WorldWideScience

Sample records for intravital multiphoton microscopy

  1. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

    OpenAIRE

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion...

  2. Usefulness of Intravital Multiphoton Microscopy in Visualizing Study of Mouse Cochlea and Volume Changes in the Scala Media

    Directory of Open Access Journals (Sweden)

    Hyun Mi Ju

    2017-07-01

    Full Text Available Conventional microscopy has limitations in viewing the cochlear microstructures due to three-dimensional spiral structure and the overlying bone. But these issues can be overcome by imaging the cochlea in vitro with intravital multiphoton microscopy (MPM. By using near-infrared lasers for multiphoton excitation, intravital MPM can detect endogenous fluorescence and second harmonic generation of tissues. In this study, we used intravital MPM to visualize various cochlear microstructures without any staining and non-invasively analyze the volume changes of the scala media (SM without removing the overlying cochlear bone. The intravital MPM images revealed various tissue types, ranging from thin membranes to dense bone, as well as the spiral ganglion beneath the cochlear bone. The two-dimensional, cross-sectional, and serial z-stack intravital MPM images also revealed the spatial dilation of the SM in the temporal bone of pendrin-deficient mice. These findings suggest that intravital MPM might serve as a new method for obtaining microanatomical information regarding the cochlea, similar to standard histopathological analyses in the animal study for the cochlea. Given the capability of intravital MPM for detecting an increase in the volume of the SM in pendrin-deficient mice, it might be a promising new tool for assessing the pathophysiology of hearing loss in the future.

  3. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  4. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  5. Advances in multiphoton microscopy technology

    Science.gov (United States)

    Hoover, Erich E.; Squier, Jeff A.

    2013-01-01

    Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

  6. Intravital microscopy: new insights into cellular interactions.

    Science.gov (United States)

    Gavins, Felicity N E

    2012-10-01

    Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  8. Automated motion artifact removal for intravital microscopy, without a priori information

    Science.gov (United States)

    Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph

    2014-03-01

    Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber.

  9. Differential Multiphoton Laser Scanning Microscopy.

    Science.gov (United States)

    Field, Jeffrey J; Sheetz, Kraig E; Chandler, Eric V; Hoover, Erich E; Young, Michael D; Ding, Shi-You; Sylvester, Anne W; Kleinfeld, David; Squier, Jeff A

    2012-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot.

  10. Microhemodynamic parameters quantification from intravital microscopy videos

    International Nuclear Information System (INIS)

    Ortiz, Daniel; Cabrales, Pedro; Briceño, Juan Carlos

    2014-01-01

    Blood flow and blood–endothelium interactions correspond with the genesis of cardiovascular diseases. Therefore, quantitative analysis of blood flow dynamics at the microcirculation level is of special interest. Regulatory mechanisms mediated by blow flow have been studied in detail using in vitro approaches. However, these mechanisms have not been fully validated in vivo due to technical limitations that arise when quantifying microhemodynamics with the required level of detail. Intravital microscopy combined with high-speed video recordings has been used for the analysis of blood flow in small blood vessels of chronic and acute experimental tissue preparations. This tool can be used to study the interaction between the flowing blood and the vessel walls of arterioles and venules with sufficient temporal and spatial resolution. Our objective was to develop a simple and robust cross-correlation algorithm for the automatic analysis of high-speed video recordings of microcirculatory blood flow. The algorithm was validated using in vitro and in vivo systems. Results indicate that the algorithm's ability to estimate the velocity of local red blood cells as a function of blood vessel radius is highly accurate. They thereby suggest that the algorithm could be used to explore dynamic changes in blood flow under different experimental conditions including a wide range of flow rates and hematocrit levels. The algorithm can also be used to measure volumetric flow rates, radial velocity profiles, wall shear rate, and wall shear stress. Several applications are presently explored, including the analysis of velocity profiles in the branches of arterial bifurcations. This work demonstrates the robustness of the cross-correlation technique in various flow conditions and elucidates its potential application for in vivo determination of blood flow dynamics in the microcirculation. (paper)

  11. Multi-photon excitation microscopy

    Directory of Open Access Journals (Sweden)

    Faretta Mario

    2006-06-01

    Full Text Available Abstract Multi-photon excitation (MPE microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.

  12. Intravital microscopy of the inguinal lymph node.

    Science.gov (United States)

    Sellers, Stephanie L; Payne, Geoffrey W

    2011-04-04

    with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.

  13. Spectral-domain optical coherence phase and multiphoton microscopy

    NARCIS (Netherlands)

    Joo, C.; Kim, K.I.; de Boer, J.F.

    2007-01-01

    We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate

  14. Multiphoton microscopy in defining liver function

    Science.gov (United States)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  15. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  16. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl3 application: a novel model suitable for intravital microscopy and thrombolysis studies

    OpenAIRE

    Karatas, Hulya; Erdener, Sefik Evren; Gursoy-Ozdemir, Yasemin; Gurer, Gunfer; Soylemezoglu, Figen; Dunn, Andrew K; Dalkara, Turgay

    2011-01-01

    Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl3-soaked filter paper strip (0.3 × ...

  17. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    Science.gov (United States)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  18. Evaluation of Barrett esophagus by multiphoton microscopy.

    Science.gov (United States)

    Chen, Jianxin; Wong, Serena; Nathanson, Michael H; Jain, Dhanpat

    2014-02-01

    Multiphoton microscopy (MPM) based on 2-photon excitation fluorescence and second-harmonic generation allows simultaneous visualization of cellular details and extracellular matrix components of fresh, unfixed, and unstained tissue. Portable multiphoton microscopes, which could be placed in endoscopy suites, and multiphoton endomicroscopes are in development, but their clinical utility is unknown. To examine fresh, unfixed endoscopic biopsies obtained from the distal esophagus and gastroesophageal junction to (1) define the MPM characteristics of normal esophageal squamous mucosa and gastric columnar mucosa, and (2) evaluate whether diagnosis of intestinal metaplasia/Barrett esophagus (BE) could be made reliably with MPM. The study examined 35 untreated, fresh biopsy specimens from 25 patients who underwent routine upper endoscopy. A Zeiss LSM 710 Duo microscope (Carl Zeiss, Thornwood, New York) coupled to a Spectra-Physics (Mountain View, California) Tsunami Ti:sapphire laser was used to obtain a MPM image within 4 hours of fresh specimen collection. After obtaining MPM images, the biopsy specimens were placed in 10% buffered formalin and submitted for routine histopathologic examination. Then, the MPM images were compared with the findings in the hematoxylin-eosin-stained, formalin-fixed, paraffin-embedded sections. The MPM characteristics of the squamous, gastric-type columnar and intestinal-type columnar epithelium were analyzed. In biopsies with discrepancy between MPM imaging and hematoxylin-eosin-stained sections, the entire tissue block was serially sectioned and reevaluated. A diagnosis of BE was made when endoscopic and histologic criteria were satisfied. Based on effective 2-photon excitation fluorescence of cellular reduced pyridine nucleotides and flavin adenine dinucleotide and lack of 2-photon excitation fluorescence of mucin and cellular nuclei, MPM could readily identify and distinguish among squamous epithelial cells, goblet cells, gastric

  19. Human bladder cancer diagnosis using multiphoton microscopy

    Science.gov (United States)

    Mukherjee, Sushmita; Wysock, James S.; Ng, Casey K.; Akhtar, Mohammed; Perner, Sven; Lee, Ming-Ming; Rubin, Mark A.; Maxfield, Frederick R.; Webb, Watt W.; Scherr, Douglas S.

    2009-02-01

    At the time of diagnosis, approximately 75% of bladder cancers are non-muscle invasive. Appropriate diagnosis and surgical resection at this stage improves prognosis dramatically. However, these lesions, being small and/or flat, are often missed by conventional white-light cystoscopes. Furthermore, it is difficult to assess the surgical margin for negativity using conventional cystoscopes. Resultantly, the recurrence rates in patients with early bladder cancer are very high. This is currently addressed by repeat cystoscopies and biopsies, which can last throughout the life of a patient, increasing cost and patient morbidity. Multiphoton endoscopes offer a potential solution, allowing real time, noninvasive biopsies of the human bladder, as well as an up-close assessment of the resection margin. While miniaturization of the Multiphoton microscope into an endoscopic format is currently in progress, we present results here indicating that Multiphoton imaging (using a bench-top Multiphoton microscope) can indeed identify cancers in fresh, unfixed human bladder biopsies. Multiphoton images are acquired in two channels: (1) broadband autofluorescence from cells, and (2) second harmonic generation (SHG), mostly by tissue collagen. These images are then compared with gold standard hematoxylin/eosin (H&E) stained histopathology slides from the same specimen. Based on a "training set" and a very small "blinded set" of samples, we have found excellent correlation between the Multiphoton and histopathological diagnoses. A larger blinded analysis by two independent uropathologists is currently in progress. We expect that the conclusion of this phase will provide us with diagnostic accuracy estimates, as well as the degree of inter-observer heterogeneity.

  20. A review of biomedical multiphoton microscopy and its laser sources

    International Nuclear Information System (INIS)

    Lefort, Claire

    2017-01-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. (topical review)

  1. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    Science.gov (United States)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  2. Multiphoton multifocal microscopy exploiting a diffractive optical element

    Science.gov (United States)

    Sacconi, L.; Froner, E.; Antolini, R.; Taghizadeh, M. R.; Choudhury, A.; Pavone, F. S.

    2003-10-01

    Multiphoton multifocal microscopy (MMM) usually has been achieved through a combination of galvo scanners with microlens arrays, with rotating disks of microlens arrays, and cascaded beam splitters with asynchronous rastering of scanning mirrors. Here we describe the achievement of a neat and compact MMM by use of a high-diffraction-efficiency diffractive-optic element that generates a multiple-spot grid of uniform intensity to achieve higher fidelity in imaging of live cells at adequate speeds.

  3. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    OpenAIRE

    Khorshed, Reema?A.; Hawkins, Edwin?D.; Duarte, Delfim; Scott, Mark?K.; Akinduro, Olufolake?A.; Rashidi, Narges?M.; Spitaler, Martin; Lo?Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is ...

  4. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  5. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  6. Motion characterization scheme to minimize motion artifacts in intravital microscopy

    Science.gov (United States)

    Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias; Weissleder, Ralph; Vinegoni, Claudio

    2017-03-01

    Respiratory- and cardiac-induced motion artifacts pose a major challenge for in vivo optical imaging, limiting the temporal and spatial imaging resolution in fluorescence laser scanning microscopy. Here, we present an imaging platform developed for in vivo characterization of physiologically induced axial motion. The motion characterization system can be straightforwardly implemented on any conventional laser scanning microscope and can be used to evaluate the effectiveness of different motion stabilization schemes. This method is particularly useful to improve the design of novel tissue stabilizers and to facilitate stabilizer positioning in real time, therefore facilitating optimal tissue immobilization and minimizing motion induced artifacts.

  7. Intravital Imaging

    OpenAIRE

    Pittet, Mikael J.; Weissleder, Ralph

    2011-01-01

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible, and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biolo...

  8. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  9. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.

    Science.gov (United States)

    Tang, Jianyong; Germain, Ronald N; Cui, Meng

    2012-05-29

    Biological tissues are rarely transparent, presenting major challenges for deep tissue optical microscopy. The achievable imaging depth is fundamentally limited by wavefront distortions caused by aberration and random scattering. Here, we report an iterative wavefront compensation technique that takes advantage of the nonlinearity of multiphoton signals to determine and compensate for these distortions and to focus light inside deep tissues. Different from conventional adaptive optics methods, this technique can rapidly measure highly complicated wavefront distortions encountered in deep tissue imaging and provide compensations for not only aberration but random scattering. The technique is tested with a variety of highly heterogeneous biological samples including mouse brain tissue, skull, and lymph nodes. We show that high quality three-dimensional imaging can be realized at depths beyond the reach of conventional multiphoton microscopy and adaptive optics methods, albeit over restricted distances for a given correction. Moreover, the required laser excitation power can be greatly reduced in deep tissues, deviating from the power requirement of ballistic light excitation and thus significantly reducing photo damage to the biological tissue.

  10. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    Science.gov (United States)

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  11. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    Science.gov (United States)

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  12. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

    Science.gov (United States)

    Miller, Mark J.; Wei, Sindy H.; Cahalan, Michael D.; Parker, Ian

    2003-03-01

    The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of 11 μm·min1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm·min1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.

  13. Intravital imaging.

    Science.gov (United States)

    Pittet, Mikael J; Weissleder, Ralph

    2011-11-23

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biology, and neurobiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Denis Soulet

    Full Text Available In vivo imaging using two-photon microscopy is an essential tool to explore the dynamic of physiological events deep within biological tissues for short or extended periods of time. The new capabilities offered by this technology (e.g. high tissue penetrance, low toxicity have opened a whole new era of investigations in modern biomedical research. However, the potential of using this promising technique in tissues of living animals is greatly limited by the intrinsic irregular movements that are caused by cardiac and respiratory cycles and muscular and vascular tone. Here, we show real-time imaging of the brain, spinal cord, sciatic nerve and myenteric plexus of living mice using a new automated program, named Intravital_Microscopy_Toolbox, that removes frames corrupted with motion artifacts from time-lapse videos. Our approach involves generating a dissimilarity score against precalculated reference frames in a specific reference channel, thus allowing the gating of distorted, out-of-focus or translated frames. Since the algorithm detects the uneven peaks of image distortion caused by irregular animal movements, the macro allows a fast and efficient filtering of the image sequence. In addition, extra features have been implemented in the macro, such as XY registration, channel subtraction, extended field of view with maximum intensity projection, noise reduction with average intensity projections, and automated timestamp and scale bar overlay. Thus, the Intravital_Microscopy_Toolbox macro for ImageJ provides convenient tools for biologists who are performing in vivo two-photon imaging in tissues prone to motion artifacts.

  15. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  16. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography.

    Science.gov (United States)

    Umetani, K; Fukushima, K

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  17. Investigation of depilatory mechanism by use of multiphoton fluorescent microscopy

    Science.gov (United States)

    Lin, Chiao-Ying; Lee, Gie-ne; Jee, Shiou-Hwa; Dong, Chen-Yuan; Lin, Sung-Jan

    2007-07-01

    Transdermal drug delivery provides a non-invasive route of drug administration, and can be a alternative method to oral delivery and injection. The stratum corneum (SC) of skin acts as the main barrier to transdermal drug delivery. Studies suggest that depilatory enhances permeability of drug through the epidermis. However, transdermal delivery pathway and mechanism are not completely understood. Previous studies have found that depilatory changes the keratinocytes of epidermis, and cause the protein in combination with lipid extraction of SC to become disordered. Nevertheless, those studies did not provide images of those processes. The aim of this study is to characterize the penetration enhancing effect of depilatory agent and the associated structural alterations of stratum corneum. Fresh human foreskin is treated by a depilatory agent for 10 minutes and then subjected to the treatment of fluorescent model drugs of hydrophilic rhodamine and hydrophobic rhodamine-RE. The penetration of model drugs is imaged and quantified by multiphoton microscopy. Our results showed that the penetration of both hydrophilic and hydrophobic agents can be enhanced and multifocal detachment of surface corneocytes is revealed. Nile red staining revealed, instead of a regular motar distribution of lipid around the brick of corneocytes, a disorganized and homogenized pattern of lipid distribution. We concluded that depilatory agents enhance drug penetration by disrupting both the cellular integrity of corneocytes and the regular packing of intercellular lipid of stratum corneum.

  18. Visualizing liver anatomy, physiology and pharmacology using multiphoton microscopy.

    Science.gov (United States)

    Wang, Haolu; Liang, Xiaowen; Gravot, Germain; Thorling, Camilla A; Crawford, Darrell H G; Xu, Zhi Ping; Liu, Xin; Roberts, Michael S

    2017-01-01

    Multiphoton microscopy (MPM) has become increasingly popular and widely used in both basic and clinical liver studies over the past few years. This technology provides insights into deep live tissues with less photobleaching and phototoxicity, which helps us to better understand the cellular morphology, microenvironment, immune responses and spatiotemporal dynamics of drugs and therapeutic cells in the healthy and diseased liver. This review summarizes the principles, opportunities, applications and limitations of MPM in hepatology. A key emphasis is on the use of fluorescence lifetime imaging (FLIM) to add additional quantification and specificity to the detection of endogenous fluorescent species in the liver as well as exogenous molecules and nanoparticles that are applied to the liver in vivo. We anticipate that in the near future MPM-FLIM will advance our understanding of the cellular and molecular mechanisms of liver diseases, and will be evaluated from bench to bedside, leading to real-time histology of human liver diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of intramural metastasis in esophageal cancer using multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Kang, Deyong; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, jiangbo; Chen, Jianxin

    2017-02-01

    Intramural metastasis (IM) of esophageal cancer is defined as metastasis from a primary lesion to the esophageal wall without intraepithelial cancer extension. Esophageal cancer with IM is more common and such cases indicate a poor prognosis. In esophageal surgery, if curative resection is possible, the complete removal of both primary tumor and associated IMs is required. Therefore, accurate diagnosis of IMs in esophageal cancer prior to surgery is of particular importance. Multiphoton microscopy (MPM) with subcellular resolution is well-suited for deep tissue imaging since many endogenous fluorophores of fresh biological tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Here, a study to identify IM in fresh tissue section using MPM is reported. In this study, the morphological and spectral differences between IM and surrounding tissue are described. These results show that MPM has the ability to accurately identify IM in esophageal tissues. With improvement of the penetration depth of MPM and the development of multiphton microendoscope, MPM may be a promising imaging technique for preoperative diagnosis of IMs in esophageal cancer in the future.

  20. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy

    Directory of Open Access Journals (Sweden)

    Segall Jeffrey E

    2005-05-01

    Full Text Available Abstract Background The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy. Results Here we describe a method for the simultaneous imaging, by multiphoton microscopy, of Green Fluorescent Protein, Cyan Fluorescent Protein and collagen in vivo in living tumors. This novel method enables: 1 the simultaneous visualization of overall cell shape and sub-cellular structures such as the plasma membrane or proteins of interest in cells inside living animals, 2 direct comparison of the behavior of single cells from different cell lines in the same microenvironment in vivo. Conclusion Using this multi-fluor, multiphoton technique, we demonstrate that motility and metastatic differences between carcinoma cells of differing metastatic potential can be imaged in the same animal simultaneously at sub-cellular resolution.

  1. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl(3) application: a novel model suitable for intravital microscopy and thrombolysis studies.

    Science.gov (United States)

    Karatas, Hulya; Erdener, Sefik Evren; Gursoy-Ozdemir, Yasemin; Gurer, Gunfer; Soylemezoglu, Figen; Dunn, Andrew K; Dalkara, Turgay

    2011-06-01

    Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl(3)-soaked filter paper strip (0.3 × 1 mm(2)) on the duramater over the trunk of the distal MCA through a cranial window for 3 minutes induced intraarterial thrombus without damaging the peri-arterial cortex in the mouse. This caused a rapid regional cerebral blood flow decrease within 10 minutes and total occlusion of the MCA segment under the filter paper in 17±2 minutes, which resulted in a typical cortical infarct of 27±4 mm(3) at 24 hours and moderate sensorimotor deficits. There was no significant hemispheric swelling or hemorrhage or mortality at 24 hours. Reperfusion was obtained in half of the mice with tissue plasminogen activator, which allowed live monitoring of clot lysis along with restoration of tissue perfusion and MCA flow. In conclusion, this relatively simple and noninvasive stroke model is easy to perform under a microscope, making it suitable for live imaging and thrombolysis studies.

  2. Adaptive optics multiphoton microscopy to study ex vivo ocular tissues.

    Science.gov (United States)

    Bueno, Juan M; Gualda, Emilio J; Artal, Pablo

    2010-01-01

    We develop an adaptive optics (AO) multiphoton microscope by incorporating a deformable mirror and a Hartmann-Shack wavefront sensor. The AO module operating in closed-loop is used to correct for the aberrations of the illumination laser beam. This increases the efficiency of the nonlinear processes in reducing tissue photodamage, improves contrast, and enhances lateral resolution in images of nonstained ocular tissues. In particular, the use of AO in the multiphoton microscope provides a better visualization of ocular structures, which are relevant in ophthalmology. This instrument might be useful to explore the possible connections between changes in ocular structures and the associated pathologies.

  3. Comparison of objective lenses for multiphoton microscopy in turbid samples.

    Science.gov (United States)

    Singh, Avtar; McMullen, Jesse D; Doris, Eli A; Zipfel, Warren R

    2015-08-01

    Optimization of illumination and detection optics is pivotal for multiphoton imaging in highly scattering tissue and the objective lens is the central component in both of these pathways. To better understand how basic lens parameters (NA, magnification, field number) affect fluorescence collection and image quality, a two-detector setup was used with a specialized sample cell to separate measurement of total excitation from epifluorescence collection. Our data corroborate earlier findings that low-mag lenses can be superior at collecting scattered photons, and we compare a set of commonly used multiphoton objective lenses in terms of their ability to collect scattered fluorescence, providing guidance for the design of multiphoton imaging systems. For example, our measurements of epi-fluorescence beam divergence in the presence of scattering reveal minimal beam broadening, indicating that often-advocated over-sized collection optics are not as advantageous as previously thought. These experiments also provide a framework for choosing objective lenses for multiphoton imaging by relating the results of our measurements to various design parameters of the objectives lenses used.

  4. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  5. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  6. Three-dimensional tooth imaging using multiphoton and second harmonic generation microscopy

    Science.gov (United States)

    Chen, Min-Huey; Chen, Wei-Liang; Sun, Yen; Fwu, Peter Tramyeon; Lin, Ming-Gu; Dong, Chen-Yuan

    2007-02-01

    Detailed morphological and cellular information relating to the human tooth have traditionally been obtained through histological studies that required decalcification, staining, and fixation. With the recent invention of multiphoton microscopy, it has become possible to acquire high resolution images without histological procedures. Using an epiilluminated multiphoton microscope, we obtained two-photon excited autofluorescence and second harmonic generation (SHG) images of ex vivo human tooth. By combining these two imaging modalities we obtained submicron resolution images of the enamel, dentin, and the periodontal ligaments. The enamel emits endogenous two-photon autofluorescence. The structure of the dentin is visible from both the autofluorescence and second harmonic generation signals. The periodontal ligament composed mostly of collagen can be visualized by SHG imaging. We also constructed three dimensional images of the enamel, dentin, and periodontal ligament. The effectiveness of using multiphoton and second harmonic generation microscopy to obtain structural information of teeth suggest its potential use in dental diagnostics.

  7. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo.

    Science.gov (United States)

    Chen, Guannan; Lui, Harvey; Zeng, Haishan

    2015-02-01

    Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies.

  8. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  9. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    Science.gov (United States)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  10. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    Science.gov (United States)

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  11. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    Science.gov (United States)

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    Science.gov (United States)

    Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.

  13. Noninvasive multiphoton imaging of cardiovascular structures using NIR femtosecond laser scanning microscopy

    Science.gov (United States)

    Schenke-Layland, Katja; Riemann, Iris; Stock, Ulrich A.; Konig, Karsten

    2004-07-01

    Near infrared (NIR) femtosecond laser scanning microscopy represents a novel and very promising medical diagnostic imaging technology for non-invasive cross-sectional analysis of living biological tissues. In this study multiphoton imaging has been performed to analyze the structural features of extracellular matrix (ECM) components, e.g. collagen and elastin, of living pulmonary and aortic heart valves. High-resolution autofluorescence and second harmonic generation (SHG) images of collagenous and elastic fibers were demonstrated using multifluorophore, multiphoton excitation at two different wavelengths and non-invasive optical sectioning, without the need of embedding or staining. The quality of the resulting three-dimensional images allowed exact differentiation of the ECM components. These experimental results indicated that NIR femtosecond laser scanning microscopy may prove to be a useful tool for the non-destructive monitoring and characterization of cardiovascular structures.

  14. Quantitative analysis of monocyte subpopulations in murine atherosclerotic plaques by multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Abigail S Haka

    Full Text Available The progressive accumulation of monocyte-derived cells in the atherosclerotic plaque is a hallmark of atherosclerosis. However, it is now appreciated that monocytes represent a heterogeneous circulating population of cells that differ in functionality. New approaches are needed to investigate the role of monocyte subpopulations in atherosclerosis since a detailed understanding of their differential mobilization, recruitment, survival and emigration during atherogenesis is of particular importance for development of successful therapeutic strategies. We present a novel methodology for the in vivo examination of monocyte subpopulations in mouse models of atherosclerosis. This approach combines cellular labeling by fluorescent beads with multiphoton microscopy to visualize and monitor monocyte subpopulations in living animals. First, we show that multiphoton microscopy is an accurate and timesaving technique to analyze monocyte subpopulation trafficking and localization in plaques in excised tissues. Next, we demonstrate that multiphoton microscopy can be used to monitor monocyte subpopulation trafficking in atherosclerotic plaques in living animals. This novel methodology should have broad applications and facilitate new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.

  15. Multi-photon excitation microscopy for advanced biomedical imaging

    NARCIS (Netherlands)

    Gadella, B.M.; Haeften, T.W. van; Bavel, Kees van; Valentijn, Jack A.

    Fluorescence microscopy (FM) is a technique traditionally used for determining biological structures [33]; its basic concept is summarised in Figure 1a. The biological specimen under examination is labelled with one or more fluorescent probes before being placed in the microscope. A single photon

  16. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study

    Directory of Open Access Journals (Sweden)

    Tolón Rosa M

    2011-01-01

    Full Text Available Abstract Background The phytocannabinoid cannabidiol (CBD exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS. Methods Vascular responses of pial vessels were analyzed by intravital microscopy and inflammatory parameters measured by qRT-PCR. Results CBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD. Conclusions These data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid.

  17. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas.

    Science.gov (United States)

    Gualda, Emilio J; Vázquez de Aldana, Javier R; Martínez-García, M Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M

    2011-11-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures.

  18. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    OpenAIRE

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. I...

  19. Extracting quantitative parameters from images in multiphoton microscopy

    Science.gov (United States)

    Zimmerley, Maxwell Stuart

    Coherent anti-Stokes Raman scattering (CARS) microscopy allows for fast, three-dimensionally resolved detection of molecules based on vibrational contrast. In CARS, the generated signal is nonlinearly dependent upon the concentration of the vibrational mode of interest. This makes it challenging to extract quantitative parameters (such as the concentration or orientation) from CARS images of biological and synthetic samples. Because of this, many investigations which employ CARS microscopy generally only report qualitative information extracted from these images. In this thesis, three methods have been developed to extract the quantitative concentration information from CARS images. In the first, the ratio of the forward-propagating and back-reflected CARS signal generated in tissue is used to monitor the percolation of DMSO into excised human cadaver skin. Through this, we find that the maximum clearing of skin with DMSO occurs at 40% v/v. We also combine CARS with second harmonic generation (SHG) to investigate the effects of DMSO on collagen. Up to a 20% v/v concentration of DMSO in the skin, the collagen becomes disrupted, resulting in a significant drop in the generated SHG. In the second method, the ratio between the CARS resonance peak and dip is correlated with the concentration to measure the concentration of water and deuterated glycine in hair. Both molecules are found to distribute throughout the hair fiber homogenously, water at a 34% v/v concentration, and d-glycine with a 0.22 M concentration. In the final method, CARS spectra over one vibrational mode are used to extract the imaginary part of the third-order nonlinear susceptibility. This quantity is linearly dependent upon the concentration of the vibrational mode of interest. This procedure is used to determine the degree of conversion of two-photon polymerized microstructures synthesized with varying writing powers. A sigmoidal relationship is observed between the applied intensity and the degree

  20. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  1. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy.

    Science.gov (United States)

    Jung, Woonggyu; Tang, Suo; McCormic, Daniel T; Xie, Tiquiang; Ahn, Yeh-Chan; Su, Jianping; Tomov, Ivan V; Krasieva, Tatiana B; Tromberg, Bruce J; Chen, Zhongping

    2008-06-15

    A factor that limits the use of multiphoton microscopy (MPM) in clinical and preclinical studies is the lack of a compact and flexible probe. We report on a miniaturized MPM probe employing a microelectromechanical system (MEMS) scanning mirror and a double-clad photonic crystal fiber (DCPCF). The use of a MEMS mirror and a DCPCF provides many advantages, such as size reduction, rapid and precise scanning, efficient delivery of short pulses, and high collection efficiency of fluorescent signals. The completed probe was 1 cm in outer diameter and 14 cm in length. The developed probe was integrated into an MPM system and used to image fluorescent beads, paper, and biological specimens.

  2. Multiphoton Microscopy in the Study of Morphological Characteristics of Radiation-Induced Injuries of the Bladder

    OpenAIRE

    S.S. Kuznetsov; V.V. Dudenkova; М.V. Kochueva; Е.B. Kiseleva; N.Yu. Ignatieva; O.L. Zakharkina; E.A. Sergeeva; K.V. Babak; А.V. Maslennikova

    2016-01-01

    The aim of the investigation was to assess the feasibility of multiphoton microscopy (MPM) for studying dynamics of bladder structural changes following a single exposure to gamma-radiation at various doses (2, 10, and 40 Gy) in experiment. Materials and Methods. Specimens of rat bladders after a single local radiation at the dose of 2, 10, and 40 Gy were the objects of investigation (9 groups with two rats for each dose and term, and two intact rats — 20 observations in all). The study was c...

  3. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  4. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy.

    Science.gov (United States)

    Ellingsen, Pål Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina de Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  5. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis.

    Science.gov (United States)

    Supatto, Willy; McMahon, Amy; Fraser, Scott E; Stathopoulos, Angelike

    2009-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five-step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multi-photon microscopy, to 3D cell tracking using image processing, registration of tracking data and their quantitative analysis using computational tools. It uses commercially available equipment and requires expertise in microscopy and programming that is appropriate for a biology laboratory. Custom-made scripts are provided, as well as sample datasets to permit readers without experimental data to carry out the analysis. The protocol has offered new insights into the genetic control of cell migration during Drosophila gastrulation. With simple modifications, this systematic analysis could be applied to any developing system to define cell positions in accordance with the body plan, to decompose complex 3D movements and to quantify the collective nature of cell migration.

  6. Characterizing germania concentration and structure in fiber soot using multiphoton microscopy and spectroscopy technology

    Science.gov (United States)

    Chen, Minghan; Li, Ming-Jun; Liu, Anping

    2015-02-01

    Germania doping is commonly used in the core of optical fiber due to its advantages compared to other materials such as superior transparency in near-infrared telecommunication wavelength region. During fiber preform manufacturing using the outside vapor deposition (OVD) process, Ge is doped into a silica soot preform by chemical vapor deposition. Since the Ge doping concentration profile is directly correlated with the fiber refractive index profile, its characterization is critical for the fiber industry. Electron probe micro-analyzer (EPMA) is a conventional analysis method for characterizing the Ge concentration profile. However, it requires extensive sample preparation and lengthy measurement. In this paper, a multiphoton microscopy technique is utilized to measure the Ge doping profile based on the multiphoton fluorescence intensity of the soot layers. Two samples, one with ramped and another with stepped Ge doping profiles were prepared for measurements. Measured results show that the technique is capable of distinguishing ramped and stepped Ge doping profiles with good accuracy. In the ramped soot sample, a sharp increment of doping level was observed in about 2 mm range from soot edge followed by a relative slow gradient doping accretion. As for the stepped doping sample, step sizes ranging from around 1 mm (at soot edge) to 3 mm (at soot center) were observed. All the measured profiles are in close agreement with that of the EPMA measurements. In addition, both multiphoton fluorescence (around 420 nm) and sharp second harmonic generations (at 532 nm) were observed, which indicates the co-existence of crystal and amorphous GeO2.

  7. Multiphoton microscopy for the investigation of trans-cutaneous drug delivery

    Science.gov (United States)

    Stracke, Frank; Schneider, Marc; Weiss, Barbara; Lehr, Claus-Michael; Schäfer, Ulrich F.; König, Karsten

    2007-07-01

    The trans-cutaneous pathway for drug delivery is of particular interest since it allows a simple and non-invasive administration of pharmaceutically relevant compounds. As the skin is an effective barrier for many of these compounds, various strategies have been developed to enable and control the trans-cutaneous transport. Here we discuss, how multiphoton microscopy and spectral imaging can be valuable tools for the analysis of the penetration pathways of topically applied drugs. A time dependent study of the cutaneous penetration of a fluorescent drug model released from a nano-particular carrier is presented. The localization of single nano-particles in human skin (ex vivo) and the discrimination of different fluorescent compounds, as the drug model, the particle's label and the cutaneous endofluorescence by spectral imaging and selective excitation is shown. Multiphoton imaging techniques were found to be excellent methods for the non-invasive evaluation of cutaneous drug delivery strategies and analysis of dermal penetration pathways down to the sub-cellular level.

  8. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy.

    Science.gov (United States)

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  9. Label-free imaging of rat spinal cords based on multiphoton microscopy

    Science.gov (United States)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  10. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    Science.gov (United States)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  11. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    Science.gov (United States)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  12. Differentiating fibroadenoma and ductal carcinoma in situ from normal breast tissue by multiphoton microscopy

    Science.gov (United States)

    Nie, Yuting; Wu, Yan; Lian, Yuane; Fu, Fangmeng; Wang, Chuan; Chen, Jianxin

    2014-09-01

    Fibroadenoma (FA) is the most common benign tumor of the female breast and several studies have reported that women with it have increased risk of breast cancer. While the ductal carcinoma in situ (DCIS) is a very early form of breast cancer. Thus, early detections of FA and DCIS are critical for improving breast tumor outcome and survival. In this paper, we use multiphoton microscopy (MPM) to obtain the high-contrast images of fresh, unfixed, unstained human breast specimens (normal breast tissue, FA and DCIS). Our results show that MPM has the ability to identify the characteristics of FA and DCIS including changes of duct architecture and collagen morphology. These results are consistent with the histological results. With the advancement of MPM, the technique has potential ability to serve as a real-time noninvasive imaging tool for early detection of breast tumor.

  13. Visualization of dermal alteration in skin lesions with discoid lupus erythematosus by multiphoton microscopy

    Science.gov (United States)

    Lin, L. H.; Yu, H. B.; Zhu, X. Q.; Zhuo, S. M.; Wang, Y. Y.; Yang, Y. H.; Chen, J. X.

    2013-04-01

    Discoid lupus erythematosus (DLE) is a chronic dermatological disease which lacks valid methods for early diagnosis and therapeutic monitoring. Considering the collagen and elastin disorder due to mucin deposition of DLE, multiphoton microscopy (MPM) imaging techniques were employed to obtain high-resolution collagen and elastin images from the dermis. The content and distribution of collagen and elastin were quantified to characterize the dermal pathological status of skin lesions with DLE in comparison with normal skin. Our results showed a significant difference between skin lesions with DLE and normal skin in terms of the morphological structure of collagen and elastin in the dermis, demonstrating the possibility of MPM for noninvasively tracking the pathological process of DLE even in its early stages and evaluating the therapeutic efficacy at the molecular level.

  14. Real-time histological imaging of kidneys stained with food dyes using multiphoton microscopy.

    Science.gov (United States)

    Nagao, Yasuaki; Kimura, Kazushi; Wang, Shujie; Fujiwara, Takeshi; Mizoguchi, Akira

    2015-10-01

    We have developed a real-time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model-mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real-time diagnosis of kidney diseases. © 2015 Wiley Periodicals, Inc.

  15. A Novel Intravital Imaging Window for Longitudinal Microscopy of the Mouse Ovary

    Science.gov (United States)

    Bochner, Filip; Fellus-Alyagor, Liat; Kalchenko, Vyacheslav; Shinar, Shiri; Neeman, Michal

    2015-01-01

    The ovary is a dynamic organ that undergoes dramatic remodeling throughout the ovulatory cycle. Maturation of the ovarian follicle, release of the oocyte in the course of ovulation as well as formation and degradation of corpus luteum involve tightly controlled remodeling of the extracellular matrix and vasculature. Ovarian tumors, regardless of their tissue of origin, dynamically interact with the ovarian microenvironment. Their activity in the tissue encompasses recruitment of host stroma and immune cells, attachment of tumor cells to mesothelial layer, degradation of the extracellular matrix and tumor cell migration. High-resolution dynamic imaging of such processes is particularly challenging for internal organs. The implementation of a novel imaging window as reported here enabled longitudinal microscopy of ovarian physiology and orthotopic tumor invasion. PMID:26207832

  16. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    Klenke, Frank Michael; Gebhard, Martha-Maria; Ewerbeck, Volker; Abdollahi, Amir; Huber, Peter E; Sckell, Axel

    2006-01-01

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  17. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  18. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    International Nuclear Information System (INIS)

    Cemazar, Maja; Wilson, Ian; Dachs, Gabi U; Tozer, Gillian M; Sersa, Gregor

    2004-01-01

    Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

  19. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    Science.gov (United States)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  20. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  1. Monitoring chemically enhanced transdermal delivery of zinc oxide nanoparticles by using multiphoton microscopy

    Science.gov (United States)

    Lo, Wen; Hsu, Chih-Ting; Kuo, Tsung-Rong; Wu, Chung-Long; Chiang, Shu-Jen; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2010-02-01

    Zinc oxide nanoparticles (ZnO NPs) are commonly used in sunscreens to reduce the risk of skin cancer by blocking ultraviolet radiation. ZnO NPs absorption through the transdermal route may not cause high health risk as inhalation or ingestion. However, in practical usage of sunscreens and cosmetics, ZnO NPs are topically applied to a large area of skin with long periods hence the potential absorption amount of ZnO NPs is still need to be concerned. Therefore, if the ZnO NPs are able the pass the barrier of normal skin, the pathways of transdermal delivery and the factors of enhancements become important issues. In this work, multiphoton microscopy provides us a non-invasive visualization of ZnO NPs in skin. Moreover, we quantitatively analyzed the enhancement of oleic acid and ethanol. Due to the fact that photoluminance of ZnO NPs spectrally overlaps autofluorence from skin stratum corneum (SC) and high turbidity of both ZnO NPs and SC, it is difficult to resolve the distribution of ZnO NPs in skin by using fluorescence microscopy. In this work, the second harmonic generation (SHG) signals from ZnO NPs which double the frequency of excitation source to characterize the delivery pathways and penetration depth in skin. Moreover, we quantitatively compare the ZnO NPs delivery efficiency in normal skin and in skins with three chemically enhancing conditions: ethanol, oleic acid and the combination of ethanol and oleic acid.

  2. Comparing in vivo pump–probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions

    Science.gov (United States)

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Mitropoulos, Tanya; Simpson, Mary Jane; Zhang, Jennifer Y.; Warren, Warren S.

    2014-01-01

    Abstract. We demonstrate a multimodal approach that combines a pump–probe with confocal reflectance and multiphoton autofluorescence microscopy. Pump–probe microscopy has been proven to be of great value in analyzing thin tissue sections of pigmented lesions, as it produces molecular contrast which is inaccessible by other means. However, the higher optical intensity required to overcome scattering in thick tissue leads to higher-order nonlinearities in the optical response of melanin (e.g., two-photon pump and one-photon probe) that present additional challenges for interpreting the data. We show that analysis of pigment composition in vivo must carefully account for signal terms that are nonlinear with respect to the pump and probe intensities. We find that pump–probe imaging gives useful contrast for pigmented structures over a large range of spatial scales (100  μm to 1 cm), making it a potentially useful tool for tracking the progression of pigmented lesions without the need to introduce exogenous contrast agents. PMID:25415567

  3. Multiphoton microscopy for skin wound healing study in terms of cellular metabolism and collagen regeneration

    Science.gov (United States)

    Deka, Gitanjal; Okano, Kazunori; Wu, Wei-Wen; Kao, Fu-Jen

    2014-02-01

    Multiphoton microscopy was employed to study normal skin wound healing in live rats noninvasively. Wound healing is a process involving series of biochemical events. This study evaluates the regeneration of collagen and change in cellular metabolic activity during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), respectively. In eukaryotic cells ATP is the molecule that holds the energy for cellular functioning. Whereas NADH is an electron donor in the metabolic pathways, required to generate ATP. Fluorescence lifetime of NADH free to protein bound ratio was evaluated to determine the relative metabolic activity. The FLIM data were acquired by a TCSPC system using SPCM software and analyzed by SPCImage software. Additionally, polarization resolved SHG signals were also collected to observe the changes in optical birefringence and hence the anisotropy of regenerated collagens from rat wound biopsy samples. Mat lab programming was used to process the data to construct the anisotropy images. Results indicated that, cells involved in healing had higher metabolic activity during the first week of healing, which decreases gradually and become equivalent to normal skin upon healing completes. A net degradation of collagen during the inflammatory phase and net regeneration starting from day 5 were observed in terms of SHG signal intensity change. Polarization resolved SHG imaging of the wound biopsy sample indicates higher value of anisotropy in proliferative phase, from day 4th to 8th, of wound formation; however the anisotropy decreases upon healing.

  4. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  5. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    Science.gov (United States)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  6. Idiopathic atrophoderma of Pasini and Pierini: A case study of collagen and elastin texture by multiphoton microscopy.

    Science.gov (United States)

    Vieira-Damiani, Gislaine; Lage, Denise; Christofoletti Daldon, Patrícia Érica; Tibúrcio Alves, Caroline Romanelli; Cintra, Maria Letícia; Metze, Konradin; Adur, Javier; Pelegati, Vitor B; Carvalho, Hernandes F; Cesar, Carlos Lenz

    2017-11-01

    The diagnosis of idiopathic atrophoderma of Pasini and Pierini (IAPP) relies on typical clinical features, particularly distinctive pigmented ovular/round depressed plaques. Histologic examination often reveals no obvious changes, but patterns of collagen distribution, using multiphoton imaging and second harmonic generation can help track hidden details of tissue organization contributing to atrophy. To identify histologic features that distinguish IAPP from unaffected skin. Eleven patients were included for conventional analyses. Masson trichrome- and Unna-Tanzer orcein-stained sections were evaluated using automated morphometry. Hematoxylin-eosin-stained sections were analyzed by multiphoton imaging using 2-photon excited fluorescence and second harmonic generation. No abnormalities were found under light microscopy or by automated quantification. Multiphoton imaging revealed no difference in optical density of either collagen or elastic fibers in lesioned and unaffected skin; however, horizontal collagen fiber organization in lesion specimens increased toward the lower dermis, whereas elastic fibers featured greater disorganization within the upper dermis. The low number of patients evaluated. The atrophic appearance of IAPP lesions reflects changes in organization, but not in collagen and elastic tissue content. Minute organizational differences that are imperceptible to the experienced pathologist and undetectable by automated analyses were revealed by multiphoton analyses, particularly second harmonic generation, in association with texture analyses. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    Science.gov (United States)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  8. Preclinical study of using multiphoton microscopy to diagnose liver cancer and differentiate benign and malignant liver lesions

    Science.gov (United States)

    Yan, Jun; Zhuo, Shuangmu; Chen, Gang; Wu, Xiufeng; Zhou, Dong; Xie, Shusen; Jiang, Jiahao; Ying, Mingang; Jia, Fan; Chen, Jianxin; Zhou, Jian

    2012-02-01

    Recently, the miniaturized multiphoton microscopy (MPM) and multiphoton probe allow the clinical use of multiphoton endoscopy for diagnosing cancer via ``optical biopsy''. The purpose of this study was to establish MPM optical diagnostic features for liver cancer and evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis. Firstly, we performed a pilot study to establish the MPM diagnostic features by investigating 60 surgical specimens, and found that high-resolution MPM images clearly demonstrated apparent differences between benign and malignant liver lesions in terms of their tissue architecture and cell morphology. Cancer cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, were identified by MPM images, which were comparable to hematoxylin-eosin staining images. Secondly, we performed a blinded study to evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis by investigating another 164 specimens, and found that the sensitivity, specificity, and accuracy of MPM diagnosis was 96.32%, 96.43%, and 96.34%, respectively. In conclusion, it is feasible to use MPM to diagnose liver cancer and differentiate benign and malignant liver lesions. This preclinical study provides the groundwork for further using multiphoton endoscopy to perform real-time noninvasive ``optical biopsy'' for liver lesions in the near future.

  9. Identifying Two Common Types of Breast Benign Diseases Based on Multiphoton Microscopy

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2018-01-01

    Full Text Available Multiphoton microscopy has attracted increasing attention and investigations in the field of breast cancer, based on two-photon excited fluorescence (TPEF and second-harmonic generation (SHG. However, the incidence of breast benign diseases is about 5 to 10 times higher than breast cancer; up to 30% of women suffer from breast benign diseases and require treatment at some time in their lives. Thus, in this study, MPM was applied to image fibroadenoma and fibrocystic lesion, which are two of the most common breast benign diseases. The results show that MPM has the capability to identify the microstructure of lobule and stroma in normal breast tissue, the interaction of compressed ducts with surrounding collagen fiber in fibroadenoma, and the architecture of cysts filled with cystic fluid in fibrocystic disease. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time diagnosis of breast benign diseases in vivo, as well as breast cancer.

  10. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods.

    Science.gov (United States)

    Bloksgaard, Maria; Brewer, Jonathan; Bagatolli, Luis A

    2013-12-18

    This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal excised skin, including applications of fluctuation correlation spectroscopy on transdermal penetration of liposomes are presented and discussed. The data from the different studies reported reveal the intrinsic heterogeneity of skin and also prove these strategies to be powerful noninvasive tools to explore structural and dynamical aspects of the tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    Science.gov (United States)

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Identifying three different architectural subtypes of mammary ductal carcinoma in situ using multiphoton microscopy

    Science.gov (United States)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, shuangmu; Wang, Chuan; Chen, Jianxin

    2015-10-01

    Ductal carcinoma in situ (DCIS) is often considered as the precursor of invasive breast cancer, and the risk of DCIS progression to IBC has been estimated based on the evaluation of pathological features, among which the architectural subtype is the most common one. In this study, multiphoton microscopy (MPM) is applied to identify three different architectural subtypes of DCIS (solid, cribriform and comedo). It is found that MPM has the capability to visualize the proliferating pattern of tumor cells, the presence of intraluminal necrosis and the morphology of basement membrane, which are all taken into account in subtyping DCIS. In addition, MPM also can be used to quantify the cellular metabolism, for quantitatively identifying tumor staging during tumor progression. This result highlights the potential of MPM as an advanced technique to assess the pathological characters of the breast tumor in real-time and reflect the degree of tumor progression in vivo, by integrating into the intra-fiberoptic ductoscopy or transdermal biopsy needle.

  13. Identifying and quantifying the stromal fibrosis in muscularis propria of colorectal carcinoma by multiphoton microscopy

    Science.gov (United States)

    Chen, Sijia; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2014-10-01

    The examination of stromal fibrosis within colorectal cancer is overlooked, not only because the routine pathological examinations seem to focus more on tumour staging and precise surgical margins, but also because of the lack of efficient diagnostic methods. Multiphoton microscopy (MPM) can be used to study the muscularis stroma of normal and colorectal carcinoma tissue at the molecular level. In this work, we attempt to show the feasibility of MPM for discerning the microstructure of the normal human rectal muscle layer and fibrosis colorectal carcinoma tissue practicably. Three types of muscularis propria stromal fibrosis beneath the colorectal cancer infiltration were first observed through the MPM imaging system by providing intercellular microstructural details in fresh, unstained tissue samples. Our approach also presents the capability of quantifying the extent of stromal fibrosis from both amount and orientation of collagen, which may further characterize the severity of fibrosis. By comparing with the pathology analysis, these results show that the MPM has potential advantages in becoming a histological tool for detecting the stromal fibrosis and collecting prognosis evidence, which may guide subsequent therapy procedures for patients into good prognosis.

  14. Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Mukund Seshadri

    2007-02-01

    Full Text Available The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA were investigated in vivo using intravital microscopy (IVM and magnetic resonance imaging (MRI. Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p. and correlated with induction of tumor necrosis factor-α (TNF-α, endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ~ 4-fold increase in longitudinal relaxation rates (ΔR1, indicative of increased contrast agent accumulation within the tumor. Dualimmunostained tumor sections (CD31/TdT revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1 and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome.

  15. Correlation of microvascular abnormalities and endothelial dysfunction in Type-1 Diabetes Mellitus (T1DM): a real-time intravital microscopy study.

    Science.gov (United States)

    Cheung, Anthony T W; Tomic, M Meighan Smith; Chen, Peter C Y; Miguelino, Eric; Li, Chin-Shang; Devaraj, Sridevi

    2009-01-01

    We hypothesize that real-time in vivo microvascular abnormalities should correlate with biochemical markers of inflammation/endothelial dysfunction in T1DM. Real-time quantification of T1DM and healthy non-diabetic control microcirculation was conducted utilizing computer-assisted intravital microscopy. Selected biochemical markers (high sensitivity C-reactive protein (hsCRP), soluble vascular cell adhesion molecules (sVCAM), soluble intercellular adhesion molecules (sICAM), soluble E-selectin (sE-selectin), nitrotyrosine, superoxide anion (O2-), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)) were used for correlation. The severity of microvascular abnormalities, as reflected by the arithmetic severity index (SI), was significantly increased in T1DM vs. controls (5.89 +/- 1.47 vs. 2.34 +/- 1.48; Pprogression and therapeutic efficacy studies.

  16. Potential of ultraviolet widefield imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Brewer, Jonathan R.; Bagatolli, Luis

    2011-01-01

    Dehydroergosterol (DHE) is an intrinsically fluorescent sterol with absorption/emission in the ultraviolet (UV) region and biophysical properties similar to those of cholesterol. We compared the potential of UV-sensitive low-light-level wide-field (UV-WF) imaging with that of multiphoton (MP...

  17. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin.

    Science.gov (United States)

    Balu, Mihaela; Lentsch, Griffin; Korta, Dorota Z; König, Karsten; Kelly, Kristen M; Tromberg, Bruce J; Zachary, Christopher B

    2017-08-01

    Improvements in skin appearance resulting from treatment with fractionated picosecond-lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non-invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome. The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high-resolution, label-free imaging technique, to characterize in vivo the skin response to a fractionated non-ablative picosecond-laser treatment. Two areas on the arm of a volunteer were treated with a fractionated picosecond laser at the Dermatology Clinic, UC Irvine. The skin response to treatment was imaged in vivo with a clinical MPM-based tomograph at 3 hours and 24 hours after treatment and seven additional time points over a 4-week period. MPM revealed micro-injuries present in the epidermis. Pigmented cells were particularly damaged in the process, suggesting that melanin is likely the main absorber for laser induced optical breakdown. Damaged individual cells were distinguished as early as 3 hours post pico-laser treatment with the 532 nm wavelength, and 24 hours post-treatment with both 532 and 1064 nm wavelengths. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. After 24 hours of treatment, inflammatory cells were imaged in the proximity of epidermal micro-injuries. The epidermal injuries were exfoliated over a 4-week period. This observational and descriptive pilot study demonstrates that in vivo MPM imaging can be used non-invasively to provide label-free contrast for describing changes in human skin following a fractionated non-ablative laser treatment. The results presented in this study represent the groundwork for future longitudinal investigations on an expanded number of subjects to understand the response to treatment

  18. Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction

    Science.gov (United States)

    Pena, Ana-Maria; Fagot, Dominique; Olive, Christian; Michelet, Jean-François; Galey, Jean-Baptiste; Leroy, Frédéric; Beaurepaire, Emmanuel; Martin, Jean-Louis; Colonna, Anne; Schanne-Klein, Marie-Claire

    2010-09-01

    Dermal fibroblasts are responsible for the generation of mechanical forces within their surrounding extracellular matrix and can be potentially targeted by anti-aging ingredients. Investigation of the modulation of fibroblast contraction by these ingredients requires the implementation of three-dimensional in situ imaging methodologies. We use multiphoton microscopy to visualize unstained engineered dermal tissue by combining second-harmonic generation that reveals specifically fibrillar collagen and two-photon excited fluorescence from endogenous cellular chromophores. We study the fibroblast-induced reorganization of the collagen matrix and quantitatively evaluate the effect of Y-27632, a RhoA-kinase inhibitor, on dermal substitute contraction. We observe that collagen fibrils rearrange around fibroblasts with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA-kinase inhibitor. Moreover, we show that the inhibitory effects are reversible. Our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the extracellular matrix induced by fibroblast contraction or other processes.

  19. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J [Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin (Germany); Gonchukov, S A [National Research Nuclear University ' ' MEPhI' ' (Russian Federation); Koenig, K [JenLab GmbH, Schillerstr. 1, 07745 Jena (Germany)

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  20. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  1. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    Science.gov (United States)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  2. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    International Nuclear Information System (INIS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen

    2014-01-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  3. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation.

    Directory of Open Access Journals (Sweden)

    Craig N Jenne

    Full Text Available Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation.

  4. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  5. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics.

    Science.gov (United States)

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two-photon and optical coherence tomography (OCT) based on GRIN optical probes permit in-vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low-order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality.

  6. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy.

    Science.gov (United States)

    Bueno, Juan M; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J; Schaeffel, Frank; Artal, Pablo

    2014-03-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes.

  7. In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy

    Science.gov (United States)

    Saager, Rolf B.; Balu, Mihaela; Crosignani, Viera; Sharif, Ata; Durkin, Anthony J.; Kelly, Kristen M.; Tromberg, Bruce J.

    2015-06-01

    The combined use of nonlinear optical microscopy and broadband reflectance techniques to assess melanin concentration and distribution thickness in vivo over the full range of Fitzpatrick skin types is presented. Twelve patients were measured using multiphoton microscopy (MPM) and spatial frequency domain spectroscopy (SFDS) on both dorsal forearm and volar arm, which are generally sun-exposed and non-sun-exposed areas, respectively. Both MPM and SFDS measured melanin volume fractions between ˜5% (skin type I non-sun-exposed) and 20% (skin type VI sun exposed). MPM measured epidermal (anatomical) thickness values ˜30-65 μm, while SFDS measured melanin distribution thickness based on diffuse optical path length. There was a strong correlation between melanin concentration and melanin distribution (epidermal) thickness measurements obtained using the two techniques. While SFDS does not have the ability to match the spatial resolution of MPM, this study demonstrates that melanin content as quantified using SFDS is linearly correlated with epidermal melanin as measured using MPM (R2=0.8895). SFDS melanin distribution thickness is correlated to MPM values (R2=0.8131). These techniques can be used individually and/or in combination to advance our understanding and guide therapies for pigmentation-related conditions as well as light-based treatments across a full range of skin types.

  8. Characterization of human carotid atherosclerotic tissues imaged by combining multiple multiphoton microscopy techniques

    Science.gov (United States)

    Baria, E.; Cicchi, R.; Nesi, G.; Massi, D.; Pavone, F. S.

    2017-07-01

    We combined Second Harmonic Generation, Two-Photon Fluorescence and Fluorescence Lifetime Imaging Microscopy for studying human carotid ex vivo tissue sections affected by atherosclerosis, resulting in the discrimination of different arterial regions within the plaques.

  9. Delivery of cyclodextrin polymers to bacterial biofilms - An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy.

    Science.gov (United States)

    Thomsen, Hanna; Benkovics, Gábor; Fenyvesi, Éva; Farewell, Anne; Malanga, Milo; Ericson, Marica B

    2017-10-15

    Cyclodextrin (CD) polymers are interesting nanoparticulate systems for pharmaceutical delivery; however, knowledge regarding their applications towards delivery into complex microbial biofilm structures is so far limited. The challenge is to demonstrate penetration and transport through the biofilm and its exopolysaccharide matrix. The ideal functionalization for penetration into mature biofilms is unexplored. In this paper, we present a novel set of rhodamine labelled βCD-polymers, with different charge moieties, i.e., neutral, anionic, and cationic, and explore their potential delivery into mature Staphylococcus epidermidis biofilms using multiphoton laser scanning microscopy (MPM). The S. epidermidis biofilms, being a medically relevant model organism, were stained with SYTO9. By using MPM, three-dimensional imaging and spectral investigation of the distribution of the βCD-polymers could be obtained. It was found that the cationic βCD-polymers showed significantly higher integration into the biofilms, compared to neutral and anionic functionalized βCDs. None of the carriers presented any inherent toxicity to the biofilms, meaning that the addition of rhodamine moiety does not affect the inertness of the delivery system. Taken together, this study demonstrates a novel approach by which delivery of fluorescently labelled CD nanoparticles to bacterial biofilms can be explored using MPM. Future studies should be undertaken investigating the potential in using cationic functionalization of CD based delivery systems for targeting anti-microbial effects in biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Identification of the boundary between normal breast tissue and invasive ductal carcinoma during breast-conserving surgery using multiphoton microscopy

    Science.gov (United States)

    Deng, Tongxin; Nie, Yuting; Lian, Yuane; Wu, Yan; Fu, Fangmeng; Wang, Chuan; Zhuo, Shuangmu; Chen, Jianxin

    2014-11-01

    Breast-conserving surgery has become an important way of surgical treatment for breast cancer worldwide nowadays. Multiphoton microscopy (MPM) has the ability to noninvasively visualize tissue architectures at the cellular level using intrinsic fluorescent molecules in biological tissues without the need for fluorescent dye. In this study, MPM is used to image the microstructures of terminal duct lobular unit (TDLU), invasive ductal carcinoma and the boundary region between normal and cancerous breast tissues. Our study demonstrates that MPM has the ability to not only reveal the morphological changes of the cuboidal epithelium, basement membrane and interlobular stroma but also identify the boundary between normal breast tissue and invasive ductal carcinoma, which correspond well to the Hematoxylin and Eosin (H and E) images. Predictably, MPM can monitor surgical margins in real time and provide considerable accuracy for resection of breast cancerous tissues intraoperatively. With the development of miniature, real-time MPM imaging technology, MPM should have great application prospects during breast-conserving surgery.

  11. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  12. Analysis of microparticle penetration into human and porcine skin: non-invasive imaging with multiphoton excitation microscopy

    Science.gov (United States)

    Mulholland, William J.; Kendall, Mark A.; Bellhouse, Brian J.; White, Nick

    2002-06-01

    At the University of Oxford and PowderJect Pharmaceuticals plc, a unique form of needle-free injection technology has been developed. Powdered vaccines and drugs in micro-particle form are accelerated in a high-speed gas flow to sufficient velocity to enter the skin, subsequently achieving a pharmaceutical effect. To optimize the delivery of vaccines and drugs with this method a detailed understanding of the interactive processes that occur between the microparticles and the skin is necessary. Investigations to date of micro-particle delivery into excised human and animal tissue have involved image analyses of histology sections. In the present study, a series of investigations were conducted on excised human and porcine skin using the technique of Multi-Photon fluorescence excitation Microscopy (MPM) to image particles and skin structures post-penetration. Micro-particles of various size and composition were imaged with infrared laser excitation. Three-dimensional images of stratum corneum and epidermal cell deformation due to micro-particle penetration were obtained. Measurements of micro-particle penetration depth taken from z-scan image stacks were used to successfully quantify micro-particle distribution within the skin, without invasively disrupting the skin target. This study has shown that MPM has great potential for the non-invasive imaging of particle skin interactive processes that occur with the transdermal delivery of powdered micro-particle vaccines and drugs.

  13. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes

    Science.gov (United States)

    Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher

    2013-01-01

    Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100  μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500  μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231

  14. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy

    OpenAIRE

    Hovhannisyan, V.; Guo, H. W.; Hovhannisyan, A.; Ghukasyan, V.; Buryakina, T.; Chen, Y. F.; Dong, C. Y.

    2014-01-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the ...

  15. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  16. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    Science.gov (United States)

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  17. Multiphoton microscopy: an efficient tool for in-situ study of cultural heritage artifacts

    Science.gov (United States)

    Latour, Gaël.; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2013-05-01

    We present multimodal nonlinear optical imaging of historical artifacts by combining Two-Photon Excited Fluorescence (2PEF) and Second Harmonic Generation (SHG) microscopies. Three-dimensional (3D) non-contact laser-scanning imaging with micrometer resolution is performed without any preparation of the objects under study. 2PEF signals are emitted by a wide range of fluorophores such as pigments and binder, which can be discriminated thanks to their different emission spectral bands by using suitable spectral filters in the detection channel. SHG signals are specific for dense non-centrosymmetric organizations such as the crystalline cellulose within the wood cell walls. We also show that plaster particles exhibit SHG signals. These particles are bassanite crystals with a non-centrosymmetric crystalline structure, while the other types of calcium sulphates exhibit a centrosymmetric crystalline structure with no SHG signal. In our study, we first characterize model single-layered samples: wood, gelatin-based films containing plaster or cochineal lake and sandarac film containing cochineal lake. We then study multilayered coating systems on wood and show that multimodal nonlinear microscopy successfully reveals the 3D distribution of all components within the stratified sample. We also show that the fine structure of the wood can be assessed, even through a thick multilayered varnish coating. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as an efficient non-destructive and contactless 3D imaging technique for in situ investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

  18. Age-related changes in murine bladder structure and sensory innervation: a multiphoton microscopy quantitative analysis.

    Science.gov (United States)

    Schueth, Anna; Spronck, Bart; van Zandvoort, Marc A M J; van Koeveringe, Gommert A

    2016-02-01

    Our study aimed to examine and quantify age-related structural alterations in the healthy mouse bladder using ex vivo two-photon laser scanning microscopy (TPLSM). Freshly dissected bladders from 25-, 52-, and 85-week-old C57bl/6J mice were examined, and morphological analyses and quantification of cell layers and nerves were performed. The numbers of stretched, curled, branched, and total number of nerves in volume units of the stained muscle layer were quantified. We observed differences in the bladder wall architecture and innervation with age. Especially in 85-week-old mice, age-related changes were found, including detachment of urothelial cells and an increase in connective tissue, intermingled with the smooth muscle fibers in the muscle layer (collagen-smooth muscle ratio of 1.15 ± 0.29). In 25- and 52-week-old mice, the collagen-smooth muscle ratios were 0.20 ± 0.04 and 0.31 ± 0.11, respectively, and a clear separation of collagen and muscle was observed. The overall number of nerves and the number of curled nerves were significantly higher in the 85-week-old mice (74.0 ± 13.0 and 25.9 ± 4.8, respectively), when comparing to 25-week-old mice (26.0 ± 2.7 and 6.7 ± 1.2, respectively) and 52-week-old mice (43.8 ± 4.3 and 22.1 ± 3.3, respectively). Significant age-related alterations in bladder morphology and innervation were found, when comparing freshly dissected bladder tissue from 25-, 52-, and 85-week-old mice. The higher number of curled nerves might be an indication of an increased neurotransmitter release, resulting in a higher nerve activity, with a part of the nerves being possibly mechanically impaired. This study shows that two-photon laser scanning microscopy of healthy aging male mice is a useful method to investigate and quantify the age-related changes in the bladder wall.

  19. Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney.

    Directory of Open Access Journals (Sweden)

    Ina Maria Schießl

    Full Text Available Multiphoton microscopy (MPM offers a unique approach for addressing both the function and structure of an organ in near-real time in the live animal. The method however is limited by the tissue-specific penetration depth of the excitation laser. In the kidney, structures in the range of 100 µm from the surface are accessible for MPM. This limitation of MPM aggravates the investigation of the function of structures located deeper in the renal cortex, like the glomerulus and the juxtaglomerular apparatus. In view of the relevance of gene-targeted mice for investigating the function of these structures, we aimed to identify a mouse strain with a high percentage of superficially located glomeruli. The mean distance of the 30 most superficial glomeruli from the kidney surface was determined in 10 commonly used mouse strains. The mean depth of glomeruli was 118.4±3.4, 123.0±2.7, 133.7±3.0, 132.3±2.6, 141.0±4.0, 145.3±4.3, 148.9±4.2, 151.6±2.7, 167.7±3.9, and 207.8±3.2 µm in kidney sections from 4-week-old C3H/HeN, BALB/cAnN, SJL/J, C57BL/6N, DBA/2N, CD1 (CRI, 129S2/SvPas, CB6F1, FVB/N and NMRI (Han mice, respectively (n = 5 animals from each strain. The mean distance from the kidney surface of the most superficial glomeruli was significantly lower in the strains C3H/HeN Crl, BALB/cAnN, DBA/2NCrl, and C57BL/6N when compared to a peer group consisting of all the other strains (p<.0001. In 10-week-old mice, the most superficial glomeruli were located deeper in the cortex when compared to 4-week-old animals, with BALB/cAnN and C57BL/6N being the strains with the highest percentage of superficial glomeruli (25% percentile 116.7 and 121.9 µm, respectively. In summary, due to significantly more superficial glomeruli compared to other commonly used strains, BALB/cAnN and C57BL/6N mice appear to be particularly suitable for the investigation of glomerular function using MPM.

  20. Third-harmonic generation and multi-photon excitation fluorescence imaging microscopy techniques for online art conservation diagnosis.

    Science.gov (United States)

    Gualda, Emilio J; Filippidis, George; Melessanaki, Kristalia; Fotakis, Costas

    2009-03-01

    We present an appropriate methodology and results for using third-harmonic generation (THG) modality for nondestructive high resolution imaging measurements of varnished structures in model painted artifacts. Detection takes place in the reflection mode, demonstrating the ability of the technique to be applied to the evaluation of original artworks. Furthermore, multi-photon excitation fluorescence images were obtained, providing complementary information related to the identification of the chemical composition of the artifacts.

  1. Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range.

    Directory of Open Access Journals (Sweden)

    Delphine Débarre

    Full Text Available Light-induced toxicity is a fundamental bottleneck in microscopic imaging of live embryos. In this article, after a review of photodamage mechanisms in cells and tissues, we assess photo-perturbation under illumination conditions relevant for point-scanning multiphoton imaging of live Drosophila embryos. We use third-harmonic generation (THG imaging of developmental processes in embryos excited by pulsed near-infrared light in the 1.0-1.2 µm range. We study the influence of imaging rate, wavelength, and pulse duration on the short-term and long-term perturbation of development and define criteria for safe imaging. We show that under illumination conditions typical for multiphoton imaging, photodamage in this system arises through 2- and/or 3-photon absorption processes and in a cumulative manner. Based on this analysis, we derive general guidelines for improving the signal-to-damage ratio in two-photon (2PEF/SHG or THG imaging by adjusting the pulse duration and/or the imaging rate. Finally, we report label-free time-lapse 3D THG imaging of gastrulating Drosophila embryos with sampling appropriate for the visualisation of morphogenetic movements in wild-type and mutant embryos, and long-term multiharmonic (THG-SHG imaging of development until hatching.

  2. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy.

    Science.gov (United States)

    Wilson, Jesse W; Park, Jong Kang; Warren, Warren S; Fischer, Martin C

    2015-03-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques.

  3. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  4. Fluorescein Derivatives in Intravital Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Michael S. Roberts

    2013-08-01

    Full Text Available Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

  5. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  6. Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    International Nuclear Information System (INIS)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-01

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D 2 O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D 2 O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D 2 O a promising immersion medium for deep-tissue imaging

  7. Intravital Microscopy of the Inguinal Lymph Node

    OpenAIRE

    Sellers, Stephanie L.; Payne, Geoffrey W.

    2011-01-01

    Lymph nodes (LN's), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infe...

  8. Multiphoton processes: conference proceedings

    International Nuclear Information System (INIS)

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base

  9. Use of multi-photon laser-scanning microscopy to describe the distribution of xenobiotic chemicals in fish early life stages

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, Michael W.; Cook, Philip M.; Flynn, Kevin M.; Lothenbach, Doug B.; Johnson, Rodney D.; Nichols, John W

    2004-03-30

    To better understand the mechanisms by which persistent bioaccumulative toxicants (PBTs) produce toxicity during fish early life stages (ELS), dose-response relationships need to be understood in relation to the dynamic distribution of chemicals in sensitive tissues. In this study, a multi-photon laser scanning microscope (MPLSM) was used to determine the multi-photon excitation spectra of several polyaromatic hydrocarbons (PAHs) and to describe chemical distribution among tissues during fish ELS. The multi-photon excitation spectra revealed intense fluorescent signal from the model fluorophore, pentamethyl-difluoro-boro-indacene (BODIPY[reg], less signal from benzo[a]pyrene and fluoranthene, and no detectable signal from pyrene. The imaging method was tested by exposing newly fertilized medaka (Oryzias latipes) eggs to BODIPY[reg] or fluoranthene for 6 h, followed by transfer to clean media. Embryos and larvae were then imaged through 5 days post-hatch. The two test chemicals partitioned similarly throughout development and differences in fluorescence intensity among tissues were evident to a depth of several hundred microns. Initially, the most intense signal was observed in the oil droplet within the yolk, while a moderate signal was seen in the portion of the yolk containing the yolk-platelets. As embryonic development progressed, the liver biliary system, gall bladder, and intestinal tract accumulated strong fluorescent signal. After hatch, once the gastrointestinal tract was completely developed, most of the fluorescent signal was cleared. The MPLSM is a useful tool to describe the tissue distribution of fluorescent PBTs during fish ELS.

  10. Multiphoton imaging of cardiovascular structures

    Science.gov (United States)

    Schenke-Layland, Katja; Opitz, Florian; Riemann, Iris; Stock, Ulrich A.; Konig, Karsten

    2004-09-01

    Near infrared (NIR) femtosecond laser imaging systems represent a novel and very promising diagnostic technology for non-invasive cross-sectional analysis of living biological tissues. In this study 3D multiphoton imaging with submicron resolution has been performed for non-invasive analysis of living native and tissue-engineered (TE) heart valves and blood vessels. High-resolution autofluorescence and second harmonic generation (SHG) images of collagenous structures and elastic fibers were demonstrated using multiphoton excitation at two different wavelengths. Non-invasive optical sections have been obtained without the need of staining or embedding. The quality of the resulting three-dimensional images allowed exact differentiation between collagenous structures and elastic fibers. These experimental results are very encouraging for NIR femtosecond laser scanning microscopy as a useful tool for future non-destructive monitoring and characterization of vital and intact TE cardiovascular structures.

  11. Multiphoton processes: conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, P.; Smith, S.J. (eds.)

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  12. Coherent Control in Multiphoton Fluorescence Imaging

    OpenAIRE

    De, Arijit Kumar; Goswami, Debabrata

    2009-01-01

    In multiphoton fluorescence laser-scanning microscopy ultrafast laser pulses, i.e. light pulses having pulse-width ≤ 1picosecond (1 ps = 10−12 s), are commonly used to circumvent the low multiphoton absorption cross-sections of common fluorophores. Starting with a discussion on how amplitude modulation of ultrashort pulse-train enhances the two-photon fluorescence providing deep insight into laser-induced photo-thermal damage, the effect of controlling time lag between phase-locked laser p...

  13. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  14. Current developments in clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer

    2010-02-01

    Two-photon microscopy has been introduced in 1990 [1]. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched by the JenLab company with the tomograph DermaInspectTM. In 2010, the second generation of clinical multiphoton tomographs was introduced. The novel mobile multiphoton tomograph MPTflexTM, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. The multiphoton excitation of fluorescent biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin as well as the second harmonic generation of collagen is induced by picojoule femtosecond laser pulses from an tunable turn-key near infrared laser system. The ability for rapid highquality image acquisition, the user-friendly operation of the system, and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research, and skin aging measurements as well as in situ drug monitoring and animal research. So far, more than 1,000 patients and volunteers have been investigated with the multiphoton tomographs in Europe, Asia, and Australia.

  15. From good to bad : Intravital imaging of the hijack of physiological processes by cancer cells

    NARCIS (Netherlands)

    Suijkerbuijk, Saskia J.E.; van Rheenen, Jacco

    2017-01-01

    Homeostasis of tissues is tightly regulated at the cellular, tissue and organismal level. Interestingly, tumor cells have found ways to hijack many of these physiological processes at all the different levels. Here we review how intravital microscopy techniques have provided new insights into our

  16. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption

    Science.gov (United States)

    Nadiarnykh, Oleg; Thomas, Giju; Van Voskuilen, Johan; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2012-11-01

    Nonlinear optical imaging modalities (multiphoton excited fluorescence, second and third harmonic generation) applied in vivo are increasingly promising for clinical diagnostics and the monitoring of cancer and other disorders, as they can probe tissue with high diffraction-limited resolution at near-infrared (IR) wavelengths. However, high peak intensity of femtosecond laser pulses required for two-photon processes causes formation of cyclobutane-pyrimidine-dimers (CPDs) in cellular deoxyribonucleic acid (DNA) similar to damage from exposure to solar ultraviolet (UV) light. Inaccurate repair of subsequent mutations increases the risk of carcinogenesis. In this study, we investigate CPD damage that results in Chinese hamster ovary cells in vitro from imaging them with two-photon excited autofluorescence. The CPD levels are quantified by immunofluorescent staining. We further evaluate the extent of CPD damage with respect to varied wavelength, pulse width at focal plane, and pixel dwell time as compared with more pronounced damage from UV sources. While CPD damage has been expected to result from three-photon absorption, our results reveal that CPDs are induced by competing two- and three-photon absorption processes, where the former accesses UVA absorption band. This finding is independently confirmed by nonlinear dependencies of damage on laser power, wavelength, and pulse width.

  17. Imaging windows for long-term intravital imaging

    Science.gov (United States)

    Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco

    2014-01-01

    Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure. PMID:28243510

  18. Morphological signs of the intravital contraction (retraction of thrombotic emboli

    Directory of Open Access Journals (Sweden)

    R R Khismatullin

    2018-02-01

    Full Text Available Aim. To establish whether contraction (retraction of thrombi and thrombotic emboli occurs in vivo using structural signs of blood clot compression, such as compressive deformation of erythrocytes and redistribution of fibrin on the surface of a clot. Methods. Three postmortem pulmonary thrombotic emboli were examined by scanning electron microscopy and light microscopy after staining with hematoxylin and eosin as well as with Mallory’s method. Results. In 2 studied pulmonary emboli, extracted 7 and 15 hours after patients’ death, polyhedral erythrocytes (polyhedrocytes were revealed that were formed as a result of mechanical deformation under the action of contractile forces generated by activated platelets. In addition, the uneven distribution of fibrin within the emboli was found with displacement of fibrin to the periphery of the emboli, which is characteristic for contracted blood clot. In the first and the «oldest» clot extracted 38 hours after the patient’s death, the described contraction signs were absent, which was likely related to the postmortem autolysis or intravital pathological impairment of contraction. Conclusion. Thrombotic emboli ex vivo have morphological signs of contraction, suggesting intravital compression of the primary thrombi and/or thrombotic emboli, which might be an important pathogenetic mechanism for modulation of impaired blood flow at the sites of thrombotic occlusion of a vessel; the presence or absence of compressed erythrocytes inside and predominant location of fibrin on the periphery of a thrombus or embolus can potentially serve as additional pathomorphological criteria of death coming prescription.

  19. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  20. Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy

    Science.gov (United States)

    Kavya, M.; Regmi, Raju; Mondal, Partha P.

    2013-09-01

    Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4π geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology.

  1. Multi-photon microscope driven by novel green laser pump

    DEFF Research Database (Denmark)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin

    2016-01-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal...

  2. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    Science.gov (United States)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  3. Coherent Control in Multiphoton Fluorescence Imaging.

    Science.gov (United States)

    De, Arijit Kumar; Goswami, Debabrata

    2009-02-25

    In multiphoton fluorescence laser-scanning microscopy ultrafast laser pulses, i.e. light pulses having pulse-width ≤ 1picosecond (1 p s = 10 -12 s ), are commonly used to circumvent the low multiphoton absorption cross-sections of common fluorophores. Starting with a discussion on how amplitude modulation of ultrashort pulse-train enhances the two-photon fluorescence providing deep insight into laser-induced photo-thermal damage, the effect of controlling time lag between phase-locked laser pulses on imaging is described. In addition, the prospects of laser pulse-shaping in signal enhancement (by temporal pulse-compression at the sample) and selective excitation of fluorophores (by manipulating the phase and/or amplitude of different frequency components within the pulse) are discussed with promising future applications lying ahead.

  4. Assessing and benchmarking multiphoton microscopes for biologists.

    Science.gov (United States)

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F

    2014-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. © 2014 Elsevier Inc. All rights reserved.

  5. Assessing and benchmarking multiphoton microscopes for biologists

    Science.gov (United States)

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F.

    2017-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. PMID:24974026

  6. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model.

    Science.gov (United States)

    Ring, Andrej; Tilkorn, Daniel; Ottomann, Christian; Geomelas, Menedimos; Steinstraesser, Lars; Langer, Stefan; Goertz, Ole

    2011-04-01

    The aim of this study was to assess the impact of an epidermal substitute, a lactocapromer terpolymer matrix, on microcirculation in wounds. Lactocapromer terpolymer matrices were placed into the dorsal skinfold chamber of mice (n = 10). Untreated chamber preparations served as controls (n = 10). The microcirculation in tissue adjacent to the implant was observed by intravital fluorescence microscopy. Alongside the stable microhaemodynamics, a strong induction of angiogenesis adjacent to the implants was observed. A progressive increase in the functional vessel density was detected throughout the observation time of 10 days. Additionally, a stable and increasing perfusion within the newly developed vascular network in the outer circumference of the matrix was noted. The lactocapromer terpolymer matrix showed no adverse effect on the microcirculation in the host tissue. In contrast, as detected by intravital microscopy, the biomaterial protected the microcirculation and induced angiogenesis. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  7. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  8. Clinical multiphoton FLIM tomography

    Science.gov (United States)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  9. Metrology of Multiphoton Microscopes Using Second Harmonic Generation Nanoprobes.

    Science.gov (United States)

    Mahou, Pierre; Malkinson, Guy; Chaudan, Élodie; Gacoin, Thierry; Beaurepaire, Emmanuel; Supatto, Willy

    2017-11-01

    In multiphoton microscopy, the ongoing trend toward the use of excitation wavelengths spanning the entire near-infrared range calls for new standards in order to quantify and compare the performances of microscopes. This article describes a new method for characterizing the imaging properties of multiphoton microscopes over a broad range of excitation wavelengths in a straightforward and efficient manner. It demonstrates how second harmonic generation (SHG) nanoprobes can be used to map the spatial resolution, field curvature, and chromatic aberrations across the microscope field of view with a precision below the diffraction limit and with unique advantages over methods based on fluorescence. KTiOPO4 nanocrystals are used as SHG nanoprobes to measure and compare the performances over the 850-1100 nm wavelength range of several microscope objectives designed for multiphoton microscopy. Finally, this approach is extended to the post-acquisition correction of chromatic aberrations in multicolor multiphoton imaging. Overall, the use of SHG nanoprobes appears as a uniquely suited method to standardize the metrology of multiphoton microscopes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intravital imaging of fluorescent markers and FRET probes by DNA tattooing

    Directory of Open Access Journals (Sweden)

    Spencer David M

    2007-01-01

    Full Text Available Abstract Background Advances in fluorescence microscopy and mouse transgenesis have made it possible to image molecular events in living animals. However, the generation of transgenic mice is a lengthy process and intravital imaging requires specialized knowledge and equipment. Here, we report a rapid and undemanding intravital imaging method using generally available equipment. Results By DNA tattooing we transfect keratinocytes of living mice with DNA encoding fluorescent biosensors. Subsequently, the behavior of individual cells expressing these biosensors can be visualized within hours and using conventional microscopy equipment. Using this "instant transgenic" model in combination with a corrected coordinate system, we followed the in vivo behavior of individual cells expressing either FRET- or location-based biosensors for several days. The utility of this approach was demonstrated by assessment of in vivo caspase-3 activation upon induction of apoptosis. Conclusion This "instant skin transgenic" model can be used to follow the in vivo behavior of individual cells expressing either FRET- or location-based probes for several days after tattooing and provides a rapid and inexpensive method for intravital imaging in murine skin.

  11. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  12. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  13. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  14. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  15. Multiphoton ionization of Uracil

    Science.gov (United States)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  16. Laser-induced multiphoton transitions

    International Nuclear Information System (INIS)

    Stenholm, S.

    1978-06-01

    Laser induced multiphoton processes are reviewed. The effects of strong fields on atoms are discussed. The perturbation treatment is presented and also its generalization to treat intermediate resonances. The influence of atomic coherence is discussed heuristically and the relation between quantal and classical descriptions of the field is elucidated by reference to the dressed atom description. Atomic ionization experiments are reviewed and the present understanding of multiphoton dissociation of molecules is explained. Finally some prospects for the future are discussed. (author)

  17. Intravital imaging of CD8+ T cell function in cancer.

    Science.gov (United States)

    Mempel, Thorsten R; Bauer, Christian A

    2009-01-01

    Recent technological advances in photonics are making intravital microscopy (IVM) an increasingly powerful approach for the mechanistic exploration of biological processes in the physiological context of complex native tissue environments. Direct, dynamic and multiparametric visualization of immune cell behavior in living animals at cellular and subcellular resolution has already proved its utility in auditing basic immunological concepts established through conventional approaches and has also generated new hypotheses that can conversely be complemented and refined by traditional experimental methods. The insight that outgrowing tumors must not necessarily have evaded recognition by the adaptive immune system, but can escape rejection by actively inducing a state of immunological tolerance calls for a detailed investigation of the cellular and molecular mechanisms by which the anti-cancer response is subverted. Along with molecular imaging techniques that provide dynamic information at the population level, IVM can be expected to make a critical contribution to this effort by allowing the observation of immune cell behavior in vivo at single cell-resolution. We review here how IVM-based investigation can help to clarify the role of cytotoxic T lymphocytes (CTL) in the immune response against cancer and identify the ways by which their function might be impaired through tolerogenic mechanisms.

  18. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Steffen Dietzel

    Full Text Available Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.

  19. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  20. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  1. Adaptive optics improves multiphoton super-resolution imaging.

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Fischer, Robert; Nogare, Damian Dalle; Hong, Amy; McCormick, Chad; Christensen, Ryan; Dempsey, William P; Arnold, Don B; Zimmerberg, Joshua; Chitnis, Ajay; Sellers, James; Waterman, Clare; Shroff, Hari

    2017-09-01

    We improve multiphoton structured illumination microscopy using a nonlinear guide star to determine optical aberrations and a deformable mirror to correct them. We demonstrate our method on bead phantoms, cells in collagen gels, nematode larvae and embryos, Drosophila brain, and zebrafish embryos. Peak intensity is increased (up to 40-fold) and resolution recovered (up to 176 ± 10 nm laterally, 729 ± 39 nm axially) at depths ∼250 μm from the coverslip surface.

  2. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  3. Imaging windows for long-term intravital imaging: General overview and technical insights.

    Science.gov (United States)

    Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco

    2014-01-01

    Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.

  4. Multiphoton tomography for tissue engineering

    Science.gov (United States)

    König, Karsten

    2008-02-01

    Femtosecond laser multiphoton tomography has been employed in the field of tissue engineering to perform 3D high-resolution imaging of the extracellular matrix proteins elastin and collagen as well as of living cells without any fixation, slicing, and staining. Near infrared 80 MHz picojoule femtosecond laser pulses are able to excite the endogenous fluorophores NAD(P)H, flavoproteins, melanin, and elastin via a non-resonant two-photon excitation process. In addition, collagen can be imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Multiphoton tomography has been used to optimize the tissue engineering of heart valves and vessels in bioincubators as well as to characterize artificial skin. Stem cell characterization and manipulation are of major interest for the field of tissue engineering. Using the novel sub-20 femtosecond multiphoton nanoprocessing laser microscope FemtOgene, the differentiation of human stem cells within spheroids has been in vivo monitored with submicron resolution. In addition, the efficient targeted transfection has been demonstrated. Clinical studies on the interaction of tissue-engineered products with the natural tissue environment can be performed with in vivo multiphoton tomograph DermaInspect.

  5. Multi-photon microscope driven by novel green laser pump

    Science.gov (United States)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  6. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Science.gov (United States)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  7. Correlated multiphoton holes: absence of multiphoton coincidence events.

    Science.gov (United States)

    Afek, I; Ambar, O; Silberberg, Y

    2010-08-27

    We generate bipartite states of light which exhibit an absence of multiphoton coincidence events between two modes amid a constant background flux. These "correlated photon holes" are produced by mixing a coherent state and relatively weak spontaneous parametric down-conversion by using a balanced beam splitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the relative phase and amplitude of the inputs. We measure states of up to five photons and verify their nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical correlations without requiring intense quantum resources.

  8. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues

    NARCIS (Netherlands)

    Palero, Jonathan A.; de Bruijn, Henriëtte S.; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2007-01-01

    The deep tissue penetration and submicron spatial resolution of multiphoton microscopy and the high detection efficiency and nanometer spectral resolution of a spectrograph were utilized to record spectral images of the intrinsic emission of mouse skin tissues. Autofluorescence from both cellular

  9. Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy.

    Science.gov (United States)

    Williams, Rebecca M; Flesken-Nikitin, Andrea; Ellenson, Lora Hedrick; Connolly, Denise C; Hamilton, Thomas C; Nikitin, Alexander Yu; Zipfel, Warren R

    2010-06-01

    Ovarian cancer remains the most frequently lethal of the gynecologic cancers owing to the late detection of this disease. Here, by using human specimens and three mouse models of ovarian cancer, we tested the feasibility of nonlinear imaging approaches, the multiphoton microscopy (MPM) and second harmonic generation (SHG) to serve as complementary tools for ovarian cancer diagnosis. We demonstrate that MPM/SHG of intrinsic tissue emissions allows visualization of unfixed, unsectioned, and unstained tissues at a resolution comparable to that of routinely processed histologic sections. In addition to permitting discrimination between normal and neoplastic tissues according to pathological criteria, the method facilitates morphometric assessment of specimens and detection of very early cellular changes in the ovarian surface epithelium. A red shift in cellular intrinsic fluorescence and collagen structural alterations have been identified as additional cancer-associated changes that are indiscernible by conventional pathologic techniques. Importantly, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated by using a "stick" objective lens. Intravital detection of neoplastic lesions has been further facilitated by low-magnification identification of an indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken together, these results demonstrate that MPM may be translatable to clinical settings as an endoscopic approach suitable for high-resolution optical biopsies as well as a pathology tool for rapid initial assessment of ovarian cancer samples.

  10. Strategies for High-Resolution Imaging of Epithelial Ovarian Cancer by Laparoscopic Nonlinear Microscopy1

    Science.gov (United States)

    Williams, Rebecca M; Flesken-Nikitin, Andrea; Ellenson, Lora Hedrick; Connolly, Denise C; Hamilton, Thomas C; Nikitin, Alexander Yu; Zipfel, Warren R

    2010-01-01

    Ovarian cancer remains the most frequently lethal of the gynecologic cancers owing to the late detection of this disease. Here, by using human specimens and three mouse models of ovarian cancer, we tested the feasibility of nonlinear imaging approaches, the multiphoton microscopy (MPM) and second harmonic generation (SHG) to serve as complementary tools for ovarian cancer diagnosis. We demonstrate that MPM/SHG of intrinsic tissue emissions allows visualization of unfixed, unsectioned, and unstained tissues at a resolution comparable to that of routinely processed histologic sections. In addition to permitting discrimination between normal and neoplastic tissues according to pathological criteria, the method facilitates morphometric assessment of specimens and detection of very early cellular changes in the ovarian surface epithelium. A red shift in cellular intrinsic fluorescence and collagen structural alterations have been identified as additional cancer-associated changes that are indiscernible by conventional pathologic techniques. Importantly, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated by using a “stick” objective lens. Intravital detection of neoplastic lesions has been further facilitated by low-magnification identification of an indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken together, these results demonstrate that MPM may be translatable to clinical settings as an endoscopic approach suitable for high-resolution optical biopsies as well as a pathology tool for rapid initial assessment of ovarian cancer samples. PMID:20563260

  11. Intravital two-photon imaging of adoptively transferred B lymphocytes in inguinal lymph nodes.

    Science.gov (United States)

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2009-01-01

    Intravital two-photon imaging allows the observation of immune cells in intact organs of live animals in real time. Recently, several studies using two-photon microscopy have detailed the motility of mouse B and T lymphocyte within lymph nodes and have shown a dependence upon chemokine receptor signaling for the basal velocity of the cells. For, example, T cells from Gnia2 (-/-)mice, deficient in the heterotrimer G-protein G alpha subunit G(alpha i2) have markedly impaired chemokine-triggered chemotaxis. In vivo these cells have reduced motility and impaired positioning within lymph nodes. Gnia2 (-/-) B cells exhibit similar defects. In addition, B cells from Rgs1 (-/-) mice, deficient in a major negative regulator of G(alpha i), have a more robust motility than do wild-type B cells. Here, we describe procedures for visualizing the behavior of fluorescently labeled and adoptively transferred B lymphocytes within the inguinal lymph node of live mice.

  12. Multiphoton spectroscopy in heavy elements

    International Nuclear Information System (INIS)

    Solarz, R.W.; Paisner, J.A.; Worden, E.F.

    1977-01-01

    Some recently discovered regularities in the spectra of heavy elements which are also applicable to the analysis of the spectra of lighter atoms are described. It is pointed out that stepwise resonant multiphoton methods are irreplaceable tools in the study of high lying states in a complex atomic system. Systematic applications of these methods has permitted regularities to be observed which also hold for the lighter elements. It is noted that greatly increased understanding of the excited state structure of heavy atoms is not possible. 8 references

  13. Multiphoton excitation fluorescence imaging applied to the study of embryo development

    Science.gov (United States)

    Wokosin, David L.; White, John G.

    1998-07-01

    The use of fluorescent probes is a powerful technique for the study of living specimens. Unfortunately, living tissues are vulnerable to photodamage from the excitation illumination and they make poor optical specimens due to their light-scattering nature. Multiphoton (two or more photon) excitation imaging offers significant advantages compared to laser-scanning confocal fluorescence microscopy for fluorescence microscopy of live specimens: considerable reduction in total sample fluorophore excitation and hence less photodamage, increased depth penetration due to increased tolerance for scattering, and increased detection sensitivity as more signal photons can be used for imaging. These advantages become more significant if 3D or 4D (multifocal plane, time-lapse) imaging is undertaken. In addition, multiphoton excitation imaging allows UV excited probes such as DAPI or INDO I or endogenous fluorophores such as NAD(P)H and serotonin to be imaged without UV excitation. We, and others, have been evaluating the potential of multi-photon excitation imaging for biological microscopy and have found all of the aforementioned advantages particularly significant for laser-scanning fluorescence imaging of developing embryos; a summary of currently pursued developmental biology applications will be presented. The current status of all-solid-state ultrafast lasers as excitation sources will also be reviewed since these lasers offer tremendous potential for affordable, reliable, 'turnkey' multiphoton imaging systems. The combination of demonstrated applications, simple ultrafast laser sources, and affordable commercial systems may promote a revolution in the study of embryogenesis with the light microscope.

  14. Multiphoton fluorescence lifetime imaging of human hair.

    Science.gov (United States)

    Ehlers, Alexander; Riemann, Iris; Stark, Martin; König, Karsten

    2007-02-01

    In vivo and in vitro multiphoton imaging was used to perform high resolution optical sectioning of human hair by nonlinear excitation of endogenous as well as exogenous fluorophores. Multiphoton fluorescence lifetime imaging (FLIM) based on time-resolved single photon counting and near-infrared femtosecond laser pulse excitation was employed to analyze the various fluorescent hair components. Time-resolved multiphoton imaging of intratissue pigments has the potential (i) to identify endogenous keratin and melanin, (ii) to obtain information on intrahair dye accumulation, (iii) to study bleaching effects, and (iv) to monitor the intratissue diffusion of pharmaceutical and cosmetical components along hair shafts.

  15. A Novel Model of Intravital Platelet Imaging Using CD41-ZsGreen1 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Makoto Mizuno

    Full Text Available Platelets play pivotal roles in both hemostasis and thrombosis. Although models of intravital platelet imaging are available for thrombosis studies in mice, few are available for rat studies. The present effort aimed to generate fluorescent platelets in rats and assess their dynamics in a rat model of arterial injury. We generated CD41-ZsGreen1 transgenic rats, in which green fluorescence protein ZsGreen1 was expressed specifically in megakaryocytes and thus platelets. The transgenic rats exhibited normal hematological and biochemical values with the exception of body weight and erythroid parameters, which were slightly lower than those of wild-type rats. Platelet aggregation, induced by 20 μM ADP and 10 μg/ml collagen, and blood clotting times were not significantly different between transgenic and wild-type rats. Saphenous arteries of transgenic rats were injured with 10% FeCl3, and the formation of fluorescent thrombi was evaluated using confocal microscopy. FeCl3 caused time-dependent increases in the mean fluorescence intensity of injured arteries of vehicle-treated rats. Prasugrel (3 mg/kg, p.o., administered 2 h before FeCl3, significantly inhibited fluorescence compared with vehicle-treated rats (4.5 ± 0.4 vs. 14.9 ± 2.4 arbitrary fluorescence units at 30 min, respectively, n = 8, P = 0.0037. These data indicate that CD41-ZsGreen1 transgenic rats represent a useful model for intravital imaging of platelet-mediated thrombus formation and the evaluation of antithrombotic agents.

  16. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  17. Optical Magnetometry Using Multiphoton Transitions

    Science.gov (United States)

    Degenkolb, Skyler M.

    Optical magnetometry plays a critical role in low-energy precision measurements and numerous other applications. In particular, permanent electric dipole moment (EDM) searches impose strict requirements on magnetic field sensitivity of the underlying atomic or molecular species. Other magnetometer properties - such as chemical reactivity, dielectric strength, and interaction cross-sections with other species - also impose limitations on experimental conditions. Here, we explore a novel approach to optical magnetometry, using multiphoton transitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples spin precession to fluorescence transitions with negligible backgrounds; paramagnetic rotation due to intensity-dependent dispersion may also be detectable. Nuclear spins and nonlinear optical excitation introduce new degrees of freedom, and evade limitations arising from rapid electronic decoherence. This dissertation reports progress towards two-photon optical magnetometry using ytterbium, rubidium, and xenon. We characterize the influence of probe polarization and magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw) excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-zero isotopes for diagnostics and normalization, and we develop analysis for overlapping two-photon resonances. We also report measurements of two-photon excitation in ytterbium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosecond pulses show modulation when the repetition rate changes. Although techniques for polarizing noble gas nuclei are mature, existing cell designs are incompatible with two

  18. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  19. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  20. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  1. New developments in multimodal clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  2. How periodic orbit bifurcations drive multiphoton ionization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Chandre, C [Centre de Physique Theorique, CNRS Luminy, Case 907, 13288 Marseille cedex 09 (France); Uzer, T [Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States)

    2007-06-14

    The multiphoton ionization of hydrogen by a strong bichromatic microwave field is a complex process prototypical for atomic control research. Periodic orbit analysis captures this complexity: through the stability of periodic orbits we can match qualitatively the variation of experimental ionization rates with a control parameter, the relative phase between the two modes of the field. Moreover, an empirical formula reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows how short periodic orbits organize the dynamics in multiphoton ionization. (fast track communication)

  3. Theory of multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs

  4. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Jan Leo Rinnenthal

    Full Text Available Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC (i for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm(2 are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm(2 can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify

  5. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    Science.gov (United States)

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  6. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury.

    Science.gov (United States)

    Hall, Andrew M; Rhodes, George J; Sandoval, Ruben M; Corridon, Peter R; Molitoris, Bruce A

    2013-01-01

    Mitochondrial dysfunction has been implicated in the pathogenesis of acute kidney injury due to ischemia and toxic drugs. Methods for imaging mitochondrial function in cells using confocal microscopy are well established; more recently, it was shown that these techniques can be utilized in ex vivo kidney tissue using multiphoton microscopy. We extended this approach in vivo and found that kidney mitochondrial structure and function can be imaged in anesthetized rodents using multiphoton excitation of endogenous and exogenous fluorophores. Mitochondrial nicotinamide adenine dinucleotide increased markedly in rat kidneys in response to ischemia. Following intravenous injection, the mitochondrial membrane potential-dependent dye TMRM was taken up by proximal tubules; in response to ischemia, the membrane potential dissipated rapidly and mitochondria became shortened and fragmented in proximal tubules. In contrast, the mitochondrial membrane potential and structure were better maintained in distal tubules. Changes in mitochondrial structure, nicotinamide adenine dinucleotide, and membrane potential were found in the proximal, but not distal, tubules after gentamicin exposure. These changes were sporadic, highly variable among animals, and were preceded by changes in non-mitochondrial structures. Thus, real-time changes in mitochondrial structure and function can be imaged in rodent kidneys in vivo using multiphoton excitation of endogenous and exogenous fluorophores in response to ischemia-reperfusion injury or drug toxicity.

  7. Multiphoton imaging for assessing renal disposition in acute kidney injury

    Science.gov (United States)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  8. Multiphoton tomography of intratissue tattoo nanoparticles

    Science.gov (United States)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  9. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  10. Dressing effect in multiphoton unimolecular dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, P.F.; Garcia-Fernandez, P.

    1986-03-01

    On the basis of a quantum-statistical model recently discussed, we deal in this paper with the perturbations induced by the intense field of a CO/sub 2/ laser on the levels of the vibrational pattern of a molecule undergoing multiphoton unimolecular dissociation. This perturbational correction is investigated by using a displacement operator technique and the results are interpreted according to the statistical model.

  11. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  12. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  13. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  14. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD.

    Science.gov (United States)

    Lin, Kaifeng Lisa; Fulton, LeShara M; Berginski, Matthew; West, Michelle L; Taylor, Nicholas A; Moran, Timothy P; Coghill, James M; Blazar, Bruce R; Bear, James E; Serody, Jonathan S

    2014-03-06

    Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.

  15. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell

  16. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin...

  17. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical...

  18. Statistical analysis on activation and photo-bleaching of step-wise multi-photon activation fluorescence of melanin

    Science.gov (United States)

    Gu, Zetong; Lai, Zhenhua; Zhang, Xi; Yin, Jihao; DiMarzio, Charles A.

    2015-03-01

    Melanin is regarded as the most enigmatic pigments/biopolymers found in most organisms. We have shown previously that melanin goes through a step-wise multi-photon absorption process after the fluorescence has been activated with high laser intensity. No melanin step-wise multi-photon activation fluorescence (SMPAF) can be obtained without the activation process. The step-wise multi-photon activation fluorescence has been observed to require less laser power than what would be expected from a non-linear optical process. In this paper, we examined the power dependence of the activation process of melanin SMPAF at 830nm and 920nm wavelengths. We have conducted research using varying the laser power to activate the melanin in a point-scanning mode for multi-photon microscopy. We recorded the fluorescence signals and position. A sequence of experiments indicates the relationship of activation to power, energy and time so that we can optimize the power level. Also we explored regional analysis of melanin to study the spatial relationship in SMPAF and define three types of regions which exhibit differences in the activation process.

  19. Non-linear microscopy and its applications for the study of the structure and dynamics of biological systems

    CSIR Research Space (South Africa)

    Sparrow, RW

    2008-01-01

    Full Text Available fluorescence. To a large extent this is due to the fact that the widely used confocal fluorescence microscope systems are readily up-gradable to multi-photon excitation (Barzda 2008). MPF has a number of advantages over confocal microscopy. The wavelength...- cancerous and cancerous tissue from their endogenous fluorescence. Multiphoton microscopy allows structural and functional changes to be tracked in the same sample over time scales ranging from seconds to weeks. Molitoris and Sadoval (2005) used...

  20. Multiphoton tomography of the human eye

    Science.gov (United States)

    König, Karsten; Batista, Ana; Hager, Tobias; Seitz, Berthold

    2017-02-01

    Multiphoton tomography (MPT) is a novel label-free clinical imaging method for non-invasive tissue imaging with high spatial (300 nm) and temporal (100 ps) resolutions. In vivo optical histology can be realized due to the nonlinear excitation of endogenous fluorophores and second-harmonic generation (SHG) of collagen. Furthermore, optical metabolic imaging (OMI) is performed by two-photon autofluorescence lifetime imaging (FLIM). So far, applications of the multiphoton tomographs DermaInspect and MPTflex were limited to dermatology. Novel applications include intraoperative brain tumor imaging as well as cornea imaging. In this work we describe two-photon imaging of ex vivo human corneas unsuitable for transplantation. Furthermore, the cross-linking (CXL) process of corneal collagen based on UVA exposure and 0.1 % riboflavin was studied. The pharmacokinetics of the photosensitizer could be detected with high spatial resolution. Interestingly, an increase in the stromal autofluorescence intensity and modifications of the autofluorescence lifetimes were observed in the human corneal samples within a few days following CXL.

  1. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  2. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    Directory of Open Access Journals (Sweden)

    Shijing Tan

    2017-01-01

    Full Text Available Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  3. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  4. Multiphoton imaging the disruptive nature of sulfur mustard lesions

    Science.gov (United States)

    Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.

    2005-03-01

    Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.

  5. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    Science.gov (United States)

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain.

    Science.gov (United States)

    Coles, Jonathan A; Myburgh, Elmarie; Brewer, James M; McMenamin, Paul G

    2017-09-01

    Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, Ara; Avchyan, B R; Mkrtchian, G F

    2018-03-26

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place. © 2018 IOP Publishing Ltd.

  8. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  9. Two-frequency multiphoton absorption in UF6

    International Nuclear Information System (INIS)

    Koren, G.

    1983-01-01

    The multiphoton absorption of 9.3-μm CO 2 laser radiation induced by multiphoton absorption of 16-μm CF 4 laser radiation in UF 6 is reported. An average vibrational energy deposition in the range of 1 to 2.8 eV per molecule is found, which is sufficient to cause the observed dissociation either by collision-assisted or unimolecular decomposition processes

  10. Reduction of Tubular Flow Rate as a Mechanism of Oliguria in the Early Phase of Endotoxemia Revealed by Intravital Imaging.

    Science.gov (United States)

    Nakano, Daisuke; Doi, Kent; Kitamura, Hiroaki; Kuwabara, Takashige; Mori, Kiyoshi; Mukoyama, Masashi; Nishiyama, Akira

    2015-12-01

    Urine output is widely used as a criterion for the diagnosis of AKI. Although several potential mechanisms of septic AKI have been identified, regulation of urine flow after glomerular filtration has not been evaluated. This study evaluated changes in urine flow in mice with septic AKI. The intratubular urine flow rate was monitored in real time by intravital imaging using two-photon laser microscopy. The tubular flow rate, as measured by freely filtered dye (FITC-inulin or Lucifer yellow), time-dependently declined after LPS injection. At 2 hours, the tubular flow rate was slower in mice injected with LPS than in mice injected with saline, whereas BP and GFR were similar in the two groups. Importantly, fluorophore-conjugated LPS selectively accumulated in the proximal tubules that showed reduced tubular flow at 2 hours and luminal obstruction with cell swelling at 24 hours. Delipidation of LPS or deletion of Toll-like receptor 4 in mice abolished these effects, whereas neutralization of TNF-α had little effect on LPS-induced tubular flow retention. Rapid intravenous fluid resuscitation within 6 hours improved the tubular flow rate only when accompanied by the dilation of obstructed proximal tubules with accumulated LPS. These findings suggest that LPS reduces the intratubular urine flow rate during early phases of endotoxemia through a Toll-like receptor 4-dependent mechanism, and that the efficacy of fluid resuscitation may depend on the response of tubules with LPS accumulation. Copyright © 2015 by the American Society of Nephrology.

  11. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    Science.gov (United States)

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  12. Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities.

    Science.gov (United States)

    Heskes, A M; Lincoln, C N; Goodger, J Q D; Woodrow, I E; Smith, T A

    2012-07-01

    Multiphoton fluorescence lifetime imaging provides an excellent tool for imaging deep within plant tissues while providing a means to distinguish between fluorophores with high spatial and temporal resolution. Ideal candidates for the application of multiphoton fluorescence lifetime imaging to plants are the embedded secretory cavities found in numerous species because they house complex mixtures of secondary metabolites within extracellular lumina. Previous investigations of this type of structure have been restricted by the use of sectioned material resulting in the loss of lumen contents and often disorganization of the delicate secretory cells; thus it is not known if there is spatial segregation of secondary metabolites within these structures. In this paper, we apply multiphoton fluorescence lifetime imaging to investigate the spatial arrangement of metabolites within intact secretory cavities isolated from Eucalyptus polybractea R.T. Baker leaves. The secretory cavities of this species are abundant (up to 10 000 per leaf), large (up to 6 nL) and importantly house volatile essential oil rich in the monoterpene 1,8-cineole, together with an immiscible, non-volatile component comprised largely of autofluorescent oleuropeic acid glucose esters. We have been able to optically section into the lumina of secretory cavities to a depth of ∼80 μm, revealing a unique spatial organization of cavity metabolites whereby the non-volatile component forms a layer between the secretory cells lining the lumen and the essential oil. This finding could be indicative of a functional role of the non-volatile component in providing a protective region of low diffusivity between the secretory cells and potentially autotoxic essential oil. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  13. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling

    Science.gov (United States)

    Missiroli, Sonia; Poletti, Federica; Ramirez, Fabian Galindo; Morciano, Giampaolo; Morganti, Claudia; Pandolfi, Pier Paolo; Mammano, Fabio; Pinton, Paolo

    2015-01-01

    One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway. PMID:25544762

  14. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests; Effets de la photoactivation par irradiation synchrotron sur la microvascularisation et sur les tissus cerebraux chez la souris saine ou porteuse d'un gliome. Developpements en microscopie biphotonique et essais precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, C

    2008-06-15

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  15. Spectrally resolved multiphoton imaging of post-mortem biopsy and in-vivo mouse skin tissues

    Science.gov (United States)

    Palero, Jonathan A.; de Bruijn, Henriëtte S.; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2007-02-01

    The deep-tissue penetration and submicron spatial resolution of multi-photon microscopy and the high-detection efficiency and nanometer spectral resolution capability of a spectrograph were combined to study the intrinsic emission of mouse skin post mortem biopsy and section, and in vivo tissue samples. The different layers of skin could be clearly distinguished based on both their spectral signature and morphology. Auto fluorescence could be detected from both cellular and extra cellular structures. In addition SHG from collagen and a narrowband spectral emission band related to collagen were observed. Visualization of the spectral images in RGB color allowed us to identify tissue structures such as epidermal cells, lipid-rich keratinocytes and intercellular structures, hair follicles, collagen, elastin, and dermal fibroblasts. The results also showed morphological and spectral differences between the mouse skin post mortem biopsy and in vivo samples which explained by biochemical differences, specifically of NAD(P)H. Overall, spectral imaging provided a wealth of information not easily obtainable with present conventional multi-photon imaging methods.

  16. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  17. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues.

    Science.gov (United States)

    Palero, Jonathan A; de Bruijn, Henriëtte S; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J C M; Gerritsen, Hans C

    2007-08-01

    The deep tissue penetration and submicron spatial resolution of multiphoton microscopy and the high detection efficiency and nanometer spectral resolution of a spectrograph were utilized to record spectral images of the intrinsic emission of mouse skin tissues. Autofluorescence from both cellular and extracellular structures, second-harmonic signal from collagen, and a narrowband emission related to Raman scattering of collagen were detected. Visualization of the spectral images by wavelength-to-RGB color image conversion allowed us to identify and discriminate tissue structures such as epidermal keratinocytes, lipid-rich corneocytes, intercellular structures, hair follicles, collagen, elastin, and dermal cells. Our results also showed morphological and spectral differences between excised tissue section, thick excised tissue, and in vivo tissue samples of mouse skin. Results on collagen excitation at different wavelengths suggested that the origin of the narrowband emission was collagen Raman peaks. Moreover, the oscillating spectral dependency of the collagen second-harmonic intensity was experimentally studied. Overall, spectral imaging provided a wealth of information not easily obtainable with present conventional multiphoton imaging systems.

  18. Soliton dynamics in the multiphoton plasma regime

    Science.gov (United States)

    Husko, Chad A.; Combrié, Sylvain; Colman, Pierre; Zheng, Jiangjun; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Solitary waves have consistently captured the imagination of scientists, ranging from fundamental breakthroughs in spectroscopy and metrology enabled by supercontinuum light, to gap solitons for dispersionless slow-light, and discrete spatial solitons in lattices, amongst others. Recent progress in strong-field atomic physics include impressive demonstrations of attosecond pulses and high-harmonic generation via photoionization of free-electrons in gases at extreme intensities of 1014 W/cm2. Here we report the first phase-resolved observations of femtosecond optical solitons in a semiconductor microchip, with multiphoton ionization at picojoule energies and 1010 W/cm2 intensities. The dramatic nonlinearity leads to picojoule observations of free-electron-induced blue-shift at 1016 cm−3 carrier densities and self-chirped femtosecond soliton acceleration. Furthermore, we evidence the time-gated dynamics of soliton splitting on-chip, and the suppression of soliton recurrence due to fast free-electron dynamics. These observations in the highly dispersive slow-light media reveal a rich set of physics governing ultralow-power nonlinear photon-plasma dynamics.

  19. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  20. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  1. Rotational multiphoton endoscopy with a 1 microm fiber laser system.

    Science.gov (United States)

    Liu, Gangjun; Xie, Tuqiang; Tomov, Ivan V; Su, Jianping; Yu, Lingfeng; Zhang, Jun; Tromberg, Bruce J; Chen, Zhongping

    2009-08-01

    We present multiphoton microendoscopy with a rotational probe and a 1 microm fiber-based femtosecond laser. The rotational probe is based on a double-clad photonic crystal fiber, a gradient index lens, a microprism, and a rotational microelectronicmechanical system (MEMS) motor. The MEMS motor has a diameter of 2.2 mm and can provide 360 degrees full-view rotation. The fiber laser provides ultrashort pulses with a central wavelength at 1.034 microm and a repetition rate of 50 MHz. Second-harmonic-generation images of rat-tail tendon and fish scale are demonstrated with the rotational probe-based multiphoton system.

  2. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests

    International Nuclear Information System (INIS)

    Ricard, C.

    2008-06-01

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  3. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning.

    Science.gov (United States)

    Ajeti, Visar; Lien, Chi-Hsiang; Chen, Shean-Jen; Su, Ping-Jung; Squirrell, Jayne M; Molinarolo, Katharine H; Lyons, Gary E; Eliceiri, Kevin W; Ogle, Brenda M; Campagnola, Paul J

    2013-10-21

    Multiphoton excited photochemistry is a powerful 3D fabrication tool that produces sub-micron feature sizes. Here we exploit the freeform nature of the process to create models of the extracellular matrix (ECM) of several tissues, where the design blueprint is derived directly from high resolution optical microscopy images (e.g. fluorescence and Second Harmonic Generation). To achieve this goal, we implemented a new form of instrument control, termed modulated raster scanning, where rapid laser shuttering (10 MHz) is used to directly map the greyscale image data to the resulting protein concentration in the fabricated scaffold. Fidelity in terms of area coverage and relative concentration relative to the image data is ~95%. We compare the results to an STL approach, and find the new scheme provides significantly improved performance. We suggest the method will enable a variety of cell-matrix studies in cancer biology and also provide insight into generating scaffolds for tissue engineering.

  4. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  5. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  6. Dressed-state perturbation theory for multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Pan, L.; Sundaram, B.; Armstrong, L. Jr.

    1987-01-01

    We introduce a perturbation theory using dressed bound states to include higher-order transition processes in the calculation of atomic multiphoton ionization. We calculate the ionization probability of hydrogen atoms using this theory and compare the results with the lowest-order perturbation result. We also calculate the shift of the hydrogen atom's ground state that is due to the external field

  7. Tagging multiphoton ionization events by two-dimensional photoelectron spectroscopy

    NARCIS (Netherlands)

    de Groot, Mattijs; Broos, Jaap; Buma, Wybren Jan

    2007-01-01

    Two-dimensional photoelectron spectroscopy has been used to supply process-specific labels to multiphoton ionization events. Employing these tags, the authors can construct excitation and photoelectron spectra along predefined excitation routes in the neutral manifold and ionization routes to the

  8. Influence of Vacuum Cooling on Escherichia coli O157:H7 Infiltration in Fresh Leafy Greens via a Multiphoton-Imaging Approach

    Science.gov (United States)

    Vonasek, Erica

    2015-01-01

    Microbial pathogen infiltration in fresh leafy greens is a significant food safety risk factor. In various postharvest operations, vacuum cooling is a critical process for maintaining the quality of fresh produce. The overall goal of this study was to evaluate the risk of vacuum cooling-induced infiltration of Escherichia coli O157:H7 into lettuce using multiphoton microscopy. Multiphoton imaging was chosen as the method to locate E. coli O157:H7 within an intact lettuce leaf due to its high spatial resolution, low background fluorescence, and near-infrared (NIR) excitation source compared to those of conventional confocal microscopy. The variables vacuum cooling, surface moisture, and leaf side were evaluated in a three-way factorial study with E. coli O157:H7 on lettuce. A total of 188 image stacks were collected. The images were analyzed for E. coli O157:H7 association with stomata and E. coli O157:H7 infiltration. The quantitative imaging data were statistically analyzed using analysis of variance (ANOVA). The results indicate that the low-moisture condition led to an increased risk of microbial association with stomata (P vacuum cooling levels and moisture levels led to an increased risk of infiltration (P < 0.05). This study also demonstrates the potential of multiphoton imaging for improving sensitivity and resolution of imaging-based measurements of microbial interactions with intact leaf structures, including infiltration. PMID:26475109

  9. Methodological advances in imaging intravital axonal transport [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    James N. Sleigh

    2017-03-01

    Full Text Available Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.

  10. Multiphoton dynamics of qutrits in the ultrastrong coupling regime with a quantized photonic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetissian, H. K., E-mail: avetissian@ysu.am; Avetissian, A. K.; Mkrtchian, G. F. [Yerevan State University 0025, Center of Strong Fields Physics (Armenia); Kibis, O. V. [Novosibirsk State Technical University, Department of Applied and Theoretical Physics (Russian Federation)

    2015-12-15

    Multiphoton resonant excitation of a three-state quantum system (a qutrit) with a single-mode photonic field is considered in the ultrastrong coupling regime, when the qutrit–photonic field coupling rate is comparable to appreciable fractions of the photon frequency. For ultrastrong couplings, the obtained solutions of the Schrödinger equation that reveal multiphoton Rabi oscillations in qutrits with the interference effects leading to the collapse and revival of atomic excitation probabilities at the direct multiphoton resonant transitions.

  11. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to

  12. Photonic crystal fiber-generated coherent supercontinuum for fast stain-free histopathology and intraoperative multiphoton imaging (Conference Presentation)

    Science.gov (United States)

    Tu, Haohua; You, Sixian; Sun, Yi; Spillman, Darold R.; Ray, Partha S.; Liu, George; Boppart, Stephen A.

    2017-03-01

    In contrast to a broadband Ti:sapphire laser that mode locks a continuum of emission and enables broadband biophotonic applications, supercontinuum generation moves the spectral broadening outside the laser cavity into a nonlinear medium, and may thus improve environmental stability and more readily enable clinical translation. Using a photonic crystal fiber for passive spectral broadening, this technique becomes widely accessible from a narrowband fixed-wavelength mode-locked laser. Currently, fiber supercontinuum sources have benefited single-photon biological imaging modalities, including light-sheet or confocal microscopy, diffuse optical tomography, and retinal optical coherence tomography. However, they have not fully benefited multiphoton biological imaging modalities with proven capability for high-resolution label-free molecular imaging. The reason can be attributed to the amplitude/phase noise of fiber supercontinuum, which is amplified from the intrinsic noise of the input laser and responsible for spectral decoherence. This instability deteriorates the performance of multiphoton imaging modalities more than that of single-photon imaging modalities. Building upon a framework of coherent fiber supercontinuum generation, we have avoided this instability or decoherence, and balanced the often conflicting needs to generate strong signal, prevent sample photodamage, minimize background noise, accelerate imaging speed, improve imaging depth, accommodate different modalities, and provide user-friendly operation. Our prototypical platforms have enabled fast stain-free histopathology of fresh tissue in both laboratory and intraoperative settings to discover a wide variety of imaging-based cancer biomarkers, which may reduce the cost and waiting stress associated with disease/cancer diagnosis. A clear path toward intraoperative multiphoton imaging can be envisioned to help pathologists and surgeons improve cancer surgery.

  13. Intravital Microscopy in Evaluating Patients With Primary Peritoneal, Fallopian Tube, or Stage IA-IV Ovarian Cancer

    Science.gov (United States)

    2017-12-28

    Fallopian Tube Carcinoma; Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Ovarian Cancer; Stage IB Ovarian Cancer; Stage IC Ovarian Cancer; Stage II Ovarian Cancer; Stage IIA Ovarian Cancer; Stage IIB Ovarian Cancer; Stage IIC Ovarian Cancer; Stage III Ovarian Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Ovarian Cancer; Stage IV Ovarian Cancer

  14. Intravital Microscopy for Identifying Tumor Vessels in Patients With Stage IA-IV Melanoma That is Being Removed by Surgery

    Science.gov (United States)

    2017-06-05

    Recurrent Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  15. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Claire Vennin

    2016-05-01

    Full Text Available Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.

  16. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    Science.gov (United States)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  17. Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging.

    Science.gov (United States)

    Roy, Manas; Kusurkar, Tejas Sanjeev; Maurya, Sandeep Kumar; Meena, Sunil Kumar; Singh, Sushil Kumar; Sethy, Niroj; Bhargava, Kalpana; Sharma, Raj Kishore; Goswami, Debabrata; Sarkar, Sabyasachi; Das, Mainak

    2014-02-01

    In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates. Structural properties of the graphene oxide were analyzed using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, and Raman spectroscopy. The oxidized sample shows remarkable fluorescence, multi-photon imaging and magnetic properties. On increasing the excitation wavelength, the fluorescence emission intensity of the graphene oxide also increases and found maximum emission at 380 nm excitation wavelength. On studying the two photon absorption (TPA) property of aqueous graphene oxide using Z-scan technique, we found significant TPA activity at near infrared wavelength. In addition, the graphene oxide shows ferromagnetic behavior at room temperature. The observed fluorescence and magnetic property were attributed to the defects caused in the graphene oxide structure by introducing oxygen containing hydrophilic groups during the oxidation process. Previously silk cocoon has been used extensively in deriving silk-based tissue engineering materials and as gas filter. Here we show a novel application of silk cocoon by synthesizing graphene oxide based magnetic-fluorophore for bio-imaging applications.

  18. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells

    Directory of Open Access Journals (Sweden)

    Federica eMoalli

    2015-03-01

    Full Text Available Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA induces a humoral immune response in tumor bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs from melanoma patients, we developed a premetastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer Tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM and whole mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs, which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.

  19. Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging.

    Science.gov (United States)

    Germain, Ronald N; Bajénoff, Marc; Castellino, Flora; Chieppa, Marcello; Egen, Jackson G; Huang, Alex Y C; Ishii, Masaru; Koo, Lily Y; Qi, Hai

    2008-02-01

    A central characteristic of the immune system is the constantly changing location of most of its constituent cells. Lymphoid and myeloid cells circulate in the blood, and subsets of these cells enter, move, and interact within, then leave organized lymphoid tissues. When inflammation is present, various hematopoietic cells also exit the vasculature and migrate within non-lymphoid tissues, where they carry out effector functions that support host defense or result in autoimmune pathology. Effective innate and adaptive immune responses involve not only the action of these individual cells but also productive communication among them, often requiring direct membrane contact between rare antigen-specific or antigen-bearing cells. Here, we describe our ongoing studies using two-photon intravital microscopy to probe the in situ behavior of the cells of the immune system and their interactions with non-hematopoietic stromal elements. We emphasize the importance of non-random cell migration within lymphoid tissues and detail newly established mechanisms of traffic control that operate at multiple organizational scales to facilitate critical cell contacts. We also describe how the methods we have developed for imaging within lymphoid sites are being applied to other tissues and organs, revealing dynamic details of host-pathogen interactions previously inaccessible to direct observation.

  20. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  1. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  2. MULTIPHOTON MICROSCOPIC IMAGING OF MOUSE INTESTINAL MUCOSA BASED ON TWO-PHOTON EXCITED FLUORESCENCE AND SECOND HARMONIC GENERATION

    Directory of Open Access Journals (Sweden)

    REN'AN XU

    2013-01-01

    Full Text Available Multiphoton microscopy (MPM, based on two-photon excited fluorescence and second harmonic generation, enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the administration of exogenous contrast agents. In this paper, we used MPM to image the microstructures of the mucosa in fresh, unfixed, and unstained intestinal tissue of mouse. The morphology and distribution of the main components in mucosa layer such as columnar cells, goblet cells, intestinal glands, and a little collagen fibers were clearly observed in MPM images, and then compared with standard H&E images from paired specimens. Our results indicate that MPM combined with endoscopy and miniaturization probes has the potential application in the clinical diagnosis and in vivo monitoring of early intestinal cancer.

  3. Multiphoton imaging: a view to understanding sulfur mustard lesions

    Science.gov (United States)

    Werrlein, Robert J. S.; Madren-Whalley, Janna S.

    2003-07-01

    It is well known that topical exposure to sulfur mustard (SM) produces persistent, incapacitating blisters of the skin. However, the primary lesions effecting epidermal-dermal separation and disabling of mechanisms for cutaneous repair remain uncertain. Immunofluorescent staining plus multiphoton imaging of human epidermal tissues and keratinocytes exposed to SM (400 μM x 5 min)have revealed that SM disrupts adhesion-complex molecules which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin-14 showed early, progressive, postexposure collapse of the K5/K14 cytoskeleton that resulted in ventral displacement of the nuclei beneath its collapsing filaments. This effectively corrupted the dynamic filament assemblies that link basal-cell nuclei to the extracellular matrix via α6β4-integrin and laminin-5. At 1 h postexposure, there was disruption in the surface organization of α6β4 integrins, associated displacement of laminin-5 anchoring sites and a concomitant loss of functional asymmetry. Accordingly, our multiphoton images are providing compelling evidence that SM induces prevesicating lesions that disrupt the receptor-ligand organization and cytoskeletal systems required for maintaining dermal-epidermal attachment, signal transduction, and polarized mobility.

  4. Clinical studies of pigmented lesions in human skin by using a multiphoton tomograph

    Science.gov (United States)

    Balu, Mihaela; Kelly, Kristen M.; Zachary, Christopher B.; Harris, Ronald M.; Krasieva, Tatiana B.; König, Karsten; Tromberg, Bruce J.

    2013-02-01

    In vivo imaging of pigmented lesions in human skin was performed with a clinical multiphoton microscopy (MPM)-based tomograph (MPTflex, JenLab, Germany). Two-photon excited fluorescence was used for visualizing endogenous fluorophores such as NADH/FAD, keratin, melanin in the epidermal cells and elastin fibers in the dermis. Collagen fibers were imaged by second harmonic generation. Our study involved in vivo imaging of benign melanocytic nevi, atypical nevi and melanoma. The goal of this preliminary study was to identify in vivo the characteristic features and their frequency in pigmented lesions at different stages (benign, atypical and malignant) and to evaluate the ability of in vivo MPM to distinguish atypical nevi from melanoma. Comparison with histopathology was performed for the biopsied lesions. Benign melanocytic nevi were characterized by the presence of nevus cell nests at the epidermal-dermal junction. In atypical nevi, features such as lentiginous hyperplasia, acanthosis and architectural disorder were imaged. Cytological atypia was present in all the melanoma lesions imaged, showing the strongest correlation with malignancy. The MPM images demonstrated very good correlation with corresponding histological images, suggesting that MPM could be a promising tool for in vivo non-invasive pigmented lesion diagnosis, particularly distinguishing atypical nevi from melanoma.

  5. Nonlinear optical and multi-photon absorption properties in graphene-ZnO nanocomposites

    Science.gov (United States)

    Tong, Qing; Wang, Yu-Hua; Yu, Xiang-Xiang; Wang, Bo; Liang, Zhuang; Tang, Meng; Wu, An-Shun; Zhang, Hai-Jun; Liang, Feng; Xie, Ya-Feng; Wang, Jun

    2018-04-01

    Graphene-ZnO (GZO) nanocomposites were synthesized by a modified solvothermal method, and characterized by transmission electron microscopy, x-ray diffraction, Raman spectra, and UV-vis absorption spectra. The controllable nonlinear optical (NLO) properties of as-prepared GZO nanocomposites were tested by an open-aperture Z-scan method with 1030 nm fs laser pulses; the tested results showed that there were five-photon absorption (5PA) at 46.8 GW cm-2, 3PA at 28.1 GW cm-2, 2PA at 18.7 GW cm-2, and a vital change from saturable absorption (SA) to reverse SA (RSA) with the increase of incident intensity. This was the first time that 5PA was found in GZO nanocomposites at such a low intensity, 46.8 GW cm-2. The tunable NLO property from SA to RSA and controllable multi-photon absorption provided a facile approach for their applications in optical, optoelectronic devices, and information storage.

  6. Intravital fiber-optic fluorescence imaging for monitoring ovarian carcinoma progression and treatment response

    Science.gov (United States)

    Spring, Bryan Q.; Celli, Jonathan P.; Evans, Conor L.; Zhong, Wei; Rizvi, Imran; Mai, Zhiming; Mertz, Jerome; Yun, Seok H.; Hasan, Tayyaba

    2009-06-01

    Our laboratory has constructed a custom fluorescence microendoscope for detecting and monitoring tumor nodules in a mouse model of metastatic ovarian carcinoma (OVCA). The microendoscope is being applied for tumor recognition and for quantifying tumor burden reduction following photodynamic therapy (PDT). Benzoporphyrin derivative monoacid ring A (BPD-MA), a photosensitizing agent for PDT, is administered to the mice and imaged with the microendoscope prior to PDT. BPD-MA fluorescence is a convenient means for locating tumor sites and quantifying tumor burden (despite the fact that BPD-MA is a non-targeted contrast agent). The miniature, flexible microendoscope probe is delivered via a 14-gauge catheter for imaging metastases along the outer surfaces of the internal organs and the inner walls of the peritoneal cavity. The minimal invasiveness of this approach facilitates frequent imaging of the mice in order to monitor cancer progression and treatment response. We present promising data for intravital imaging of treatment response following PDT and new developments in the microendoscope instrumentation for improved image quality.

  7. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination.

    Science.gov (United States)

    Pinner, Sophie; Jordan, Peter; Sharrock, Kirsty; Bazley, Laura; Collinson, Lucy; Marais, Richard; Bonvin, Elise; Goding, Colin; Sahai, Erik

    2009-10-15

    How melanoma acquire a metastatic phenotype is a key issue. One possible mechanism is that metastasis is driven by microenvironment-induced switching between noninvasive and invasive states. However, whether switching is a reversible or hierarchical process is not known and is difficult to assess by comparison of primary and metastatic tumors. We address this issue in a model of melanoma metastasis using a novel intravital imaging method for melanosomes combined with a reporter construct in which the Brn-2 promoter drives green fluorescent protein (GFP) expression. A subpopulation of cells containing little or no pigment and high levels of Brn2::GFP expression are motile in the primary tumor and enter the vasculature. Significantly, the less differentiated state of motile and intravasated cells is not maintained at secondary sites, implying switching between states as melanoma cells metastasize. We show that melanoma cells can switch in both directions between high- and low-pigment states. However, switching from Brn2::GFP high to low was greatly favored over the reverse direction. Microarray analysis of high- and low-pigment populations revealed that transforming growth factor (TGF)beta2 was up-regulated in the poorly pigmented cells. Furthermore, TGFbeta signaling induced hypopigmentation and increased cell motility. Thus, a subset of less differentiated cells exits the primary tumor but subsequently give rise to metastases that include a range of more differentiated and pigment-producing cells. These data show reversible phenotype switching during melanoma metastasis.

  8. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Bagatolli, Luis

    2013-01-01

    -carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal......' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2...

  9. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that of the mutant may give clues to find the cure.

  10. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P; Ouzounov, Dimitre G; Bifano, Thomas G; Xu, Chris

    2015-11-30

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity.

  11. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals

    Science.gov (United States)

    Schuck, Renaud; Go, Mary Ann; Garasto, Stefania; Reynolds, Stephanie; Dragotti, Pier Luigi; Schultz, Simon R.

    2018-04-01

    Objective. Multi-photon laser scanning microscopy provides a powerful tool for monitoring the spatiotemporal dynamics of neural circuit activity. It is, however, intrinsically a point scanning technique. Standard raster scanning enables imaging at subcellular resolution; however, acquisition rates are limited by the size of the field of view to be scanned. Recently developed scanning strategies such as travelling salesman scanning (TSS) have been developed to maximize cellular sampling rate by scanning only select regions in the field of view corresponding to locations of interest such as somata. However, such strategies are not optimized for the mechanical properties of galvanometric scanners. We thus aimed to develop a new scanning algorithm which produces minimal inertia trajectories, and compare its performance with existing scanning algorithms. Approach. We describe here the adaptive spiral scanning (SSA) algorithm, which fits a set of near-circular trajectories to the cellular distribution to avoid inertial drifts of galvanometer position. We compare its performance to raster scanning and TSS in terms of cellular sampling frequency and signal-to-noise ratio (SNR). Main Results. Using surrogate neuron spatial position data, we show that SSA acquisition rates are an order of magnitude higher than those for raster scanning and generally exceed those achieved by TSS for neural densities comparable with those found in the cortex. We show that this result also holds true for in vitro hippocampal mouse brain slices bath loaded with the synthetic calcium dye Cal-520 AM. The ability of TSS to ‘park’ the laser on each neuron along the scanning trajectory, however, enables higher SNR than SSA when all targets are precisely scanned. Raster scanning has the highest SNR but at a substantial cost in number of cells scanned. To understand the impact of sampling rate and SNR on functional calcium imaging, we used the Cramér-Rao Bound on evoked calcium traces recorded

  12. Confocal microscopy

    Indian Academy of Sciences (India)

    This is elucidated by time-resolved confocal microscopy. Keywords. Porphyrin; micro-rod; anisotropy; exciton coupling; confocal microscopy. 1. Introduction. Supra-molecular assemblies of porphyrin play a central role in light harvesting during photosynthesis.1 10 In such a system, the absorbed photon shuttles between dif-.

  13. Resonance Enhanced Multi-photon Spectroscopy of DNA

    Science.gov (United States)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  14. Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pittet

    2014-08-01

    Full Text Available The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM components and age. Multiphoton Microscopy (MPM that measures the autofluorescence (AF and second harmonic generation (SHG was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB. The measurements of the skin mechanical properties were done with a cutometer. All measurements were performed on two groups of 30 healthy female volunteers. The MPM showed a decrease of the quantity of collagen and elastin as a function of depth of the dermis as well as age. The SAAID was lower for the older skin in the deeper dermis. Ultrasound imaging revealed a significant decrease of SENEB as a function of aging. The mechanical properties confirmed a loss of cutaneous elasticity and firmness. Although multiphoton microscopy is a powerful technique to study the characteristics of the dermis and its age-related damage, the location of the measurements (depth remains very important for the validation of these variations. These variations do not seem to be homogeneous according to the part of the dermis that is studied.

  15. Multiphoton excitations in vibrational rotational states of diatomic molecules in intense electromagnetic field

    Science.gov (United States)

    Faisal, F. H. M.; Rahman, N. K.

    1972-01-01

    A theory is presented and a calculational procedure is outlined for evaluating transition amplitudes of multiphoton excitations of vibrational-rotational levels in diatomic molecules. This theory can be utilized in studying behavior of molecules in intense electromagnetic fields.

  16. Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein.

    Directory of Open Access Journals (Sweden)

    Devender Kumar

    2015-12-01

    Full Text Available Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration.

  17. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension.

    Science.gov (United States)

    Endres, Bradley T; Sandoval, Ruben M; Rhodes, George J; Campos-Bilderback, Silvia B; Kamocka, Malgorzata M; McDermott-Roe, Christopher; Staruschenko, Alexander; Molitoris, Bruce A; Geurts, Aron M; Palygin, Oleg

    2017-08-01

    Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSC alb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension. Copyright © 2017 the American Physiological Society.

  18. Multiphoton transitions in semiconductors in the non-perturbative approach

    International Nuclear Information System (INIS)

    Iqbal, M.Z.; Hassan, A.R.

    1987-09-01

    Transition rates for multiphoton absorption via direct band-to-band excitation have been calculated using a non-perturbative approach due to Jones and Reiss, based on the Volkov type final state wave functions. Both cases of parabolic and non-parabolic energy bands have been included in our calculations. Absorption coefficients have been obtained for the cases of plane polarized and circularly polarized light. In particular, two-photon absorption coefficients are derived for the two cases of polarization for the parabolic band approximation as well as for non-parabolic bands and compared with the results based on perturbation theory. Numerical estimates of the two photon absorption coefficients resulting from our calculations are also provided. (author). 10 refs, 1 tab

  19. Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada

    2017-06-01

    The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.

  20. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    International Nuclear Information System (INIS)

    He Yonglin

    2011-01-01

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  1. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  2. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  3. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  4. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  5. Applications of coherent Raman scattering microscopies to clinical and biological studies.

    Science.gov (United States)

    Schie, Iwan W; Krafft, Christoph; Popp, Jürgen

    2015-06-21

    Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.

  6. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  7. In vivo non-invasive multiphoton tomography of human skin

    Science.gov (United States)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  8. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  9. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  10. Dissecting multi-photon resonances at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.C. [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge (United Kingdom); Bhatia, D.; Iyer, Abhishek M. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-09-15

    We examine the phenomenology of the production, at the 13 TeV Large Hadron Collider (LHC), of a heavy resonance X, which decays via other new on-shell particles n into multi-(i.e. three or more) photon final states. In the limit that n has a much smaller mass than X, the multi-photon final state may dominantly appear as a two-photon final state because the γs from the n decay are highly collinear and remain unresolved. We discuss how to discriminate this scenario from X → γγ: rather than discarding non-isolated photons, it is better to relax the isolation criteria and instead form photon jets substructure variables. The spins of X and n leave their imprint upon the distribution of pseudo-rapidity gap Δη between the apparent two-photon states. Depending on the total integrated luminosity, this can be used in many cases to claim discrimination between the possible spin choices of X and n, although the case where X and n are both scalar particles cannot be discriminated from the direct X → γγ decay in this manner. Information on the mass of n can be gained by considering the mass of each photon jet. (orig.)

  11. A CNOT gate between multiphoton qubits encoded in two cavities.

    Science.gov (United States)

    Rosenblum, S; Gao, Y Y; Reinhold, P; Wang, C; Axline, C J; Frunzio, L; Girvin, S M; Jiang, Liang; Mirrahimi, M; Devoret, M H; Schoelkopf, R J

    2018-02-13

    Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm must ultimately operate on error-protected logical qubits encoded in high-dimensional systems. Typically, logical qubits are encoded in multiple two-level systems, but entangling gates operating on such qubits are highly complex and have not yet been demonstrated. Here we realize a controlled NOT (CNOT) gate between two multiphoton qubits in two microwave cavities. In this approach, we encode a qubit in the high-dimensional space of a single cavity mode, rather than in multiple two-level systems. We couple two such encoded qubits together through a transmon, which is driven by an RF pump to apply the gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of the transmon, enabling a high-fidelity gate operation. These results are an important step towards universal algorithms on error-corrected logical qubits.

  12. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  13. Multiphoton Ionization Detection in Collinear Laser Spectroscopy of Isolde Beams

    CERN Document Server

    2002-01-01

    The experiments using the multiphoton ionization technique have been continued in the beginning of 1990 with stable beam tests on the modified apparatus and with another radioactive beam time on Yb. Higher laser power and an increased vacuum in the ionization region (see figure) yielded a further gain in sensitivity, mainly due to the better suppression of the background ions produced in rest gas collisions. For even Yb isotopes we have now reached a detection efficiency of $\\epsilon$~=~1~x~10$^{-5}$ ions per incoming atom at a background count rate of 30~ions from a beam of 5~x~10$^9$. This sensitivity was high enough for spectroscopy on $^{157}$Yb, where the typical ISOLDE yield of 5~x~10$^7$Yb ions is covered by an isobaric contamination of more than 10$^{10}$ ions. Measurements have also been performed on $^{175}$Yb. These give the first precise value for the magnetic moment of this isotope, $\\mu$~=~0.766(8)$ mu _{N} $, which agrees rather well with the magnetic moment of the isotone $^{177}$Hf. The isoto...

  14. Photoacoustic Microscopy

    OpenAIRE

    Yao, Junjie; Wang, Lihong V.

    2013-01-01

    Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (∼1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal...

  15. Endoscopic Microscopy

    Directory of Open Access Journals (Sweden)

    Konstantin Sokolov

    2002-01-01

    Full Text Available In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology with contrast and resolution similar to that provided by standard histopathology – without need for physical tissue removal. In this article, we focus on optical imaging technologies that have the potential to dramatically improve the detection, prevention, and therapy of epithelial cancers. Epithelial pre-cancers and cancers are associated with a variety of morphologic, architectural, and molecular changes, which currently can be assessed only through invasive, painful biopsy. Optical imaging is ideally suited to detecting cancer-related alterations because it can detect biochemical and morphologic alterations with sub-cellular resolution throughout the entire epithelial thickness. Optical techniques can be implemented non-invasively, in real time, and at low cost to survey the tissue surface at risk. Our manuscript focuses primarily on modalities that currently are the most developed: reflectance confocal microscopy (RCM and optical coherence tomography (OCT. However, recent advances in fluorescence-based endoscopic microscopy also are reviewed briefly. We discuss the basic principles of these emerging technologies and their current and potential applications in early cancer detection. We also present research activities focused on development of exogenous contrast agents that can enhance the morphological features important for cancer detection and that have the potential to allow vital molecular imaging of cancer-related biomarkers. In conclusion, we discuss future improvements to the technology needed to develop robust clinical devices.

  16. Cross-Sectional Shape of Rat Mesenteric Arterioles at Branching Studied by Confocal Laser Microscopy

    Science.gov (United States)

    Nakano, Atushi; Minamiyama, Motomu; Niimi, Hideyuki

    This study was aimed to investigate the cross-sectional shape of mesenteric arterioles at branching, using confocal laser microscopy. Wistar rats (8 weeks, male) were anesthetized with thiobutabarbital sodium. Blood flow and microvascular network in the mesentery were observed using video microscopy. The rat intestine with mesentery was extracted and the intestinal vasculature was perfused with Krebs-Ringer and then fixed with paraformaldehyde under a static pressure of 100mmHg. A section of mesentery was isolated from the intestine, and spread up to the in vivo geometry based on the intravital microscopic observation. The mesentery section was stained with tetramethyl rhodamine isothiocyanate (TRITC)-phalloidin. The samples were observed under a confocal laser microscope. The cross-sectional image was re-sliced to measure the cross-sectional area and major/minor axes of the best fitting ellipse. The aspect ratio was defined in terms of the minor/major diameter ratio. The extended focus image of mesenteric arterioles showed that the cross-sectional shape was not circular but elliptic-like. The cross-sectional area of the parent vessel decreased from proximal to distal positions. The mean aspect ratio of the parent vessel was approximately 0.5, while that of the branching vessel was approximately 0.8. The flattened shape and variation of the cross-sectional area of arterioles requires some correction of in vivo data of the two-dimensional mesenteric microvasculature obtained using intravital microscopy.

  17. Invited Review Article: Pump-probe microscopy

    International Nuclear Information System (INIS)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  18. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  19. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  20. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  1. Contribution of laser Doppler flowmetry with venoarteriolar reflex, cold, and rewarming testing, and intravital capillaroscopy to diagnose Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Zeman J

    2014-05-01

    Full Text Available Jan Zeman,1 Oksana Turyanytsya,1 Vojtĕch Kapsa,2 Mojmír Eliáš3 1Department of Clinical Cardiology and Angiology, Hospital Bulovka, 2Charles University in Prague, Faculty of Mathematics and Physics, 3Kooperativa a.s., Pobrezni, Prague, Czech Republic Background: The early differential diagnosis of Raynaud’s phenomenon (RP is crucial for the prognosis and therapy of these patients. In our microcirculatory laboratory, we use intravital capillaroscopy (IC, plethysmography (P, and laser Doppler flowmetry (LDF for examining acrosyndromes. We combine LDF with venoarteriolar reflex test, cold test, and rewarming test to achieve more reliable diagnoses of acrosyndromes. Patients and methods: We examined LDF and IC according to a strict protocol using a battery of tests (venoarteriolar reflex test, cold test, rewarming test applied to five different groups of people and compared their results: healthy controls, primary Raynaud’s phenomenon (PRP, systemic scleroderma, vibration white finger, and peripheral artery occlusive disease. Our tests included 340 individuals (72 patients plus 268 controls. Results: Although all tests provided some differences between controls and patients, only the rewarming test offered significant results for differential diagnoses. Conclusion: IC and LDF combined with the battery of tests (venoarteriolar reflex test, cold test, rewarming test under standard conditions can be used as reliable tools to distinguish between PRP and some types of secondary RP (especially in the case of systemic scleroderma, vibration white fingers, or peripheral artery occlusive disease; RPs with organic occlusions of the small arteries causing the diseases. Our methodology can help to distinguish between other types of RP, as well. Keywords: Raynaud’s phenomenon, acrosyndrome, laser Doppler flowmetry, intravital capillaroscopy, scleroderma, vibration white finger, peripheral artery occlusive disease

  2. Simultaneous measurements of microwave photoresistance and cyclotron reflection in the multiphoton regime

    Science.gov (United States)

    Zhang, Jie; Du, Rui-Rui; Pfeiffer, L. N.; West, K. W.

    2018-01-01

    We simultaneously measure photoresistance with electrical transport and coupled plasmon-cyclotron resonance using microwave reflection spectroscopy in high-mobility GaAs/AlGaAs quantum wells under a perpendicular magnetic field. Multiphoton transitions are revealed as sharp peaks in the resistance and the cyclotron reflection on samples with various carrier densities. Our main finding is that plasmon coupling is relevant in the cyclotron reflection spectrum but has not been observed in the electrical conductivity signal. We discuss possible mechanisms relevant to reflection or dc conductivity signal to explain this discrepancy. We further confirm a trend that more multiphoton features can be observed using higher carrier density samples.

  3. Additive Manufacture of Three Dimensional Nanocomposite Based Objects through Multiphoton Fabrication

    Directory of Open Access Journals (Sweden)

    Yaan Liu

    2016-09-01

    Full Text Available Three-dimensional structures prepared from a gold-polymer composite formulation have been fabricated using multiphoton lithography. In this process, gold nanoparticles were simultaneously formed through photoreduction whilst polymerisation of two possible monomers was promoted. The monomers, trimethylopropane triacrylate (TMPTA and pentaerythritol triacrylate (PETA were mixed with a gold salt, but it was found that the addition of a ruthenium(II complex enhanced both the geometrical uniformity and integrity of the polymerised/reduced material, enabling the first production of 3D gold-polymer structures by single step multiphoton lithography.

  4. Study on infrared multiphoton excitation of the linear triatomic molecule by the Lie-algebra approach

    International Nuclear Information System (INIS)

    Feng, H.; Zheng, Y.; Ding, S.

    2007-01-01

    Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example

  5. Intravital Microscopic Evaluation of the Effects of a CXCR2 Antagonist in a Model of Liver Ischemia Reperfusion Injury in Mice.

    Science.gov (United States)

    de Oliveira, Thiago Henrique Caldeira; Marques, Pedro Elias; Poosti, Fariba; Ruytinx, Pieter; Amaral, Flávio Almeida; Brandolini, Laura; Allegretti, Marcello; Proost, Paul; Teixeira, Mauro Martins

    2017-01-01

    Ischemia-reperfusion (IR) is a major contributor to graft rejection after liver transplantation. During IR injury, an intense inflammatory process occurs in the liver. Neutrophils are considered central players in the events that lead to liver injury. CXC chemokines mediate hepatic inflammation following reperfusion. However, few studies have demonstrated in real-time the behavior of recruited neutrophils. We used confocal intravital microscopy (IVM) to image neutrophil migration in the liver and to analyze in real-time parameters of neutrophil recruitment in the inflamed tissue in animals treated or not with reparixin, an allosteric antagonist of CXCR1/2 receptors. WT and LysM-eGFP mice treated with reparixin or saline were subjected to 60 min of ischemia followed by different times of reperfusion. Mice received Sytox orange intravenously to show necrotic DNA in IVM. The effect of reparixin on parameters of local and systemic reperfusion-induced injury was also investigated. IR induced liver injury and inflammation, as evidenced by high levels of alanine aminotransferase and myeloperoxidase activity, chemokine and cytokine production, and histological outcome. Treatment with reparixin significantly decreased neutrophil influx. Moreover, reparixin effectively suppressed the increase in serum concentrations of TNF-α, IL-6, and CCL3, and the reperfusion-associated tissue damage. The number of neutrophils in the liver increased between 6 and 24 h of reperfusion, whereas the distance traveled, velocity, neutrophil size and shape, and cluster formation reached a maximum 6 h after reperfusion and then decreased gradually. In vivo imaging revealed that reparixin significantly decreased neutrophil infiltration and movement and displacement of recruited cells. Moreover, neutrophils had a smaller size and less elongated shape in treated mice. Imaging of the liver by confocal IVM was successfully implemented to describe neutrophil behavior in vivo during liver injury

  6. Comparative study of hexamethyldisiloxane photofragmentation through multiphotonic and monophotonic processes

    Science.gov (United States)

    Quintella, Cristina M.; de Souza, G. Gerson B.; Mundim, M. S. P.

    1998-05-01

    A comparative study of the hexamethyldisiloxane (HMDSO) molecule photofragmentation induced by laser multiphotonic (MPI) and synchrotron monophotonic (SR) processes is presented. The HMDSO sample was effusively expanded into the vacuum chamber and fragmented by either laser or synchrotron irradiation. The resulting ions were detected by a time-of- flight spectrometer using both electron-ion and ion-ion coincidence techniques. The parent ion has not been observed in both processes suggesting its instability. MPI induced fragmentation is characterized by a high ionic yield (IY) in the lighter fragments region. The MPI atomization is severe generating ions like C+ and Si+ that are absent from the SR spectra. The doubly-charged ions SiOSi(CH3)2++ and SiOSi(CH3)4++ are observed in the SR spectra. SR and MPI fragmentation have a common main route: the methyl group ejection yielding m/q equals 147,148,149 and m/q equals 15. The first presents a higher IY suggesting that the positive charge stays preferentially with the more massive fragment. Through MPI there is another route: the Si-O bond breakage yielding m/q equals 73,74,75 and m/q equals 89 (Si(CH3)3+ and OSi(CH3)3+. The metastable doubly charged ions were SiOSiC1,2,3,6Hn++ and OSiC3Hn++ in the SR case; and a wider fragment mass range was observed through MPI.

  7. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    International Nuclear Information System (INIS)

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-01-01

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  8. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.

    Science.gov (United States)

    Serrat, Maria A; Efaw, Morgan L; Williams, Rebecca M

    2014-02-15

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

  9. Statistical properties of multiphoton time-dependent three-boson coupled oscillators

    Czech Academy of Sciences Publication Activity Database

    Abdalla, M. S.; Peřina, Jan; Křepelka, Jaromír

    2006-01-01

    Roč. 23, č. 6 (2006), s. 1146-1160 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) OC P11.003 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum statistic * coupled oscillators * multiphoton Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.002, year: 2006

  10. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  11. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    Science.gov (United States)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  12. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    DEFF Research Database (Denmark)

    Wu, J.; Kunitski, M.; Pitzer, M.

    2013-01-01

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple...... diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles....

  13. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  14. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  15. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  16. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    Science.gov (United States)

    2008-03-01

    conferring a greater relative risk, account for only 5% of breast cancers (see Boyd et al [5] and refer- ences therein). Breast tissue density is additionally...Eliceiri, and J. G. White, “An optical workstation with concurrent, independent multiphoton imag- ing and experimental laser microbeam capabilities,” Rev

  17. Fundamentals of fluorescence microscopy exploring life with light

    CERN Document Server

    Mondal, Partha Pratim

    2014-01-01

    This book starts at an introductory level and leads reader to the most advanced developments in fluorescence imaging and super-resolution techniques that have enabled the emergence of new disciplines such as nanobioimaging, multiphoton microscopy, photodynamic therapy, nanometrology and nanosensors. The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going deep into the advanced imaging systems and their applications. Molecular orbital theory forms the basis for understanding fluorescent molecules and thereby facilitates complete explanation of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential fluorescence  factors and phenomena such as, molecular cro...

  18. Multi-photon entanglement and applications in quantum information

    International Nuclear Information System (INIS)

    Schmid, Christian I.T.

    2008-01-01

    In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to demonstrate

  19. Multi-photon entanglement and applications in quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Christian I.T.

    2008-05-30

    In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to

  20. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  1. Study the multi-photon absorption process in two types of molecules

    International Nuclear Information System (INIS)

    Al-azawi, H.R.

    1986-01-01

    The aim of the present work was to study the multi-photon absorption process in two types of molecules; spherical top such as SF 6 molecules and assymetric top such as CHOOH and C 2 H 4 molecules. This work also aimed to study the effect of buffer gas pressure (Ar), which is transparent to the infrared (IR) laser on the multiphoton absorption of both types of molecules. A pulsed (TEA) CO 2 laser was used as a source which generates multi-lines in the IR-region of the spectrum and an optoacoustic detector was used to detect the energy absorbed by the molecules. In this study, the relaxation process was found to be faster in the heavy molecules than that in the light ones. A limit in the Ar pressure was observed. Below this limit, the gas acted as an active buffer gas and above it, the multi-photon absorption process was quenched. This work also aimed to study the multi-photon absorption spectrum for the CHOOH molecules in the range (1067-1090 cm -1 ). This spectrum was found to be consistent with the linear absorption spectrum obtained for the same range. The density of the vibrational states as a function of the vibrational energy was studied for the molecules SF 6 , CHOOH and C 2 H 4 . The results were used to interpret (i) the difference in the energy absorbed by difference molecules at the same energy density and (ii) the non-linearity in the multi-photon absorption for CHOOH molecules. 1 tab.; 40 figs.; 70 refs

  2. H-2 Ejection from Polycyclic Aromatic Hydrocarbons: Infrared Multiphoton Dissociation Study of Protonated 1,2-Dihydronaphthalene

    NARCIS (Netherlands)

    Vala, M.; Szczepanski, J.; Oomens, J.; Steill, J. D.

    2009-01-01

    1,2-Dihydronaphthalene (DHN) has been studied by matrix isolation infrared absorption spectroscopy, multiphoton infrared photodissociation (IRMPD) action spectroscopy, and density functional theory calculations. Formed by electrospray ionization, protonated 1,2-dihydronapthalene was injected into a

  3. Noninvasive intravital cellular diagnosis of atopic dermatitis by using harmonic optical virtual biopsy

    Science.gov (United States)

    Chen, Szu-Yu; Lee, Jyh-Hong; Chiang, Bor-Luen; Sun, Chi-Kuang

    2007-02-01

    Atopic dermatitis (AD) is now very common in people who live in cities, especially for babies and children. Since the cause of AD is still not completely understood and each person may have his own mixed symptoms that can change over time, diagnosis of AD can not be done precisely. Unlike some skin diseases, physical biopsy is rarely used in diagnosing AD on account of its low urgency. Thus, only indirect diagnoses, like asking for a medical history to learn about the symptoms and to rule out other diseases can be carried out. To gain insight into cellular details of AD for long-term diagnosing without physical biopsy, a noninvasive in vivo tool with a sub-micron subsurface resolution and high penetrability has to be used. In this presentation, we show that harmonic optical virtual biopsy can provide the required noninvasive cellular imaging, and is ideal for future clinical diagnosis of AD. Harmonic optical microscopy has been demonstrated to have the capability to reveal cellular morphology of human skin from epidermis to dermis layer. Third harmonic generation (THG), which is sensitive to inhomogeneous interfaces, can show the structures of skins, and can be used to reveal the morphological changes, for example, the thicken cuticle which is a common symptom of AD. Second harmonic generation (SHG), which occurs in non-centrosymmetric structures, has excellent contrast in collagen fibers and can show the pathological changes of dermis layer. Utilizing both THG and SHG, useful information may be given to facilitate the diagnosis of AD.

  4. Multi-photon dressing of an anharmonic superconducting many-level quantum circuit

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Cramer, Joel; Schloer, Steffen; Rotzinger, Hannes; Radtke, Lucas; Lukashenko, Alexander; Yang, Ping; Skacel, Sebastian; Probst, Sebastian; Weides, Martin [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); Marthaler, Michael; Guo, Lingzhen [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Festkoerperphysik, 76131 Karlsruhe (Germany); Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation)

    2015-07-01

    We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energy levels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.

  5. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  6. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  7. Rotational multiphoton endoscopy with a 1 μm fiber laser system

    Science.gov (United States)

    Liu, Gangjun; Xie, Tuqiang; Tomov, Ivan V.; Su, Jianping; Yu, Lingfeng; Zhang, Jun; Tromberg, Bruce J.; Chen, Zhongping

    2009-01-01

    We present multiphoton microendoscopy with a rotational probe and a 1 μm fiber-based femtosecond laser. The rotational probe is based on a double-clad photonic crystal fiber, a gradient index lens, a microprism, and a rotational microelectronicmechanical system (MEMS) motor. The MEMS motor has a diameter of 2.2 mm and can provide 360° full-view rotation. The fiber laser provides ultrashort pulses with a central wavelength at 1.034 μm and a repetition rate of 50 MHz. Second-harmonic-generation images of rat-tail tendon and fish scale are demonstrated with the rotational probe-based multiphoton system. PMID:19649060

  8. Controlled release of multiphoton quantum states from a microwave cavity memory

    Science.gov (United States)

    Pfaff, Wolfgang; Axline, Christopher J.; Burkhart, Luke D.; Vool, Uri; Reinhold, Philip; Frunzio, Luigi; Jiang, Liang; Devoret, Michel H.; Schoelkopf, Robert J.

    2017-09-01

    Signal transmission loss in a quantum network can be overcome by encoding quantum states in complex multiphoton fields. But transmitting quantum information encoded in this way requires that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, such as Schrödinger cat states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about three orders of magnitude faster than its intrinsic lifetime. This mechanism--which we dub Schrödinger’s catapult--faithfully converts arbitrary cavity fields to travelling signals with an estimated efficiency of >90%, enabling the on-demand generation of complex itinerant quantum states. Importantly, the release process can be precisely controlled on fast timescales, allowing us to generate entanglement between the cavity and the travelling mode by partial conversion.

  9. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Science.gov (United States)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  10. Multi-photon processes brought about by a laser; Processus multiphotoniques provoques par un laser

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We calculate the critical intensity characterizing the multiphoton processes. The multiphoton effects corresponding to the Compton scattering, the Bremsstrahlung, the photoelectric effect are investigated. The cross sections are evaluated. We show how the introduction of a refractive index, in clothing the photons, allows the elimination of the infrared divergence. The theory seems consistent with experiment. (author) [French] Nous calculons l'intensite critique caracterisant les processus multiphotoniques. Les effets multiphotoniques correspondant a la diffusion Compton, au bremsstrahlung, a l'effet photoelectrique sont etudies. Les sections efficaces sont evaluees. Nous montrons comment l'introduction d'un indice de refraction, en habillant les photons, permet d'eliminer les divergences infra-rouges. La theorie semble compatible avec l'experience. (auteur)

  11. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  12. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Two colour multiphoton ionization spectroscopy of uranium from a metastable state

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, P.N.; Manohar, K.G.; Suri, B.M.; Dasgupta, K.; Talukdar, R.; Chakraborti, P.K.; Rao, P.R.K.

    1988-09-01

    Using two pulsed tunable dye lasers, a two colour multiphoton ionization process has been utilised to explore the higher energy levels of uranium. One hundred and thirty eight new UI levels have been observed in the 37540-38420 cm/sup -1/ region. J assignments of these levels have been suggested on the basis of their excitation from intermediate levels with known and contiguous J values. In eight cases the J assignments are unique.

  14. Star-shaped ladder-type ter(p-phenylene)s for efficient multiphoton absorption.

    Science.gov (United States)

    Guo, Lei; Li, King Fai; Wong, Man Shing; Cheah, Kok Wai

    2013-05-04

    Star-shaped ladder-type ter(p-phenylene)s exhibit remarkably efficient multiphoton absorption properties with 2PA cross-section up to 2579 GM at 700 nm and 3PA cross-section up to 3.35 × 10(-76) cm(6) s(2) in the femtosecond regime for a blue-emissive molecule despite having such a short π-conjugated framework.

  15. Maximization of yield of C-13 isotope by multiphoton dissociation of ...

    Indian Academy of Sciences (India)

    Abstract. Selective multi-photon dissociation (MPD) of Freon-22 (CF2HCl) molecules has been carried out using a TEA CO2 laser at various CO2 laser lines. (9P(20)-9P(26)) in order to maximize the yield of C-13 isotope in the product (C2F4) at an enrichment factor of 100. The effects of laser pulse tail due to the presence of ...

  16. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  17. Nanostructures based on quantum dots for application in promising methods of single- and multiphoton imaging and diagnostics

    Science.gov (United States)

    Nabiev, I. R.

    2017-01-01

    Molecules recognizing biomarkers of diseases (monoclonal antibodies (monoABs)) are often too large for biomedical applications, and the conditions that are used to bind them with nanolabels lead to disordered orientation of monoABs with respect to the nanoparticle surface. Extremely small nanoprobes, designed via oriented conjugation of quantum dots (QDs) with single-domain antibodies (sdABs) derived from the immunoglobulin of llama and produced in the E. coli culture, have a hydrodynamic diameter less than 12 nm and contain equally oriented sdAB molecules on the surface of each QD. These nanoprobes exhibit excellent specificity and sensitivity in quantitative determination of a small number of cells expressing biomarkers. In addition, the higher diffusion coefficient of sdABs makes it possible to perform immunohistochemical analysis in bulk tissue, inaccessible for conventional monoABs. The necessary conditions for implementing high-quality immunofluorescence diagnostics are a high specificity of labeling and clear differences between the fluorescence of nanoprobes and the autofluorescence of tissues. Multiphoton micros-copy with excitation in the near-IR spectral range, which is remote from the range of tissue autofluorescence excitation, makes it possible to solve this problem and image deep layers in biological tissues. The two-photon absorption cross sections of CdSe/ZnS QDs conjugated with sdABs exceed the corresponding values for organic fluorophores by several orders of magnitude. These nanoprobes provide clear discrimination between the regions of tumor and normal tissues with a ratio of the sdAB fluorescence to the tissue autofluorescence upon two-photon excitation exceeding that in the case of single-photon excitation by a factor of more than 40. The data obtained indicate that the sdAB-QD conjugates used as labels provide the same, or even better, quality as the "gold standard" of immunohistochemical diagnostics. The developed nanoprobes are expected to

  18. A new method using multiphoton imaging and morphometric analysis for differentiating chromophobe renal cell carcinoma and oncocytoma kidney tumors

    Science.gov (United States)

    Wu, Binlin; Mukherjee, Sushmita; Jain, Manu

    2016-03-01

    Distinguishing chromophobe renal cell carcinoma (chRCC) from oncocytoma on hematoxylin and eosin images may be difficult and require time-consuming ancillary procedures. Multiphoton microscopy (MPM), an optical imaging modality, was used to rapidly generate sub-cellular histological resolution images from formalin-fixed unstained tissue sections from chRCC and oncocytoma.Tissues were excited using 780nm wavelength and emission signals (including second harmonic generation and autofluorescence) were collected in different channels between 390 nm and 650 nm. Granular structure in the cell cytoplasm was observed in both chRCC and oncocytoma. Quantitative morphometric analysis was conducted to distinguish chRCC and oncocytoma. To perform the analysis, cytoplasm and granules in tumor cells were segmented from the images. Their area and fluorescence intensity were found in different channels. Multiple features were measured to quantify the morphological and fluorescence properties. Linear support vector machine (SVM) was used for classification. Re-substitution validation, cross validation and receiver operating characteristic (ROC) curve were implemented to evaluate the efficacy of the SVM classifier. A wrapper feature algorithm was used to select the optimal features which provided the best predictive performance in separating the two tissue types (classes). Statistical measures such as sensitivity, specificity, accuracy and area under curve (AUC) of ROC were calculated to evaluate the efficacy of the classification. Over 80% accuracy was achieved as the predictive performance. This method, if validated on a larger and more diverse sample set, may serve as an automated rapid diagnostic tool to differentiate between chRCC and oncocytoma. An advantage of such automated methods are that they are free from investigator bias and variability.

  19. Breast Cancer Treatment in the Era of Molecular Imaging

    OpenAIRE

    Edelhauser, Gundula; Funovics, Martin

    2008-01-01

    Molecular imaging employs molecularly targeted probes to visualize and often quantify distinct disease-specific markers and pathways. Modalities like intravital confocal or multiphoton microscopy, near-infrared fluorescence combined with endoscopy, surface reflectance imaging, or fluorescence-mediated tomography, and radionuclide imaging with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are increasingly used for small animal high-throughput screeni...

  20. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  1. Combination of widefield fluorescence imaging and nonlinear optical microscopy of oral epithelial neoplasia

    Science.gov (United States)

    Pal, Rahul; Edward, Kert; Brown, Tyra; Ma, Liang; Yang, Jinping; McCammon, Susan; Motamedi, Massoud; Vargas, Gracie

    2013-03-01

    Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) have shown the potential for noninvasive assessment of oral precancers and cancers. We have explored a combination of these nonlinear optical microscopic imaging techniques with widefield fluorescence imaging to assess morphometry similar to that of pathologic evaluation as well as information from endogenous fluorophores, which are altered with neoplastic transformation. Widefield fluorescence revealed areas of interest corresponding to sites with precancers or early tumors, generally resulting in a decrease in green emission or increase in red emission. Subsequent microscopy revealed significant differences in morphology between normal, dysplastic/neoplastic mucosa for all layers. Combination of a widefield and a microscopic technique provides a novel approach for tissue morphometric analysis along with large area assessment of tissue autofluorescence properties.

  2. Side lobe suppression in phase mask-based nonlinear superresolution microscopy

    Science.gov (United States)

    Beams, Ryan; Stranick, Stephan J.

    2017-08-01

    We compare side lobe suppression methods for nonlinear superresolution optical microscopy using phase masked excitation beams. The excitation point spread function (PSF) can be engineered by introducing a phase mask for superresolution microscopy. By applying a single π phase step to the excitation the central spot can be narrowed and provide improved lateral resolution. However, the energy redistribution leads to side lobes with increased intensity that complicates imaging applications. Several methods have been implemented to suppress the strength of the side lobes including confocal detection and utilizing beams with different phase masks in multiphoton microscopy. Side lobe suppression methods using confocal detection and different phase masks for the excitation beams are compared theoretically and experimentally. These results demonstrate the additional flexibility for PSF engineering for nonlinear optical processes.

  3. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  4. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Harun N. Noristani

    2017-07-01

    Full Text Available Central nervous system (CNS injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI. We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC, measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two

  5. Multiphoton-resonance-induced fluorescence of a strongly driven two-level system under frequency modulation

    Science.gov (United States)

    Yan, Yiying; Lü, Zhiguo; Luo, JunYan; Zheng, Hang

    2018-03-01

    We study the fluorescence spectrum of a strongly driven two-level system (TLS) with modulated transition frequency, which is a bichromatically driven TLS and has multiple resonance frequencies. We are aiming to provide a reliable description of the fluorescence in a regime that is difficult to tackle with perturbation theory and the rotating-wave approximation (RWA), and illustrate the spectral features of the fluorescence under off- and multiphoton-resonance conditions. To go beyond the RWA, we use a semianalytical counter-rotating-hybridized rotating-wave method that combines a unitary transformation and Floquet theory to calculate the two-mode Floquet states and quasienergies for the bichromatically driven TLS. We then solve the master equation accounting for the spontaneous decay in the bases of the two-mode Floquet states, and derive a physically transparent fluorescence spectrum. In comparison with the numerically exact spectrum from the generalized Floquet-Liouville approach, the present spectrum is found to be applicable in a wide range of the parameters where the RWA and the secular approximation may break down. We find that the counter-rotating (CR) terms of the transverse field omitted in the RWA have non-negligible contributions to the spectrum under certain conditions. Particularly, at the multiphoton resonance the width of which is comparable with the Bloch-Siegert shift, the RWA and non-RWA spectra markedly differ from each other because of the CR-induced shift. We also analyze the symmetry of the spectrum in terms of the transition matrix elements between the two-mode Floquet states. We show that the strict symmetry of the spectrum cannot be expected without the RWA but the almost symmetric spectrum can be obtained at the single-photon resonance that takes the Bloch-Siegert shift into account if the driving is moderately strong and at the multiphoton resonance with a sufficiently weak transverse field.

  6. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  7. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    Science.gov (United States)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  8. Photon absorption in step-wise multi-photon activation fluorescence (SMPAF) of Sepia melanin

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles

    2013-02-01

    Previous research has shown that melanin goes through a step-wise three-photon absorption process when the fluorescence is activated with high laser intensity. We have conducted further research using even higher laser intensity for the activation, and have shown the possibility of observing power dependence other than third-order. This article discusses the possible energy states of Sepia melanin by studying the power dependence curves of the step-wise multi-photon activated fluorescence signal. Three different excitation channels are activated. Possible reasons causing the three channels are discussed.

  9. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  10. Athermal electron distribution probed by femtosecond multiphoton photoemission from image potential states

    International Nuclear Information System (INIS)

    Ferrini, Gabriele; Giannetti, Claudio; Pagliara, Stefania; Banfi, Francesco; Galimberti, Gianluca; Parmigiani, Fulvio

    2005-01-01

    Image potential states are populated through indirect, scattering-mediated multiphoton absorption induced by femtosecond laser pulses and revealed by single-photon photoemission. The measured effective mass is significantly different from that obtained with direct, resonant population. These features reveal a strong coupling of the electrons residing in the image potential state, outside the solid, with the underlying hot electron population created by the laser pulse. The coupling is mediated by a many-body scattering interaction between the image potential state electrons and bulk electrons in highly excited states

  11. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  12. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  13. Nonlinear optical microscopy and microspectroscopy of oral precancers and early cancer

    Science.gov (United States)

    Vargas, Gracie; Edward, Kert

    2013-02-01

    Multiphoton autofluorescence microscopy (MPAM) offers the ability to assess morphometry similar to that of pathologic evaluation as well as biochemical information from endogenous fluorophores which are altered with neoplastic transformation. In this study the spectroscopic properties of normal and neoplastic oral epithelium were evaluated toward the goal of identifying image/spectroscopic based indicators of neoplastic transformation using nonlinear optical microscopy. Results indicated measureable differences between normal, dysplasia, and SCC that could be helpful in delineating between the three conditions. In particular, a blue shift in autofluorescence emission was experienced for dysplasia relative to normal. However, in the case of SCC the epithelial emission experienced a significant red shift relative to both dysplasia and normal and displayed in an additional red peak that was not present in either normal or dysplastic mucosa. Results were consistent with published results for SCC in the single-photon literature. The study demonstrates that multiphoton autofluorescence spectroscopy may reveal features of oral mucosa that can be useful for differentiating normal and neoplastic mucosa. When combined with morphometry provided by MPAM, a potentially powerful technique for imaging of the oral cavity could be developed which provides both morphometric and spectroscopic information.

  14. Controllable surfaces of path interference in the multiphoton ionization of atoms by a weak trichromatic field

    Energy Technology Data Exchange (ETDEWEB)

    Mercouris, Theodoros [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, Athens 11635 (Greece); Nicolaides, Cleanthes A [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, Athens 11635 (Greece)

    2005-10-01

    Multiphoton detachment rates for the H{sup -} {sup 1}S ground state irradiated by a weak trichromatic ac field consisting of the fundamental frequency {omega} 0.272 eV and its second, third or fourth higher harmonics were computed from first principles. The weak intensities are in the range of 10{sup 7}-10{sup 8} W cm{sup -2}. The calculations incorporated systematically electronic structure and electron correlation effects. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, {delta}, and the imaginary part is the multiphoton ionization rate, {gamma}. Through analysis, plausible arguments and computation, we show that when the intensities are weak the dependence of {gamma} on phase differences is simple. Specifically, {gamma}s are depicted in the form of plane surfaces, with minor ripples due to higher order ionization paths, in terms of trigonometric functions of the phase differences. This dependence is likely to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the trichromatic case. When the field intensities are such that higher order ionization paths become important, these dependences break down and we reach the strong field regime.

  15. Effect of two-center interference on molecular ionization in multiphoton ionization regime.

    Science.gov (United States)

    Hu, Shilin; Chen, Jing; Hao, Xiaolei; Li, Weidong; Guo, Li; Han, Shensheng

    2017-09-18

    Using solution of the full three-dimensional time-dependent Schrödinger equation (TDSE) in prolate spheroidal coordinates, we investigate the orientation dependence of ionization of H2+ in near-infrared laser fields. It is found that, the ionization probability decreases as a function of the alignment angle in tunneling ionization regime, while it ascends with the increase of orientation angle in multiphoton ionization regime for the internuclear distance R=2 a.u. Furthermore, the result obtained by the length gauge strong-field approximation theory is in qualitative agreement with that calculated by the TDSE but the radiation gauge strong-field approximation and molecular ADK theories fail to reproduce the TDSE result. Analysis indicates that the above intriguing feature can be ascribed to the interference between the partial electron wave packets emitted from different molecular cores, which becomes evident at low laser intensity due to increased width of the initial mechanical momentum of the photoelectron at ionization moment. In addition, when the internuclear distance increases to R=4 a.u., the ionization yields decrease vs alignment angle in both tunneling and multiphoton regimes since the electron wavefunction of the 1σg orbit is more concentrated in the molecular axis than that of R=2 a.u.

  16. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

    Science.gov (United States)

    Bell, Alex; Kofron, Matthew; Nistor, Vasile

    2015-09-03

    Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.

  17. Multi-photon creation and single-photon annihilation of electron-positron pairs

    International Nuclear Information System (INIS)

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  18. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  19. Single photon and multiphoton events with missing energy in $e^{+} e^{-}$ collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Single- and multi-photon events with missing energy are selected in 619/pb of data collected by the L3 detector at LEP at centre-of-mass energies between 189GeV and 209GeV. The cross sections of the process e^+e^- -> nu nu gamma (gamma) are found to be in agreement with the Standard Model expectations, and the number of light neutrino species is determined, including lower energy data, to be N_nu = 2.98 +/- 0.05 +/- 0.04. Selection results are also given in the form of tables which can be used to test future models involving single- and multi-photon signatures at LEP. These final states are also predicted by models with large extra dimensions and by several supersymmetric models. No evidence for such models is found. Among others, lower limits between 1.5TeV and 0.65TeV are set, at 95% confidence level, on the new scale of gravity for the number of extra dimensions between 2 and 8.

  20. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    DEFF Research Database (Denmark)

    Mangiarotti, Alessio; Sona, Pietro; Ballestrero, Sergio

    2012-01-01

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are establi...

  1. Photoleucine Survives Backbone Cleavage by Electron Transfer Dissociation. A Near-UV Photodissociation and Infrared Multiphoton Dissociation Action Spectroscopy Study

    Czech Academy of Sciences Publication Activity Database

    Shaffer, C. J.; Martens, J.; Marek, Aleš; Oomens, J.; Tureček, F.

    2016-01-01

    Roč. 27, č. 7 (2016), s. 1176-1185 ISSN 1044-0305 Institutional support: RVO:61388963 Keywords : peptide ions * electron transfer dissociation * photoleucine label * near-UV photodissociation * infrared multiphoton dissociation action spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.786, year: 2016

  2. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.

    Science.gov (United States)

    Pillai, Rajesh S; Boudoux, Caroline; Labroille, Guillaume; Olivier, Nicolas; Veilleux, Israel; Farge, Emmanuel; Joffre, Manuel; Beaurepaire, Emmanuel

    2009-07-20

    Coherent control can be used to selectively enhance or cancel concurrent multiphoton processes, and has been suggested as a means to achieve nonlinear microscopy of multiple signals. Here we report multiplexed two-photon imaging in vivo with fast pixel rates and micrometer resolution. We control broadband laser pulses with a shaping scheme combining diffraction on an optically-addressed spatial light modulator and a scanning mirror allowing to switch between programmable shapes at kiloHertz rates. Using coherent control of the two-photon excited fluorescence, it was possible to perform selective microscopy of GFP and endogenous fluorescence in developing Drosophila embryos. This study establishes that broadband pulse shaping is a viable means for achieving multiplexed nonlinear imaging of biological tissues.

  3. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  4. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    Science.gov (United States)

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  5. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  6. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  8. Microscopy with slow electrons

    International Nuclear Information System (INIS)

    Frank, L.; Muellerova, I.; Delong, A.

    1994-01-01

    Low energy microscopy is treated as the low energy limit of electron microscopy as a whole in all its basic branches, i.e., the emission, transmission and scanning microscopy. The instrumental and methodological aspects are briefly discussed. They include the interaction of electrons with a solid, the contrast formation mechanisms, the instrumentation problems, and actual progress achieved in all three types of microscopy from the point of view of lowering the energy of electrons, impacting or leaving the specimen, down to the low energy range below 5 keV and the very low energy range below 50 eV. (author) 62 refs., 27 figs., 3 tabs

  9. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  10. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  11. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  12. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D. [Physics Department, University College Cork, Cork (Ireland); Ruth, A. A. [Physics Department, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland)

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a

  13. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  14. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  15. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  16. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: kolenderski@fizyka.umk.pl [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  17. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  18. Multiphoton effects in electron-ion scattering: A limitation of the cross-section treatment

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.; Braga, L.C.

    1991-07-01

    The differential cross-section for inelastic scattering in the presence of an intense laser field, when applied to the calculation of energy balance and heating by multiphoton process, is a problem which is not completely solved yet. One of the main difficulties is the calculation of the absorption coefficients α-bar for a monoenergetic beam of electrons scattered by a static potential. There are contradictory results shown by different authors. Here we have derived α-bar starting under the framework of quantum mechanics and then making the classical correspondence (h/2π → 0) according to the kinetic theory, and show that the absorption coefficient is always positive for all values of the particle incoming velocity, v-vector i . Furthermore, we show that in the calculation of α-bar we recover the Coulomb logarithm term. (author). 18 refs, 5 figs, 2 tabs

  19. Simultaneous multiphoton processes in the interaction of atoms with electromagnetic fields

    International Nuclear Information System (INIS)

    Levine, A.M.; Schreiber, W.M.; Weiszmann, A.N.

    1984-01-01

    It is impossible to obtain an exact description of multiphoton processes in the interaction of electromagnetic fields with atomic systems. Approximate approaches must be used to describe the physically different effects that can occur. One effect is the stepwise absorption/emission of many photons by a N-level system that evolves dynamically in between each absorption/emission. Another effect is described in the theories of Raman processes where the simultaneous absorption/emission of many photons is considered. In this paper, consideration is given to both processes allowing interference between the stepwise and simultaneous absorptions. An approximate Hamiltonian is obtained from the quantum mechanical multipole expansion. An exact solution of an atom-field system subject to this Hamiltonian will be presented. The extension of the method to multiple electromagnetic fields is discussed

  20. Strong-field dissociation dynamics of NO2+: A multiphoton electronic or vibrational excitation?

    Science.gov (United States)

    Jochim, Bethany; Zohrabi, M.; Ablikim, U.; Gaire, B.; Anis, F.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.; Wells, E.; Uhlíková, T.

    2013-05-01

    We utilize a 3-D momentum imaging technique to study laser-induced dissociation of a metastable NO2+ beam into N++ O+. Using an estimated initial vibrational population, measured kinetic energy release and angular distribution spectra, and time-dependent Schrödinger equation calculations, we identify the most likely dissociation pathways. While lower intensity pulses (process underlying this highly-aligned feature is a multiphoton permanent dipole transition solely within the electronic ground state, leading to its continuum. Supported by the DOE Chemical Sciences, Geosciences, and Biosciences Division, Office of Science. BJ also by NSF (PHY-0851599) and DOE SCGF (DE-AC05-06OR23100), BJ and EW by NSF (PHY-0969687), and TU by GACR and MetaCentrum.

  1. 2008 Multiphoton Processes Gordon Research Conferences - June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mette B. Gaarde

    2009-08-28

    In 2008 the Gordon Research Conference on Multiphoton Processes is held for the 14th time. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Attosecond Science; (2) Free-electron laser experiments and theory; (3) Ultrafast dynamics of molecules; (4) Laser control of molecules; (5) Ultrafast imaging; (6) Super-high intensity and x-rays; (7) Strong field processes in molecules; and (8) Control atoms with light and vice versa. The scientific program will blur traditional disciplinary boundaries as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.

  2. Schrodinger's catapult I: coherent launch of multi-photon cavity states

    Science.gov (United States)

    Axline, C.; Pfaff, W.; Burkhart, L. D.; Vool, U.; Reinhold, P. C.; Frunzio, L.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    Quantum networks are a powerful paradigm for managing complexity in quantum information processing. Here we present a circuit QED tool to control the exchange of quantum information in such a network, dubbed ''Schrodinger's catapult''. It enables rapid conversion between complex, multi-photon states prepared in a cavity memory and a propagating output mode. Enabled by four-wave mixing in a single Josephson junction, this conversion rate is tunable up to three orders of magnitude faster than the intrinsic memory decay rate. In addition to such a large on/off ratio, we show that the mapping of cavity states to traveling states is faithful and state-independent. Amplitude and phase control of the conversion process anticipates the capture of propagating states using a reciprocal module.

  3. Field enhancement of multiphoton induced luminescence processes in ZnO nanorods

    Science.gov (United States)

    Hyyti, Janne; Perestjuk, Marko; Mahler, Felix; Grunwald, Rüdiger; Güell, Frank; Gray, Ciarán; McGlynn, Enda; Steinmeyer, Günter

    2018-03-01

    The near-ultraviolet photoluminescence of ZnO nanorods induced by multiphoton absorption of unamplified Ti:sapphire pulses is investigated. Power dependence measurements have been conducted with an adaptation of the ultrashort pulse characterization method of interferometric frequency-resolved optical gating. These measurements enable the separation of second harmonic and photoluminescence bands due to their distinct coherence properties. A detailed analysis yields fractional power dependence exponents in the range of 3–4, indicating the presence of multiple nonlinear processes. The range in measured exponents is attributed to differences in local field enhancement, which is supported by independent photoluminescence and structural measurements. Simulations based on Keldysh theory suggest contributions by three- and four-photon absorption as well as avalanche ionization in agreement with experimental findings.

  4. Rydberg states of the SH(SD) radical revealed by multiphoton ionization spectroscopy

    Science.gov (United States)

    Ashfold, M. N. R.; Tutcher, B.; Western, C. M.

    Three hitherto uncharacterized Rydberg states of the SD radical, each arising from a … 5σ22π24p1 ← … 5σ22π3 electronic promotion, have been identified through analysis of the rotationally structured two photon resonance enhancements each provides to the multiphoton ionization spectrum of this species. One, possessing 2Σ- symmetry, had actually been observed (but not recognized as such) in an earlier absorption study. The others, of 2Π and 2Φ symmetry, have not been reported previously. The SH radical was also observed to exhibit fragmentary rotational structure in the wavelength regions of the 2Σ--X2Π and 2Φ-X2Π transitions. The results provide strong support for the ab initio theoretical analysis of the vertical electronic spectrum of the mercapto radical by Bruna and Hirsch (1987, Molec. Phys., 61, 1359).

  5. Laser and molecules: the season of multiphoton in Frascati in the years 70 and 80

    International Nuclear Information System (INIS)

    Fantoni, Roberta; Palucci, Antonio; Borsella, Elisabetta; Giardini Anna

    2015-01-01

    This paper consists of a historical review of the research activities going on at the end of the ‘70 and beginning of the ’80 at ENEA Frascati Research Centre on the topic of infrared laser molecule interactions in the gas phase. Main goal of the studies was the implementation of isotopically selective multiphoton dissociation. The activity, conducted in an extended framework of fruitful international cooperation, ranged from fundamental research addressed to the understanding of the mechanism of the excitation process in climbing the vibro-rotational ladder, to applicative consequences in the realization of process prototypes (laser, reactors) suitable to successive commercialization. The entire activity successively pushed the laboratory development in the ’90 both on fundamental research themes (like the high resolution IR spectroscopy and the study of molecular clusters in ultracold supersonic beams) and on other applicative fields, like laser driven nano-technologies and lidar systems [it

  6. The stepwise multi-photon activation fluorescence guided ablation of melanin

    Science.gov (United States)

    Lai, Zhenhua; Gu, Zetong; DiMarzio, Charles

    2015-02-01

    Previous research has shown that the stepwise multi-photon activation fluorescence (SMPAF) of melanin, activated and excited by a continuous-wave (CW) mode near infrared (NIR) laser, is a low-cost and reliable method for detecting melanin. We have developed a device utilizing the melanin SMPAF to guide the ablation of melanin with a 975 nm CW laser. This method provides the ability of targeting individual melanin particles with micrometer resolution, and enables localized melanin ablation to be performed without collateral damage. Compared to the traditional selective photothermolysis, which uses pulsed lasers for melanin ablation, this method demonstrates higher precision and lower cost. Therefore, the SMPAF guided selective ablation of melanin is a promising tool of melanin ablation for both medical and cosmetic purposes.

  7. Development of a jet-REMPI (resonantly enhanced multiphoton ionization) continuous monitor for environmental applications

    International Nuclear Information System (INIS)

    Oser, Harald; Coggiola, Michael J.; Faris, Gregory W.; Young, Steve E.; Volquardsen, Bengt; Crosley, David R.

    2001-01-01

    The need for a continuous monitor for environmentally important pollutants at realistic [parts-per-trillon (parts in 10 12 )] concentrations measured in real time (minutes) is widely recognized. We developed an instrument that is based on supersonic-jet expansion and cooling, followed by resonantly enhanced multiphoton ionization (REMPI) into a mass spectrometer. This approach furnishes the dual selectivity of narrow-band tuned laser absorption and mass analysis. We initiated a spectroscopic characterization of the jet's collisional cooling behavior to optimize the instrument's sensitivity and selectivity, made measurements of several aromatic compounds (including polychlorinated dioxins) by use of a one-color REMPI scheme, and demonstrated a two-color excitation scheme

  8. 2010 MULTIPHOTON PROCESSES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010, TILTON, NH

    Energy Technology Data Exchange (ETDEWEB)

    Mette Gaarde

    2010-06-11

    The Gordon Research Conference on Multiphoton Processes will be held for the 15th time in 2010. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Ultrafast coherent control; (2) Free-electron laser experiments and theory; (3) Generation of harmonics and attosecond pulses; (4) Ultrafast imaging; (5) Applications of very high intensity laser fields; (6) Strong-field processes in molecules and solids; (7) Attosecond science; and (8) Controlling light. The scientific program will blur traditional disciplinary boundaries as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.

  9. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  10. Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method

    Science.gov (United States)

    Pakniat, R.; Soltani, M.; Tavassoly, M. K.

    2018-03-01

    Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom-field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes-Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom-field A1-F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter m concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.

  11. Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Ryota [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Imasaka, Tomoko [Laboratory of Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540 (Japan); Imasaka, Totaro, E-mail: imasaka@cstf.kyushu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-01-01

    Highlights: • A UV ultrashort laser pulse was useful for ionization of triacetone triperoxide. • A molecular ion was strongly enhanced in multiphoton ionization mass spectrometry. • Triacetone triperoxide in the human blood was measured without any interferences. • An organic compound of phorone was formed in the human blood from acetone. - Abstract: Triacetone triperoxide (TATP), an explosive compound, was measured using gas chromatography combined with multiphoton ionization time-of-flight mass spectrometry (GC/MPI-TOFMS). By decreasing the pulse width of a femtosecond laser from 80 to 35 fs, a molecular ion was drastically enhanced and was measured as one of the major ions in the mass spectrum. The detection limits obtained using the molecular (M·{sup +}) and fragment (C{sub 2}H{sub 3}O{sup +}) ions were similar or slightly superior to those obtained using conventional mass spectrometry based on electron and chemical ionization. In order to improve the reliability, an isotope of TATP, i.e., TATP-d18, was synthesized and used as an internal standard in the trace analysis of TATP in a sample of human blood. TATP could be identified in a two-dimensional display, even though numerous interfering compounds were present in the sample. Acetone, which is frequently used as a solvent in sampling TATP, produced a chemical species with a retention time nearly identical to that of TATP and provided a C{sub 2}H{sub 3}O{sup +} fragment ion that was employed for measuring a chromatogram of TATP in conventional MS. This compound, the structure of which was assigned as phorone, was clearly differentiated from TATP based on a molecular ion observable in MPI-TOFMS.

  12. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  13. A new laser stripping method by use of multi-photon resonance ionization enhanced with multi-mirror system (RIMMS)

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    2001-01-01

    A new laser stripping method by use of multi-photon resonance ionization is proposed which is an advanced design of LUCE (Laser Undulator Charge Exchange) and DoLUCE (Double LUCE) for the next generation's proton storage rings. The new method utilizes a magnetic field to generate the Lorentz electric field on an H - beam and to neutralize the beam. It utilizes also a visible laser light which irradiates the H 0 beam efficiently with a multi-mirror system in the central region of the magnetic field as like in the cases of LUCE and DoLUCE. In this method, the laser beam strips the electron of the H 0 beam almost completely by multi-photon resonance ionization. Thereby, the low emittance growth of H + beams after ionization can be achieved. It will possibly be realized with the existing technology. (author)

  14. Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy.

    Science.gov (United States)

    Hikosaka, Y; Fushitani, M; Matsuda, A; Tseng, C-M; Hishikawa, A; Shigemasa, E; Nagasono, M; Tono, K; Togashi, T; Ohashi, H; Kimura, H; Senba, Y; Yabashi, M; Ishikawa, T

    2010-09-24

    Photoelectron spectroscopy has been performed to study the multiphoton double ionization of Ar in an intense extreme ultraviolet laser field (hν ∼ 21  eV, ∼ 5  TW/cm²), by using a free electron laser (FEL). Three distinct peaks identified in the observed photoelectron spectra clearly show that the double ionization proceeds sequentially via the formation of Ar(+): Ar+hν→Ar (+) + e⁻ and Ar²(+) + 2hν→Ar(+) + e⁻. Shot-by-shot recording of the photoelectron spectra allows simultaneous monitoring of FEL spectrum and the multiphoton process for each FEL pulse, revealing that the two-photon ionization from Ar(+) is significantly enhanced by intermediate resonances in Ar(+).

  15. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  16. Influence of temperature on the selectivity of dissociation of CF3I molecules by multiphoton vibrational and subsequent electronic excitation

    International Nuclear Information System (INIS)

    Kudryavtsev, Y.A.

    1980-01-01

    A report is given of theoretical and experimental studies of the influence of temperature on the selectivity of separating carbon isotopes by multiphoton vibrational and subsequent electronic excitation of CF 3 I molecules. Carbon dioxide laser radiation was used for vibrational excitation and XeC1 and XeF excimer lasers were used for dissociation. A selectivity of 108 was achieved at 223 0 K

  17. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    Energy Technology Data Exchange (ETDEWEB)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com [Computer and Information Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Cheong, Lee Yen [Fundamental and Applied Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  18. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A.

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  19. Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm

    Science.gov (United States)

    Polyakov, Sergey; Yoshino, Fumiyo; Liu, Mingguo; Stegeman, George

    2004-03-01

    We report femtosecond measurements of the dispersion in the nonlinear refraction and multiphoton absorption in polydiacetylenes, specifically in PTS [polymer poly (bis para-toluene sulfonate) of 2,4-hexadiyne -1,6 diol] over the spectral range 1200 to 2200 nm. Various modifications of the Z-scan technique were used to make the measurements. The nonlinear refractive index coefficient n2 decreased monotonically with wavelength and can be reasonably extrapolated to previous measurements at 1064 nm. It was found that multiple multiphoton absorption mechanisms contributed to the nonlinear absorption at most wavelengths so that the intensity dependence at each wavelength was needed to identify the different contributions. A two-photon absorption coefficient decreasing monotonically with increasing wavelength was identified with the long wavelength tail of the massive two-photon absorption peak measured previously at 930 nm. The three-photon absorption coefficient showed a weak resonance around 1850 nm associated with the one-photon absorption into the odd symmetry peak at 620 nm, but also exhibited larger values at shorter wavelengths whose assignment is not clear. The four-photon coefficient, measurable only around 1900 nm was associated with four-photon absorption into the even symmetry 465 nm state responsible for strong two-photon absorption measured previously at 930 nm. This resonance, normally much too weak to be observed, was measurable only because of the accidental degeneracy with the three-photon absorption resonance. This degeneracy also leads to a single photon excited state absorption into the 465 nm state via an initial three-photon absorption into the odd symmetry 620 nm state. It was shown that this (3+1) process is in the saturation regime over the intensity range of the measurements and does not contribute to absorption change proportional to the cube of the input intensity, which indicates the pure four-photon absorption process. Thus the measured

  20. Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue

    Directory of Open Access Journals (Sweden)

    Zahra Erami

    2016-01-01

    Full Text Available E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.

  1. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies.

    Science.gov (United States)

    Grandjean, Capucine L; Montalvao, Fabricio; Celli, Susanna; Michonneau, David; Breart, Beatrice; Garcia, Zacarias; Perro, Mario; Freytag, Olivier; Gerdes, Christian A; Bousso, Philippe

    2016-10-04

    Anti-CD20 monoclonal antibodies (mAbs) represent an effective treatment for a number of B cell malignancies and autoimmune disorders. Glycoengineering of anti-CD20mAb may contribute to increased anti-tumor efficacy through enhanced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP) as reported by in vitro studies. However, where and how glycoengineered Ab may potentiate therapeutic responses in vivo is yet to be elucidated. Here, we have performed mouse liver transplants to demonstrate that the liver is sufficient to mediate systemic B cells depletion after anti-CD20 treatment. Relying on intravital two-photon imaging of human CD20-expressing mice, we provide evidence that ADP by Kupffer cells (KC) is a major mechanism for rituximab-mediated B cell depletion. Notably, a glycoengineered anti-mouse CD20 Ab but not its wild-type counterpart triggered potent KC-mediated B cell depletion at low doses. Finally, distinct thresholds for KC phagocytosis were also observed for GA101 (obinutuzumab), a humanized glycoengineered type II anti-CD20 Ab and rituximab. Thus, we propose that enhanced phagocytosis of circulating B cells by KC represents an important in vivo mechanism underlying the improved activity of glycoengineered anti-CD20 mAbs.

  2. Controllable tomography phase microscopy

    Science.gov (United States)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-03-01

    Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample's refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.

  3. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...... indicating regions of much higher thermal stability. It is seen that the benefits of the structural and temporal information available from SHG microscopy reveals complementary information to a traditional DSC measurement and enables a more complete understanding of the thermal denaturation process....

  4. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  5. Basics of Digital Microscopy.

    Science.gov (United States)

    Wallace, Callen T; Jessup, Morgan; Bernas, Tytus; Peña, Karina A; Calderon, Michael J; Loughran, Patricia A

    2018-01-18

    Modern digital microscopy combines the equipment of classical light microscopy with a computerized imaging system. The technique comprises image formation by optics, image registration by a camera, and saving of image data in a computer file. This chapter describes limitations that are particular to each of these processes, including optical resolution, efficiency of image registration, characteristics of image file formats, and data management. Further suggestions are given which serve, in turn, to help construct a set of guidelines aimed at optimization of digital microscopic imaging. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  6. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  7. [Frontiers in Live Bone Imaging Researches. Two-Photon Excitation Microscopy, principles and technologies].

    Science.gov (United States)

    Oikawa, Yoshiro

    2015-06-01

    The "two photon absorption" phenomenon had been predicted by the American Physicist, Maria Ghöppert-Mayer in 1931. Denk and Webb group had proved it in 1990 and the first product had been launched in the market in 1996. But ever since the product became available, the number of users are not increased. Moreover, the system had been too difficult to use and the system sometimes stay not working in labs. But recently, the new easier-to-use products are released and the ultra short pulse IR laser became stable. And its applications are extending from neuro-science to oncology or immunology fields. Due to these reasons, the shipment of multi-photon microscope in Japan in 2013 is approximately 40 units which is 3 times bigger than in 2010. In this paper, I would like to discuss the principles of two-photon microscopy and some of the new technologies for the higher signal capture efficiency.

  8. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems.

    Science.gov (United States)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus; List, Nanna Holmgaard; Ruud, Kenneth; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2016-10-12

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.

  9. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    Science.gov (United States)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  10. Theory of Multiphoton Processes for Atoms and Ions in the Presence of a Static Electric Field

    Science.gov (United States)

    Bao, Min-Qi.

    Theoretical studies of both Multiphoton Detachment (MPD) and High Harmonic Generation (HHG) processes of ions and atoms in the presence of a static electric field are presented in this thesis. In the first part of this thesis, a symbolic algebra program is presented for the analytical evaluation of Feynman's path integral for an interaction of the form F(t) cdot r. Such an interaction governs the motion of an electron in a combination of laser fields and/or static electric fields. This Feynman's path integral is used in the rest of this thesis. In the second part of this thesis, theories of atomic effects on MPD of negative ions in a static electric field are developed by using the Green's function approach as well as the quasienergy approach. Atomic rescattering effects on both linearly and circularly polarized laser detachment cross sections are demonstrated. In the third part of this thesis, theories of HHG of atoms and ions in the presence of a static electric field are presented. The presence of the static electric field leads to the extension of the well-known HHG plateau and the production of even as well as odd high harmonics; the interplay between MPD and HHG is also illustrated. In the last part of this thesis, the classical and quantum mechanical motions of a charged particle in a Paul trap are investigated. The animation code in Mathematica of these motions is included.

  11. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  12. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  13. Ionic Fragmentation of Methyl Methacrylate Induced by Synchrotron Radiation and Multiphoton Ionization

    Directory of Open Access Journals (Sweden)

    Quintella Cristina M.

    1998-01-01

    Full Text Available Ionic fragmentation of methylmethacrylate has been observed using synchrotron radiation and laser excitation. A recently developed time-of-flight mass spectrometer was used for the ionic identification. In the case of synchrotron radiation, both low energy (12.1 eV and high energy (287.9 eV photons were used. Although a definite increase in fragmentation was observed while moving from 12.1 to 287.9 eV, the fragmentation pattern remained basically the same in both cases. The parent peak stays clearly visible and intense fragments, associated with m/q = 15, 39, 41 and 69 dominate both synchrotron radiation-induced spectra. Multiphoton ionization causes much extensive fragmentation, the parent ion could not be observed, and C+ ion becomes the most intense peak in the spectrum. Ions at m/q = 15, 39, 41 and 69 are observed using laser and synchrotron radiation, which demonstrates their high stability. Doubly or multiply-charged ions have not been observed.

  14. Progress in Resonance Enhanced Multiphoton Ionization Spectroscopy of Transient Free Radicals

    Science.gov (United States)

    Hudgens, Jeffrey W.

    The following sections are included: * IntroductioN * An Overview of Rehpi Spectroscopy * A Brief History * The Rempi Mechanism * Multiphoton Selection Rules * Characteristics of Rydberg States * Experimental Elements * Apparatus * Identification of Spectral Carriers * The Unique Role of Mass Spectrometry * REMPI Mass Spectra of Free Radicals Show Little Fragmentation * Determination of the Photon Order of the Resonant State * Summary of Transient Radicals Studied By Rempi Spectroscopy * Diatomic Radicals * CF Radical * CH Radical * REMPI Spectra of ClO and BrO Radicals * ClO * BrO * CCl Radical * NH (a1 Δ) Radical * PH (b 1Σ+) Radical * PO Radical * SiF Radical * Triatomic Radicals * CCO Radical * NH2 Radical * HCO Radical * SiF2 Radical * Methyl Radical * One Photon Resonance Enhanced Ionization * Three Photon REMPI of Methyl radicals * Two Photon Spectroscopy * The np ^{2}A^{primeprime}_{2}l←l← tildeX ^{2}A^{primeprime}_{2} Bands * The nf ^{2}E^{prime} l← l← tildeX ^{2}A^{primeprime}_{2} Bands * Substituted Methyl Radicals * CH2F Radical * CHCl2 Radical * CH2OH Radical * CF3 Radical * Other Polyatomic Radicals * Allyl and 2-Methvlallyl Radicals * Substituted Allyl Radicals * Benzyl Radical * Cyclohexanyl radicals * Ethyl Radical * Methoxy Radical * Acknowledgments * References

  15. Multiphoton ionization of (Xe)n and (NO)n clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    Mass-resolved multiphoton ionization (MPI) spectroscopy is an established technique for detecting and analyzing van der Waals molecules and larger clusters. MPI spectroscopy provides excellent detection sensitivity, moderately high resolution, and selectivity among cluster species. In addition to information provided by the analysis of photoions following MPI, photoelectron spectroscopy can reveal details regarding the structure of ionic states. Unfortunately, the technique is limited by its tendency to produce extensive fragmentation. Fragmentation is also a problem with other ionization techniques (e.g., electron impact ionization), but the intense laser beams required for MPI cause additional dissociation channels to become available. These channels include absorption of additional photons by parent ions (ion ladder mechanism), absorption of additional photons by fragment ions (ladder switching mechanism), and resonances with dissociative states in the neutral manifold. The existence of these dissociation channels can preclude the use of MPI spectroscopy in many situations. Recently, MPI studies of stable molecules using picosecond lasers (pulse length = 1 - 10 ps) have indicated that limitations due to fragmentation might be subdued. With picosecond lasers, dissociation mechanisms can be altered and in some cases fragmentation can be eliminated or reduced. Additional photon absorption competes effectively with dissociation channels when a very short laser pulse or, perhaps more importantly, a sufficiently high peak-power is used. In the case where ionic absorption and fragmentation occurs, it has been shown that picosecond MPI might favor the ion ladder mechanism rather than the ladder switching mechanism

  16. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    Science.gov (United States)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  17. Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ezoe, Ryota; Imasaka, Tomoko; Imasaka, Totaro

    2015-01-01

    Triacetone triperoxide (TATP), an explosive compound, was measured using gas chromatography combined with multiphoton ionization time-of-flight mass spectrometry (GC/MPI-TOFMS). By decreasing the pulse width of a femtosecond laser from 80 to 35 fs, a molecular ion was drastically enhanced and was measured as one of the major ions in the mass spectrum. The detection limits obtained using the molecular (M(+)) and fragment (C2H3O(+)) ions were similar or slightly superior to those obtained using conventional mass spectrometry based on electron and chemical ionization. In order to improve the reliability, an isotope of TATP, i.e., TATP-d18, was synthesized and used as an internal standard in the trace analysis of TATP in a sample of human blood. TATP could be identified in a two-dimensional display, even though numerous interfering compounds were present in the sample. Acetone, which is frequently used as a solvent in sampling TATP, produced a chemical species with a retention time nearly identical to that of TATP and provided a C2H3O(+) fragment ion that was employed for measuring a chromatogram of TATP in conventional MS. This compound, the structure of which was assigned as phorone, was clearly differentiated from TATP based on a molecular ion observable in MPI-TOFMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Stellar Multi-Photon Absorption Materials: Beyond the Telecommunication Wavelength Band.

    Science.gov (United States)

    Schwich, Torsten; Barlow, Adam; Cifuentes, Marie P; Szeremeta, Janusz; Samoc, Marek; Humphrey, Mark G

    2017-06-22

    Very large molecular two- and three-photon absorption cross-sections are achieved by appending ligated bis(diphosphine)ruthenium units to oligo(p-phenyleneethynylene) (OPE)-based "stars" with arms up to 7 phenyleneethynylene (PE) units in length. Extremely large three- and four-photon absorption cross-sections, through the telecommunications wavelengths range and beyond, are obtained for these complexes upon optimizing OPE length and the ruthenium-coordinated peripheral ligand. Multi-photon absorption (MPA) cross-sections are optimized with stars possessing arms 2 PE units in length. Peripheral ligand variation modifies MPA merit and, in particular, 4-nitrophenylethynyl ligand incorporation enhances maximal MPA values and "switches on" four-photon absorption (4PA) in these low molecular-weight complexes. The 4-nitrophenylethynyl-ligated 2PE-armed star possesses a maximal four-photon absorption cross-section of 1.8×10 -108  cm 8  s 3 at 1750 nm, and significant MPA activity extending beyond 2000 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Real-Time Live Confocal Fluorescence Microscopy as a New Tool for Assessing Platelet Vitality.

    Science.gov (United States)

    Hermann, Martin; Nussbaumer, Oliver; Knöfler, Ralf; Hengster, Paul; Nussbaumer, Walter; Streif, Werner

    2010-01-01

    BACKGROUND: Assessment of platelet vitality is important for patients presenting with inherited or acquired disorders of platelet function and for quality assessment of platelet concentrates. METHODS: Herein we combined live stains with intra-vital confocal fluorescence microscopy in order to obtain an imaging method that allows fast and accurate assessment of platelet vitality. Three fluorescent dyes, FITC-coupled wheat germ agglutinin (WGA), tetramethylrhodamine methyl ester perchlorate (TMRM) and acetoxymethylester (Rhod-2), were used to assess platelet morphology, mitochondrial activity and intra-platelet calcium levels. Microscopy was performed with a microlens-enhanced Nipkow spinning disk-based system allowing live confocal imaging. RESULTS: Comparison of ten samples of donor platelets collected before apheresis and platelets collected on days 5 and 7 of storage showed an increase in the percentage of Rhod-2-positive platelets from 3.6 to 47 and finally to 71%. Mitochondrial potential was demonstrated in 95.4% of donor platelets and in 92.5% of platelets stored for 7 days. CONCLUSION: Such fast and accurate visualization of known key parameters of platelet function could be of relevance for studies addressing the quality of platelets after storage and additional manipulation, such as pathogen inactivation, as well as for the analysis of inherited platelet function disorders.

  20. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  1. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  2. Photoacoustic computed microscopy

    Science.gov (United States)

    Yao, Lei; Xi, Lei; Jiang, Huabei

    2014-05-01

    Photoacoustic microscopy (PAM) is emerging as a powerful technique for imaging microvasculature at depths beyond the ~1 mm depth limit associated with confocal microscopy, two-photon microscopy and optical coherence tomography. PAM, however, is currently qualitative in nature and cannot quantitatively measure important functional parameters including oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), oxygen saturation (sO2), blood flow (BF) and rate of oxygen metabolism (MRO2). Here we describe a new photoacoustic microscopic method, termed photoacoustic computed microscopy (PACM) that combines current PAM technique with a model-based inverse reconstruction algorithm. We evaluate the PACM approach using tissue-mimicking phantoms and demonstrate its in vivo imaging ability of quantifying HbO2, HbR, sO2, cerebral BF and cerebral MRO2 at the small vessel level in a rodent model. This new technique provides a unique tool for neuroscience research and for visualizing microvasculature dynamics involved in tumor angiogenesis and in inflammatory joint diseases.

  3. Direct immunofluorescence microscopy

    NARCIS (Netherlands)

    Diercks, G.F.H.; Pas, Hendrikus; Jonkman, Marcel

    2016-01-01

    Direct immunofluorescence plays an important role in the diagnosis of autoimmune bullous diseases. The purpose of direct immunofluorescence microscopy is to detect in vivo antibodies in patient's skin or mucosa. Direct immunofluorescence of pemphigus shows depositions of immunoglobulins and/or

  4. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  5. Microscopy of femtoscale structures

    Indian Academy of Sciences (India)

    Microscopy of femtoscale structures. P CHOWDHURY. Department of Physics, University of Massachusetts Lowell, Lowell MA 01854, USA. Abstract. Advances in experimental techniques are discussed for the study of long-lived isomers using gammasphere. Spectroscopy of neutron-rich nuclei in the A. 180 region is made ...

  6. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  7. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  8. Advanced microscopy of microbial cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  9. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  10. Multimodal hyperspectral optical microscopy

    Science.gov (United States)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; Hu, Dehong; Hendricks, Leif; Evans, James E.; Bhattarai, Ashish; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-11-01

    We describe a unique approach to hyperspectral optical microscopy, herein achieved by coupling a hyperspectral imager to various optical microscopes. Hyperspectral fluorescence micrographs of isolated fluorescent beads are first employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements. Different science applications of our instrument are then described. Spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE) layer reveals that optical densities on the order of 10-3 can be resolved by spatially averaging the recorded optical signatures. This is followed by three applications in the general areas of plasmonics and bioimaging. Notably, we deploy hyperspectral absorption microscopy to identify and image pigments within a simple biological system, namely, a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal spectral imaging measurements spanning the realms of several scientific disciplines.

  11. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  12. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  13. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  14. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  15. Theory and computation of the rate of multiphoton two-electron ionization via the direct mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mercouris, Theodoros; Haritos, Costas [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece)]. E-mails: thmerc@eie.gr; kharit@eie.gr; Nicolaides, Cleanthes A. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (GR) and Physics Department, National Technical University, Athens (Greece)]. E-mail: can@eie.gr

    2001-10-14

    This paper discusses aspects of the physics and the computation of rates of multiphoton two-electron ionization of polyelectronic atoms within a non-perturbative, time-independent framework. A fundamental characteristic of the theory is that the physically significant features of the spectrum, of electronic structure and of free-electron channels enter systematically in an N-electron field-dressed resonance trial wavefunction. This many-electron, many-photon theory produces the rate of a particular field-induced process as the imaginary part of a frequency- and intensity-dependent complex eigenvalue obtained from the solution of a suitably constructed non-Hermitian Hamiltonian matrix. The notion of direct two-electron ionization is expressed in terms of a specific form of the trial wavefunction, which consists of configurations with real and complex square-integrable functions, subject to orthogonality constraints so as to exclude the participation of single-ionization channels, assumed to contribute mainly to the sequential path. The applications were done to the two-electron ejection from He by the direct absorption of two linearly polarized photons (photon energy in the range 35.0-55.0 eV) and to H{sup -} from the direct and the sequential absorption of four, three, two and one photons (photon energy in the range 4.08-15.00 eV). The comparison between the rates of the two paths in H{sup -}, for photon energies 7.18-10.5 eV, shows that the direct rate dominates. We also show that in the orbital Hartree-Fock approximation to the initial state, the frequency-dependent rates at the intensity of 1x10{sup 13} W cm{sup -2} differ from those obtained with a correlated wavefunction by about two orders of magnitude. (author)

  16. Examination of wound healing after curettage by multiphoton tomography of human skin in vivo.

    Science.gov (United States)

    Springer, S; Zieger, M; Böttcher, A; Lademann, J; Kaatz, M

    2017-11-01

    The multiphoton tomography (MPT) has evolved into a useful tool for the non-invasive investigation of morphological and biophysical characteristics of human skin in vivo. Until now, changes of the skin have been evaluated mainly by using clinical and histological techniques. In this study, the progress of wound healing was investigated by MPT over 3 weeks with a final examination after 24 months. Especially, the collagen degradation, reepithelization and tissue formation were examined. As specific parameter for wound healing and its course the second-harmonic generation-to-autofluorescence aging index of dermis (SAAID) was used. About 10 volunteers aged between 25 and 58 years were examined. Acute wounds were scanned with three Z-stacks taken per visit. The stacks were taken up to a depth of 225 μm at increments of 5 μm and a scan time for 3 seconds per scan. Subsequently, the SAAID was evaluated as an indicator for wound healing. Furthermore, single scans were taken for morphological investigations. The evaluation revealed a distinct difference in the SAAID behavior between the Z-stacks taken at each visit. Furthermore, the degradation of collagen and cells and their reappearance could be shown in the course of the visits. Clear differences in the curve behavior of the SAAID at every visit were shown in this study. The SAAID curves and morphological images could be correlated with findings of the clinical examination of different wound healing phases. Therefore, SAAID curves and morphological MPT imaging could provide a non-invasive tool for the determination of wound healing phases in patients in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  18. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  19. Deep Learning Microscopy

    OpenAIRE

    Rivenson, Yair; Gorocs, Zoltan; Gunaydin, Harun; Zhang, Yibo; Wang, Hongda; Ozcan, Aydogan

    2017-01-01

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with rem...

  20. Physical foundations of electron microscopy

    International Nuclear Information System (INIS)

    Alexander, H.

    1997-01-01

    The following topics were dealt with: Physical foundations, dynamic theory of diffraction contrasts, dynamic theory of electron diffraction, electron diffraction on crystals with defects, high-resolution electron microscopy, analytical electron microscopy

  1. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy.

    Science.gov (United States)

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2017-04-01

    Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  3. Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.

    Science.gov (United States)

    Pelegati, Vitor B; Adur, Javier; De Thomaz, André A; Almeida, Diogo B; Baratti, Mariana O; Andrade, Liliana A L A; Bottcher-Luiz, Fátima; Cesar, Carlos L

    2012-10-01

    In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two-photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy-to-operate platform capable to perform two-photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Copyright © 2012 Wiley Periodicals, Inc.

  4. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  5. CAD-integrated system for automated multi-photon three-dimensional micro- and nano-fabrication

    Science.gov (United States)

    Divliansky, Ivan B.; Weaver, Gregory; Petrovich, Michael; Jabbour, Toufic; Seigneur, Hubert P.; Parnell-Lampen, Caleb; Thompson, Amy; Belfield, Kevin D.; Kuebler, Stephen M.

    2005-01-01

    Multi-photon three-dimensional micro-/nano-fabrication (3DM) is a powerful technique for creating complex 3D micro-scale structures of the type needed for micro-electromechanical systems (MEMS), micro-optics, and microfluidics. In 3DM high peak-power laser pulses are tightly focused into a medium which undergoes a physical or chemical change following multi-photon excitation at the focal point. Complex structures are generated by serial 3D-patterned exposure within the material volume. To further the application of 3DM to micro-component engineering, we are developing a fully automated and integrated 3DM system capable of creating complex cross-linked polymer structures based on patterns designed in a CAD environment. The system consists of four major components: (1) a femtosecond laser and opto-mechanical system; (2) 3-axis micro-positioner; (3) a computer-controlled fabrication interface; and (4) software for fabrication-path planning. The path-planning software generates a 3DM command sequence based on an object-design input file created using standard commercial CAD software. The 3DM system can be used for start-to-finish design and fabrication of waveguides, 3D photonic crystals, and other complex micro-structures. These results demonstrate a technological path for implementing 3DM as a tool for micro- and nano-optical component manufacture.

  6. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES).

    Science.gov (United States)

    Tang, Shisong; Vinerot, Nataly; Fisher, Danny; Bulatov, Valery; Yavetz-Chen, Yehuda; Schechter, Israel

    2016-08-01

    Multiphoton electron extraction spectroscopy (MEES) is an analytical method in which UV laser pulses are utilized for extracting electrons from solid surfaces in multiphoton processes under ambient conditions. Counting the emitted electrons as a function of laser wavelength results in detailed spectral features, which can be used for material identification. The method has been applied to detection of trace explosives on a variety of surfaces. Detection was possible on dusty swabs spiked with explosives and also in the standard dry-transfer contamination procedure. Plastic explosives could also be detected. The analytical limits of detection (LODs) are in the sub pmole range, which indicates that MEES is one of the most sensitive detection methods for solid surface under ambient conditions. Scanning the surface with the laser allows for its imaging, such that explosives (as well as other materials) can be located. The imaging mode is also useful in forensic applications, such as detection of explosives in human fingerprints. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Multiphoton Absorption Order of CsPbBr3 As Determined by Wavelength-Dependent Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Saouma, Felix O; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Kim, Yong Soo; Jang, Joon I

    2017-10-05

    CsPbBr 3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conduction-band minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly two-photon forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr 3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.

  8. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectrosc......Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...... spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can...... be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  9. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  10. Transient Detection in Infrared Multiphoton Decomposition of (Chloromethyl)silane and 1,3-Disilacyclobutane: Evidence for Cleavage of SiCH4 Intermediates

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Diaz, L.; Pola, Josef

    2002-01-01

    Roč. 152, 1-3 (2002), s. 17-24 ISSN 1010-6030 R&D Projects: GA MŠk OC 523.60 Keywords : infrared multiphoton dissociation * laser-induced fluorescence * decomposition mechanisms Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.297, year: 2002

  11. Analytics on Transmission Electron Microscopy

    International Nuclear Information System (INIS)

    Keum, Dong Hwa; Kim, Geung Ho; Lee, Hwak Ju and others

    1996-06-01

    This book gives descriptions of transmission electron microscopy, which deals with electron microscopy and materials science, history of electron microscopy, application of analytics on transmission electron microscopy, machine requirement of transmission electron microscopy like electron gun and TEM image and function, crystal diffraction, electron diffraction, Kikuchi's diffraction figure, analysis of diffraction figure, contrast of TEM image like absorption contrast, and phase contrast, Fresnel's diffraction and TEM contrast, thickness fringe, column approximation, analysis of diffraction contrast, image simulation, and electron energy loss spectrometry.

  12. Measurement of mass and multiphoton ionization spectra using small quantities of dioxins and their surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Uchimura, T.; Matsuda, M.; Imasaka, T. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    2004-09-15

    Multiphoton ionization-mass spectrometry (MPI-MS) has a potential application in on-line real-time monitoring of polychlorinated dibenzo-p-dioxins/furans (PCDD/F) and their surrogates. In particular, selective analysis can be achieved by using each compound's resonance transition wavelength. Although some MPI spectra of these substances have been reported, those of more highly chlorinated congeners have not been measured. Several factors make it difficult to measure the MPI spectra of PCDD/F, as follows. (1) Shorter excited-state lifetimes. The lifetimes of PCDD/F are expected to be {proportional_to}10-100 ps, mainly due to the heavy atom effect. It is reported that ionization efficiency is increased when the laser pulse width is identical to the lifetime of the sample. A distributed-feedback dye laser system with a pulse width of {proportional_to}100 ps has been used for precursors of PCDD/F. (2) Necessity of a two-color laser system. When a PCDD/F is ionized by using a laser emitting at the 0-0 transition wavelength, three (or more) photons are required, resulting in a lack of ionization efficiency. Instead of this one-color three-photon ionization process, a two-color two-photon ionization technique is commonly used. However, adjusting two laser beams both spatially and temporally is a complicated task. Recently, a two-color three-photon ionization technique was reported for selective and sensitive analysis of an aromatic hydrocarbon. (3) The use of a considerable amount of sample (on the order of milligrams, for example). In the MPI-MS method, the sample is placed in a reservoir and heated to vaporize. Once this is done, however, the sample is introduced into a vacuum chamber, resulting in the difficulties of controlling the concentration and start/stop sample introduction. In particular, the use of large amounts of extremely toxic PCDD/F causes serious environmental problems and is harmful to the human body. In this study, a sample introduction technique

  13. Waveguide optical microscopy

    Science.gov (United States)

    Egorov, Alexandre A.

    1997-08-01

    The theoretical aspects of the light scattering on the statistical irregularities of the planar optical waveguide are described. The analysis of direct and inverse light scattering problems is accomplished. The theoretical investigation predicts: the lateral resolution can attain approximately 20 nm and the vertical resolution (in rms height) can attain approximately 1 angstrom. The limiting lateral resolution is a approximately 15-times less than Abbe's diffraction limit. Thus the superresolution may be accomplished by the waveguide optical microscopy (WOM). The increasing of WOM's resolution depends on a-priori information of the irregularities and on a sufficiently high signal-to-noise ratio. A possible using of WOM for bioecological researchers has been mentioned.

  14. Radioactive ion microscopy

    International Nuclear Information System (INIS)

    Johnson, S.A.

    1980-01-01

    A novel approach has been studied for the characterization of specimens with a spatial resolution at the micron level. The technique dubbed Radioactive Ion Microscopy, (RIM) uses a beam of radioactive ions, specifically tritium ions, of sufficient energy to pass through a thick specimen (e.g. greater than or equal to 10 μm). After passage through the object, the ions are implanted in a stack of thin mylar sheets (1.5 microns thick). Their rest position is proportional to the thickness and the density of the sample transversed. The location of the radioactive species can be pinpointed by autoradiographing the successive mylar foils. The radiographs are photographed and converted into digital data which is used to generate a density map of the object. From these plots, physical and chemical features may be deduced. The feasibility of RIM has been demonstrated with specimen images obtained from different objects exposed to a 3 MeV 3 H + beam. The specimens used included metal grids to examine spatial resolution and a series of biological samples (cork, wood, mosquito wing) to explore the performance and applicability of RIM. On these samples, which were 10 to 30 microns thick with surface areas of up to 1 cm 2 , a lateral resolution of approx. 1.5 microns was achieved. A depth resolution or sensitivity to density gradients of 0.2 mg/cm 2 was obtained. These detailed specimen images can be obtained with low beam exposures, e.g., in the case of tritium approx. 6 x 10 10 ions/cm 2 must be implanted, which corresponds to an irradiation of approx. 10 pA/cm 2 for 1000 s. The corresponding low radiation doses and minimal heat dissipation render RIM well suited for biological specimens. In comparison to light microscopy, RIM features enhanced microscopic capabilities as it can handle objects that are at the same time opaque to light, thick (up to tens of microns), and fragile

  15. Extraterrestrial optical microscopy.

    Science.gov (United States)

    Soffen, G A

    1969-07-01

    An examination of the literature concerned with the use of microscopy for planetary investigation reveals a serious deficiency of current efforts. Many scientists have recommended the use of a microscope for planetary investigation [Biology and the Exploration of Mars, C. S. Pittendrigh, W. Vishniac, and J. P. T. Pearman, Eds. (National Academy of Science-National Research Council, Washington, D. C., 1966), (a) D. Mazia, p. 31; (b) J. Lederberg, p. 137; (c) S. Fox, pp. 219, 226; (d) D. Glaser, p. 326; (e) D. Glaser, J. McCarthy, and M. Minsky, pp. 333, 341; (f) D. G. Rea, pp. 347-426; (g) P. G. Conger, pp. 409-414; (h) M. H. Fernandez, pp. 414-425; (i) D. Schwartz, pp.425-426 . H. P. Klein, Some Biological Problems in the Search for Extraterrestrial Life (American Astronautical Society, Washington, D. C., 1968).] but few are involved in developing the experiment. Since this is a particularly timely period for the preparation of planetary lander experiments, the reasons for this lack of effort would appear to be limited resources or an unclear course of action, rather than lack of interest. Microscopy used for planetary investigation is chiefly the interest of the biologist and the mineralogist. In both cases the desire to use magnifying optics in order to observe objects of submillimeter size is based upon the rich body of knowledge we have acquired from observing the terrestrial microcosm. In addition to purely imaging, certain special optical techniques, e.g., polarimetry, colorimetry, phase contrast, etc., can be used to enhance the interpretation of microscopic imaging data. This interaction of the optical with the chemical or structural aspects of nature can be used to great advantage in the exploration of extraterrestrial biology and mineralogy.

  16. An integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique for liver disease diagnosis

    Science.gov (United States)

    Lin, Jian; Lu, Fake; Zheng, Wei; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2012-03-01

    Liver steatosis and fibrosis are two prevalence liver diseases and may eventually develop into hepatocellular carcinoma (HCC) Due to their prevalence and severity, much work has been done to develop efficient diagnostic methods and therapies. Nonlinear optical microscopy has high sensitivity and chemical specificity for major biochemical compounds, making it a powerful tool for tissue imaging without staining. In this study, three nonlinear microscopy imaging modalities are applied to the study of liver diseases in a bile duct ligation rat modal. CARS shows the distributions of fats or lipids quantitatively across the tissue; SHG visualizes the collagens; and TPEF reveals the morphology of hepatic cells. The results clearly show the development of liver steatosis and fibrosis with time, and the hepatic fat and collagen fibrils are quantified. This study demonstrates the ability of multimodal nonlinear optical microscopy for liver disease diagnosis, and may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.

  17. Virtual microscopy in pathology education.

    Science.gov (United States)

    Dee, Fred R

    2009-08-01

    Technology for acquisition of virtual slides was developed in 1985; however, it was not until the late 1990s that desktop computers had enough processing speed to commercialize virtual microscopy and apply the technology to education. By 2000, the progressive decrease in use of traditional microscopy in medical student education had set the stage for the entry of virtual microscopy into medical schools. Since that time, it has been successfully implemented into many pathology courses in the United States and around the world, with surveys indicating that about 50% of pathology courses already have or expect to implement virtual microscopy. Over the last decade, in addition to an increasing ability to emulate traditional microscopy, virtual microscopy has allowed educators to take advantage of the accessibility, efficiency, and pedagogic versatility of the computer and the Internet. The cost of virtual microscopy in education is now quite reasonable after taking into account replacement cost for microscopes, maintenance of glass slides, and the fact that 1-dimensional microscope space can be converted to multiuse computer laboratories or research. Although the current technology for implementation of virtual microscopy in histopathology education is very good, it could be further improved upon by better low-power screen resolution and depth of field. Nevertheless, virtual microscopy is beginning to play an increasing role in continuing education, house staff education, and evaluation of competency in histopathology. As Z-axis viewing (focusing) becomes more efficient, virtual microscopy will also become integrated into education in cytology, hematology, microbiology, and urinalysis.

  18. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy

    Science.gov (United States)

    Cadroas, P.; Abdeladim, L.; Kotov, L.; Likhachev, M.; Lipatov, D.; Gaponov, D.; Hideur, A.; Tang, M.; Livet, J.; Supatto, W.; Beaurepaire, E.; Février, S.

    2017-06-01

    The spectral window lying between 1.6 and 1.7 μm is interesting for in-depth multiphoton microscopy of intact tissues due to reduced scattering and absorption in this wavelength range. However, wide adoption of this excitation range will rely on the availability of robust and cost-effective high peak power pulsed lasers operating at these wavelengths. In this communication, we report on a monolithically integrated high repetition rate (50 MHz) all-fiber femtosecond laser based on a soliton self-frequency shift providing 9 nJ, 75 fs pulses at 1650 nm. We illustrate its potential for biological microscopy by recording three-photon-excited fluorescence and third-harmonic generation images of mouse nervous tissue and developing Drosophila embryos labeled with a red fluorescent protein.

  19. Hydrodynamic force microscopy

    Science.gov (United States)

    Ulrich, Elaine Schmid

    Microfluidic networks and microporous materials have long been of interest in areas such as hydrology, petroleum engineering, chemical and electrochemical engineering, medicine and biochemical engineering. With the emergence of new processes in gas separation, cell sorting, ultrafiltration, and advanced materials synthesis, the importance of building a better qualitative and quantitative understanding of these key technologies has become apparent. However, microfluidic measurement and theory is still relatively underdeveloped, presenting a significant obstacle to the systematic design of microfluidic devices and materials. Theoretical challenges arise from the breakdown of classical viscous flow models as the flow dimensions approach the mean free path of individual molecules. Experimental challenges arise from the lack of flow profilometry techniques at sub-micron length scales. Here we present an extension of scanning probe microscopy techniques, which we have termed Hydrodynamic Force Microscopy (HFM). HFM exploits fluid drag to profile microflows and to map the permeability of microporous materials. In this technique, an atomic force microscope (AFM) cantilever is scanned close to a microporous sample surface. The hydrodynamic interactions arising from a pressure-driven flow through the sample are then detected by mapping the deflection of an AFM cantilever. For gas flows at atmospheric pressure, HFM has been shown to achieve a velocity sensitivity of 1 cm/s with a spatial resolution of ˜ 10 nm. This compares very favorably to established techniques such as hot-wire and laser Doppler anemometry, whose spatial resolutions typically exceed 1 mum and which may rely on the use of tracer particles or flow markers1. We demonstrate that HFM can successfully profile Poiseuille flows inside pores as small as 100 nm and can distinguish Poiseuille flow from uniform flow for short entry lengths. HFM detection of fluid jets escaping from porous samples can also reveal a

  20. Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum.

    Science.gov (United States)

    Stenmark, Theodore; Word, R C; Könenkamp, R

    2016-02-22

    Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.

  1. Real-time monitoring of tumor response to preoperative radiochemotherapy for rectal carcinoma by nonlinear optical microscopy

    Science.gov (United States)

    Li, Lianhuang; Chen, Zhifen; Wang, Xingfu; Jiang, Weizhong; Guan, Guoxian; Chen, Jianxin

    2015-03-01

    The continuing advancement of nonlinear optical imaging techniques has opened many new windows in biological exploration. In this work, the nonlinear optical microscopy, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), was extended to probe tumor response to preoperative radiochemotherapy (RCT) for rectal carcinoma. It was found that MPM has the ability of direct visualization of histopathologic changes in rectal carcinoma following preoperative RCT including stromal fibrosis, colloid response and residual tumors. Our results also showed the capability of MPM using the quantitative analyses of images to quantify these changes. This work may provide the groundwork for further exploration into the application of multiphoton-based endoscopy in a clinical setting.

  2. Post-processing strategies in image scanning microscopy.

    Science.gov (United States)

    McGregor, J E; Mitchell, C A; Hartell, N A

    2015-10-15

    Image scanning microscopy (ISM) coupled with pixel reassignment offers a resolution improvement of √2 over standard widefield imaging. By scanning point-wise across the specimen and capturing an image of the fluorescent signal generated at each scan position, additional information about specimen structure is recorded and the highest accessible spatial frequency is doubled. Pixel reassignment can be achieved optically in real time or computationally a posteriori and is frequently combined with the use of a physical or digital pinhole to reject out of focus light. Here, we simulate an ISM dataset using a test image and apply standard and non-standard processing methods to address problems typically encountered in computational pixel reassignment and pinholing. We demonstrate that the predicted improvement in resolution is achieved by applying standard pixel reassignment to a simulated dataset and explore the effect of realistic displacements between the reference and true excitation positions. By identifying the position of the detected fluorescence maximum using localisation software and centring the digital pinhole on this co-ordinate before scaling around translated excitation positions, we can recover signal that would otherwise be degraded by the use of a pinhole aligned to an inaccurate excitation reference. This strategy is demonstrated using experimental data from a multiphoton ISM instrument. Finally we investigate the effect that imaging through tissue has on the positions of excitation foci at depth and observe a global scaling with respect to the applied reference grid. Using simulated and experimental data we explore the impact of a globally scaled reference on the ISM image and, by pinholing around the detected maxima, recover the signal across the whole field of view. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  4. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  5. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  6. Multiphoton ionization of (Xe)/sub n/ and (NO)/sub n/ clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    In an effort to extend the application of multiphoton ionization (MPI) spectroscopy to the study of weakly bound systems, we have begun a systematic investigation of picosecond MPI in van der Waals molecules and clusters. To our knowledge no previous picosecond MPI studies of weakly bound systems have been reported. We present here results of picosecond MPI of Xe/sub n/(n = 1-20) and (NO)/sub n/(n = 1-4) clusters. Previous MPI studies using nanosecond lasers have not detected the NO cluster series, presumably because of fast dissociation channels. The use of high peak-power allows resonant and non-resonant photon absorption to the ionization limit to compete effectively with fast dissociative processes. 10 refs., 2 figs

  7. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  8. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    Science.gov (United States)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  9. A quantitative S-Matrix approach to high-order harmonic generation from multiphoton to tunneling regimes.

    Science.gov (United States)

    Plaja, L; Pérez-Hernández, J A

    2007-04-02

    We present a S-matrix description of the process of high order harmonic generation during the interaction of atoms with strong electromagnetic fields. In contrast with the state-of-the-art approaches, our model does not employ the stationary phase approximation and accounts as well for the continuum-continuum transitions. Therefore we are able to reproduce quantitatively the higher frequency part of the spectrum for arbitrary pulse shapes, and for intensities corresponding to multiphoton, tunnel and soft over-the barrier ionization regimes. In addition this model can be implemented very efficiently in a Personal Computer to calculate the harmonic generation for the atom interacting with an eight-cycle pulse at lambda =800 nm in, roughly, ten minutes (a reduction of two orders of magnitude from the typical time requirements of the exact integration).

  10. Vibrational phase contrast CARS microscopy

    NARCIS (Netherlands)

    Jurna, M.

    2010-01-01

    This thesis describes a new technique that improves specificity, selectivity and sensitivity in coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy is a nonlinear optical technique that utilizes specific bonds of molecules, sometimes referred to as the `fingerprint' of a

  11. Advanced computing in electron microscopy

    CERN Document Server

    Kirkland, Earl J

    2010-01-01

    This book features numerical computation of electron microscopy images as well as multislice methods High resolution CTEM and STEM image interpretation are included in the text This newly updated second edition will bring the reader up to date on new developments in the field since the 1990's The only book that specifically addresses computer simulation methods in electron microscopy

  12. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  13. Multiphoton STED and FRET in human skin: Resolving the skin barrier

    DEFF Research Database (Denmark)

    Antonescu, Irina; Dreier, Jes; Brewer, Jonathan R.

    Understanding the penetration properties of substances across biological bar- riers and membranes is vital for many areas of research. In the case of human skin, the barrier is primarily found in the stratum corneum and consists of protein-enriched cells surrounded by a lipid membrane -enriched...... excited STED and Forster Resonance Energy Transfer (FRET) microscopy to probe the structure of human skin. Super resolution optical microscopy enables resolving structures in the skin below to 60 nm allowing visualization of the stratum corneum intercellular lipid matrix and individual proteins...... such as tight junction (TJ) proteins and corneodesmosomes. To further probe the nanoscopic structure of the intercellular lipids and the nanoscopic diffusion routes of hy- drophilic and hydrophobic particles through the skin barrier we use FRET mea- surements of lipophilic and hydrophilic dye pairs...

  14. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Color-coded intravital imaging demonstrates a transforming growth factor-β (TGF-β) antagonist selectively targets stromal cells in a human pancreatic-cancer orthotopic mouse model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Miyake, Kentaro; Hwang, Ho Kyoung; Kiyuna, Tasuku; DeLong, Jonathan C; Lwin, Thinzar M; Matsuyama, Ryusei; Mori, Ryutaro; Kumamoto, Takafumi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2017-05-19

    Pancreatic cancer is a recalcitrant malignancy, partly due to desmoplastic stroma which stimulates tumor growth, invasion, and metastasis, and inhibits chemotherapeutic drug delivery. Transforming growth factor-β (TGF-β) has an important role in the formation of stromal desmoplasia. The present study describes the ability of color-coded intravital imaging to demonstrate the efficacy of a TGF-β inhibitor to target stroma in an orthotopic mouse model of pancreatic cancer. The BxPC-3 human pancreatic adenocarcinoma cell line expressing green fluorescent protein (GFP), which also has a high TGF-β expression level, was used in an orthotopic model in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). Fourteen mice were randomized into a control group (n = 7, vehicle, i.p., weekly, for 3 weeks) and a treated group (n = 7, SB431542 [TGF-β receptor type I inhibitor] 0.3 mg, i.p., weekly, for 3 weeks). Stromal cells expressing RFP and cancer cells expressing GFP were observed weekly for 3 weeks by real-time color-coded intravital imaging. The RFP fluorescence area from the stromal cells, relative to the GFP fluorescence area of the cancer cells, was significantly decreased in the TGF-β-inhibitor-treatment group compared to the control group. The present study demonstrated color-coded imaging in an orthotopic pancreatic-cancer cell-line mouse model can readily detect the selective anti-stromal-cell targeting of a TGF-β inhibitor.

  16. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  17. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  18. Nonperturbative multiphoton detachment rates of H{sup -} and their relation to the electronic structure of the initial state

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaides, Cleanthes A. [Physics Department, National Technical University, Athens (Greece); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48, Vas. Constantinou Ave., 116/35 Athens (Greece). E-mail: can at eie.gr; Haritos, Costas [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48, Vas. Constantinou Ave., 116/35 Athens (Greece); Mercouris, Theodorus [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation 48, Vas. Constantinou Ave., 116/35 Athens (Greece). E-mail: thmerc at eie.gr

    2000-07-28

    By implementing the many-electron, many-photon theory, a series of ab initio nonperturbative calculations have produced multiphoton electron detachment rates (MPEDRs) for H{sup -} interacting with linearly polarized light of frequency in the range 0.136-0.326 eV and intensity in the range 2.5x10{sup 10}-10x10{sup 10} W cm{sup -2}. For these laser parameters, detachment takes place by three, four, five, six and seven photons. For detachment by four and six photons, the rate exhibits structure which is due to field-induced interference between the {sup 1}S and the {sup 1}D channels. Analysis of the relation between the MPEDRs and initial state electronic structure reveals the type and the degree of direct and indirect self-consistent influence of radial and angular correlation at the configurational and at the orbital level. It is shown that the magnitude of the MPEDRs is proportional to the magnitude of the 1s orbital for large values of the coordinate r. By using a numerical multiconfigurational Hartee-Fock (MCHF) wavefunction with only the 1s{sup 2}, 2s{sup 2} and 2p{sup 2} configurations, the large-r behaviour of the 1s orbital is already very close to that determined from the use of a ten-term MCHF wavefunction, which we believe is sufficient to secure accurate results. (author)

  19. Polychlorinated aromatic hydrocarbons in a soil sample measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Nakamura, Nami; Uchimura, Tomohiro; Watanabe-Ezoe, Yuka; Imasaka, Totaro

    2011-01-01

    Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) was applied to a soil sample to survey several groups of polychlorinated aromatic hydrocarbons (polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polychlorinated diphenylethers (PCDEs), and polychlorinated terphenyls (PCTs)). The signal peaks in the two-dimensional display of GC/MS could be easily and accurately assigned from the intensity distribution of the isotope peaks, even in the presence of numerous interfering species. Using this technology, mutual interferences between organochlorine compounds can be readily recognized from the data of the two-dimensional display after a measurement, although the separation of these compounds is sometimes difficult using high-resolution magnetic-sector-type mass spectrometry. This approach, based on MPI, results in less fragmentation, and is useful for the identification of analytes. Thus, GC/MPI/TOF-MS allows for the simultaneous determination of PCDD/Fs and related compounds in real samples containing numerous interfering species. 2011 © The Japan Society for Analytical Chemistry

  20. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    International Nuclear Information System (INIS)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-01-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O 2 at C 3 Π(v = 2)←X 3 Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O 2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  1. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Science.gov (United States)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-06-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable "normal-glow" mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v' = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ˜1150 K to ˜1350 K within the discharge area. The measurements had an accuracy of ˜±50 K.

  2. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  3. Image scanning microscopy: an overview.

    Science.gov (United States)

    Ward, E N; Pal, R

    2017-05-01

    For almost a century, the resolution of optical microscopy was thought to be limited by Abbé's law describing the diffraction limit of light. At the turn of the millennium, aided by new technologies and fluorophores, the field of optical microscopy finally surpassed the diffraction barrier: a milestone achievement that has been recognized by the 2014 Nobel Prize in Chemistry. Many super-resolution methods rely on the unique photophysical properties of the fluorophores to improve resolution, posing significant limitations on biological imaging, such as multicoloured staining, live-cell imaging and imaging thick specimens. Structured Illumination Microscopy (SIM) is one branch of super-resolution microscopy that requires no such special properties of the applied fluorophores, making it more versatile than other techniques. Since its introduction in biological imaging, SIM has proven to be a popular tool in the biologist's arsenal for following biological interaction and probing structures of nanometre scale. SIM continues to see much advancement in design and implementation, including the development of Image Scanning Microscopy (ISM), which uses patterned excitation via either predefined arrays or raster-scanned single point-spread functions (PSF). This review aims to give a brief overview of the SIM and ISM processes and subsequent developments in the image reconstruction process. Drawing from this, and incorporating more recent achievements in light shaping (i.e. pattern scanning and super-resolution beam shaping), this study also intends to suggest potential future directions for this ever-expanding field. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  5. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  6. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    Science.gov (United States)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  7. Four-dimensional electron microscopy.

    Science.gov (United States)

    Zewail, Ahmed H

    2010-04-09

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  8. Light Microscopy at Maximal Precision

    Science.gov (United States)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  9. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different

  10. Four-Dimensional Electron Microscopy

    Science.gov (United States)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  11. Near-field Optical Microscopy

    NARCIS (Netherlands)

    Ruiter, A.G.T.

    1997-01-01

    Near-field scanning optical microscopy (NSOM) is one of the most recent scanning probe techniques. In this technique, an optical probe is brought in the vicinity of the sample surface, in the near-field zone. The microscope can either work in illumination mode, in which the probe consists of a

  12. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  13. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  14. Filter-Dense Multicolor Microscopy.

    Directory of Open Access Journals (Sweden)

    Siavash Kijani

    Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.

  15. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research [1]. By means of transmission electron microscopy (TEM) it is possible to obtain deep insight in the structure, composition and reactivity of photocatalysts for their further optimization [2]. We have constructed a novel...

  16. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly...

  18. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting...

  19. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... for visualization of variation between cells in phenotypic traits such as gene expression....

  20. PHYSICS OF MICROWAVES IN MICROSCOPY

    NARCIS (Netherlands)

    KOK, LP

    1990-01-01

    Microwave technology can help in the preparation of samples for microscopy in many different ways. This paper discusses the physics of microwaves. It gives the theoretical background to understand the practical procedures. Some peculiarities in the optics of microwaves are pointed out. Diffusion

  1. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  2. Microscopy and the helminth parasite.

    Science.gov (United States)

    Halton, David W

    2004-01-01

    Microscopy has a long and distinguished history in the study of helminth parasites and has made a singularly outstanding contribution to understanding how these complex animals organise their lives and relate to their hosts. Increasingly, the microscope has been used as a powerful investigative tool in multidisciplinary approaches to parasitological problems, placing emphasis on functional correlates rather than anatomical detail. In doing so, microscopy has also uncovered a number of attributes of parasites that are of wider significance in the field of biology. Parasite surfaces have understandably demanded most of the attention of microscopists, largely as a result of the pioneering studies using transmission electron microscopy. Their findings focused the attention of physiologists and immunologists on the tegument and cuticle of helminths and in doing so helped unravel the complex molecular exchanges that are fundamental to understanding host-parasite interactions. Scanning electron microscopy succeeded in augmenting these data by revealing novel microtopographical features of the host-parasite relationship, as well as proving invaluable in helminth taxonomy and in assessing the efficacy of test substances in drug screens. Control of helminth parasites has never been more critical: problems of drug resistance demand urgent action to identify exploitable targets for new generation anthelmintics. In this regard, the neuropeptide signalling system of helminths is envisioned as central to nerve-muscle function, and thereby a crucial regulatory influence on their motility, alimentation and reproduction. The use of immunocytochemistry interfaced with confocal scanning laser microscopy has not only been instrumental in discovering the peptidergic system of helminths and its potential for chemotherapeutic exploitation, but through increasingly sophisticated bio-imaging technologies has continued to help dissect and analyse the molecular dynamics of this and other

  3. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  4. Infrared multiphoton dissociation of acrolein. Time-resolved observation of CO ( v = 1) IR emission at 4.7 μm

    Science.gov (United States)

    Chowdhury, P. K.; Rama Rao, K. V. S.; Mittal, J. P.

    1994-02-01

    In contrast to the photochemistry of electronically excited acrolein producing vinyl and formyl radicals via CC bond rupture, multiphoton vibrationally excited molecules undergo concerted dissociation generating CO and ethylene. Vibrational excitation in the CO product is detected immediately following the CO 2 laser pulse by observing IR emission at 4.7 μm. The decay of the IR emission was studied as a function of acrolein pressure. A vibrational-vibrational relaxation rate constant of CO ( v=1) by acrolein is found to be 1240 ± 200 Torr -1 s -1.

  5. Selective sensitivity in Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  6. All-optical photoacoustic microscopy

    Directory of Open Access Journals (Sweden)

    Sung-Liang Chen

    2015-12-01

    Full Text Available Three-dimensional photoacoustic microscopy (PAM has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM, which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.

  7. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  8. Contact microscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  9. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  10. Selective sensitivity in Kerr microscopy.

    Science.gov (United States)

    Soldatov, I V; Schäfer, R

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  11. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi......Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure....... The holder is implemented with a laser diode and an optical system that guides the light onto the sample surface with maximum power transmission. The source can be changed and tuned according to the needs, in principle spanning the whole visible and UV light spectrum. It is possible to use the device inside...

  12. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos.

    Science.gov (United States)

    Chetty, S Shashank; Praneetha, S; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A Vadivel

    2016-05-18

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale "sustainable" MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  13. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    Science.gov (United States)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  14. Multifunctional scanning ion conductance microscopy

    OpenAIRE

    Page, Ashley; Perry, David; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional...

  15. CNNs for electron microscopy segmentation

    OpenAIRE

    García-Amorena García, Pablo

    2013-01-01

    In the framework of Biomedicine, mitochondria are known to play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function, and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. Electron microscopy (EM), with its very high resolution in all three directions, is one of the key tools to look more closely into these tissues, but the huge amounts of data it produces m...

  16. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  17. Comparative study of electron microscopy and scanning probe microscopy in photosynthetic research

    OpenAIRE

    MATĚNOVÁ, Martina

    2009-01-01

    The aim of this study is to compare the ability of transmission electron microscopy, scanning electron microscopy and atomic force microscopy to visualize individual protein complexes. The principle of electron microscopy and atomic force microscopy is explained. For comparision of these methods well characterized photosynthetic complexes LH1, LH2, PSI and PSII were selected.

  18. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  19. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  20. Energetics of the rearrangement of neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared multiphoton dissociation spectra to identify structural isomers of molecular ions

    International Nuclear Information System (INIS)

    Bomse, D.S.; Berman, D.W.; Beauchamp, J.L.

    1981-01-01

    Infrared photodissociation spectroscopy is used to compare the structure of gas-phase C 3 F 6 + ions obtained by electron-impact ionization of two isomeric precursors: perfluoropropylene and perfluorocyclopropane. Photodissociation spectra are obtained by observing the extent of multiphoton dissociation as the CO 2 laser is tuned across the 925 to 1080 cm -1 wavelength range. Ions are formed, stored, and detected with the use of techniques of ion cyclotron resonance spectroscopy. Infrared multiphoton excitation is effected by using low-power, continuous-wave laser radiation. The fingerprint spectrum of the molecular ion of perfluorocyclopropane is identical with that obtained from perfluoropropylene, indicating rearrangement of the former to the latter. Photodissociation kinetics indicate that the entire perfluorocyclopropane molecular ion population isomerizes to the more stable perfluoropropylene structure. Thermochemistry of C 3 F 6 and C 3 F 6 + isomers is discussed. Comparisons are made with the analogous C 3 H 6 system. Photoionization mass spectroscopy results yield ΔH/sub f/(c-C 3 F 6 ) = -233.8 kcal/mol. 4 figures