study of toddlers. Participants were 104 intact two-parent families with toddler sons. When their sons were 17, 23, 29, and 35 months of age, mothers and fathers

  6. "Figuring" Bidirectional Home and School Connections along the Biliteracy Continuum

    Science.gov (United States)

    Fránquiz, María E.; Leija, María G.; Garza, Irene

    2015-01-01

    This article centers on the significant practices identified by bilingual teachers who participated in Proyecto Bilingüe, a specialized master's degree program. The notion of bidirectional theory of bilingual pedagogy and the theoretical construct of the continua of biliteracy are utilized to illustrate how the teachers centered home and school…

  7. Family of multiport bidirectional DC-DC converters

    NARCIS (Netherlands)

    Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A.M.

    2006-01-01

    Multiport DC-DC converters are of potential interest in applications such as generation systems utilising multiple sustainable energy sources. A family of multiport bidirectional DC-DC converters derived from a general topology is presented. The topology shows a combination of DC-link and magnetic

  8. Primary Parallel Isolated Boost Converter with Bidirectional Operation

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gökhan

    2012-01-01

    This paper presents a bidirectional dc/dc converter operated with batteries both in the input and output. Primary parallel isolated boost converter (PPIBC) with transformer series connection on the high voltage side is preferred due to its ability to handle high currents in the low voltage side. ...... and output battery banks with a defined ramp....

  9. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...

  10. A new setup to measure bidirectional reflectance distribution functions

    NARCIS (Netherlands)

    Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.

    2012-01-01

    The Plant Facility, a new laboratory goniometer system, built by the Wageningen University has been tested in order to take bidirectional reflectance distribution function (BRDF) measurements. An ASD FieldSpec 3 spectroradiometer mounted on an industrial robot arm is able to measure small targets

  11. Bidirectional reflectance distribution function measurements and analysis of retroreflective materials.

    Science.gov (United States)

    Belcour, Laurent; Pacanowski, Romain; Delahaie, Marion; Laville-Geay, Aude; Eupherte, Laure

    2014-12-01

    We compare the performance of various analytical retroreflecting bidirectional reflectance distribution function (BRDF) models to assess how they reproduce accurately measured data of retroreflecting materials. We introduce a new parametrization, the back vector parametrization, to analyze retroreflecting data, and we show that this parametrization better preserves the isotropy of data. Furthermore, we update existing BRDF models to improve the representation of retroreflective data.

  12. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  13. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  14. Fluxons in long and annular intrinsic Josephson junction stacks

    CERN Document Server

    Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R

    2002-01-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  15. Kinematical tests for the intrinsic shapes of galaxies

    International Nuclear Information System (INIS)

    Capaccioli, M.; Fasano, G.

    1984-01-01

    Determining the intrinsic shape of elliptical galaxies has been an illusive enterprise, but one fundamental to the understanding of their internal dynamics and formation. Here the problem is approached dynamically; noting that the velocity dispersion is largest when sighted down the longest axis, the correlations are derived of velocity dispersion with observed eccentricity expected, after the known trend of velocity dispersion with luminosity is removed. Using a compilation of published data, the relation between luminosity and velocity dispersion is determined more accurately. The residuals are examined as a function of axis ratio in order to construct a test for the intrinsic shape of galaxies. The effects of projection are modelled and possible intrinsic variations are examined. (author)

  16. BRITS: Bidirectional Recurrent Imputation for Time Series

    OpenAIRE

    Cao, Wei; Wang, Dong; Li, Jian; Zhou, Hao; Li, Lei; Li, Yitan

    2018-01-01

    Time series are widely used as signals in many classification/regression tasks. It is ubiquitous that time series contains many missing values. Given multiple correlated time series data, how to fill in missing values and to predict their class labels? Existing imputation methods often impose strong assumptions of the underlying data generating process, such as linear dynamics in the state space. In this paper, we propose BRITS, a novel method based on recurrent neural networks for missing va...

  17. Evaluation of a bi-directional aluminum honeycomb impact limiter design

    International Nuclear Information System (INIS)

    Doman, M.J.

    1995-01-01

    A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general

  18. Bidirectional Associations Between Newlyweds' Marital Satisfaction and Marital Problems over Time.

    Science.gov (United States)

    Lavner, Justin A; Karney, Benjamin R; Williamson, Hannah C; Bradbury, Thomas N

    2017-12-01

    Prevailing views of marital functioning generally adopt the view that marital problems predict decreases in marital satisfaction, but alternative theoretical perspectives raise the possibility that lowered satisfaction can also predict increases in problems. The current study sought to integrate and compare these perspectives by examining the bidirectional cross-lagged associations between newlyweds' reports of their marital satisfaction and marital problems over the first 4 years of marriage. Using annual assessments from 483 heterosexual newlywed couples, we find evidence for problem-to-satisfaction linkages as well as satisfaction-to-problem linkages. Satisfaction was a stronger predictor of marital problems early in marriage but not as time passed; by Year 4 only problem-to-satisfaction linkages remained significant. These findings are consistent with the idea that couples with more problems go on to report lower levels of satisfaction and couples with lower levels of satisfaction go on to report more marital problems. This dynamic interplay between global judgments about relationship satisfaction and ongoing specific relationship difficulties highlights the value of examining bidirectional effects to better understand marital functioning over time. © 2016 Family Process Institute.

  19. Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Mesfin Belayneh Ageze

    2017-09-01

    Full Text Available The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST k-ω. These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD-based solver for the fluid domain and Transient Structural module (Finite Element Analysis-based solver for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

  20. Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Usui, Naotaka; Inoue, Yushi; Toichi, Motomi

    2017-09-01

    Faces contain multifaceted information that is important for human communication. Neuroimaging studies have revealed face-specific activation in multiple brain regions, including the inferior occipital gyrus (IOG) and amygdala; it is often assumed that these regions constitute the neural network responsible for the processing of faces. However, it remains unknown whether and how these brain regions transmit information during face processing. This study investigated these questions by applying dynamic causal modeling of induced responses to human intracranial electroencephalography data recorded from the IOG and amygdala during the observation of faces, mosaics, and houses in upright and inverted orientations. Model comparisons assessing the experimental effects of upright faces versus upright houses and upright faces versus upright mosaics consistently indicated that the model having face-specific bidirectional modulatory effects between the IOG and amygdala was the most probable. The experimental effect between upright versus inverted faces also favored the model with bidirectional modulatory effects between the IOG and amygdala. The spectral profiles of modulatory effects revealed both same-frequency (e.g., gamma-gamma) and cross-frequency (e.g., theta-gamma) couplings. These results suggest that the IOG and amygdala communicate rapidly with each other using various types of oscillations for the efficient processing of faces. Hum Brain Mapp 38:4511-4524, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    Science.gov (United States)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  2. Ethnic Stigma, Academic Anxiety, and Intrinsic Motivation in Middle Childhood

    Science.gov (United States)

    Gillen-O'Neel, Cari; Ruble, Diane N.; Fuligni, Andrew J.

    2011-01-01

    Previous research addressing the dynamics of stigma and academics has focused on African American adolescents and adults. The present study examined stigma awareness, academic anxiety, and intrinsic motivation among 451 young (ages 6-11) and diverse (African American, Chinese, Dominican, Russian, and European American) students. Results indicated…

  3. Intrinsic Motivation in Physical Education

    Science.gov (United States)

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  4. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  5. A Bidirectional Relationship between Conceptual Organization and Word Learning

    Directory of Open Access Journals (Sweden)

    Tanya Kaefer

    2013-01-01

    Full Text Available This study explores the relationship between word learning and conceptual organization for preschool-aged children. We proposed a bidirectional model in which increases in word learning lead to increases in taxonomic organization, which, in turn, leads to further increases in word learning. In order to examine this model, we recruited 104 4-year olds from Head Start classrooms; 52 children participated in a two-week training program, and 52 children were in a control group. Results indicated that children in the training program learned more words and were more likely to sort taxonomically than children in the control condition. Furthermore, the number of words learned over the training period predicted the extent to which children categorized taxonomically. Additionally, this ability to categorize taxonomically predicted the number of words learned outside the training program, over and above the number of words learned in the program. These results suggest a bi-directional relationship between conceptual organization and word learning.

  6. Bidirectional selection between two classes in complex social networks.

    Science.gov (United States)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-19

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  7. Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications

    Science.gov (United States)

    Paul, Malcolm D.

    2009-01-01

    Traditionally, wound closure sutures have in common the need to tie knots with the inherent risk of extrusion, palpability, microinfarcts, breakage, and slippage. Bidirectional barbed sutures have barbs arrayed in a helical fashion in opposing directions on either side of an unbarbed midsegment. This suture is inserted at the midpoint of a wound and pulled through till resistance is encountered from the opposing barbs; each half of the suture is then advanced to the lateral ends of the wound. This design provides a method of evenly distributing tension along the incision line, a faster suture placement and closure time with no need to tie knots, and the possibility of improved cosmesis. Bidirectional barbed sutures, which are available in both absorbable and nonabsorbable forms, can be used for simple closures, multilayered closures, and closure of high-tension wounds in a variety of surgical settings. PMID:24527114

  8. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    International Nuclear Information System (INIS)

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  9. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...

  10. Correcting Bidirectional Effects in Remote Sensing Reflectance from Coastal Waters

    Science.gov (United States)

    Stamnes, K. H.; Fan, Y.; Li, W.; Voss, K. J.; Gatebe, C. K.

    2016-02-01

    Understanding bidirectional effects including sunglint is important for GEO-CAPE for several reasons: (i) correct interpretation of ocean color data; (ii) comparing consistency of spectral radiance data derived from space observations with a single instrument for a variety of illumination and viewing conditions; (iii) merging data collected by different instruments operating simultaneously. We present a new neural network (NN) method to correct bidirectional effects in water-leaving radiance for both Case 1 and Case 2 waters. We also discuss a new BRDF and 2D sun-glint model that was validated by comparing simulated surface reflectances with Cloud Absorption Radiometer (CAR) data. Finally, we present an extension of our marine bio-optical model to the UV range that accounts for the seasonal dependence of the inherent optical properties (IOPs).

  11. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  12. Robust stability of interval bidirectional associative memory neural network with time delays.

    Science.gov (United States)

    Liao, Xiaofeng; Wong, Kwok-wo

    2004-04-01

    In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.

  13. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A

    2013-01-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)

  14. 5 kW bidirectional grid-connected drive using silicon-carbide switches: Control

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Lazar, Radu; Pedersen, Jacob Lykke

    2017-01-01

    his paper presents a controller design for a fully silicon-carbide (SiC) based bidirectional three-phase grid-connected PWM drive. For drive applications, controller must be robust and fast to be able to provide power flow in both directions. In this paper, proportional resonance (PR) current con...... magnet motor. Different tests will be conducted to evaluate the performance of the controllers in both generative and regenerative mode. It is shown that the controller can provide a good dynamic response to load changes for both direction of power flow.......-phase rectifier with switching frequency of 45 kHz will be tested. The test is done by connecting it to a grid simulator and the load is a resistive load. In the second test the rectifier will be connected to the grid via an auto-transformer and load is a 7.5kW SiC based drive which is connected to a permanent...

  15. Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band

    International Nuclear Information System (INIS)

    Guo Li-Xin; Gou Xue-Yin; Zhang Lian-Bo

    2014-01-01

    In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Bidirectional pulser made from pulse lines for linear induction accelerators

    International Nuclear Information System (INIS)

    Hotta, E.; Mori, T.; Kobayashi, T.; Okino, A.; Haginomori, E.; Ko, K.C.

    1996-01-01

    In order to obtain high-current charged particle beams, linear induction accelerators (LIA's) of two types have been already constructed. Conventional LIA's adopt a unidirectional pulse injected from an external pulser. The other LIA's, one of which has been proposed and constructed by Pavlovskii et al., have accelerating cavities made from pulse forming lines (PFL's). In this case, no magnetic core loaded in the cavity is necessary. However, the injected pulse must be a bidirectional one. Since a part of the voltage pulse with reversed polarity is used to accelerate a beam, it is possible to make the time integral of the output voltage zero. Thus the final magnetic energy stored in the cavity can be made zero at the end of the pulse, and the pulser-accelerator system attains the energy transfer efficiency of 100%. Accelerators of this type can be divided into two kinds, one of which has cavities with internal energy storage, and the other has cavities with energy injected from external bidirectional pulsers. The accelerator of latter type has been first proposed by Smith, but it has not been realized. Several bidirectional pulsers, which consist of three individual PFL's with arbitrary impedances and a closing switch, are analyzed. Output voltages are analytically calculated by using the method proposed by Dommel for digital computations of electromagnetic transients in networks, and conditions for attaining the maximum efficiency of energy transfer from the pulser to the beam are derived. Thus, 4 bidirectional pulsers of internal energy storage type and 2 of external pulse injection type with energy transfer efficiency of 100% are obtained, including the pulsers already reported by other authors

  17. Bi-directional relationship between pregnancy and periodontal disease.

    Science.gov (United States)

    Armitage, Gary C

    2013-02-01

    During pregnancy profound perturbations in innate and adaptive immunity impact the clinical course of a number of infectious diseases, including those affecting periodontal tissues. Conversely, it has been suggested that periodontal infections may increase the risk of adverse pregnancy outcomes. In this review, a summary of the literature associated with the bidirectional relationship between pregnancy and periodontal disease as well as the possible mechanisms behind this interaction were examined. © 2013 John Wiley & Sons A/S.

  18. Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Minh, David D. L.; Adib, Artur B.

    2008-05-01

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  19. Aplikasi Bidirectional Assosiatif Memori (BAM) Network pada Pengenalan Model

    OpenAIRE

    Iskandar, Iskhaq

    2001-01-01

    Penelitian ini bertujuan untuk menyusun suatu simulasi komputer yang dapat dipergunakan untuk menguji kemampuan memori komputer dalam mengenali suatu model tertentu berdasarkan algoritma Bidirectional Assosiatif Memori Neural Network. Model yang digunakan dalam penelitian dalam penelitian ini adalah huruf-huruf abjad yang dinyatakan dalam kode polar –1 dan +1 dalam bentuk matrik [5x3]. Hasil yang didapat dalam penelitian ini menunjukkan bahwa rancangan network yang disusun mampu mengenali mod...

  20. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children

    OpenAIRE

    Lee, Erica H.; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2012-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample (n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) ...

  1. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    OpenAIRE

    Wang, Feng; Sun, Jian-Gang; Zhang, Ning

    2014-01-01

    Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two compone...

  2. Bi-directional interhemispheric inhibition during unimanual sustained contractions

    Directory of Open Access Journals (Sweden)

    Ni Zhen

    2009-04-01

    Full Text Available Abstract Background The interaction between homologous muscle representations in the right and left primary motor cortex was studied using a paired-pulse transcranial magnetic stimulation (TMS protocol known to evoke interhemispheric inhibition (IHI. The timecourse and magnitude of IHI was studied in fifteen healthy right-handed adults at several interstimulus intervals between the conditioning stimulus and test stimulus (6, 8, 10, 12, 30, 40, 50 ms. IHI was studied in the motor dominant to non-dominant direction and vice versa while the right or left hand was at rest, performing isometric contraction of the first dorsal interosseous (FDI muscle, and isometric contraction of the FDI muscle in the context of holding a pen. Results Compared with rest, IHI was reduced at all ISIs during contraction of either type (with or without the context of pen. IHI was reduced bi-directionally without evidence of hemispheric dominance. Further, contraction of the hand contralateral to the conditioning and test pulse yielded similar reductions in IHI. Conclusion These data provide evidence for bi-directional reduction of IHI during unimanual contractions. During unimanual, sustained contractions of the hand, the contralateral and ipsilateral motor cortices demonstrate reduced inhibition. The data suggest that unimanual movement decreases inhibition bi-directionally across motor hemispheres and offer one explanation for the observation of ipsilateral M1 activity during hand movements.

  3. Bidirectional semantic associations between social power and weight.

    Science.gov (United States)

    He, Xiaoling; Chen, Jun; Li, Jianan

    2018-02-01

    Two experiments were conducted to examine bidirectional semantic associations between power and weight using a priming paradigm. Bidirectionality in the relationship between power and weight was demonstrated, utilising tasks that were identical except that the orders in which the stimuli were presented were reversed. In Experiment 1, an empty scale leaning either leftward or rightward was used as a priming stimulus, and a scale that appeared in equilibrium with a pair of power words was used as a target stimulus. In Experiment 2, a scale with a pair of words that appeared in equilibrium was used as a priming stimulus, and an empty scale leaning either leftward or rightward was used as a target stimulus. We identified interaction effects between power and weight in both experiments. Associations between power and weight provide evidence for both conceptual metaphor views and evolutionary theory. The bidirectionality of metaphorical effects is in line with the strong version of metaphoric structuring. Both language and experiential correlations play important roles in the development of the mapping between power and weight. © 2016 International Union of Psychological Science.

  4. Performance and cavitation characteristics of bi-directional hydrofoils

    Science.gov (United States)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2013-11-01

    Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.

  5. Intrinsic shapes of discy and boxy ellipticals

    International Nuclear Information System (INIS)

    Fasano, Giovanni

    1991-01-01

    Statistical tests for intrinsic shapes of elliptical galaxies have given so far inconclusive and sometimes contradictory results. These failures have been often charged to the fact that classical tests consider only the two axisymmetric shapes (oblate versus prolate), while ellipticals are truly triaxial bodies. On the other hand, recent analyses indicate that the class of elliptical galaxies could be a mixture of (at least) two families having different morphology and dynamical behaviour: (i) a family of fast-rotating, disc-like ellipticals (discy); (ii) a family of slow-rotating, box-shaped ellipticals (boxy). In this paper we review the tests for instrinsic shapes of elliptical galaxies using data of better quality (CCD) with respect to previous applications. (author)

  6. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Vito De Feo

    2017-05-01

    Full Text Available Brain-machine interfaces (BMIs promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.

  7. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.

    Science.gov (United States)

    De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro

    2017-01-01

    Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.

  8. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  9. Brain intrinsic network connectivity in individuals with frequent tanning behavior.

    Science.gov (United States)

    Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon

    2018-05-01

    Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.

  10. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  11. Aimed manipulation of fluxon dynamics in stacks of intrinsic Josephson-junctions out of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}; Gezielte Beeinflussung der Fluxondynamik in Stapeln intrinsischer Josephson-Kontakte aus Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}

    Energy Technology Data Exchange (ETDEWEB)

    Oehmichen, V

    2007-09-29

    Goal of this thesis was to extend the knowledge of fluxon dynamics in intrinsic Josephson junctions out of BSCCO and to manipulate this dynamics in a purposeful way. New approaches to create ThZ-radiation were investigated. Step stacks out of BSCCO have been prepared with dimensions of 1-3 {mu}m (width) and 3-10 {mu}m (length). The necessary fabrication process was established based on Wang's double-sided technique. Transport measurements without and with magnetic field were realised on the so produced samples. The magnetic field of some Tesla was oriented parallel to the CuO{sub 2}-double layers. Collective plasma resonances were observed. Those were more stable than the resonances in mesa-structures. The resonances in the low current range can be assigned to an out-of-phase configuration, whereas in the high current range there are some possible configurations. Flux-flow-oscillations measured at these step stacks support the arrangement of the fluxons in an out-of-phase configuration. The in-phase configuration couldn't be observed clearly, so two approaches were followed to manipulate aimingly the fluxon dynamics to create THz-radiation: * control current * geometric manipulation: width-modulated stack For electronic manipulation an additional current line (control current line) was prepared along the stack's bottom. During transport measurements in zero field a current of 0-30 {mu}A was sent through this control current line. The so created inhomogeneity should have provoked fluxons without the help of a magnetic field. A visible effect couldn't be measured. Geometric manipulation of fluxon dynamics to reach in-phase configuration relys on modulation of the stack's width: it has periodic necks (comb structure). First measurements on comb structures prepared in double-side technique show promising hints, that manipulation on purpose of fluxon dynamics is possible using width-modulation. Simulations were performed for different depths of modulation, small and

  12. Aimed manipulation of fluxon dynamics in stacks of intrinsic Josephson-junctions out of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}; Gezielte Beeinflussung der Fluxondynamik in Stapeln intrinsischer Josephson-Kontakte aus Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}

    Energy Technology Data Exchange (ETDEWEB)

    Oehmichen, V.

    2007-09-29

    Goal of this thesis was to extend the knowledge of fluxon dynamics in intrinsic Josephson junctions out of BSCCO and to manipulate this dynamics in a purposeful way. New approaches to create ThZ-radiation were investigated. Step stacks out of BSCCO have been prepared with dimensions of 1-3 {mu}m (width) and 3-10 {mu}m (length). The necessary fabrication process was established based on Wang's double-sided technique. Transport measurements without and with magnetic field were realised on the so produced samples. The magnetic field of some Tesla was oriented parallel to the CuO{sub 2}-double layers. Collective plasma resonances were observed. Those were more stable than the resonances in mesa-structures. The resonances in the low current range can be assigned to an out-of-phase configuration, whereas in the high current range there are some possible configurations. Flux-flow-oscillations measured at these step stacks support the arrangement of the fluxons in an out-of-phase configuration. The in-phase configuration couldn't be observed clearly, so two approaches were followed to manipulate aimingly the fluxon dynamics to create THz-radiation: * control current * geometric manipulation: width-modulated stack For electronic manipulation an additional current line (control current line) was prepared along the stack's bottom. During transport measurements in zero field a current of 0-30 {mu}A was sent through this control current line. The so created inhomogeneity should have provoked fluxons without the help of a magnetic field. A visible effect couldn't be measured. Geometric manipulation of fluxon dynamics to reach in-phase configuration relys on modulation of the stack's width: it has periodic necks (comb structure). First measurements on comb structures prepared in double-side technique show promising hints, that manipulation on purpose of fluxon dynamics is possible using width-modulation. Simulations were performed for different depths of

  13. Intrinsic stability of technical superconductors

    International Nuclear Information System (INIS)

    Veringa, H.J.

    1981-10-01

    For the operation of technical superconductors under high current density conditions, the superconducting wires composing high current cables should be intrinsically stabilized. In this report the various important stability criteria are derived and investigated on their validity. An experimental set up is made to check the occurrence of magnetic instabilities if the different applicable criteria are violated. It is found that the observed instabilities can be predicted on the basis of the model given in this report. Production of high current cables based upon composites made by the ECN technique seems to be possible. (Auth.)

  14. Nuclear Filtering of Intrinsic Charm

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-01-01

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x F . Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/Ψ production and found at large x F a similar, albeit weaker effect, which does not contradict data.

  15. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  16. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  17. Symmetries of collective models in intrinsic frame

    International Nuclear Information System (INIS)

    Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.

    2013-01-01

    In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)

  18. On uniform resampling and gaze analysis of bidirectional texture functions

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Chantler, M.J.; Haindl, Michal

    2009-01-01

    Roč. 6, č. 3 (2009), s. 1-15 ISSN 1544-3558 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:EC Marie Curie(BE) 41358 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF * texture * eye tracking Subject RIV: BD - Theory of Information Impact factor: 1.447, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-on uniform resampling and gaze analysis of bidirectional texture functions.pdf

  19. Chaos synchronization communication using extremely unsymmetrical bidirectional injections.

    Science.gov (United States)

    Zhang, Wei Li; Pan, Wei; Luo, Bin; Zou, Xi Hua; Wang, Meng Yao; Zhou, Zhi

    2008-02-01

    Chaos synchronization and message transmission between two semiconductor lasers with extremely unsymmetrical bidirectional injections (EUBIs) are discussed. By using EUBIs, synchronization is realized through injection locking. Numerical results show that if the laser subjected to strong injection serves as the receiver, chaos pass filtering (CPF) of the system is similar to that of unidirectional coupled systems. Moreover, if the other laser serves as the receiver, a stronger CPF can be obtained. Finally, we demonstrate that messages can be extracted successfully from either of the two transmission directions of the system.

  20. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  1. Bidirectional Quantum Secure Direct Communication Network Protocol with Hyperentanglement

    International Nuclear Information System (INIS)

    Gu Bin; Chen Yulin; Huang Yugai; Fang Xia

    2011-01-01

    We propose a bidirectional quantum secure direct communication (QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. Compared with other QSDC network protocols, our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information. Also, we discuss the security of our QSDC network protocol and its feasibility with current techniques. (general)

  2. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  3. Bidirectional Texture Function Modeling: State of the Art Survey

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Haindl, Michal

    2009-01-01

    Roč. 31, č. 11 (2009), s. 1921-1940 ISSN 0162-8828 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593; GA AV ČR 1ET400750407 Grant - others:EC Marie Curie(BE) 41358; GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF * surface texture * 3D texture Subject RIV: BD - Theory of Information Impact factor: 4.378, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional texture function modeling state of the art survey.pdf

  4. Periodic bidirectional associative memory neural networks with distributed delays

    Science.gov (United States)

    Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde

    2006-05-01

    Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.

  5. Comparison of the bidirectional reflectance distribution function of various surfaces

    International Nuclear Information System (INIS)

    Fernandez, R.; Seasholtz, R.G.; Oberle, L.G.; Kadambi, J.R.

    1989-01-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. 8 refs

  6. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  7. Does Intrinsic Habit Formation Actually Resolve the Equity Premium Puzzle?

    OpenAIRE

    David A. Chapman

    2002-01-01

    Constantinides (1990) describes a simple model of intrinsic habit formation that appears to resolve the "equity premium puzzle" of Mehra and Prescott (1985). This finding is particularly important, since it has motivated a broader consideration of the implications of habit formation preferences in dynamic equilibrium models. However, consumption growth actually behaves very differently pre- and post-1948, and the explanatory power of the habit formation model is driven by the pre-1948 data. U...

  8. The Bidirectional Relationship between Diabetes and Depression: A Literature Review.

    Science.gov (United States)

    Alzoubi, Abdallah; Abunaser, Rnad; Khassawneh, Adi; Alfaqih, Mahmoud; Khasawneh, Aws; Abdo, Nour

    2018-05-01

    Diabetes is a major public health problem worldwide. Depression is a serious mental condition that decreases mental and physical functioning and reduces the quality of life. Several lines of evidence suggest a bidirectional relationship between diabetes and depression: diabetes patients are twice as likely to experience depression than nondiabetic individuals. In contrast, depression increases the risk of diabetes and interferes with its daily self-management. Diabetes patients with depression have poor glycemic control, reduced quality of life, and an increased risk of diabetes complications, consequently having an increased mortality rate. Conflicting evidence exists on the potential role of factors that may account for or modulate the relationship between diabetes and depression. Therefore, this review aims to highlight the most notable body of literature that dissects the various facets of the bidirectional relationship between diabetes and depression. A focused discussion of the proposed mechanisms underlying this relationship is also provided. We systematically reviewed the relevant literature in the PubMed database, using the keywords "Diabetes AND Depression". After exclusion of duplicate and irrelevant material, literature eligible for inclusion in this review was based on meta-analysis studies, clinical trials with large sample sizes (n≥1,000), randomized clinical trials, and comprehensive national and cross-country clinical studies. The evidence we present in this review supports the pressing need for long, outcome-oriented, randomized clinical trials to determine whether the identification and treatment of patients with these comorbid conditions will improve their medical outcomes and quality of life.

  9. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children

    Science.gov (United States)

    Lee, Erica H.; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2012-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample (n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) whether parenting styles at Wave 1 predict Wave 2 temperament, controlling for Wave 1 temperament. We found support for bidirectional relations between temperament and authoritarian parenting, such that higher effortful control and lower anger/frustration were associated with higher authoritarian parenting across time and in both directions. There were no significant cross-time associations between children’s temperament and authoritative parenting. These findings extend the previous tests of transactional relations between child temperament and parenting in Chinese children and are consistent with the cultural values toward effortful control and control of anger/frustration in Chinese society. PMID:23482684

  10. The Bidirectional Relationship between Sleep and Immunity against Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ibarra-Coronado

    2015-01-01

    Full Text Available Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  11. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-01-01

    Full Text Available Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1 the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2 Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3 Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.

  12. Bidirectional Text Messaging to Improve Adherence to Recommended Lipid Testing.

    Science.gov (United States)

    Baldwin, Laura-Mae; Morrison, Caitlin; Griffin, Jonathan; Anderson, Nick; Edwards, Kelly; Green, Jeff; Waldren, Cleary; Reiter, William

    2017-01-01

    Synergies between technology and health care in the United States are accelerating, increasing opportunities to leverage these technologies to improve patient care. This study was a collaboration between an academic study team, a rural primary care clinic, and a local nonprofit informatics company developing tools to improve patient care through population management. Our team created a text messaging management tool, then developed methods for and tested the feasibility of bidirectional text messaging to remind eligible patients about the need for lipid testing. We measured patient response to the text messages, then interviewed 8 patients to explore their text messaging experience. Of the 129 patients the clinic was able to contact by phone, 29.4% had no cell phone or text-messaging capabilities. An additional 20% refused to participate. Two thirds of the 28 patients who participated in the text messaging intervention (67.9%) responded to at least 1 of the up to 3 messages. Seven of 8 interviewed patients had a positive text-messaging experience. Bidirectional text messaging is a feasible and largely acceptable form of communication for test reminders that has the potential to reach large numbers of patients in clinical care. © Copyright 2017 by the American Board of Family Medicine.

  13. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children.

    Science.gov (United States)

    Lee, Erica H; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2013-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample ( n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) whether parenting styles at Wave 1 predict Wave 2 temperament, controlling for Wave 1 temperament. We found support for bidirectional relations between temperament and authoritarian parenting, such that higher effortful control and lower anger/frustration were associated with higher authoritarian parenting across time and in both directions. There were no significant cross-time associations between children's temperament and authoritative parenting. These findings extend the previous tests of transactional relations between child temperament and parenting in Chinese children and are consistent with the cultural values toward effortful control and control of anger/frustration in Chinese society.

  14. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Institute of Scientific and Technical Information of China (English)

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan

    2005-01-01

    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  15. Hormone response to bidirectional selection on social behavior.

    Science.gov (United States)

    Amdam, Gro V; Page, Robert E; Fondrk, M Kim; Brent, Colin S

    2010-01-01

    Behavior is a quantitative trait determined by multiple genes. Some of these genes may have effects from early development and onward by influencing hormonal systems that are active during different life-stages leading to complex associations, or suites, of traits. Honey bees (Apis mellifera) have been used extensively in experiments on the genetic and hormonal control of complex social behavior, but the relationships between their early developmental processes and adult behavioral variation are not well understood. Bidirectional selective breeding on social food-storage behavior produced two honey bee strains, each with several sublines, that differ in an associated suite of anatomical, physiological, and behavioral traits found in unselected wild type bees. Using these genotypes, we document strain-specific changes during larval, pupal, and early adult life-stages for the central insect hormones juvenile hormone (JH) and ecdysteroids. Strain differences correlate with variation in female reproductive anatomy (ovary size), which can be influenced by JH during development, and with secretion rates of ecdysteroid from the ovaries of adults. Ovary size was previously assigned to the suite of traits of honey bee food-storage behavior. Our findings support that bidirectional selection on honey bee social behavior acted on pleiotropic gene networks. These networks may bias a bee's adult phenotype by endocrine effects on early developmental processes that regulate variation in reproductive traits. © 2010 Wiley Periodicals, Inc.

  16. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  17. Intrinsic irreversibility in quantum theory

    International Nuclear Information System (INIS)

    Prigogine, I.; Petrosky, T.Y.

    1987-01-01

    Quantum theory has a dual structure: while solutions of the Schroedinger equation evolve in a deterministic and time reversible way, measurement introduces irreversibility and stochasticity. This presents a contrast to Bohr-Sommerfeld-Einstein theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of stochastic processes. A new form of quantum theory is presented here, which contains an intrinsic form of irreversibility, independent of observation. This new form applies to situations corresponding to a continuous spectrum and to quantum states with finite life time. The usual non-commutative algebra associated to quantum theory is replaced by more general algebra, in which operators are also non-distributive. Our approach leads to a number of predictions, which hopefully may be verified or refuted in the next years. (orig.)

  18. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  19. A programme for bidirectional phonology and phonetics and their acquisition and evolution

    NARCIS (Netherlands)

    Boersma, P.; Benz, A.; Mattausch, J.

    2011-01-01

    This paper summarizes an existing bidirectional six-level model of phonology and phonetics (and a bit of morphology). Bidirectionality in this case refers to the modelling of both the speaking process (production) and the listening process (comprehension). The elements of the grammar (the

  20. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    Science.gov (United States)

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  1. Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag

    NARCIS (Netherlands)

    Myny, K.; Rockelé, M.; Chasin, A.; Pham, D.V.; Steiger, J.; Botnaras, S.; Weber, D.; Herold, B.; Ficker, J.; Van Putten, B.D.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    A bidirectional communication protocol allows radio-frequency identification (RFID) tags to have readout of multiple tags in the RF field without collision of data. In this paper, we realized bidirectional communication between a reader system and thin-film RFID tag by introducing a novel protocol

  2. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  3. A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics.

    Science.gov (United States)

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    In many important cellular processes, including mRNA translation, gene transcription, phosphotransfer, and intracellular transport, biological "particles" move along some kind of "tracks". The motion of these particles can be modeled as a one-dimensional movement along an ordered sequence of sites. The biological particles (e.g., ribosomes or RNAPs) have volume and cannot surpass one another. In some cases, there is a preferred direction of movement along the track, but in general the movement may be bidirectional, and furthermore the particles may attach or detach from various regions along the tracks. We derive a new deterministic mathematical model for such transport phenomena that may be interpreted as a dynamic mean-field approximation of an important model from mechanical statistics called the asymmetric simple exclusion process (ASEP) with Langmuir kinetics. Using tools from the theory of monotone dynamical systems and contraction theory we show that the model admits a unique steady-state, and that every solution converges to this steady-state. Furthermore, we show that the model entrains (or phase locks) to periodic excitations in any of its forward, backward, attachment, or detachment rates. We demonstrate an application of this phenomenological transport model for analyzing ribosome drop off in mRNA translation.

  4. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter

    Directory of Open Access Journals (Sweden)

    Klaubert Dieter H

    2008-04-01

    Full Text Available Abstract Background The ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin. Results Using the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture. Conclusion The HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.

  5. The signaling role for chloride in the bidirectional communication between neurons and astrocytes.

    Science.gov (United States)

    Wilson, Corinne S; Mongin, Alexander A

    2018-01-09

    It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl - ) fluxes via the inhibitory GABA A and glycine receptors. Here, we discuss the putative contribution of Cl - fluxes and intracellular Cl - to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl - in cellular physiology, (ii) recaps molecular identities and properties of Cl - transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl - in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl - levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl - conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl - cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl - /anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl - ] i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABA A and glycine receptor/Cl - channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl - ] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl - in information processing within the CNS is expected to be significantly updated. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor events (four times). Next autumn, students study choice was collect...

  7. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    https://doi.org/10.1080/23311908.2017.1340083 This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor e...

  8. Intrinsic and extrinsic geometry of random surfaces

    International Nuclear Information System (INIS)

    Jonsson, T.

    1992-01-01

    We prove that the extrinsic Hausdorff dimension is always greater than or equal to the intrinsic Hausdorff dimension in models of triangulated random surfaces with action which is quadratic in the separation of vertices. We furthermore derive a few naive scaling relations which relate the intrinsic Hausdorff dimension to other critical exponents. These relations suggest that the intrinsic Hausdorff dimension is infinite if the susceptibility does not diverge at the critical point. (orig.)

  9. Developmental trajectories of irritability and bidirectional associations with maternal depression.

    Science.gov (United States)

    Wiggins, Jillian Lee; Mitchell, Colter; Stringaris, Argyris; Leibenluft, Ellen

    2014-11-01

    Irritability is a dimensional trait in typical development and a common presenting symptom in many psychiatric disorders, including depression. However, little is known about the developmental trajectory of irritability or how child irritability interacts with maternal depression. The present study identifies classes of irritability trajectories from toddlerhood to middle childhood; characterizes maternal depression and other family, social environment, and child variables within each irritability trajectory class; and, as a more exploratory analysis, examines bidirectional associations between maternal depression and child irritability. A total of 4,898 families from the Fragile Families and Child Wellbeing Study reported on irritability symptoms at ages 3, 5, and 9 years, assessed with items from the Child Behavior Checklist. Parental major depressive episode was assessed using the Composite International Diagnostic Interview-Short Form at child ages 1, 3, 5, and 9 years. A latent class growth analysis identified 5 irritability classes: low decreasing; moderate decreasing; high steady; initially very high, then decreasing; and high increasing. Children with more severe irritability trajectories are more likely to have mothers with recurrent depression, and, with the exception of the most severe (high increasing irritability) class, were more likely to have mothers who were exposed to violence. Moreover, paternal depression and alcohol abuse, as well as maternal drug and alcohol abuse, were also risk factors for membership in the more severe irritability classes. A latent auto-regressive cross-lag model showed that child irritability at ages 3 and 5 years is associated with increased mother depression at ages 5 and 9, respectively. Conversely, mother depression at child ages 1 and 3 years is associated with increased child irritability at 3 and 5. Irritability development across toddlerhood and middle childhood has 5 main trajectory types, which differ on maternal

  10. Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign

    Directory of Open Access Journals (Sweden)

    A. Lyapustin

    2010-05-01

    Full Text Available The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR jointly with airborne Ames Airborne Tracking Sunphotometer (AATS and ground-based Aerosol Robotic Network (AERONET sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1° angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS, Modified Rahman-Pinty-Verstraete (MRPV and Asymptotic Analytical Radiative Transfer (AART BRF models. Except for the glint region (azimuthal angles φ<40°, the best fit MRPV and RTLS models fit snow BRF to within ±0.05. The plane-parallel radiative transfer (PPRT solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the

  11. Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign

    Science.gov (United States)

    Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.; hide

    2010-01-01

    The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution

  12. Incentives and intrinsic motivation in healthcare

    Directory of Open Access Journals (Sweden)

    Mikel Berdud

    2016-11-01

    Conclusions: The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated.

  13. An Integrative Dynamical Systems Perspective on Emotions

    NARCIS (Netherlands)

    Treur, J.

    2013-01-01

    Within cognitive, affective and social neuroscience more and more mechanisms are found that suggest how emotions relate in a bidirectional manner to many other mental processes and behaviour. Based on this, in this paper a neurologically inspired dynamical systems approach on the dynamics and

  14. Intrinsic disorder here, there, and everywhere, and nowhere to escape from it.

    Science.gov (United States)

    Uversky, Vladimir N

    2017-09-01

    The concept of protein intrinsic disorder persistently penetrates into all areas of modern protein science. It cannot be ignored anymore, and cannot be shrugged off, as it represents a vital feature (or, more correctly, a broad spectrum of important features), which, when added to and mixed with features arising from the well established protein structure-function paradigm, complete the picture of a functioning protein. The field of protein intrinsic disorder is very dynamic and fast developing. This Multi-Author Review represents a snapshot of this field by introducing some recent advances. Articles assembled in this Multi-Author Review introduce some of the new aspects of intrinsic disorder, outline some fascinating ideas related to the intrinsically disordered proteins, their structure, and functionality, and show challenges related to the analysis of proteins carrying intrinsic disorder.

  15. Altered intrinsic and extrinsic connectivity in schizophrenia.

    Science.gov (United States)

    Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J

    2018-01-01

    Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

  16. Intrinsic and extrinsic measurement for Brownian motion

    International Nuclear Information System (INIS)

    Castro-Villarreal, Pavel

    2014-01-01

    Based upon the Smoluchowski equation on curved manifolds, three physical observables are considered for Brownian displacement, namely geodesic displacement s, Euclidean displacement δR, and projected displacement δR ⊥ . The Weingarten–Gauss equations are used to calculate the mean-square Euclidean displacements in the short-time regime. Our findings show that from an extrinsic point of view the geometry of the space affects the Brownian motion in such a way that the particle’s diffusion is decelerated, contrasting with the intrinsic point of view where dynamics is controlled by the sign of the Gaussian curvature (Castro-Villarreal, 2010 J. Stat. Mech. P08006). Furthermore, it is possible to give exact formulas for 〈δR〉 and 〈δR 2 〉 on spheres and minimal surfaces, which are valid for all values of time. In the latter case, surprisingly, Brownian motion corresponds to the usual diffusion in flat geometries, albeit minimal surfaces have non-zero Gaussian curvature. Finally, the two-dimensional case is emphasized due to its close relation to surface self-diffusion in fluid membranes. (paper)

  17. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    Science.gov (United States)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  18. Bidirectional Nonnegative Deep Model and Its Optimization in Learning

    Directory of Open Access Journals (Sweden)

    Xianhua Zeng

    2016-01-01

    Full Text Available Nonnegative matrix factorization (NMF has been successfully applied in signal processing as a simple two-layer nonnegative neural network. Projective NMF (PNMF with fewer parameters was proposed, which projects a high-dimensional nonnegative data onto a lower-dimensional nonnegative subspace. Although PNMF overcomes the problem of out-of-sample of NMF, it does not consider the nonlinear characteristic of data and is only a kind of narrow signal decomposition method. In this paper, we combine the PNMF with deep learning and nonlinear fitting to propose a bidirectional nonnegative deep learning (BNDL model and its optimization learning algorithm, which can obtain nonlinear multilayer deep nonnegative feature representation. Experiments show that the proposed model can not only solve the problem of out-of-sample of NMF but also learn hierarchical nonnegative feature representations with better clustering performance than classical NMF, PNMF, and Deep Semi-NMF algorithms.

  19. Malignant melanoma and breast carcinoma: a bidirectional correlation.

    LENUS (Irish Health Repository)

    Ho, W L

    2012-02-01

    BACKGROUND: Epidemiologic and genetic studies have suggested a bidirectional association between breast carcinoma (BC) and malignant melanoma (MM). OBSERVATION: We present a series of patients with MM and BC detected in our department within a span of 6 months, raising concerns for the high associations between the two malignancies. This led us to match the concordance of the two tumours in the National Irish Cancer Registry. CONCLUSION: The national figures provide evidence of a link between BC and MM. We recommend increased awareness among clinicians leading to more detailed surveillance of both second primary tumours. All MM patients with a family history of BC should be referred to a breast clinic. Women above the age of 40 with MM should undergo annual mammography and those less than 40 may be better evaluated with a breast MRI. All breast cancer patients should be made aware of the significance of changing moles and those with suspicious lesions referred to a dermatologist for evaluation.

  20. Malignant melanoma and breast carcinoma: a bidirectional correlation.

    LENUS (Irish Health Repository)

    Ho, W L

    2009-03-05

    BACKGROUND: Epidemiologic and genetic studies have suggested a bidirectional association between breast carcinoma (BC) and malignant melanoma (MM). OBSERVATION: We present a series of patients with MM and BC detected in our department within a span of 6 months, raising concerns for the high associations between the two malignancies. This led us to match the concordance of the two tumours in the National Irish Cancer Registry. CONCLUSION: The national figures provide evidence of a link between BC and MM. We recommend increased awareness among clinicians leading to more detailed surveillance of both second primary tumours. All MM patients with a family history of BC should be referred to a breast clinic. Women above the age of 40 with MM should undergo annual mammography and those less than 40 may be better evaluated with a breast MRI. All breast cancer patients should be made aware of the significance of changing moles and those with suspicious lesions referred to a dermatologist for evaluation.

  1. Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques

    CERN Document Server

    El-Khatib, Ziad; Mahmoud, Samy A

    2012-01-01

    This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications.  A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.

  2. The start of lightning: Evidence of bidirectional lightning initiation.

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  3. Bidirectional relationship between diabetes and periodontal disease: Review of Evidence

    International Nuclear Information System (INIS)

    Mirza, B.A.Q.; Syed, A.; Izhar, F.; Ali Khan, A.A.

    2010-01-01

    Presently there are 170 million diabetic patients worldwide. Pakistan ranks sixth in the world with approximately 6.2 million in the 20-79 year age affected by the diabetes. 6-10% of the 35-44 year old diabetic patients have been reported to be affected by moderate form of periodontal disease in Pakistan. Periodontal disease is referred to as sixth complication of diabetes. The association between diabetes and periodontal disease has been reported for more than 40 years but reverse has not been the focus of researchers until recently. Studies have suggested a bidirectional relationship between periodontal disease and glycemic control with each disease having a potential impact on the other. (author)

  4. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  5. Study on bi-directional pedestrian movement using ant algorithms

    International Nuclear Information System (INIS)

    Gokce, Sibel; Kayacan, Ozhan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity–density and flux–density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones. (paper)

  6. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis

    DEFF Research Database (Denmark)

    Joffe, P; Henriksen, Jens Henrik Sahl

    1995-01-01

    The present study was undertaken in order to assess bidirectional peritoneal kinetics of albumin after simultaneous i.v. and i.p. injection of radioiodinated albumin tracers (125I-RISA and 131I-RISA) in eight clinically stable uraemic patients undergoing continuous ambulatory peritoneal dialysis...... (CAPD). The plasma volume, intravascular albumin mass (IVM), and overall extravasation rate of albumin were not significantly different from that found in healthy controls. Albumin flux from the plasma into the peritoneal cavity was 3.71 +/- 0.82 (SD) mumol/h, which was only 3% of the overall...... extravasation rate (137 +/- 52 mumol/h). Albumin flux from the peritoneal cavity into the plasma was substantially lower (0.22 +/- 0.07 mumol/h, P peritoneal accumulation of the albumin from plasma over 4 h was 14 +/- 3.2 mumol, which was significantly lower than the intraperitoneal albumin...

  7. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  8. Bi-directional associations between psychological arousal, cortisol, and sleep

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Albertsen, Karen; Persson, Roger

    2012-01-01

    The aim was to elucidate the possible bi-directional relation between daytime psychological arousal, cortisol, and self-reported sleep in a group of healthy employees in active employment. Logbook ratings of sleep (Karolinska Sleep Questionnaire), stress, and energy, as well as positive...... and negative experiences in work and private life, were collected together with salivary cortisol over 3 days (n = 265). Higher bedtime ratings of stress and problems during the day were associated with morning ratings of poor sleep. Poorer morning ratings of sleep were associated with higher ratings of stress...... and problems during the day. The results underpin the possibility that arousal and poor sleep might create a self-reinforcing vicious circle that negatively affects a person's well-being....

  9. Model of bidirectional reflectance distribution function for metallic materials

    International Nuclear Information System (INIS)

    Wang Kai; Zhu Jing-Ping; Liu Hong; Hou Xun

    2016-01-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials. (paper)

  10. Model of bidirectional reflectance distribution function for metallic materials

    Science.gov (United States)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  11. Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator

    Science.gov (United States)

    Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.

    Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  12. Incremental Learning of Skill Collections based on Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Jan Hendrik Metzen

    2013-07-01

    Full Text Available Life-long learning of reusable, versatile skills is a key prerequisite forembodied agents that act in a complex, dynamic environment and are faced withdifferent tasks over their lifetime. We address the question of how an agentcan learn useful skills efficiently during a developmental period,i.e., when no task is imposed on him and no external reward signal is provided.Learning of skills in a developmental period needs to be incremental andself-motivated. We propose a new incremental, task-independent skill discoveryapproach that is suited for continuous domains. Furthermore, the agent learnsspecific skills based on intrinsic motivation mechanisms thatdetermine on which skills learning is focused at a given point in time. Weevaluate the approach in a reinforcement learning setup in two continuousdomains with complex dynamics. We show that an intrinsically motivated, skilllearning agent outperforms an agent which learns task solutions from scratch.Furthermore, we compare different intrinsic motivation mechanisms and howefficiently they make use of the agent's developmental period.

  13. Incremental learning of skill collections based on intrinsic motivation

    Science.gov (United States)

    Metzen, Jan H.; Kirchner, Frank

    2013-01-01

    Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265

  14. Bidirectional Cardio-Respiratory Interactions in Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikola N. Radovanović

    2018-03-01

    Full Text Available We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin, with sinus rhythm and ventricular extrasystoles (HF-VES, and with permanent atrial fibrillation (HF-AF. We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF there is no coherence between signals (p < 0.01, while in HF-Sin it is reduced (p < 0.05, compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the

  15. Bidirectional Cardio-Respiratory Interactions in Heart Failure.

    Science.gov (United States)

    Radovanović, Nikola N; Pavlović, Siniša U; Milašinović, Goran; Kirćanski, Bratislav; Platiša, Mirjana M

    2018-01-01

    We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals ( p respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.

  16. Bidirectional Association between Depression and Type 2 Diabetes in Women

    Science.gov (United States)

    Pan, An; Lucas, Michel; Sun, Qi; van Dam, Rob M.; Franco, Oscar H.; Manson, JoAnn E.; Willett, Walter C.; Ascherio, Alberto; Hu, Frank B.

    2011-01-01

    Background Although it has been hypothesized that the diabetes-depression relation is bidirectional, few studies have addressed this hypothesis in a prospective setting. Methods A total of 65381 women aged 50–75 years in 1996 were followed until 2006. Clinical depression was defined as having diagnosed depression or using antidepressants, and depressed mood was defined as having clinical depression or severe depressive symptomatology, i.e., a Mental Health Index (MHI-5) score ≤52. Self-reported type 2 diabetes was confirmed using a supplementary questionnaire validated by medical record review. Results During 10-year follow-up (531097 person-years), 2844 incident cases of type 2 diabetes were documented. Compared to referents (MHI-5 score 86–100) who had the least depressive symptomatology, participants with increased severity of symptoms (MHI-5 score 76–85, 53–75, depressed mood) showed a monotonic elevated risk of developing type 2 diabetes (P for trend = 0.002). The relative risk (RR) for individuals with depressed mood was 1.17 (95% confidence interval [CI], 1.05–1.30) after adjustment for various covariates, and participants using antidepressants were at a particularly higher risk (RR, 1.25; 95% CI, 1.10–1.41). In a parallel analysis, 7415 incident clinical depression were documented (474722 person-years). Compared to non-diabetics, the RRs of developing clinical depression after controlling for all covariates were 1.29 (95% CI, 1.18–1.40) for diabetic patients, and 1.25, 1.24, 1.53 in diabetics without medications, with oral hypoglycemic agents, and insulin therapy, respectively (all P<0.01). These associations remained significant after adjustment for diabetes-related comorbidities. Conclusions Our results provide compelling evidence that the diabetes-depression association is bidirectional. PMID:21098346

  17. BiPOD Arthroscopic Acromioclavicular Repair Restores Bidirectional Stability.

    Science.gov (United States)

    De Beer, Joe; Schaer, Michael; Latendresse, Kim; Raniga, Sumit; Moor, Beat K; Zumstein, Matthias A

    2017-01-01

    Stabilizing the acromioclavicular joint in the vertical and horizontal planes is challenging, and most current techniques do not reliably achieve this goal. The BiPOD repair is an arthroscopically assisted procedure performed with image intensifier guidance that reconstructs the coracoclavicular ligaments as well as the acromioclavicular ligaments to achieve bidirectional stability. Repair is achieved with a combination of 2-mm FiberTape (Arthrex, Naples, Florida) and 20-mm Poly-Tape (Neoligaments, Leeds, England) to achieve rigid repair, prevent bone abrasion, and promote tissue ingrowth. This study is a prospective review of the first 6 patients treated for high-grade acute acromioclavicular injury with the BiPOD technique. The study included 6 men who were 21 to 36 years old (mean, 27 years). At 6-month follow-up, complications were recorded and radiographic analysis was used to determine the coracoclavicular distance for vertical reduction and the amount of acromioclavicular translation on the Alexander axillary view was used to determine horizontal reduction. One patient had a superficial infection over the tape knot. The difference in coracoclavicular distance between the operated side and the uninvolved side was 9±2 mm preoperatively and 0.3±2 mm at 6-month follow-up. On Alexander axillary view, all 6 patients showed stable reduction, which is defined as a clavicle that is in line with the acromion. The findings show that BiPOD acromioclavicular reconstruction restores bidirectional stability of the acromioclavicular joint at 6 months. [Orthopedics. 2017; 40(1):e35-e43.]. Copyright 2016, SLACK Incorporated.

  18. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  19. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  20. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  1. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  2. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  3. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  4. Expressing intrinsic volumes as rotational integrals

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel

    2010-01-01

    A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms of the ...

  5. Differential scanning microcalorimetry of intrinsically disordered proteins.

    Science.gov (United States)

    Permyakov, Sergei E

    2012-01-01

    Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.

  6. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  7. Intrinsic periodicity: the forgotten lesson of quantum mechanics

    International Nuclear Information System (INIS)

    Dolce, Donatello

    2013-01-01

    Wave-particle duality, together with the concept of elementary particles, was introduced by de Broglie in terms of intrinsically periodic phenomena. However, after nearly 90 years, the physical origin of such undulatory mechanics remains unrevealed. We propose a natural realization of the de Broglie periodic phenomenon in terms of harmonic vibrational modes associated to space-time periodicities. In this way we find that, similarly to a vibrating string or a particle in a box, the intrinsic recurrence imposed as a constraint to elementary particles represents a fully consistent quantization condition. The resulting cyclic dynamics formally match ordinary relativistic Quantum Mechanics in both the canonical and Feynman formulations. Interactions are introduced in a geometrodynamical way, similarly to general relativity, by simply considering that variations of kinematical state can be equivalently described in terms of modulations of space-time recurrences, as known from undulatory mechanics. We present this novel quantization prescription from an historical prospective.

  8. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  9. Bi-directional charger for swiss2G - Annual report; Bi-directional charger for swiss2G - Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, M.; Baumann, P.

    2010-11-15

    This short annual report for 2010 for the Swiss Federal Office of Energy (SFOE) takes a look at a bi-directional charger that can be used in intelligent 'Smart Grid' applications. The idea is based on being able to use electric vehicles as a source of electricity to help meet peak demand for mains electricity. The swiss2G project aims to produce an electric car battery-charger that also functions as an inverter to convert the car's DC battery voltage to mains electricity. The project was started in September 2010. The report describes the aims of the project and reports on initial work done in the areas of safety, switching electronics and AC/DC conversion. National and international co-operation is noted and prospects for further work are discussed.

  10. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  11. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    Directory of Open Access Journals (Sweden)

    Huidong Wang

    2018-04-01

    Full Text Available To solve the multi-attribute decision making (MADM problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is conducted to show the superiority of bi-directional projection method. Finally, an example of graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

  12. The Topologies Research of a Soft Switching Bidirectional DC/DC Converter

    DEFF Research Database (Denmark)

    Zhang, Qi; Zhang, Yongping; Sun, Xiangdong

    2017-01-01

    A soft-switching solution implemented to the traditional bidirectional DC/DC converter is developed. The soft-switching cell, which composed of three auxiliary switches, one resonant capacitor and one resonant inductor, is equipped in the traditional bidirectional DC/DC converter to realize circuit...... circle. And the proposed topology of bidirectional soft-switching dc-dc converter(TASBC) performs ideal soft switching at boost operations. The characteristics of the proposed converter has been verified by MATLAB simulations and experimental results....

  13. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    Science.gov (United States)

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  14. Transmission probability-based dynamic power control for multi-radio mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available This paper presents an analytical model for the selection of the transmission power based on the bi-directional medium access information. Most of dynamic transmission power control algorithms are based on the single directional channel...

  15. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Science.gov (United States)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  16. Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K

    Science.gov (United States)

    Pitchappa, Prakash; Manjappa, Manukumara; Krishnamoorthy, Harish N. S.; Chang, Yuhua; Lee, Chengkuo; Singh, Ranjan

    2017-12-01

    We experimentally report the bidirectional reconfiguration of an out-of-plane deformable microcantilever based metamaterial for advanced and dynamic manipulation of terahertz waves. The microcantilever is made of a bimaterial stack with a large difference in the coefficient of thermal expansion of the constituent materials. This allows for the continuous deformation of microcantilevers in upward or downward direction in response to positive or negative temperature gradient, respectively. The fundamental resonance frequency of the fabricated microcantilever metamaterial is measured at 0.4 THz at room temperature of 293 K. With decreasing temperature, the resonance frequency continuously blue shifts by 30 GHz at 77 K. On the other hand, with increasing temperature, the resonance frequency gradually red shifts by 80 GHz and saturates at 0.32 THz for 400 K. Furthermore, as the temperature is increased above room temperature, which results in the downward actuation of the microcantilever, a significant resonance line-narrowing with an enhanced quality factor is observed due to tight field confinement in the metamaterial structure. The thermal control of the microcantilever possesses numerous inherent advantages such as enhanced tunable range (˜37.5% in this work compared to previously reported microcantilever metamaterials), continuous tunability, and repeatable operations. The microcantilever metamaterial also shows high robustness to operate at cryogenic conditions and hence opens up the possibility of using meta-devices in harsh environments such as space, polar, and deep sea applications.

  17. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Energy Technology Data Exchange (ETDEWEB)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; Hubacek, Klaus; Miralles-Wilhelm, Fernando; Miyoshi, Takemasa; Ruth, Matthias; Sagdeev, Roald; Shirmohammadi, Adel; Shukla, Jagadish; Srebric, Jelena; Yakovenko, Victor M.; Zeng, Ning

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.

  18. Bidirectional psychoneuroimmune interactions in the early postpartum period influence risk of postpartum depression.

    Science.gov (United States)

    Corwin, Elizabeth J; Pajer, Kathleen; Paul, Sudeshna; Lowe, Nancy; Weber, Mary; McCarthy, Donna O

    2015-10-01

    More than 500,000 U.S. women develop postpartum depression (PPD) annually. Although psychosocial risks are known, the underlying biology remains unclear. Dysregulation of the immune inflammatory response and the hypothalamic-pituitary-adrenal (HPA) axis are associated with depression in other populations. While significant research on the contribution of these systems to the development of PPD has been conducted, results have been inconclusive. This is partly because few studies have focused on whether disruption in the bidirectional and dynamic interaction between the inflammatory response and the HPA axis together influence PPD. In this study, we tested the hypothesis that disruption in the inflammatory-HPA axis bidirectional relationship would increase the risk of PPD. Plasma pro- and anti-inflammatory cytokines were measured in women during the 3rd trimester of pregnancy and on Days 7 and 14, and Months 1, 2, 3, and 6 after childbirth. Saliva was collected 5 times the day preceding blood draws for determination of cortisol area under the curve (AUC) and depressive symptoms were measured using the Edinburgh Postpartum Depression Survey (EPDS). Of the 152 women who completed the EPDS, 18% were depressed according to EDPS criteria within the 6months postpartum. Cortisol AUC was higher in symptomatic women on Day 14 (p=.017). To consider the combined effects of cytokines and cortisol on predicting symptoms of PPD, a multiple logistic regression model was developed that included predictors identified in bivariate analyses to have an effect on depressive symptoms. Results indicated that family history of depression, day 14 cortisol AUC, and the day 14 IL8/IL10 ratio were significant predictors of PPD symptoms. One unit increase each in the IL8/IL10 ratio and cortisol AUC resulted in 1.50 (p=0.06) and 2.16 (p=0.02) fold increases respectively in the development of PPD. Overall, this model correctly classified 84.2% of individuals in their respective groups. Findings

  19. Defining intrinsic vs. extrinsic atopic dermatitis.

    Science.gov (United States)

    Karimkhani, Chante; Silverberg, Jonathan I; Dellavalle, Robert P

    2015-06-16

    Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by eczematous lesions, i.e. ill-demarcated erythematous patches and plaques. AD is commonly associated with elevated immunoglobulin E (IgE) and atopic disorders, such as asthma, hay fever, and food allergies. Rackemann and Mallory were some of the first to distinguish between asthma based on the presence ("extrinsic") or absence ("intrinsic") of allergy. This distinction has subsequently been applied to AD based on the presence ("extrinsic") or absence ("intrinsic") of increased IgE and atopic disease. Although the distinction between intrinsic and extrinsic AD is widely used, it remains controversial.

  20. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  1. Intrinsic neuromodulation: altering neuronal circuits from within.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1996-02-01

    There are two sources of neuromodulation for neuronal circuits: extrinsic inputs and intrinsic components of the circuits themselves. Extrinsic neuromodulation is known to be pervasive in nervous systems, but intrinsic neuromodulation is less recognized, despite the fact that it has now been demonstrated in sensory and neuromuscular circuits and in central pattern generators. By its nature, intrinsic neuromodulation produces local changes in neuronal computation, whereas extrinsic neuromodulation can cause global changes, often affecting many circuits simultaneously. Studies in a number of systems are defining the different properties of these two forms of neuromodulation.

  2. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  3. Bilateral Coordination Strategy of Supply Chain with Bidirectional Option Contracts under Inflation

    Directory of Open Access Journals (Sweden)

    Nana Wan

    2015-01-01

    Full Text Available As far as the price increase and the demand contraction caused by inflation are concerned, we establish a Stackelberg game model that incorporates bidirectional option contracts and the effect of inflation and derive the optimal ordering and production policies on a one-period two-stage supply chain composed of one supplier and one retailer. Through using the model of wholesale price contracts as the benchmark, we find that the introduction of bidirectional option contracts can benefit both the supplier and the retailer under inflation scenarios. Based on the conclusions drawn above, we design the bilateral coordination mechanism from the different perspective of two members involved and discuss how bidirectional option contracts should be set to achieve channel coordination under inflation scenarios. Through the sensitivity analysis, we illustrate the effect of inflation on the optimal decision variables and the optimal expected profits of the two parties with bidirectional option contracts.

  4. Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation

    International Nuclear Information System (INIS)

    Abanov, Alexander G; Bettelheim, Eldad; Wiegmann, Paul

    2009-01-01

    We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analog of the Benjamin-Ono equation. The latter is known to describe internal waves of deep stratified fluids. We show that the bidirectional Benjamin-Ono equation appears as a real reduction of the modified KP hierarchy. We derive the chiral nonlinear equation which appears as a chiral reduction of the bidirectional equation. The conventional Benjamin-Ono equation is a degeneration of the chiral nonlinear equation at large density. We construct multi-phase solutions of the bidirectional Benjamin-Ono equations and of the chiral nonlinear equations

  5. Sliding Mode Control of a Bidirectional Buck/Boost DC-DC Converter with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    A. Safari

    2018-03-01

    Full Text Available In this paper, sliding mode control (SMC for a bidirectional buck/boost DC-DC converter (BDC with constant frequency in continuous conduction mode (CCM is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.

  6. pth moment exponential stability of stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays.

    Science.gov (United States)

    Wang, Fen; Chen, Yuanlong; Liu, Meichun

    2018-02-01

    Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  8. Bidirectional effects between parenting and aggressive child behavior in the context of a preventive intervention

    OpenAIRE

    Brinke, L.W. te; Dekovic, M.; Stoltz, S.E.M.J.; Cillessen, A.H.N.

    2017-01-01

    Over time, developmental theories and empirical studies have gradually started to adopt a bidirectional viewpoint. The area of intervention research is, however, lagging behind in this respect. This longitudinal study examined whether bidirectional associations between (changes in) parenting and (changes in) aggressive child behavior over time differed in three conditions: a child intervention condition, a child + parent intervention condition and a control condition. Participants were 267 ch...

  9. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    OpenAIRE

    Huidong Wang; Shifan He; Xiaohong Pan

    2018-01-01

    To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is co...

  10. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  11. Bidirectional User Throughput Maximization Based on Feedback Reduction in LiFi Networks

    OpenAIRE

    Soltani, Mohammad Dehghani; Wu, Xiping; Safari, Majid; Haas, Harald

    2017-01-01

    Channel adaptive signalling, which is based on feedback, can result in almost any performance metric enhancement. Unlike the radio frequency (RF) channel, the optical wireless communications (OWCs) channel is fairly static. This feature enables a potential improvement of the bidirectional user throughput by reducing the amount of feedback. Light-Fidelity (LiFi) is a subset of OWCs, and it is a bidirectional, high-speed and fully networked wireless communication technology where visible light ...

  12. Bi-directional Multi Dimension CAP Transmission for Smart Grid Communication Services

    DEFF Research Database (Denmark)

    Zhang, Xu; Binti Othman, Maisara; Pang, Xiaodan

    2012-01-01

    We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency.......We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency....

  13. On Training Bi-directional Neural Network Language Model with Noise Contrastive Estimation

    OpenAIRE

    He, Tianxing; Zhang, Yu; Droppo, Jasha; Yu, Kai

    2016-01-01

    We propose to train bi-directional neural network language model(NNLM) with noise contrastive estimation(NCE). Experiments are conducted on a rescore task on the PTB data set. It is shown that NCE-trained bi-directional NNLM outperformed the one trained by conventional maximum likelihood training. But still(regretfully), it did not out-perform the baseline uni-directional NNLM.

  14. Finite-Time Stability for Fractional-Order Bidirectional Associative Memory Neural Networks with Time Delays

    International Nuclear Information System (INIS)

    Xu Chang-Jin; Li Pei-Luan; Pang Yi-Cheng

    2017-01-01

    This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. (paper)

  15. Günther Tulip inferior vena cava filter retrieval using a bidirectional loop-snare technique.

    Science.gov (United States)

    Ross, Jordan; Allison, Stephen; Vaidya, Sandeep; Monroe, Eric

    2016-01-01

    Many advanced techniques have been reported in the literature for difficult Günther Tulip filter removal. This report describes a bidirectional loop-snare technique in the setting of a fibrin scar formation around the filter leg anchors. The bidirectional loop-snare technique allows for maximal axial tension and alignment for stripping fibrin scar from the filter legs, a commonly encountered complication of prolonged dwell times.

  16. Intrinsic frame transport for a model of nematic liquid crystal

    Science.gov (United States)

    Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.

    1997-02-01

    We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.

  17. Role of "intrinsic charm" in semileptonic B-meson decays

    CERN Document Server

    Breidenbach, C; Mannel, T; Turczyk, S

    2008-01-01

    We discuss the role of so-called "intrinsic-charm" operators in semi-leptonic B-meson decays, which appear first at order 1/m_b^3 in the heavy quark expansion. We show by explicit calculation that -- at scales mu <= m_c -- the contributions from "intrinsic-charm" effects can be absorbed into short-distance coefficient functions multiplying, for instance, the Darwin term. Then, the only remnant of "intrinsic charm" are logarithms of the form ln(m_c^2/m_b^2), which can be resummed by using renormalization-group techniques. As long as the dynamics at the charm-quark scale is perturbative, alpha_s(m_c) << 1, this implies that no additional non-perturbative matrix elements aside from the Darwin and the spin-orbit term have to be introduced at order 1/m_b^3. Hence, no sources for additional hadronic uncertainties have to be taken into account. Similar arguments may be made for higher orders in the 1/m_b expansion.

  18. Comparing Intrinsic Connectivity Models for the Primary Auditory Cortices

    Science.gov (United States)

    Hamid, Khairiah Abdul; Yusoff, Ahmad Nazlim; Mohamad, Mazlyfarina; Hamid, Aini Ismafairus Abd; Manan, Hanani Abd

    2010-07-01

    This fMRI study is about modeling the intrinsic connectivity between Heschl' gyrus (HG) and superior temporal gyrus (STG) in human primary auditory cortices. Ten healthy male subjects participated and required to listen to white noise stimulus during the fMRI scans. Two intrinsic connectivity models comprising bilateral HG and STG were constructed using statistical parametric mapping (SPM) and dynamic causal modeling (DCM). Group Bayes factor (GBF), positive evidence ratio (PER) and Bayesian model selection (BMS) for group studies were used in model comparison. Group results indicated significant bilateral asymmetrical activation (puncorr < 0.001) in HG and STG. Comparison results showed strong evidence of Model 2 as the preferred model (STG as the input center) with GBF value of 5.77 × 1073 The model is preferred by 6 out of 10 subjects. The results were supported by BMS results for group studies. One-sample t-test on connection values obtained from Model 2 indicates unidirectional parallel connections from STG to bilateral HG (p<0.05). Model 2 was determined to be the most probable intrinsic connectivity model between bilateral HG and STG when listening to white noise.

  19. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C

    2011-05-03

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master equation formulation of stochastic neurodynamics represents the state of each population by the number of currently active neurons, and the state transitions are chosen so that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit. We apply phase reduction and averaging methods to a corresponding Langevin approximation of the master equation in order to determine how intrinsic noise disrupts synchronization of the population oscillators driven by a common extrinsic noise source. We illustrate our analysis by considering one of the simplest networks known to generate limit cycle oscillations at the population level, namely, a pair of mutually coupled excitatory (E) and inhibitory (I) subpopulations. We show how the combination of intrinsic independent noise and extrinsic common noise can lead to clustering of the population oscillators due to the multiplicative nature of both noise sources under the Langevin approximation. Finally, we show how a similar analysis can be carried out for another simple population model that exhibits limit cycle oscillations in the deterministic limit, namely, a recurrent excitatory network with synaptic depression; inclusion of synaptic depression into the neural master equation now generates a stochastic hybrid system.

  20. Gecko-inspired bidirectional double-sided adhesives.

    Science.gov (United States)

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2014-05-14

    A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.

  1. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  2. Bidirectional modulation of substantia nigra activity by motivational state.

    Directory of Open Access Journals (Sweden)

    Mark A Rossi

    Full Text Available A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.

  3. Bidirectional motility of the fission yeast kinesin-5, Cut7

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  4. A Lattice Model for Bidirectional Pedestrian Flow on Gradient Road

    International Nuclear Information System (INIS)

    Ge Hong-Xia; Cheng Rong-Jun; Lo Siu-Ming

    2014-01-01

    Ramps and sloping roads appear everywhere in the built environment. It is obvious that the movement pattern of people in the sloping path may be different as compared with the pattern on level roads. Previously, most of the studies, especially the mathematical and simulation models, on pedestrian movement consider the flow at level routes. This study proposes a new lattice model for bidirectional pedestrian flow on gradient road. The stability condition is obtained by using linear stability theory. The nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, and the space of pedestrian flow is divided into three regions: the stable region, the metastable region, and the unstable region respectively. Furthermore, the time-dependent Ginzburg—Landan (TDGL) equation is deduced and solved through the reductive perturbation method. Finally, we present detailed results obtained from the model, and it is found that the stability of the model is enhanced in uphill situation while reduced in downhill situation with increasing slope. (general)

  5. Bi-directional SIFT predicts a subset of activating mutations.

    Directory of Open Access Journals (Sweden)

    William Lee

    Full Text Available Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer.

  6. Aplikasi Migrasi Database dan Replikasi Bi-Directional

    Directory of Open Access Journals (Sweden)

    Michael Yoseph Ricky

    2011-12-01

    Full Text Available This study aims to analyze and design a migration and replication configurations in an enterprise using several methods such as literary study and direc survey to the company; analysis on hangar systems, process migration and replication as well as existing problems; and a prototype design for migration process implementated with Oracle SQL Developer and replication process implementated with Oracle GoldenGate. The study resluts ini a prototype for migration and replication configuration processes using Oracle's Golden Gate which can produce two sets of identical data for backup and recovery. Also a simple tool is designed to assist active-active replication process as well as active-passive one. The migration process from MySQL database to Oracle database using Oracle GoldenGate can not be done because GoldenGate Oracle has bugs related to the binary log, so database migration is done using Oracle SQL Developer. However, bi-directional replication between Oracle database using Oracle GoldenGate can ensure data availability and reduce the workload of primary database. 

  7. Robust Visual Tracking Using the Bidirectional Scale Estimation

    Directory of Open Access Journals (Sweden)

    An Zhiyong

    2017-01-01

    Full Text Available Object tracking with robust scale estimation is a challenging task in computer vision. This paper presents a novel tracking algorithm that learns the translation and scale filters with a complementary scheme. The translation filter is constructed using the ridge regression and multidimensional features. A robust scale filter is constructed by the bidirectional scale estimation, including the forward scale and backward scale. Firstly, we learn the scale filter using the forward tracking information. Then the forward scale and backward scale can be estimated using the respective scale filter. Secondly, a conservative strategy is adopted to compromise the forward and backward scales. Finally, the scale filter is updated based on the final scale estimation. It is effective to update scale filter since the stable scale estimation can improve the performance of scale filter. To reveal the effectiveness of our tracker, experiments are performed on 32 sequences with significant scale variation and on the benchmark dataset with 50 challenging videos. Our results show that the proposed tracker outperforms several state-of-the-art trackers in terms of robustness and accuracy.

  8. Bidirectional interactions between the baroreceptor reflex and arousal: an update.

    Science.gov (United States)

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Benarroch, Eduardo E; Dampney, Roger A L; Cortelli, Pietro

    2015-02-01

    Studies involving genetic engineering on animal models and mathematical analysis of cardiovascular signals on humans are shedding new light on the interactions between the arterial baroreceptor reflex (baroreflex) and arousal. Baroreceptor stimulation, if very mild or performed under anaesthesia, may inhibit cortical arousal. However, substantial increases or decreases in baroreflex activation cause arousal in animal models and human subjects in physiological conditions. On the other hand, cardiovascular changes during autonomic arousals and between the states of wakefulness and sleep involve changes in the baroreflex set point and balance with central autonomic commands. Neural connectivity and functional data suggest that the nucleus of the solitary tract, adrenergic C1 neurons of the medulla, and the parabrachial nucleus of the pons mediate the bidirectional interactions between the baroreflex and arousal. These interactions may constitute a positive feedback loop that facilitates sharp and coordinated brain state and autonomic transitions upon arousal: upon arousal, central autonomic commands may increase blood pressure, thereby loading baroreceptors and further increasing arousal. Anomalies of this feedback loop may play a role in the pathophysiology of disease conditions associated with cardiovascular and sleep-wake cycle alterations. These conditions include: obstructive sleep apnoea syndrome, with its association with excessive daytime sleepiness and baroreflex impairment; and insomnia, with its association with autonomic hyperarousal and hypertension. When faced with disorders associated with cardiovascular and sleep-wake cycle alterations, clinical reasoning should entertain the possibility that both conditions are strongly influenced by anomalies of baroreflex function. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Corporate Governance and Financial Performance Nexus: Any Bidirectional Causality?

    Directory of Open Access Journals (Sweden)

    Alley Ibrahim S.

    2016-06-01

    Full Text Available Most studies on corporate governance recognize endogeneity in the nexus between corporate governance and financial performance. Little attention has, however, been paid to the direction of causality between the two phenomena, and hence the Vector Error Correction (VEC model, which allows for endogenous determination of the direction of causality, has not been widely employed. This study fills that gap by estimating the nexus and the direction of causality using the VEC model to analyze panel data on selected listed firms in Nigeria. The results agree with the findings of most previous studies that corporate governance significantly affects financial performance. Board skills, board composition and management skills enhanced financial performance indicators – return on equity (ROE, return on asset (ROA and net profit margin (NPM; in many occasions, significantly. Board size and audit committee size did not, and can actually undermine financial performance. More importantly, financial performance did not significantly affect corporate governance. On the basis of the lag structure of the VEC model, this study affirms unidirectional causality in the nexus, running from corporate governance to financial performance, nullifying the hypothesis of bidirectional causality in the nexus.

  10. Bidirectional transport of organelles: unity and struggle of opposing motors.

    Science.gov (United States)

    Bryantseva, Sofiya A; Zhapparova, Olga N

    2012-01-01

    Bidirectional transport along microtubules is ensured by opposing motor proteins: cytoplasmic dynein that drives cargo to the minus-ends and various kinesins that generally move to the plus-ends of microtubules. Regulation of motor proteins that are simultaneously bound to the same organelle is required to maintain directional transport and prevent pausing of cargo pulled away by motors of opposite polarity. Debates of the recent decade have been focused on two possible mechanisms of such regulation: (i) coordination, which implies that only one type of motors is active at a given time, and (ii) tug-of-war, which assumes that both motors are active at the same time and that direction of transport depends on the outcome of motor's confrontation. The initial idea of coordination has been challenged by observations of simultaneous activity of plus- and minus-end-directed motors applied to the same cargo. Analysis of the available data indicates that coordination and tug-of-war theories rather complement than contradict each other: cargo interacts with two teams of active motors, the resulting direction and the winner team are determined by coordination complexes, but the activity of the loser team is never completely inhibited and remains at some background level. Such persisting activity might enhance the overall efficiency of transport by increasing processivity or helping to overcome the obstacles on microtubule track. © The Author(s) Journal compilation © 2012 Portland Press Limited

  11. Neural coding in graphs of bidirectional associative memories.

    Science.gov (United States)

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Bidirectional Modulation of Substantia Nigra Activity by Motivational State

    Science.gov (United States)

    Rossi, Mark A.; Fan, David; Barter, Joseph W.; Yin, Henry H.

    2013-01-01

    A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra. PMID:23936522

  13. Partners in crime: bidirectional transcription in unstable microsatellite disease.

    Science.gov (United States)

    Batra, Ranjan; Charizanis, Konstantinos; Swanson, Maurice S

    2010-04-15

    Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.

  14. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    International Nuclear Information System (INIS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable

  15. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    Science.gov (United States)

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  16. Measurement and application of bidirectional reflectance distribution function

    Science.gov (United States)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  17. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    Science.gov (United States)

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  18. The bidirectional effect between momentary affective states and exercise duration on a day level

    Directory of Open Access Journals (Sweden)

    Anna Schöndube

    2016-09-01

    Full Text Available Despite the well-documented positive effect of exercise on health outcomes, most people do not succeed in exercising regularly. In addition to several other influences, affective states seem to support exercise participation. Associations between exercise and affect have been shown in the laboratory. However, the dynamic relation between affect and exercise in daily life is not yet well understood. The objective of this study was to investigate the bi-directional effect of momentary affective states on naturally occurring exercise and vice versa in healthy participants in real-life environments by applying an ecological momentary assessment design. We hypothesized that (1 exercise duration is positively associated with affective states on a day level, (2 affective states in the morning predict subsequent exercise duration, and (3 exercise duration predicts affective states in the evening on that respective day. Data from N = 60 students aged between 19 and 32 years were analyzed. Affect and exercise duration were assessed daily over a period of 20 days via an electronic diary. Multilevel analysis revealed that positive affective valence was positively associated with exercise duration (p = 0.003 on a day level. In addition, the more the participants exercised that respective day, the better and more content they felt in the evening (p = 0.009. Energetic arousal in the morning significantly predicted subsequent exercise duration (p = 0.045. The findings indicate that it would be worthwhile to focus more on within-subject analyses when analyzing the dynamic relation between affect and exercise. Furthermore, affective states should be taken into account in creating effective interventions to foster exercise behavior and enhance maintenance.

  19. Original Paper Detecting Nosocomial Intrinsic Infections through ...

    African Journals Online (AJOL)

    2011-04-20

    Apr 20, 2011 ... surgical procedures as precursory to intrinsic infections and that bacterial pathogens found on wounds and endogenous ... University Teaching Hospital, Idi Araba, Lagos, ..... confirm reason for selective decontamination of the.

  20. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  1. Intrinsic and extrinsic motivation for smoking cessation.

    Science.gov (United States)

    Curry, S; Wagner, E H; Grothaus, L C

    1990-06-01

    An intrinsic-extrinsic model of motivation for smoking cessation was evaluated with 2 samples (ns = 1.217 and 151) of smokers who requested self-help materials for smoking cessation. Exploratory and confirmatory principal components analysis on a 36-item Reasons for Quitting (RFQ) scale supported the intrinsic-extrinsic motivation distinction. A 4-factor model, with 2 intrinsic dimensions (concerns about health and desire for self-control) and 2 extrinsic dimensions (immediate reinforcement and social influence), was defined by 20 of the 36 RFQ items. The 20-item measure demonstrated moderate to high levels of internal consistency and convergent and discriminant validity. Logistic regression analyses indicated that smokers with higher levels of intrinsic relative to extrinsic motivation were more likely to achieve abstinence from smoking.

  2. Intrinsic endometriosis of ureter: a case report

    International Nuclear Information System (INIS)

    Hong, Myung Sun; Kim, Ho Chul; Yun, Ku Sup; Choi, Chul Soon; Bae, Sang Hoon; Kim, Sung Yong; Shin, Hyung Sik

    1995-01-01

    Endometriosis is a rare cause of an ureteral obstruction. We report a case of intrinsic ureteral endometriosis resulting in severe hydroureteronephrosis. The diagnosis of ureteral endometriosis may be considered in women with flank pain and ureteric obstruction within true pelvis

  3. Intrinsic endometriosis of ureter: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Myung Sun; Kim, Ho Chul; Yun, Ku Sup; Choi, Chul Soon; Bae, Sang Hoon; Kim, Sung Yong; Shin, Hyung Sik [College of Medicine, Hallym University, Seoul (Korea, Republic of)

    1995-07-15

    Endometriosis is a rare cause of an ureteral obstruction. We report a case of intrinsic ureteral endometriosis resulting in severe hydroureteronephrosis. The diagnosis of ureteral endometriosis may be considered in women with flank pain and ureteric obstruction within true pelvis.

  4. Management Control, Intrinsic Motivation and Creativity

    OpenAIRE

    Gregersen, Mikkel Godt

    2017-01-01

    This thesis consists of a cape and three papers. The overall research question is: How can intrinsic motivation and management control coexist in a creative environment and how can coordination be possible in such a context? The cape ties together the research done in the three papers. It is divided into six sections. The first section introduces the concepts of intrinsic motivation, creativity and management control. This is followed by a section on management control in a ...

  5. Refining the intrinsic chimera flap: a review.

    Science.gov (United States)

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  6. Incentives and intrinsic motivation in healthcare.

    Science.gov (United States)

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  8. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  9. Intrinsic work function of molecular films

    International Nuclear Information System (INIS)

    Ivančo, Ján

    2012-01-01

    The electronic properties of molecular films are analysed with the consideration of the molecular orientation. The study demonstrates that surfaces of electroactive oligomeric molecular films can be classified—analogously to the elemental surfaces—by their intrinsic work functions. The intrinsic work function of molecular films is correlated with their ionisation energies; again, the behaviour is analogous to the correlation existing between the first ionisation energy of elements and the work function of the corresponding elemental surfaces. The proposed intrinsic work-function concept suggests that the mechanism for the energy-level alignment at the interfaces associated with molecular films is virtually controlled by work functions of materials brought into the contact. - Highlights: ► Molecular films exhibit their own (intrinsic) work function. ► Intrinsic work function is correlated with ionisation energy of molecular films. ► Intrinsic work function determines dipole at interface with a particular surface. ► Surface vacuum-level change upon film growth does not relate to interfacial dipole.

  10. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  11. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.

    Directory of Open Access Journals (Sweden)

    Eunhee Kim

    2017-07-01

    Full Text Available The unfolded protein response (UPR in the endoplasmic reticulum (ER and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1 activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221, identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280. We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78 suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78. Our work reveals how the bidirectional crosstalk between the two stress response systems

  12. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  13. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C 2-symmetric building block: a strategy for the synthesis of decanolide natural products.

    Science.gov (United States)

    Schmidt, Bernd; Kunz, Oliver

    2013-01-01

    Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  14. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies.

    Science.gov (United States)

    Oudeyer, P-Y; Gottlieb, J; Lopes, M

    2016-01-01

    This chapter studies the bidirectional causal interactions between curiosity and learning and discusses how understanding these interactions can be leveraged in educational technology applications. First, we review recent results showing how state curiosity, and more generally the experience of novelty and surprise, can enhance learning and memory retention. Then, we discuss how psychology and neuroscience have conceptualized curiosity and intrinsic motivation, studying how the brain can be intrinsically rewarded by novelty, complexity, or other measures of information. We explain how the framework of computational reinforcement learning can be used to model such mechanisms of curiosity. Then, we discuss the learning progress (LP) hypothesis, which posits a positive feedback loop between curiosity and learning. We outline experiments with robots that show how LP-driven attention and exploration can self-organize a developmental learning curriculum scaffolding efficient acquisition of multiple skills/tasks. Finally, we discuss recent work exploiting these conceptual and computational models in educational technologies, showing in particular how intelligent tutoring systems can be designed to foster curiosity and learning. © 2016 Elsevier B.V. All rights reserved.

  15. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  16. Parenting and Anxiety: Bi-directional Relations in Young Children.

    Science.gov (United States)

    Gouze, Karen R; Hopkins, Joyce; Bryant, Fred B; Lavigne, John V

    2017-08-01

    Developmental psychopathologists have long posited a reciprocal relation between parenting behaviors and the development of child anxiety symptoms. Yet, little empirical research has utilized a longitudinal design that would allow exploration of this bi-directional influence. The present study examined the reciprocal relations between parental respect for autonomy, parental hostility, and parental support, and the development of childhood anxiety during a critical developmental period-the transition from preschool to kindergarten and then first grade. Study participants included a community sample of 391 male and 405 female socioeconomically, racially and ethnically diverse 4 to 6-7 year olds. 54 % of the sample was White, non-Hispanic, 16.8 % was African American, 20.4 % was Hispanic, 2.4 % were Asian and 4.4 % self-identified as Other or mixed race. Parent report and observational methodology were used. Parenting and anxiety were found to interact reciprocally over time. Higher levels of age 4 anxiety led to reduced respect for child autonomy at age 5. At age 4 higher levels of parental hostility led to small increases in age 5 anxiety, and increased age 5 anxiety led to increased levels of age 6 parent hostility. Parental support at age 5 resulted in decreased anxiety symptoms at age 6-7 while higher age 5 anxiety levels were associated with reductions in age 6-7 parental support. No relations were found between these variables at the younger ages. Although the magnitude of these findings was small, they suggest that early treatment for childhood anxiety should include both parent intervention and direct treatment of the child's anxiety symptoms.

  17. Bidirectional Prospective Associations Between Cardiac Autonomic Activity and Inflammatory Markers.

    Science.gov (United States)

    Hu, Mandy Xian; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-06-01

    Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic measures and inflammatory markers. Analyses were conducted with baseline (n = 2823), 2-year (n = 2099), and 6-year (n = 1774) data from the Netherlands Study of Depression and Anxiety. To compare the pattern of results, prospective analyses with ANS (during sleep, leisure time, and work) and inflammation were conducted in two data sets from the Netherlands Twin Register measured for 4.9 years (n = 356) and 5.4 years (n = 472). Autonomic nervous system measures were heart rate (HR) and respiratory sinus arrhythmia (RSA). Inflammatory markers were C-reactive protein (CRP) and interleukin (IL)-6. The Netherlands Study of Depression and Anxiety results showed that higher HR and lower RSA were cross-sectionally significantly associated with higher inflammatory levels. Higher HR predicted higher levels of CRP (B = .065, p < .001) and IL-6 (B = .036, p = .014) at follow-up. Higher CRP levels predicted lower RSA (B = -.024, p = .048) at follow-up. The Netherlands Twin Register results confirmed that higher HR was associated with higher CRP and IL-6 levels 4.9 years later. Higher IL-6 levels predicted higher HR and lower RSA at follow-up. Autonomic imbalance is associated with higher levels of inflammation. Independent data from two studies converge in evidence that higher HR predicts subsequent higher levels of CRP and IL-6. Inflammatory markers may also predict future ANS activity, but evidence for this was less consistent.

  18. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  19. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  20. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  1. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  2. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  3. Intrinsic-extrinsic factors in sport motivation.

    Science.gov (United States)

    Pedersen, Darhl M

    2002-10-01

    Participants were 83 students (36 men and 47 women). 10 intrinsic-extrinsic factors involved in sport motivation were obtained. The factors were generated from items obtained from the participants rather than items from the experimenter. This was done to avoid the possible influence of preconceptions on the part of the experimenter regarding what the final dimensions may be. Obtained motivational factors were Social Reinforcement, Fringe Benefits, Fame and Fortune, External Forces, Proving Oneself, Social Benefits, Mental Enrichment, Expression of Self, Sense of Accomplishment, and Self-enhancement. Each factor was referred to an intrinsic-extrinsic dimension to describe its relative position on that dimension. The order of the factors as listed indicates increasing intrinsic motivation. i.e., the first four factors were rated in the extrinsic range, whereas the remaining six were rated to be in the intrinsic range. Next, the participants rated the extent to which each of the various factors was involved in their decision to participate in sport activities. The pattern of use of the motivational factors was the same for both sexes except that men indicated greater use of the Fringe Benefits factor. Overall, the more intrinsic a sport motivation factor was rated, the more likely it was to be rated as a factor in actual sport participation.

  4. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  5. Flavor Structure of Intrinsic Nucleon Sea

    International Nuclear Information System (INIS)

    Peng, Jen-Chieh; Chang, Wen-Chen; Cheng, Hai-Yang; Liu, Keh-Fei

    2015-01-01

    The concept of intrinsic charm suggested by Brodsky et al. is extended to lighter quarks. Extraction of the intrinsic ū, d-macron, and s-macron seas is obtained from an analysis of the d-macron − ū, s + s-macron, and ū + d-macron − s −s-macron distributions. The connection between the intrinsic/extrinsic seas and the connected/disconnected seas in lattice QCD is also examined. It is shown that the connected and disconnected components for the ū(x) + d-macron(x) sea can be separated. The striking x-dependence of the [s(x) + s-macron(x)]/[ū(x) + d-macron(x)] ratio is interpreted as an interplay between the connected and disconnected seas. (author)

  6. Management Control, Intrinsic Motivation and Creativity

    DEFF Research Database (Denmark)

    Godt Gregersen, Mikkel

    This thesis consists of a cape and three papers. The overall research question is: How can intrinsic motivation and management control coexist in a creative environment and how can coordination be possible in such a context? The cape ties together the research done in the three papers....... It is divided into six sections. The first section introduces the concepts of intrinsic motivation, creativity and management control. This is followed by a section on management control in a creative context. These two sections frame the thesis and introduce the setting in which the research has been done...... of the conclusion is that intrinsic motivation and management control can coexist under the conditions that all three basic needs, i.e. autonomy, competence and relatedness, are supported. This can happen when control takes point of departure in the individual employee. The second part of the conclusion...

  7. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Directory of Open Access Journals (Sweden)

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  8. Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants.

    Science.gov (United States)

    Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Lau, Hakwan; Kawato, Mitsuo

    2017-04-01

    Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination task), with the order of training counterbalanced across participants. Behavioral results indicated that the manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects, and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to down-regulation was more prominent, and confidence changes (regardless of the direction) were largely preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as compared to the effect of the first session, indicating strong anterograde learning interference. These results are interpreted in the framework

  9. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    Science.gov (United States)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  10. Energy-efficient three-phase bidirectional converter for grid-connected storage applications

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Linares-Mena, Ana-Rosa; Velázquez, Jesús Fernández; Borge-Diez, David

    2016-01-01

    Highlights: • Storage control system developed based on AC DC three phase bidirectional converter. • Bidirectional AC DC converter for storage integration into distribution grids. • Efficiencies over 98% for values over 30% of the bidirectional converter rated power. • Sensitivity analysis of the parameters set by the transmission system operator. • Low-cost option for control and integration of new grid-connected storage systems. - Abstract: Grid connected energy storage systems are expected to play an essential role in the development of Smart Grids, providing, among other benefits, ancillary services to power grids. It is therefore crucial to design and develop control and conversion systems that represent the key instrument where intelligence for decision-making is applied, in order to validate and ensure its optimal operation as part and parcel of the electrical system. The present research describes the design and development of a battery energy storage system based on an AC-DC three-phase bidirectional converter capable of operating either in charge mode to store electrical energy, or in discharge mode to supply load demands. The design is modelled with MATLAB® Simulink® environment in order to evaluate the performance during load variations. Moreover, the assessment is complemented by a global sensitivity analysis for variations in the operating parameters set by the transmission system operator. The effectiveness of the simulation is confirmed by implementing the system and carrying out grid connection tests, obtaining efficiencies over 98% for values over the 30% of the bidirectional converter rated power.

  11. Strong electron bidirectional anisotropies in the distant tail: ISEE 3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1986-01-01

    A detailed observational treatment of bidirectional electrons (--50 to 50 eV)in the distant magnetotail (rapprox. >100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE 3 data provide extensive sampling of both the north and south lobes in rapid succession. These data demonstrate directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward interplanetary magnetic field in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Thus we demonstrate the open nature of the distant magnetopause and show that the source of the higher-energy, bidirectional lobe electrons is the tailward directed electron heat flux population in the distant magnetosheath. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is composed largely of open magnetic field lines in contradistinction to some recently advanced models

  12. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  13. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  14. Bidirectional Fano Algorithm for Lattice Coded MIMO Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2013-05-08

    Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree 
search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the

  15. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Science.gov (United States)

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  16. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  17. Dynamics of neural cryptography

    International Nuclear Information System (INIS)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-01-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible

  18. Dynamics of neural cryptography

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  19. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    Science.gov (United States)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  20. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Guang-Hui, Li; An-Bang, Wang; Ye, Feng; Yang, Wang

    2010-01-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication. (general)

  1. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  2. Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs

    Science.gov (United States)

    Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.

    2018-01-01

    The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.

  3. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  4. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  5. Organisational Learning and Employees' Intrinsic Motivation

    Science.gov (United States)

    Remedios, Richard; Boreham, Nick

    2004-01-01

    This study examined the effects of organisational learning initiatives on employee motivation. Four initiatives consistent with theories of organisational learning were a priori ranked in terms of concepts that underpin intrinsic-motivation theory. Eighteen employees in a UK petrochemical company were interviewed to ascertain their experiences of…

  6. Intrinsic Diophantine approximation on general polynomial surfaces

    DEFF Research Database (Denmark)

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  7. Sex Differences, Positive Feedback and Intrinsic Motivation.

    Science.gov (United States)

    Deci, Edward L.; And Others

    The paper presents two experiments which test the "change in feelings of competence and self-determination" proposition of cognitive evaluation theory. This proposition states that when a person receives feedback about his performance on an intrinsically motivated activity this information will affect his sense of competence and…

  8. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    Science.gov (United States)

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  9. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  10. Intrinsic Motivation, Organizational Justice, and Creativity

    Science.gov (United States)

    Hannam, Kalli; Narayan, Anupama

    2015-01-01

    For employees to generate creative ideas that are not only original, but also useful to their company, they must interact with their workplace environment to determine organizational needs. Therefore, it is important to consider aspects of the individual as well as their environment when studying creativity. Intrinsic motivation, a predictor of…

  11. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  12. LEADERSHIP STYLE AND EMPLOYEES' INTRINSIC JOB ...

    African Journals Online (AJOL)

    This study investigates the impact of leadership style on employees' intrinsic ... of many factors including motivation, leadership, job satisfaction, workers' alienation and ... Factors associated with job satisfaction include incentive to work, reward of ... advancement/promotion, recognition and self-actualization cannot be met ...

  13. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin

    2011-04-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark. © 2011 The Author(s).

  14. Intrinsic Risk Factors of Falls in Elderly

    Directory of Open Access Journals (Sweden)

    Yasmin Amatullah

    2016-09-01

    Full Text Available Background: Falls are common geriatric problems. The risk factors of falls are the intrinsic and extrinsic risk factors. Studies on falls are scarcely conducted in Indonesia, especially in Bandung. Therefore, this study was conducted to identify the intrinsic risk factors of falls among elderly. Methods: A descriptive study was carried out from August to October 2013 at the Geriatric Clinic of Dr. Hasan Sadikin General Hospital Bandung. Fifty three participants were selected according to the inclusion and exclusion criteria using consecutive sampling. The determined variables in this study were classification of the risk of falls, demographic profile, history of falls, disease, and medications. After the selection, the participants were tested by Timed up-and-go test (TUGT. Moreover, an interview and analysis of medical records were carried out to discover the risk factors of falls. The collected data were analyzed and presented in the form of percentages shown in tables. Results: From 53 patients, women (35.66% were considered to have higher risk of fall than men (18.34%. The majority of patients (66% with the risk of fall were from the age group 60–74 years. The major diseases suffered by patients were hypertension, osteoarthritis and diabetes mellitus. Drugs that were widely used were antihypertensive drugs; analgesic and antipyretic drugs and antidiabetic drugs. Conclusions: There are various intrinsic risk factors of falls in elderly and each of the elderly has more than one intrinsic risk factor of falls.

  15. Use of asymmetric bidirectional catheters with different curvature radius for catheter ablation of cardiac arrhythmias.

    Science.gov (United States)

    Mantziari, Lilian; Suman-Horduna, Irina; Gujic, Marko; Jones, David G; Wong, Tom; Markides, Vias; Foran, John P; Ernst, Sabine

    2013-06-01

    The impact of recently introduced asymmetric bidirectional ablation catheters on procedural parameters and acute success rates of ablation procedures is unknown. We retrospectively analyzed data regarding ablations using a novel bidirectional catheter in a tertiary cardiac center and compared these in 1:5 ratio with a control group of procedures matched for age, gender, operator, and ablation type. A total of 50 cases and 250 controls of median age 60 (50-68) years were studied. Structural heart disease was equally prevalent in both groups (39%) while history of previous ablations was more common in the study arm (54% vs 30%, P = 0.001). Most of the ablation cases were for atrial fibrillation (46%), followed by atrial tachycardia (28%), supraventricular tachycardia (12%), and ventricular tachycardia (14%). Median procedure duration was 128 (52-147) minutes with the bidirectional, versus 143 (105-200) minutes with the conventional catheter (P = 0.232), and median fluoroscopy time was 17 (10-34) minutes versus 23 (12-39) minutes, respectively (P = 0.988). There was a trend toward a lower procedure duration for the atrial tachycardia ablations, 89 (52-147) minutes versus 130 (100-210) minutes, P = 0.064. The procedure was successfully completed in 96% of the bidirectional versus 84% of the control cases (P = 0.151). A negative correlation was observed between the relative fluoroscopy duration and the case number (r = -0.312, P = 0.028), reflecting the learning curve for the bidirectional catheter. The introduction of the bidirectional catheter resulted in no prolongation of procedure parameters and similar success rates, while there was a trend toward a lower procedure duration for atrial tachycardia ablations. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  16. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    the temporal and spatial brain functional networks of the human brain that underlie spontaneous neuronal dynamics, which provides important implications for our understanding of how intrinsically coherent spontaneous brain activity has evolved into an optimal neuronal architecture to support global computation and information integration in the absence of specific stimuli or behaviors.

  17. Control of parallel-connected bidirectional AC-DC converters in stationary frame for microgrid application

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Teodorescu, Remus

    2011-01-01

    With the penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper, parallel-connected bidirectional converters for AC and DC hybrid microgrid application are proposed as an efficient interface. To reach the goal of bidirectional...... power conversion, both rectifier and inverter modes are analyzed. In order to achieve high performance operation, hierarchical control system is accomplished. The control system is designed in stationary frame, with harmonic compensation in parallel and no coupled terms between axes. In this control...

  18. Coherent Detection for 1550 nm, 5 Gbit/s VCSEL Based 40 km Bidirectional PON Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Zibar, Darko

    2011-01-01

    Coherent detection of directly modulated 1550nm VCSELs in 5Gbit/s bidirectional 40km SSMF PON-links is presented. Receiver sensitivity of –37.3dBm after transmission is achieved with 30dB system margin, corresponding to 1:1024 passive powersplitting.......Coherent detection of directly modulated 1550nm VCSELs in 5Gbit/s bidirectional 40km SSMF PON-links is presented. Receiver sensitivity of –37.3dBm after transmission is achieved with 30dB system margin, corresponding to 1:1024 passive powersplitting....

  19. A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...

  20. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  1. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    Science.gov (United States)

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  2. Bidirectional Thermo-Mechanical Properties of Foam Core Materials Using DIC

    DEFF Research Database (Denmark)

    Taher, Siavash Talebi; Thomsen, Ole Thybo; M Dulieu-Barton, Janice

    2011-01-01

    mechanical properties at room and at elevated temperatures. The MAF enables the realization of pure compression or high compression to shear bidirectional loading conditions that is not possible with conventional Arcan fixtures. The MAF is attached to a standard universal test machine equiped...... with an environmental chamber using specially designed grips that allow the specimen to rotate, and hence reduces paristic effects due to misalignment. The objective is to measure the unidirectional and bidirectional mechanical properties of PVC foam materials at elevated tempreature using digital image correlation...

  3. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalize...... battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.......A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...

  4. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  5. Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse

    International Nuclear Information System (INIS)

    Zhang Yinping

    2009-01-01

    In this paper, we study the existence, uniqueness and global stability of periodic solution (i.e. stationary oscillation) for general bidirectional associative memory neural networks with impulses. Some sufficient conditions are obtained for stationary oscillation of the nonautonomous bidirectional associative memory neural networks with impulses. It is derived by using a new method which is different from those of previous literatures, and a assumption in previous results does not required. The model considered is more general and some previous results are extended and improved. An illustrative example is given to demonstrate the effectiveness and less conservativeness of the obtained results.

  6. Multi-user bidirectional communication using isochronal synchronisation of array of chaotic directly modulated semiconductor lasers

    International Nuclear Information System (INIS)

    Krishna, Bindu M.; John, Manu P.; Nandakumaran, V.M.

    2010-01-01

    Isochronal synchronisation between the elements of an array of three mutually coupled directly modulated semiconductor lasers is utilized for the purpose of simultaneous bidirectional secure communication. Chaotic synchronisation is achieved by adding the coupling signal to the self feedback signal provided to each element of the array. A symmetric coupling is effective in inducing synchronisation between the elements of the array. This coupling scheme provides a direct link between every pair of elements thus making the method suitable for simultaneous bidirectional communication between them. Both analog and digital messages are successfully encrypted and decrypted simultaneously by each element of the array.

  7. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  8. Dynamic pricing based on a cloud computing framework to support the integration of renewable energy sources

    OpenAIRE

    Rajeev Thankappan Nair; Ashok Sankar

    2014-01-01

    Integration of renewable energy sources into the electric grid in the domestic sector results in bidirectional energy flow from the supply side of the consumer to the grid. Traditional pricing methods are difficult to implement in such a situation of bidirectional energy flow and they face operational challenges on the application of price-based demand side management programme because of the intermittent characteristics of renewable energy sources. In this study, a dynamic pricing method usi...

  9. Combating Weapons of Mass Destruction: Models, Complexity, and Algorithms in Complex Dynamic and Evolving Networks

    Science.gov (United States)

    2015-11-01

    Gholamreza, and Ester, Martin. “Modeling the Temporal Dynamics of Social Rating Networks Using Bidirectional Effects of Social Relations and Rating...1.1.2 β-disruptor Problems Besides the homogeneous network model consisting of uniform nodes and bidirectional links, the heterogeneous network model... neural and metabolic networks .” Biological Cybernetics 90 (2004): 311–317. 10.1007/s00422-004-0479-1. URL http://dx.doi.org/10.1007/s00422-004-0479-1 [51

  10. Nuclear intrinsic vorticity and its coupling to global rotations

    International Nuclear Information System (INIS)

    Mikhailov, I.N.; Quentin, P.; Samsoen, D.

    1997-01-01

    Important collective modes which are generally neglected within current descriptions of nuclear excitations in terms of fluid dynamics, are studied here. The intrinsic vortical modes are defined in a general way from which a specific mode, both simple and versatile enough, is particularly discussed. In this paper the main emphasis is made on the coupling of the chosen intrinsic mode to the rotation of the nuclear principal axes frame with respect to the laboratory system. A semi-quantal description of such excitations is proposed which is a generalization of the so-called routhian approach of global rotations. The results of a semiclassical treatment of the corresponding variational problem are presented. A simple mean field approach where the one-body potential is mocked up by a harmonic oscillator is discussed in a somewhat detailed fashion. The broad range of validity of a quadratic approximation for the collective energy in terms of the relevant angular velocities, is hinted from the previous simple model approach. Some general consequences of the latter are then drawn which have bearing on some possible fingerprints for the existence of such excitations, as the staggering phenomenon observed in gamma transition energies in some superdeformed states and the occurrence of identical rotational bands in neighbouring nuclei. (orig.)

  11. Diffusion of intrinsic localized modes by attractor hopping

    International Nuclear Information System (INIS)

    Meister, Matthias; Vazquez, Luis

    2003-01-01

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability θ and a delay time τ A . The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, θ and τ A being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in θ, a decrease in τ A and reduces the average distance a mode travels during the transition period

  12. Branching in current-voltage characteristics of intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  13. Genetic recombination is associated with intrinsic disorder in plant proteomes.

    Science.gov (United States)

    Yruela, Inmaculada; Contreras-Moreira, Bruno

    2013-11-09

    Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.

  14. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  15. Changing the Environment Based on Empowerment as Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Christoph Salge

    2014-05-01

    Full Text Available One aspect of intelligence is the ability to restructure your own environment so that the world you live in becomes more beneficial to you. In this paper we investigate how the information-theoretic measure of agent empowerment can provide a task-independent, intrinsic motivation to restructure the world. We show how changes in embodiment and in the environment change the resulting behaviour of the agent and the artefacts left in the world. For this purpose, we introduce an approximation of the established empowerment formalism based on sparse sampling, which is simpler and significantly faster to compute for deterministic dynamics. Sparse sampling also introduces a degree of randomness into the decision making process, which turns out to beneficial for some cases. We then utilize the measure to generate agent behaviour for different agent embodiments in a Minecraft-inspired three dimensional block world. The paradigmatic results demonstrate that empowerment can be used as a suitable generic intrinsic motivation to not only generate actions in given static environments, as shown in the past, but also to modify existing environmental conditions. In doing so, the emerging strategies to modify an agent’s environment turn out to be meaningful to the specific agent capabilities, i.e., de facto to its embodiment.

  16. Diffusion of intrinsic localized modes by attractor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Matthias [Dpto FIsica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y FIsica de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza (Spain); Vazquez, Luis [Dpto Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz (Spain)

    2003-11-28

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability {theta} and a delay time {tau}{sub A}. The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, {theta} and {tau}{sub A} being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in {theta}, a decrease in {tau}{sub A} and reduces the average distance a mode travels during the transition period.

  17. Identifying the neural substrates of intrinsic motivation during task performance.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall

    2017-10-01

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  18. Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity

    Science.gov (United States)

    Li, Zhenqing; He, Chaoyu; Ouyang, Tao; Zhang, Chunxiao; Tang, Chao; Römer, Rudolf A.; Zhong, Jianxin

    2018-04-01

    We construct a class of two-dimensional (2D) phosphorus allotropes by assembling a previously proposed ultrathin metastable phosphorus nanotube into planar structures in different stacking orientations. Based on first-principles methods, the structures, stabilities, and fundamental electronic properties of these allotropes are systematically investigated. Our results show that these 2D van der Waals phosphorene allotropes possess remarkable stabilities due to the strong intertube van der Waals interactions, which cause an energy release of about 30 - 70 meV /atom , depending on their stacking details. Most of them are confirmed to be energetically more favorable than the experimentally viable α -P and β -P . Three of them, showing a relatively higher probability of being synthesized in the future, are further confirmed to be dynamically stable semiconductors with strain-tunable band gaps and intrinsic piezoelectricity, which may have potential applications in nanosized sensors, piezotronics, and energy harvesting in portable electronic nanodevices.

  19. Intrinsically Disordered Proteins in a Physics-Based World

    Directory of Open Access Journals (Sweden)

    Jianhan Chen

    2010-12-01

    Full Text Available Intrinsically disordered proteins (IDPs are a newly recognized class of functional proteins that rely on a lack of stable structure for function. They are highly prevalent in biology, play fundamental roles, and are extensively involved in human diseases. For signaling and regulation, IDPs often fold into stable structures upon binding to specific targets. The mechanisms of these coupled binding and folding processes are of significant importance because they underlie the organization of regulatory networks that dictate various aspects of cellular decision-making. This review first discusses the challenge in detailed experimental characterization of these heterogeneous and dynamics proteins and the unique and exciting opportunity for physics-based modeling to make crucial contributions, and then summarizes key lessons from recent de novo simulations of the structure and interactions of several regulatory IDPs.

  20. Intrinsic line shape of electromagnetic radiation from a stack of intrinsic Josephson junctions synchronized by an internal cavity resonance

    Science.gov (United States)

    Koshelev, Alexei

    2013-03-01

    Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.

  1. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  2. Functions of intrinsic disorder in transmembrane proteins

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Kragelund, Birthe B.

    2017-01-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane...... receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like...... mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding...

  3. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  4. Extrinsic and intrinsic curvatures in thermodynamic geometry

    International Nuclear Information System (INIS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-01-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  5. Does Aerobic Exercise Influence Intrinsic Brain Activity?

    DEFF Research Database (Denmark)

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin

    2017-01-01

    exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling......Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic...... group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings...

  6. Survey of intrinsic states of light nuclei

    International Nuclear Information System (INIS)

    Brink, D.M.

    1975-01-01

    The resonating group method and the generator coordinate method are two closely related theories of nuclear structure which can be used to construct wave functions describing cluster structures. In both cases the form of the intrinsic state implies a selection of those degrees of freedom which are regarded as being important for the problem under consideration. The form of the intrinsic state also corresponds to a particular truncation of the shell model space. In the resonating group method the effect of the Pauli principle leads to forbidden or redundant states of relative motion of clusters. An improved understanding of the role of forbidden states in the theory has led to important advances in the phenomenological description of cluster structures in nuclei. 3 tables, 2 figures

  7. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    Science.gov (United States)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  8. Distributed fiber Raman amplification in long reach PON bidirectional access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Öhman, Filip

    2008-01-01

    Distributed Raman fiber amplification is proposed and experimentally demonstrated to support long reach passive optical network (PON) links. An 80 km, bidirectional, single fiber link is demonstrated using both standard intensity optical modulators at 10 Gb/s and up to 7.5 Gb/s using novel...

  9. Bidirectional electron anisotropies in the distant tail: ISEE-3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1985-01-01

    A detailed observational treatment of bidirectional electrons (50 approx.500 eV) in the distant magnetotail (r greater than or equal to 100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE-3 data provide extensive sampling of both the north and south lobes in rapid succession, demonstrating directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward IMF in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is comprised largely of open magnetic field lines in contradistinction to some recently advanced models

  10. Colours sometimes count : Awareness and bidirectionality in grapheme-colour synaesthesia

    NARCIS (Netherlands)

    Johnson, Addie; Jepma, Marieke; de Jong, Ritske

    2007-01-01

    Three experiments were conducted with 10 grapheme-colour synaesthetes and 10 matched controls to investigate (a) whether awareness of the inducer grapheme is necessary for synaesthetic colour induction and (b) whether grapheme-colour synaesthesia may be bidirectional in the sense that not only do

  11. Bidirectional Influences between Maternal Parenting and Children's Peer Problems: A Longitudinal Monozygotic Twin Difference Study

    Science.gov (United States)

    Yamagata, Shinji; Takahashi, Yusuke; Ozaki, Koken; Fujisawa, Keiko K.; Nonaka, Koichi; Ando, Juko

    2013-01-01

    This twin study examined the bidirectional relationship between maternal parenting behaviors and children's peer problems that were not confounded by genetic and family environmental factors. Mothers of 259 monozygotic twin pairs reported parenting behaviors and peer problems when twins were 42 and 48 months. Path analyses on monozygotic twin…

  12. Block-classified bidirectional motion compensation scheme for wavelet-decomposed digital video

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Zhang, Y.Q. [David Sarnoff Research Center, Princeton, NJ (United States); Jabbari, B. [George Mason Univ., Fairfax, VA (United States)

    1997-08-01

    In this paper the authors introduce a block-classified bidirectional motion compensation scheme for the previously developed wavelet-based video codec, where multiresolution motion estimation is performed in the wavelet domain. The frame classification structure described in this paper is similar to that used in the MPEG standard. Specifically, the I-frames are intraframe coded, the P-frames are interpolated from a previous I- or a P-frame, and the B-frames are bidirectional interpolated frames. They apply this frame classification structure to the wavelet domain with variable block sizes and multiresolution representation. They use a symmetric bidirectional scheme for the B-frames and classify the motion blocks as intraframe, compensated either from the preceding or the following frame, or bidirectional (i.e., compensated based on which type yields the minimum energy). They also introduce the concept of F-frames, which are analogous to P-frames but are predicted from the following frame only. This improves the overall quality of the reconstruction in a group of pictures (GOP) but at the expense of extra buffering. They also study the effect of quantization of the I-frames on the reconstruction of a GOP, and they provide intuitive explanation for the results. In addition, the authors study a variety of wavelet filter-banks to be used in a multiresolution motion-compensated hierarchical video codec.

  13. Bidirectional Associations Between Adolescents' Sexual Behaviors and Psychological Well-Being

    NARCIS (Netherlands)

    Nogueira Avelar e Silva, Raquel; van de Bongardt, Daphne; Baams, Laura; Raat, Hein

    Purpose: Assessing bidirectional longitudinal associations between early sexual behaviors (≤16.0 years) and psychological well-being (global self-esteem, physical self-esteem, depression) among 716 adolescents, and the direct and buffering effect of parent-adolescent relationship quality. Methods:

  14. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    Science.gov (United States)

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  15. Partner Effects and Bi-Directional Parent-Child Effects in Family Alcohol Use

    NARCIS (Netherlands)

    Otten, R.; van der Zwaluw, C.S.; Vorst, H.; Engels, R.C.M.E.

    2008-01-01

    Introduction: The current study investigated partner effects and bidirectional parent-child effects in family alcohol use. Methods: A full family, longitudinal design was used to test the hypotheses. Participants were 428 families, including mothers, fathers, and 2 children. Associations were

  16. Restoring natural sensory feedback in real-time bidirectional hand prostheses

    DEFF Research Database (Denmark)

    Raspopovic, Stanisa; Capogrosso, Marco; Petrini, Francesco Maria

    2014-01-01

    Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prosthese...

  17. Automatic Detection of Cortical Arousals in Sleep using Bi-direction LSTM Networks

    DEFF Research Database (Denmark)

    Brink-Kjaer, A.; Olesen, Alexander Neergaard; Jespersen, C. A.

    2018-01-01

    ) and chin electromyography (EMG) to compute a probability of arousals through a bi-directional long short-term memory neural network. The study used a dataset of 233 nocturnal PSGs of population-based samples from Wisconsin Sleep Cohort (WSC) and 30 nocturnal PSGs of clinical samples from the Stanford Sleep...

  18. Automatic Detection of Respiratory Events During Sleep Using Bidirectional LSTM Networks

    DEFF Research Database (Denmark)

    Jacobsen, K. P.; Olesen, Alexander Neergaard; Trap, L.

    2018-01-01

    seconds overlap. Two models were developed based on bidirectional long short-term memory (bLSTM) neural networks: 1)a two-class model for classification of windows as “normal” or “event”, and 2)a four-class model for classification as “normal”, “obstructive”, “central”, or “mixed”. 1882 subjects were used...

  19. Longitudinal Relations among Parenting, Best Friends, and Early Adolescent Problem Behavior: Testing Bidirectional Effects

    Science.gov (United States)

    Reitz, Ellen; Dekovic, Maja; Meijer, Anne Marie; Engels, Rutger C. M. E.

    2006-01-01

    In this longitudinal study, the bidirectional relations between parenting and friends' deviance, on one hand, and early adolescent externalizing and internalizing problem behavior, on the other hand, are examined. Of the 650 adolescents (13- to 14-year-olds) who filled out the Youth Self-Report and questionnaires about their parents at two times…

  20. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi-directional piezoel......This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  1. Comparative evaluation of soft-switching, bidirectional, isolated AC/DC converter topologies

    NARCIS (Netherlands)

    Everts, J.; Krismer, F.; Van den Keybus, J.; Driesen, Johan; Kolar, J.W.

    2012-01-01

    For realizing bidirectional and isolated AC/DC converters, soft-switching techniques/topologies seem to be a favourable choice as they enable a further loss and volume reduction of the system. Contrary to the traditional dual-stage approach, using a power factor corrector (PFC) stage in series with

  2. Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction

    NARCIS (Netherlands)

    Zhao, Yu; Yang, Rennong; Chevalier, Guillaume; Shah, Rajiv C.; Romijnders, Rob

    2018-01-01

    Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a

  3. Bidirectional Linkages between Psychological Symptoms and Sexual Activities among African American Adolescent Girls in Psychiatric Care

    Science.gov (United States)

    Starr, Lisa R.; Donenberg, Geri R.; Emerson, Erin

    2012-01-01

    The current study examines longitudinal associations between light and heavy sexual experiences and psychiatric symptoms in African American adolescent girls receiving mental health care. Research supports bidirectional associations between adolescent romantic and sexual behaviors and depression and other mental health problems, but this finding…

  4. SiC-based High Efficiency Bidirectional Battery Converter for Smart PV Residential Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Biris, Valeriu-Ciprian; Teodorescu, Remus

    2013-01-01

    Smart PV inverters are essential components of future grids. Beside conventional functionalities they can communicate with the grid, supports the grid with reactive power and with active power from internal battery storage. To maximize internal consumption, a high efficiency bidirectional DC-DC c...

  5. Bidirectional Influences between Maternal and Paternal Parenting and Children's Disruptive Behaviour from Kindergarten to Grade 2

    Science.gov (United States)

    Besnard, Therese; Verlaan, Pierrette; Davidson, Marilyne; Vitaro, Frank; Poulin, Francois; Capuano, France

    2013-01-01

    Empirical evidence suggests that children's disruptive behaviour (CDB) and quality of parenting influence one another bidirectionally. However, few studies have considered the separate contribution of the mother--child and father--child relationships to disruptive behaviours within a longitudinal context. Against this background, the reciprocal…

  6. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  7. High performance bidirectional electrostatic inchworm motor fabricated by trench isolation technology

    NARCIS (Netherlands)

    Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    We report on an electrostatic linear micromotor, which employs built-in mechanical leverage to convert normal deflection of a flexible plate into a small in-plane step and two clamps to enable bidirectional inchworm motion. The motor, measuring 412 /spl mu/m /spl times/ 286 /spl mu/m, is fabricated

  8. Bidirectional Partner Violence among Homeless Young Adults: Risk Factors and Outcomes

    Science.gov (United States)

    Tyler, Kimberly A.; Melander, Lisa A.; Noel, HarmoniJoie

    2009-01-01

    One of the most prevalent forms of violence in contemporary society is the victimization of intimate partners. Although it has been established that homeless young people experience high levels of victimization on the street, little is known about partner violence (PV) experiences among this group, especially bidirectional violence. As such, the…

  9. Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete versus continuous time analysis

    NARCIS (Netherlands)

    Delsing, M.J.M.H.; Oud, J.H.L.; Bruyn, E.E.J. De

    2005-01-01

    In family research, bidirectional influences between the family and the individual are usually analyzed in discrete time. Results from discrete time analysis, however, have been shown to be highly dependent on the length of the observation interval. Continuous time analysis using stochastic

  10. Optimization of Bi-Directional Flyback Converter for a High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2014-01-01

    This paper presents an optimization technique for a flyback converter with a bidirectional energy transfer. The main goal is to optimize the converter for driving an incremental dielectric electro active polymer actuator, which must be charged and discharged from 0 V to 2500 V DC, supplied from...

  11. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  12. Three-port bidirectional converter for electric vehicles : focus on high-frequency coaxial transformer

    NARCIS (Netherlands)

    Waltrich, G.; Duarte, J.L.; Hendrix, M.A.M.; Paulides, J.J.H.

    2010-01-01

    A bi-directional multi-port converter can accommodate various energy storages and sources. Therefore, a multiport converter will be a good candidate for application as a future universal converter for (hybrid) electrical vehicles or local distribution systems. The main design challenge of the

  13. Bidirectional Interference between Speech and Nonspeech Tasks in Younger, Middle-Aged, and Older Adults

    Science.gov (United States)

    Bailey, Dallin J.; Dromey, Christopher

    2015-01-01

    Purpose: The purpose of this study was to examine divided attention over a large age range by looking at the effects of 3 nonspeech tasks on concurrent speech motor performance. The nonspeech tasks were designed to facilitate measurement of bidirectional interference, allowing examination of their sensitivity to speech activity. A cross-sectional…

  14. Bidirectional Associations Between Psychosocial Well-being and Body Mass Index in European Children

    DEFF Research Database (Denmark)

    Hunsberger, Monica; Lehtinen-Jacks, Susanna; Mehlig, Kirsten

    2016-01-01

    Background: The negative impact of childhood overweight on psychosocial well-being has been demonstrated in a number of studies. There is also evidence that psychosocial well-being may influence future overweight. We examined the bidirectional association between childhood overweight and psychoso...

  15. Poor School Bonding and Delinquency over Time: Bidirectional Effects and Sex Differences

    Science.gov (United States)

    Liljeberg, Jenny Freidenfelt; Eklund, Jenny M.; Fritz, Marie Vafors; Klinteberg, Britt af

    2011-01-01

    The association between poor school bonding and delinquency has only been partly addressed in earlier research. Using a longitudinal design, the objective of our study was to investigate possible bidirectional effects and sex differences between adolescents' experienced school bonding and self-rated delinquency over time. A total of 788…

  16. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem

  17. Robust stability of bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.

  18. Robust stability of bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov-Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms

  19. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  20. Bidirectional current-voltage converters based on magnetostrictive/piezoelectric composites

    NARCIS (Netherlands)

    Jia, Y.; Or, S.W.; Chan, H.L.W.; Jiao, J.; Luo, H.; Van der Zwaag, S.

    2009-01-01

    We report a power supply-free, bidirectional electric current-voltage converter based on a coil-wound laminated composite of magnetostrictive alloy and piezoelectric crystal. An electric current applied to the coil induces a magnetic field, resulting in an electric voltage from the composite due to

  1. Bidirectional relations between work-related stress, sleep quality and perseverative cognition

    NARCIS (Netherlands)

    Laethem, M. van; Beckers, D.G.J.; Kompier, M.A.J.; Kecklund, L.G.; Bossche, S.N.J. van den; Geurts, S.A.E.

    2015-01-01

    Objective In this longitudinal two-wave study, bidirectional relations between work-related stress and sleep quality were examined. Moreover, it was investigated whether perseverative cognition is a potential underlying mechanism in this association, related to both work-related stress and sleep

  2. Bidirectional relations between work-related stress, sleep quality and perseverative cognition.

    Science.gov (United States)

    Van Laethem, Michelle; Beckers, Debby G J; Kompier, Michiel A J; Kecklund, Göran; van den Bossche, Seth N J; Geurts, Sabine A E

    2015-11-01

    In this longitudinal two-wave study, bidirectional relations between work-related stress and sleep quality were examined. Moreover, it was investigated whether perseverative cognition is a potential underlying mechanism in this association, related to both work-related stress and sleep quality. A randomly selected sample of Dutch employees received an online survey in 2012 and 2013. Of all invited employees, 877 participated in both waves. Structural equation modeling was performed to analyze the data. We found evidence for reversed relations between work-related stress and sleep quality. Specifically, when controlling for perseverative cognition, work-related stress was not directly related to subsequent sleep quality, but low sleep quality was associated with an increase in work-related stress over time. Moreover, negative bidirectional associations over time were found between perseverative cognition and sleep quality, and positive bidirectional associations were found between work-related stress and perseverative cognition. Lastly, a mediation analysis showed that perseverative cognition fully mediated the relationship between work-related stress and sleep quality. The study findings suggest that perseverative cognition could be an important underlying mechanism in the association between work-related stress and sleep quality. The bidirectionality of the studied relationships could be an indication of a vicious cycle, in which work-related stress, perseverative cognition, and sleep quality mutually influence each other over time. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Studi Komparasi Fungsi Keanggotaan Fuzzy sebagai Kontroler Bidirectional DC-DC Converter pada Sistem Penyimpan Energi

    Directory of Open Access Journals (Sweden)

    Eka Prasetyono

    2015-09-01

    Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.

  4. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  5. Isolated Bidirectional DC–DC Converter for SuperCapacitor Applications

    DEFF Research Database (Denmark)

    Dehnavi, Sayed M. D.; Sen, Gökhan; Thomsen, Ole Cornelius

    2011-01-01

    This paper proposes a new bidirectional DC/DC converter for supercapacitor applications. The proposed converter has a parallel structure in supercapacitor side (where voltage is low and current is high) and a series structure in the other side. This structure increases efficiency of the converter...

  6. Structural design of intrinsically fluorescent oxysterols

    DEFF Research Database (Denmark)

    Nåbo, Lina J; Modzel, Maciej; Krishnan, Kathiresan

    2018-01-01

    Oxysterols are oxidized derivatives of cholesterol with many important biological functions. Trafficking of oxysterols in and between cells is not well studied, largely due to the lack of appropriate oxysterol analogs. Intrinsically fluorescent oxysterols present a new route towards direct...... observation of intracellular oxysterol trafficking by fluorescence microscopy. We characterize the fluorescence properties of the existing fluorescent 25-hydroxycholesterol analog 25-hydroxycholestatrienol, and propose a new probe with an extended conjugated system. The location of both probes inside...

  7. Intrinsic defects in ZnO varistors

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1983-01-01

    Theoretical calculations are presented for equilibrium concentrations of zinc and oxygen vacancies in ZnO. Results are presented at the sintering temperature, and also at room temperature. Theoretical calculations of reaction constants show that the intrinsic donor is the oxygen vacancy, rather than the zinc interstitial. The depletion of vacancies in the surface region, as the ZnO is cooled from the sintering temperature, is also calculated. Homojunction effects which are caused by such depletion are shown to be small

  8. Intrinsic and extrinsic effects on image memorability.

    Science.gov (United States)

    Bylinskii, Zoya; Isola, Phillip; Bainbridge, Constance; Torralba, Antonio; Oliva, Aude

    2015-11-01

    Previous studies have identified that images carry the attribute of memorability, a predictive value of whether a novel image will be later remembered or forgotten. Here we investigate the interplay between intrinsic and extrinsic factors that affect image memorability. First, we find that intrinsic differences in memorability exist at a finer-grained scale than previously documented. Second, we test two extrinsic factors: image context and observer behavior. Building on prior findings that images that are distinct with respect to their context are better remembered, we propose an information-theoretic model of image distinctiveness. Our model can automatically predict how changes in context change the memorability of natural images. In addition to context, we study a second extrinsic factor: where an observer looks while memorizing an image. It turns out that eye movements provide additional information that can predict whether or not an image will be remembered, on a trial-by-trial basis. Together, by considering both intrinsic and extrinsic effects on memorability, we arrive at a more complete and fine-grained model of image memorability than previously available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Moral Distress, Workplace Health, and Intrinsic Harm.

    Science.gov (United States)

    Weber, Elijah

    2016-05-01

    Moral distress is now being recognized as a frequent experience for many health care providers, and there's good evidence that it has a negative impact on the health care work environment. However, contemporary discussions of moral distress have several problems. First, they tend to rely on inadequate characterizations of moral distress. As a result, subsequent investigations regarding the frequency and consequences of moral distress often proceed without a clear understanding of the phenomenon being discussed, and thereby risk substantially misrepresenting the nature, frequency, and possible consequences of moral distress. These discussions also minimize the intrinsically harmful aspects of moral distress. This is a serious omission. Moral distress doesn't just have a negative impact on the health care work environment; it also directly harms the one who experiences it. In this paper, I claim that these problems can be addressed by first clarifying our understanding of moral distress, and then identifying what makes moral distress intrinsically harmful. I begin by identifying three common mistakes that characterizations of moral distress tend to make, and explaining why these mistakes are problematic. Next, I offer an account of moral distress that avoids these mistakes. Then, I defend the claim that moral distress is intrinsically harmful to the subject who experiences it. I conclude by explaining how acknowledging this aspect of moral distress should reshape our discussions about how best to deal with this phenomenon. © 2015 John Wiley & Sons Ltd.

  10. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties

    DEFF Research Database (Denmark)

    Lillestøl, Reidun K; Shah, Shiraz Ali; Brügger, Kim

    2009-01-01

    Summary CRISPRs of Sulfolobus fall into three main families based on their repeats, leader regions, associated cas genes, and putative recognition sequences on viruses and plasmids. Spacer sequence matches to different viruses and plasmids of the Sulfolobales revealed some bias particularly...... for family III CRISPRs. Transcription occurs on both strands of the five repeat-clusters of Sulfolobus acidocaldarius and a repeat-cluster of the conjugative plasmid pKEF9. Leader strand transcripts cover whole repeat-clusters and are processed mainly from the 3'-end, within repeats, yielding heterogeneous...

  11. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  12. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  13. Bidirectional Associations Between Externalizing Behavior Problems and Maladaptive Parenting Within Parent-Son Dyads Across Childhood.

    Science.gov (United States)

    Besemer, Sytske; Loeber, Rolf; Hinshaw, Stephen P; Pardini, Dustin A

    2016-10-01

    Coercive parent-child interaction models posit that an escalating cycle of negative, bidirectional interchanges influences the development of boys' externalizing problems and caregivers' maladaptive parenting over time. However, longitudinal studies examining this hypothesis have been unable to rule out the possibility that between-individual factors account for bidirectional associations between child externalizing problems and maladaptive parenting. Using a longitudinal sample of boys (N = 503) repeatedly assessed eight times across 6-month intervals in childhood (in a range between 6 and 13 years), the current study is the first to use novel within-individual change (fixed effects) models to examine whether parents tend to increase their use of maladaptive parenting strategies following an increase in their son's externalizing problems, or vice versa. These bidirectional associations were examined using multiple facets of externalizing problems (i.e., interpersonal callousness, conduct and oppositional defiant problems, hyperactivity/impulsivity) and parenting behaviors (i.e., physical punishment, involvement, parent-child communication). Analyses failed to support the notion that when boys increase their typical level of problem behaviors, their parents show an increase in their typical level of maladaptive parenting across the subsequent 6 month period, and vice versa. Instead, across 6-month intervals, within parent-son dyads, changes in maladaptive parenting and child externalizing problems waxed and waned in concert. Fixed effects models to address the topic of bidirectional relations between parent and child behavior are severely underrepresented. We recommend that other researchers who have found significant bidirectional parent-child associations using rank-order change models reexamine their data to determine whether these findings hold when examining changes within parent-child dyads.

  14. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    Science.gov (United States)

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  15. Clustering of Nuclei in Multinucleated Hyphae Is Prevented by Dynein-Driven Bidirectional Nuclear Movements and Microtubule Growth Control in Ashbya gossypii ▿ †

    Science.gov (United States)

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-01-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein. PMID:21642510

  16. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  17. Intrinsic to extrinsic phonon lifetime transition in a GaAs–AlAs superlattice

    International Nuclear Information System (INIS)

    Hofmann, F; Garg, J; Chen, G; Maznev, A A; Nelson, K A; Jandl, A; Bulsara, M; Fitzgerald, E A

    2013-01-01

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon–phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the ‘interfacial atomic disorder’ model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness. (paper)

  18. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    Science.gov (United States)

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  19. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  20. Gyrofluid Simulations of Intrinsic Rotation Generation in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.

    2010-11-01

    It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.