WorldWideScience

Sample records for intracellular trafficking pathway

  1. Abrin immunotoxin: targeted cytotoxicity and intracellular trafficking pathway.

    Directory of Open Access Journals (Sweden)

    Sudarshan Gadadhar

    Full Text Available BACKGROUND: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. METHODS: Protein synthesis assay using (3[H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. RESULTS: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. CONCLUSIONS: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.

  2. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  3. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...... that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader...

  4. Squalestatin alters the intracellular trafficking of a neurotoxic prion peptide

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2007-11-01

    Full Text Available Abstract Background Neurotoxic peptides derived from the protease-resistant core of the prion protein are used to model the pathogenesis of prion diseases. The current study characterised the ingestion, internalization and intracellular trafficking of a neurotoxic peptide containing amino acids 105–132 of the murine prion protein (MoPrP105-132 in neuroblastoma cells and primary cortical neurons. Results Fluorescence microscopy and cell fractionation techniques showed that MoPrP105-132 co-localised with lipid raft markers (cholera toxin and caveolin-1 and trafficked intracellularly within lipid rafts. This trafficking followed a non-classical endosomal pathway delivering peptide to the Golgi and ER, avoiding classical endosomal trafficking via early endosomes to lysosomes. Fluorescence resonance energy transfer analysis demonstrated close interactions of MoPrP105-132 with cytoplasmic phospholipase A2 (cPLA2 and cyclo-oxygenase-1 (COX-1, enzymes implicated in the neurotoxicity of prions. Treatment with squalestatin reduced neuronal cholesterol levels and caused the redistribution of MoPrP105-132 out of lipid rafts. In squalestatin-treated cells, MoPrP105-132 was rerouted away from the Golgi/ER into degradative lysosomes. Squalestatin treatment also reduced the association between MoPrP105-132 and cPLA2/COX-1. Conclusion As the observed shift in peptide trafficking was accompanied by increased cell survival these studies suggest that the neurotoxicity of this PrP peptide is dependent on trafficking to specific organelles where it activates specific signal transduction pathways.

  5. Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2010-06-01

    Full Text Available Paramyxoviruses are assembled at the plasma membrane budding sites after synthesis of all the structural components in the cytoplasm. Although viral ribonuclocapsid (vRNP is an essential component of infectious virions, the process of vRNP translocation to assembly sites is poorly understood.To analyze real-time trafficking of vRNPs in live infected cells, we created a recombinant Sendai virus (SeV, rSeVLeGFP, which expresses L protein fused to enhanced green fluorescent protein (eGFP. The rSeVLeGFP showed similar growth kinetics compared to wt SeV, and newly synthesized LeGFP could be detected as early as 8 h postinfection. The majority of LeGFP co-localized with other components of vRNPs, NP and P proteins, suggesting the fluorescent signals of LeGFP represent the locations of vRNPs. Analysis of LeGFP movement using time-lapse digital video microscopy revealed directional and saltatory movement of LeGFP along microtubules. Treatment of the cells with nocodazole restricted vRNP movement and reduced progeny virion production without affecting viral protein synthesis, suggesting the role of microtubules in vRNP trafficking and virus assembly. Further study with an electron microscope showed close association of vRNPs with intracellular vesicles present in infected cells. In addition, the vRNPs co-localized with Rab11a protein, which is known to regulate the recycling endocytosis pathway and Golgi-to-plasma membrane trafficking. Simultaneous movement between LeGFP and Rab11a was also observed in infected cells, which constitutively express mRFP-tagged Rab11a. Involvement of recycling endosomes in vRNP translocation was also suggested by the fact that vRNPs move concomitantly with recycling transferrin labeled with Alexa 594.Collectively, our results strongly suggest a previously unrecognized involvement of the intracellular vesicular trafficking pathway in vRNP translocation and provide new insights into the transport of viral structural

  6. Regulation of dopamine transporter trafficking by intracellular amphetamine

    DEFF Research Database (Denmark)

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang

    2006-01-01

    -induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent...... alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic...... redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A...

  7. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms

    DEFF Research Database (Denmark)

    Carlsson, Carl Michael; Bengtson, Per; Cucak, Helena

    2013-01-01

    these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3 bound glycoform increased in cancer, suggesting...

  8. The tinker, tailor, soldier in intracellular B12 trafficking.

    Science.gov (United States)

    Banerjee, Ruma; Gherasim, Carmen; Padovani, Dominique

    2009-10-01

    The recognition of eight discrete genetic complementation groups among patients with inherited cobalamin disorders provided early insights into the complexity of a cofactor-processing pathway that supports only two known B(12)-dependent enzymes in mammals. With the identification of all eight genes now completed, biochemical interrogations of their functions have started and are providing novel insights into a trafficking pathway involving porters that tinker with and tailor the active cofactor forms and editors that ensure the fidelity of the cofactor loading process. The principles of sequestration and escorted delivery of a rare and reactive organometallic cofactor that are emerging from studies on B(12) might be of general relevance to other cofactor trafficking pathways.

  9. Eps15: a multifunctional adaptor protein regulating intracellular trafficking

    Directory of Open Access Journals (Sweden)

    van Bergen en Henegouwen Paul MP

    2009-10-01

    Full Text Available Abstract Over expression of receptor tyrosine kinases is responsible for the development of a wide variety of malignancies. Termination of growth factor signaling is primarily determined by the down regulation of active growth factor/receptor complexes. In recent years, considerable insight has been gained in the endocytosis and degradation of growth factor receptors. A crucial player in this process is the EGFR Protein tyrosine kinase Substrate #15, or Eps15. This protein functions as a scaffolding adaptor protein and is involved both in secretion and endocytosis. Eps15 has been shown to bind to AP-1 and AP-2 complexes, to bind to inositol lipids and to several other proteins involved in the regulation of intracellular trafficking. In addition, Eps15 has been detected in the nucleus of mammalian cells. Activation of growth factor receptors induces tyrosine phosphorylation and mono-ubiquitination of Eps15. The role of these post translational modifications of Eps15 is still a mystery. It is proposed that Eps15 and its family members Eps15R and Eps15b are involved in the regulation of membrane morphology, which is required for intracellular vesicle formation and trafficking.

  10. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    Science.gov (United States)

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  11. A Dual Role for the Nonreceptor Tyrosine Kinase Pyk2 during the Intracellular Trafficking of Human Papillomavirus 16.

    Science.gov (United States)

    Gottschalk, Elinor Y; Meneses, Patricio I

    2015-09-01

    The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of

  12. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Science.gov (United States)

    Missirlis, Dimitris; Teesalu, Tambet; Black, Matthew; Tirrell, Matthew

    2013-01-01

    Peptide amphiphiles (PAs) are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol) to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  13. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  14. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    International Nuclear Information System (INIS)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A.

    2011-01-01

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  15. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    Directory of Open Access Journals (Sweden)

    Tracy P. M. Chong

    2011-03-01

    Full Text Available The potent mitogenic toxin from Pasteurella multocida (PMT is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn and cholera toxin (CT, the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  16. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    International Nuclear Information System (INIS)

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  17. Comparison of the intracellular trafficking itinerary of ctla-4 orthologues.

    Directory of Open Access Journals (Sweden)

    Satdip Kaur

    Full Text Available CTLA-4 is an essential inhibitor of T cell immune responses. At steady state, most CTLA-4 resides in intracellular compartments due to constitutive internalisation mediated via a tyrosine based endocytic motif (YVKM within the cytoplasmic domain. This domain is highly conserved in mammals suggesting strong selective pressure. In contrast, the C-terminal domain varies considerably in non-mammals such as fish, xenopus and birds. We compared the ability of the C-terminus of these species to direct the trafficking of CTLA-4 with human CTLA-4. Using a chimeric approach, endocytosis was found to be conserved between human, xenopus and chicken CTLA-4 but was reduced substantially in trout CTLA-4, which lacks the conserved YXXM motif. Nevertheless, we identified an alternative YXXF motif in trout CTLA-4 that permitted limited endocytosis. Post-internalisation, CTLA-4 was either recycled or targeted for degradation. Human and chicken CTLA-4, which contain a YVKM motif, showed efficient recycling compared to xenopus CTLA-4 which contains a less efficient YEKM motif. Specific mutation of this motif in human CTLA-4 reduced receptor recycling. These findings suggest evolutionary development in the endocytic and recycling potential of CTLA-4, which may facilitate more refined functions of CTLA-4 within the mammalian immune system.

  18. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    Science.gov (United States)

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  19. Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2.

    Science.gov (United States)

    Huffman, D L; O'Halloran, T V

    2000-06-23

    The Atx1 metallochaperone protein is a cytoplasmic Cu(I) receptor that functions in intracellular copper trafficking pathways in plants, microbes, and humans. A key physiological partner of the Saccharomyces cerevisiae Atx1 is Ccc2, a cation transporting P-type ATPase located in secretory vesicles. Here, we show that Atx1 donates its metal ion cargo to the first N-terminal Atx1-like domain of Ccc2 in a direct and reversible manner. The thermodynamic gradient for metal transfer is shallow (K(exchange) = 1.4 +/- 0.2), establishing that vectorial delivery of copper by Atx1 is not based on a higher copper affinity of the target domain. Instead, Atx1 allows rapid metal transfer to its partner. This equilibrium is unaffected by a 50-fold excess of the Cu(I) competitor, glutathione, indicating that Atx1 also protects Cu(I) from nonspecific reactions. Mechanistically, we propose that a low activation barrier for transfer between partners results from complementary electrostatic forces that ultimately orient the metal-binding loops of Atx1 and Ccc2 for formation of copper-bridged intermediates. These thermodynamic and kinetic considerations suggest that copper trafficking proteins overcome the extraordinary copper chelation capacity of the eukaryotic cytoplasm by catalyzing the rate of copper transfer between physiological partners. In this sense, metallochaperones work like enzymes, carefully tailoring energetic barriers along specific reaction pathways but not others.

  20. Intracellular trafficking of VP22 in bovine herpesvirus-1 infected cells

    International Nuclear Information System (INIS)

    Lobanov, Vladislav A.; Babiuk, Lorne A.; Drunen Littel-van den Hurk, Sylvia van

    2010-01-01

    The intracellular trafficking of different VP22-enhanced yellow fluorescent protein (EYFP) fusion proteins expressed by bovine herpesvirus-1 (BHV-1) recombinants was examined by live-cell imaging. Our results demonstrate that (i) the fusion of EYFP to the C terminus of VP22 does not alter the trafficking of the protein in infected cells, (ii) VP22 expressed during BHV-1 infection translocates to the nucleus through three different pathways, namely early mitosis-dependent nuclear translocation, late massive nuclear translocation that follows a prolonged cytoplasmic stage of the protein in non-mitotic cells, and accumulation of a small subset of VP22 in discrete dot-like nuclear domains during its early cytoplasmic stage, (iii) the addition of the SV40 large-T-antigen nuclear localization signal (NLS) to VP22-EYFP abrogates its early cytoplasmic stage, and (iv) the VP22 131 PRPR 134 NLS is not required for the late massive nuclear translocation of the protein, but this motif is essential for the targeting of VP22 to discrete dot-like nuclear domains during the early cytoplasmic stage. These results show that the amount of VP22 in the nucleus is precisely regulated at different stages of BHV-1 infection and suggest that the early pathways of VP22 nuclear accumulation may be more relevant to the infection process as the late massive nuclear influx starts when most of the viral progeny has already emerged from the cell.

  1. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  2. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    Directory of Open Access Journals (Sweden)

    Christopher Arnette

    Full Text Available The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  3. Particles on the move: intracellular trafficking and asymmetric mitotic partitioning of nanoporous polymer particles.

    Science.gov (United States)

    Yan, Yan; Lai, Zon W; Goode, Robert J A; Cui, Jiwei; Bacic, Tess; Kamphuis, Marloes M J; Nice, Edouard C; Caruso, Frank

    2013-06-25

    Nanoporous polymer particles (NPPs) prepared by mesoporous silica templating show promise as a new class of versatile drug/gene delivery vehicles owning to their high payload capacity, functionality, and responsiveness. Understanding the cellular dynamics of such particles, including uptake, intracellular trafficking, and distribution, is an important requirement for their development as therapeutic carriers. Herein, we examine the spatiotemporal map of the cellular processing of submicrometer-sized disulfide-bonded poly(methacrylic acid) (PMASH) NPPs in HeLa cells using both flow cytometry and fluorescence microscopy. The data show that the PMASH NPPs are transported from the early endosomes to the lysosomes within a few minutes. Upon cell division, the lysosome-enclosed PMASH NPPs are distributed asymmetrically between two daughter cells. Statistical analysis of cells during cytokinesis suggests that partitioning of particles is biased with an average segregation deviation of 60%. Further, two-dimensional difference gel electrophoresis (2D-DIGE) analysis reveals that 127 out of 3059 identified spots are differentially regulated upon exposure to the PMASH NPPs. Pathway analysis of the proteomics data suggests that ubiquitylation, a reversible modification of cellular proteins with ubiquitin, plays a central role in overall cellular responses to the particles. These results provide important insights into the cellular dynamics and heterogeneity of NPPs, as well as the mechanisms that regulate the motility of these particles within cells, all of which have important implications for drug susceptibility characteristics in cancer cells using particle-based carriers.

  4. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    Full Text Available BACKGROUND: The uptake and intracellular trafficking of sphingolipids, which self-associate into plasma membrane microdomains, is associated with many pathological conditions, including viral and toxin infection, lipid storage disease, and neurodegenerative disease. However, the means available to label the trafficking pathways of sphingolipids in live cells are extremely limited. In order to address this problem, we have developed an exogenous, non-toxic probe consisting of a 25-amino acid sphingolipid binding domain, the SBD, derived from the amyloid peptide Abeta, and conjugated by a neutral linker with an organic fluorophore. The current work presents the characterization of the sphingolipid binding and live cell trafficking of this novel probe, the SBD peptide. SBD was the name given to a motif originally recognized by Fantini et al in a number of glycolipid-associated proteins, and was proposed to interact with sphingolipids in membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: In accordance with Fantini's model, optimal SBD binding to membranes depends on the presence of sphingolipids and cholesterol. In synthetic membrane binding assays, SBD interacts preferentially with raft-like lipid mixtures containing sphingomyelin, cholesterol, and complex gangliosides in a pH-dependent manner, but is less glycolipid-specific than Cholera toxin B (CtxB. Using quantitative time-course colocalization in live cells, we show that the uptake and intracellular trafficking route of SBD is unlike that of either the non-raft marker Transferrin or the raft markers CtxB and Flotillin2-GFP. However, SBD traverses an endolysosomal route that partially intersects with raft-associated pathways, with a major portion being diverted at a late time point to rab11-positive recycling endosomes. Trafficking of SBD to acidified compartments is strongly disrupted by cholesterol perturbations, consistent with the regulation of sphingolipid trafficking by cholesterol

  5. Cellular Internalization Mechanism and Intracellular Trafficking of Filamentous M13 Phages Displaying a Cell-Penetrating Transbody and TAT Peptide

    Science.gov (United States)

    Shin, Seung-Min; Pham, Chuong D.; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005∼0.01%) than that of TAT-M13 (0.001∼0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs. PMID:23251631

  6. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide.

    Science.gov (United States)

    Kim, Aeyung; Shin, Tae-Hwan; Shin, Seung-Min; Pham, Chuong D; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005 ≈ 0.01%) than that of TAT-M13 (0.001 ≈ 0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.

  7. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13 or TAT peptide (TAT-M13. Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005 ≈ 0.01% than that of TAT-M13 (0.001 ≈ 0.005%. Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.

  8. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    DEFF Research Database (Denmark)

    Merz, G S; Benedikz, Eirikur; Schwenk, V

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C...... that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  9. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  10. Plant PRA plays an important role in intracellular vesicular trafficking between compartments as GDF.

    Science.gov (United States)

    Bahk, Jeong Dong; Bang, Woo Young; Heo, Jae Bok

    2009-11-01

    Rab GTPases like Ras-related monomeric GTPases are well known to regulate intracellular vesicle trafficking by cycling between membrane-bound and cytosolic states. The functions of these proteins are controlled by upstream regulators and downstream effectors. Ypt/Rabs transmit signals to downstream effectors in a GTP-dependent manner. GDP-bound Rab proteins are extracted from their target membrane by cytosolic proteins known as GDP dissociation inhibitors (GDIs), and the Rab GTPase is recruited to the membrane compartment following dissociation from the GDI by GDI displacement factor (GDF). Now, we're going to discuss the role of plant PRA concerted with Rab and GDI proteins by recycling Rab between membrane and cytosol for intracellular trafficking of cargo proteins.

  11. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    Science.gov (United States)

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    previously unrecognized involvement in intracellular trafficking pathways, which may contribute to its roles in cellular homeostasis and human diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    Science.gov (United States)

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Redefining the essential trafficking pathway for outer membrane lipoproteins

    OpenAIRE

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    In Gram-negative bacteria, most lipoproteins synthesized in the inner membrane (IM) are trafficked to the outer membrane (OM). The Lol pathway is the trafficking paradigm: LolCDE releases lipoproteins from the IM; LolA shuttles them between membranes to LolB in the OM. Several OM lipoproteins are essential for viability. In apparent concordance, the Lol proteins are each essential in wild-type cells. However, we show that Escherichia coli grows well without LolA and LolB in the absence of one...

  14. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  15. Redefining the essential trafficking pathway for outer membrane lipoproteins

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins’ key function is to prevent lethal accumulation of mislocalized lipoproteins. PMID:28416660

  16. Redefining the essential trafficking pathway for outer membrane lipoproteins.

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J

    2017-05-02

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins' key function is to prevent lethal accumulation of mislocalized lipoproteins.

  17. The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2014-05-01

    CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

  18. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells.

    Science.gov (United States)

    Safaei, Roohangiz; Katano, Kuniyuki; Larson, Barrett J; Samimi, Goli; Holzer, Alison K; Naerdemann, Wiltrud; Tomioka, Mika; Goodman, Murray; Howell, Stephen B

    2005-01-15

    We sought to identify the subcellular compartments in which cisplatin [cis-diamminedichloroplatinum (DDP)] accumulates in human ovarian carcinoma cells and define its export pathways. Deconvoluting digital microscopy was used to identify the subcellular location of fluorescein-labeled DDP (F-DDP) in 2008 ovarian carcinoma cells stained with organelle-specific markers. Drugs that block vesicle movement were used to map the traffic pattern. F-DDP accumulated in vesicles and were not detectable in the cytoplasm. F-DDP accumulated in the Golgi, in vesicles belonging to the secretory export pathway, and in lysosomes but not in early endosomes. F-DDP extensively colocalized with vesicles expressing the copper efflux protein, ATP7A, whose expression modulates the cellular pharmacology of DDP. Inhibition of vesicle trafficking with brefeldin A, wortmannin, or H89 increased the F-DDP content of vesicles associated with the pre-Golgi compartments and blocked the loading of F-DDP into vesicles of the secretory pathway. The importance of the secretory pathway was confirmed by showing that wortmannin and H89 increased whole cell accumulation of native DDP. F-DDP is extensively sequestered into vesicular structures of the lysosomal, Golgi, and secretory compartments. Much of the distribution to other compartments occurs via vesicle trafficking. F-DDP detection in the vesicles of the secretory pathway is consistent with a major role for this pathway in the efflux of F-DDP and DDP from the cell.

  19. MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent

    International Nuclear Information System (INIS)

    Liu Xiaolong; Yuan Zhenglong; Chung, Maureen

    2008-01-01

    MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5

  20. Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants.

    Science.gov (United States)

    Rakusová, Hana; Fendrych, Matyáš; Friml, Jiří

    2015-02-01

    Subcellular trafficking and cell polarity are basic cellular processes crucial for plant development including tropisms - directional growth responses to environmental stimuli such as light or gravity. Tropisms involve auxin gradient across the stimulated organ that underlies the differential cell elongation and bending. The perception of light or gravity is followed by changes in the polar, cellular distribution of the PIN auxin transporters. Such re-specification of polar trafficking pathways is a part of the mechanism, by which plants adjust their phenotype to environmental changes. Recent genetic and biochemical studies provided the important insights into mechanisms of PIN polarization during tropisms. In this review, we summarize the present state of knowledge on dynamic PIN repolarization and its specific regulations during hypocotyl tropisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    Science.gov (United States)

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  2. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  3. Binding Affinity, Cellular Uptake, and Subsequent Intracellular Trafficking of the Nano-Gene Vector P123-PEI-R13

    Directory of Open Access Journals (Sweden)

    Yaguang Zhang

    2016-01-01

    Full Text Available A nano-gene vector PEI-P123-R13 was synthesized by cross-linking low molecular weight PEI with P123 and further coupling bifunctional peptide R13 to the polymer for targeting tumor and increasing cellular uptake. The binding assessment of R13 to αvβ3 positive cells was performed by HRP labeling. The internalization pathways of P123-PEI-R13/DNA complexes were investigated based on the effect of specific endocytic inhibitors on transfection efficiency. The mechanism of intracellular trafficking was investigated based on the effect of endosome-lysosome acidification inhibitors, cytoskeleton, and dynein inhibitors on transfection efficiency. The results indicated that the bifunctional peptide R13 had the ability of binding to αvβ3 positive cells in vitro. The modification of P123-PEI-R13 with R13 made it display new property of internalization. P123-PEI-R13/DNA complexes were conducted simultaneously via clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis, and possible energy-independent route. After internalization, P123-PEI-R13/DNA complexes could escape from the endosome-lysosome system because of its acidification and further took microtubule as the track and dynein as the dynamic source to be transported toward the microtubule (+ end, to wit nucleus, under the action of microfilament, and with the aid of intermediate filament.

  4. Tick-Borne Encephalitis Virus Replication, Intracellular Trafficking, and Pathogenicity in Human Intestinal Caco-2 Cell Monolayers

    Science.gov (United States)

    Möller, Lars; Schulzke, Joerg D.; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route. PMID

  5. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Chao Yu

    Full Text Available Tick-borne encephalitis virus (TBEV is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin and microtubules (Nocodazole are important for PI3K-dependent (LY294002 virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1 as well as with sorting nexin-5 (SNX5, pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary

  6. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Yu, Chao; Achazi, Katharina; Möller, Lars; Schulzke, Joerg D; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.

  7. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment.

    LENUS (Irish Health Repository)

    Rogan, Mark P

    2012-02-01

    Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?

  8. PIST regulates the intracellular trafficking and plasma membrane expression of Cadherin 23

    Directory of Open Access Journals (Sweden)

    Oshima Kazuo

    2010-10-01

    Full Text Available Abstract Background The atypical cadherin protein cadherin 23 (CDH23 is crucial for proper function of retinal photoreceptors and inner ear hair cells. As we obtain more and more information about the specific roles of cadherin 23 in photoreceptors and hair cells, the regulatory mechanisms responsible for the transport of this protein to the plasma membrane are largely unknown. Results PIST, a Golgi-associated, PDZ domain-containing protein, interacted with cadherin 23 via the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI of cadherin 23. By binding to cadherin 23, PIST retained cadherin 23 in the trans-Golgi network of cultured cells. The retention was released when either of the two known cadherin 23-binding proteins MAGI-1 and harmonin was co-expressed. Similar to MAGI-1 and harmonin, PIST was detected in mouse inner ear sensory hair cells. Conclusions PIST binds cadherin 23 via its PDZ domain and retains cadherin 23 in trans-Golgi network. MAGI-1 and harmonin can compete with PIST for binding cadherin 23 and release cadherin 23 from PIST's retention. Our finding suggests that PIST, MAGI-1 and harmonin collaborate in intracellular trafficking of cadherin 23 and regulate the plasma membrane expression of cadherin 23.

  9. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles

    Science.gov (United States)

    Vasir, Jaspreet K.; Labhasetwar, Vinod

    2008-01-01

    Understanding the interaction of nanoparticles (NPs) with the cell membrane and their trafficking through cells is imperative to fully explore the use of NPs for efficient intracellular delivery of therapeutics. Here, we report a novel method of measuring the force of NP-cell membrane interactions using atomic force microscopy (AFM). Poly(dl-lactide co-glycolide, PLGA) NPs functionalized with poly-l-lysine were used as a model system, to demonstrate that this force determines the adhesive interaction of NPs with the cell membrane and in turn the extent of cellular uptake of NPs, and hence that of the encapsulated therapeutic. Cellular uptake of NPs was monitored using AFM imaging, and the dynamics of their intracellular distribution was quantified using confocal microscopy. Results demonstrated that the functionalized NPs have a five-fold greater force of adhesion with the cell membrane and the time-lapse AFM images show their rapid internalization than unmodified NPs. The intracellular trafficking study showed that the functionalized NPs escape more rapidly and efficiently from late endosomes than unmodified NPs and result in 10-fold higher intracellular delivery of the encapsulated model protein. The findings described herein enhance our basic understanding of the NP-cell membrane interaction on the basis of physical phenomena that could have wider applications in developing efficient nanocarrier systems for intracellular delivery of therapeutics. PMID:18692238

  10. Cellular Internalization Mechanism and Intracellular Trafficking of Filamentous M13 Phages Displaying a Cell-Penetrating Transbody and TAT Peptide

    OpenAIRE

    Kim, Aeyung; Shin, Tae-Hwan; Shin, Seung-Min; Pham, Chuong D.; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were eff...

  11. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA).

    Science.gov (United States)

    Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2018-03-15

    -subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Inflammatory intracellular pathways activated by electronegative LDL in monocytes.

    Science.gov (United States)

    Estruch, Montserrat; Sanchez-Quesada, Jose Luis; Ordoñez-Llanos, Jordi; Benitez, Sonia

    2016-09-01

    Electronegative LDL (LDL(-)) is a plasma LDL subfraction that induces cytokine release in monocytes through toll-like receptor 4 (TLR4) activation. However, the intracellular pathways induced by LDL(-) downstream TLR4 activation are unknown. We aimed to identify the pathways activated by LDL(-) leading to cytokine release in monocytes. We determined LDL(-)-induced activation of several intracellular kinases in protein extracts from monocytes using a multikinase ELISA array. LDL(-) induced higher p38 mitogen-activated protein kinase (MAPK) phosphorylation than native LDL. This was corroborated by a specific cell-based assay and it was dependent on TLR4 and phosphoinositide 3-kinase (PI3k)/Akt pathway. P38 MAPK activation was involved in cytokine release promoted by LDL(-). A specific ELISA showed that LDL(-) activated cAMP response-element binding (CREB) in a p38 MAPK dependent manner. P38 MAPK was also involved in the nuclear factor kappa-B (NF-kB) and activating protein-1 (AP-1) activation by LDL(-). We found that NF-kB, AP-1 and CREB inhibitors decreased LDL(-)-induced cytokine release, mainly on MCP1, IL6 and IL10 release, respectively. LDL(-) promotes p38 MAPK phosphorylation through TLR4 and PI3k/Akt pathways. Phosphorylation of p38 MAPK is involved in NF-kB, AP-1 and CREB activation, leading to LDL(-)-induced cytokine release in monocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway.

    Science.gov (United States)

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-04-15

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER-Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). © 2015. Published by The Company of Biologists Ltd.

  14. Valproic Acid Influences MTNR1A Intracellular Trafficking and Signaling in a β-Arrestin 2-Dependent Manner.

    Science.gov (United States)

    Hong, Ling-juan; Jiang, Quan; Long, Sen; Wang, Huan; Zhang, Ling-di; Tian, Yun; Wang, Cheng-kun; Cao, Jing-jing; Tao, Rong-rong; Huang, Ji-yun; Liao, Mei-hua; Lu, Ying-mei; Fukunaga, Kohji; Zhou, Nai-ming; Han, Feng

    2016-03-01

    Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled β-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a β-arrestin 2-dependent manner.

  15. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  16. Chemical Genetic Dissection of Membrane Trafficking.

    Science.gov (United States)

    Norambuena, Lorena; Tejos, Ricardo

    2017-04-28

    The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.

  17. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    Science.gov (United States)

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus -infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus -containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  18. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome.

    Science.gov (United States)

    Alvarez-Dominguez, C; Roberts, R; Stahl, P D

    1997-03-01

    Previous studies have shown that early phagosome-endosome fusion events following phagocytosis of Listeria monocytogenes are modulated by the live organism. In the present study, we have characterized more fully the intracellular pathway of dead and live Listeria phagosomes. To examine access of endosomal and lysosomal markers to phagosomes containing live and dead Listeria, quantitative electron microscopy was carried out with intact cells using internalized BSA-gold as a marker to quantify transfer of solute from endosomal and lysosomal compartments to phagosomes. To monitor the protein composition of phagosomal membranes and to quantify transfer of HRP from endosomes and lysosomes to phagosomes, highly enriched phagosomes containing live and dead Listeria were isolated. Enriched phagosomal membranes were used for western blotting experiments with endosomal and lysosomal markers. In this study, we used a listeriolysin-deficient mutant, Listeria(hly-), that is retained within the phagosome following phagocytosis. Western blotting experiments indicate that early endosomal markers (mannose receptor, transferrin receptor) and key fusion factors necessary for early events (NSF, alpha/beta-SNAP) but not late endosomal markers (cation dependent mannose 6-phosphate receptor) or lysosomal proteins (cathepsin D or lamp-1) accumulate on the live-Listeria phagosomal membranes. On the contrary, phagosomes containing dead-Listeria are readily accessible by both endocytic and lysosomal markers. Studies with radiolabeled dead- and live-Listeria(hly-) indicate that, following phagocytosis, degradation of the live microorganism is substantially delayed. These findings indicate that dead-Listeria containing phagosomes rapidly mature to a phagolysosomal stage whereas live-Listeria(hly-) prevents maturation, in part, by avoiding fusion with lysosomes. The data suggest that by delaying phagosome maturation and subsequent degradation, Listeria prolongs survival inside the phagosome

  19. Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies.

    Science.gov (United States)

    Calistri, Arianna; Sette, Paola; Salata, Cristiano; Cancellotti, Enrico; Forghieri, Cristina; Comin, Alessandra; Göttlinger, Heinrich; Campadelli-Fiume, Gabriella; Palù, Giorgio; Parolin, Cristina

    2007-10-01

    The biogenesis of multivesicular bodies (MVBs) is topologically equivalent to virion budding. Hence, a number of viruses exploit the MVB pathway to build their envelope and exit from the cell. By expression of dominant negative forms of Vps4 and Vps24, two components of the MVB pathway, we observed an impairment in infectious herpes simplex virus (HSV) assembly/egress, in agreement with a recent report showing the involvement in HSV envelopment of Vps4, the MVB-specific ATPase (C. M. Crump, C. Yates, and T. Minson, J. Virol. 81:7380-7387). Furthermore, HSV infection resulted in morphological changes to MVBs. Glycoprotein B (gB), one of the most highly conserved glycoproteins across the Herpesviridae family, was sorted to MVB membranes. In cells expressing the dominant negative form of Vps4, the site of intracellular gB accumulation was altered; part of gB accumulated as an endoglycosidase H-sensitive immature form at a calreticulin-positive compartment, indicating that gB traffic was dependent on a functional MVB pathway. gB was ubiquitinated in both infected and transfected cells. Ubiquitination was in part dependent on ubiquitin lysine 63, a signal for cargo sorting to MVBs. Partial deletion of the gB cytoplasmic tail resulted in a dramatic reduction of ubiquitination, as well as of progeny virus assembly and release to the extracellular compartment. Thus, HSV envelopment/egress and gB intracellular trafficking are dependent on functional MVB biogenesis. Our data support the view that the sorting of gB to MVB membranes may represent a critical step in HSV envelopment and egress and that modified MVB membranes constitute a platform for HSV cytoplasmic envelopment or that MVB components are recruited to the site(s) of envelopment.

  20. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    Science.gov (United States)

    Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J W A; Geitmann, Anja

    2013-01-01

    Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  1. Three Basic Residues of Intracellular Loop 3 of the Beta-1 Adrenergic Receptor Are Required for Golgin-160-Dependent Trafficking

    Directory of Open Access Journals (Sweden)

    Catherine E. Gilbert

    2014-02-01

    Full Text Available Golgin-160 is a member of the golgin family of proteins, which have been implicated in the maintenance of Golgi structure and in vesicle tethering. Golgin-160 is atypical; it promotes post-Golgi trafficking of specific cargo proteins, including the β-1 adrenergic receptor (β1AR, a G protein-coupled receptor. Here we show that golgin-160 binds directly to the third intracellular loop of β1AR and that this binding depends on three basic residues in this loop. Mutation of the basic residues does not affect trafficking of β1AR from the endoplasmic reticulum through the Golgi complex, but results in reduced steady-state levels at the plasma membrane. We hypothesize that golgin-160 promotes incorporation of β1AR into specific transport carriers at the trans-Golgi network to ensure efficient delivery to the cell surface. These results add to our understanding of the biogenesis of β1AR, and suggest a novel point of regulation for its delivery to the plasma membrane.

  2. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    Directory of Open Access Journals (Sweden)

    Youssef Chebli

    Full Text Available Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  3. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner.

    Directory of Open Access Journals (Sweden)

    Christopher R Bohl

    Full Text Available The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER and its trafficking to the trans-Golgi network (TGN were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.

  4. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    International Nuclear Information System (INIS)

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.

    2014-01-01

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4 + T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4 + T lymphocytes

  5. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    Energy Technology Data Exchange (ETDEWEB)

    Endsley, Mark A., E-mail: maendsle@utmb.edu [Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 (United States); Somasunderam, Anoma D., E-mail: asomasun@utmb.edu [Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 (United States); Li, Guangyu, E-mail: LIG001@mail.etsu.edu [Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 (United States); Oezguen, Numan, E-mail: numan.oezguen@bcm.edu [Department of Pathology and Immunology, Microbiome Center, Texas Children' s Hospital, Houston, TX 77030 (United States); Thiviyanathan, Varatharasa, E-mail: Varatharasa.Thiviyanathan@uth.tmc.edu [Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030 (United States); Murray, James L., E-mail: jmurray100@yahoo.com [GeneTAG Technology, Inc., 3155 Northwoods Place, Norcross, GA 30071 (United States); Rubin, Donald H., E-mail: don.h.rubin@vanderbilt.edu [Research Medicine, VA Tennessee Valley Healthcare System, 1310 24th Ave. South, Nashville, TN 37212 (United States); Departments of Medicine, Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave South, Nashville, TN 37232 (United States); Hodge, Thomas W., E-mail: twhodge3@gmail.com [Pre-clinical and Antiviral Research, Tamir Biotechnology, Inc., 12625 High Bluff Dr., Suite 113, San Diego, CA 92130 (United States); and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  6. Trafficking of Kv2.1 Channels to the Axon Initial Segment by a Novel Nonconventional Secretory Pathway

    DEFF Research Database (Denmark)

    Jensen, Camilla Stampe; Watanabe, Shoji; Stas, Jeroen Ingrid

    2017-01-01

    the localization of Kv2.1 in these two different membrane compartments in cultured rat hippocampal neurons of mixed sex. Our data uncover a unique ability of Kv2.1 channels to use two molecularly distinct trafficking pathways to accomplish this. Somatodendritic Kv2.1 channels are targeted by the conventional...... secretory pathway, whereas axonal Kv2.1 channels are targeted by a nonconventional trafficking pathway independent of the Golgi apparatus. We further identified a new AIS trafficking motif in the C-terminus of Kv2.1, and show that putative phosphorylation sites in this region are critical for the restricted.......SIGNIFICANCE STATEMENT Our study uncovered a novel mechanism that targets the Kv2.1 voltage-gated potassium channel to two distinct trafficking pathways and two distinct subcellular destinations: the somatodendritic plasma membrane and that of the axon initial segment. We also identified a distinct motif, including...

  7. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency

    Directory of Open Access Journals (Sweden)

    Kim SW

    2015-06-01

    Full Text Available Sang-Woo Kim, Dongwoo Khang Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea Abstract: Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs. This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy. Keywords: cancer, anticancer nanodrugs, mesenchymal stem cell, intracellular trafficking

  8. Common pharmacophore of structurally distinct small-molecule inhibitors of intracellular retrograde trafficking of ribosome inactivating proteins.

    Science.gov (United States)

    Yu, Shichao; Park, Jewn Giew; Kahn, Jennifer Nielsen; Tumer, Nilgun E; Pang, Yuan-Ping

    2013-12-02

    We reported previously (±)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(±)-Retro-2(cycl)] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (±)-Retro-2(cycl), analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (±)-Retro-2(cycl). We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp² C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.

  9. Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms

    Directory of Open Access Journals (Sweden)

    Renato A. Mortara

    2005-03-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.O agente etiológico da doença de Chagas, Trypanosoma cruzi, ocorre como cepas ou isolados que podem ser agrupados em duas grandes linhagens filogenéticas: T. cruzi I associada ao ciclo silvestre e T. cruzi II ligada à doençahumana. No hospedeiro mamífero o parasita tem que invadir células, e vários estudos relacionam as formas flageladas tripomastigotas neste processo. Diferentes componentes de superfície dos parasitas e alguns dos respectivos receptores foram identificados. Em nosso trabalho temos procurado compreender como amastigotas, que normalmente são encontrados crescendo

  10. DMPD: Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9287290 Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cell...ml) Show Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. PubmedID ...9287290 Title Lipoprotein trafficking in vascular cells. Molecular Trojan horses

  11. Bee venom induces apoptosis through intracellular Ca2+ -modulated intrinsic death pathway in human bladder cancer cells.

    Science.gov (United States)

    Ip, Siu-Wan; Chu, Yung-Lin; Yu, Chun-Shu; Chen, Po-Yuan; Ho, Heng-Chien; Yang, Jai-Sing; Huang, Hui-Ying; Chueh, Fu-Shin; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    To focus on bee venom-induced apoptosis in human bladder cancer TSGH-8301 cells and to investigate its signaling pathway to ascertain whether intracellular calcium iron (Ca(2+)) is involved in this effect. Bee venom-induced cytotoxic effects, productions of reactive oxygen species and Ca(2+) and the level of mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry. Apoptosis-associated proteins were examined by Western blot analysis and confocal laser microscopy. Bee venom-induced cell morphological changes and decreased cell viability through the induction of apoptosis in TSGH-8301 cell were found. Bee venom promoted the protein levels of Bax, caspase-9, caspase-3 and endonuclease G. The enhancements of endoplasmic reticulum stress-related protein levels were shown in bee venom-provoked apoptosis of TSGH-8301 cells. Bee venom promoted the activities of caspase-3, caspase-8, and caspase-9, increased Ca(2+) release and decreased the level of ΔΨm. Co-localization of immunofluorescence analysis showed the releases of endonuclease G and apoptosis-inducing factor trafficking to nuclei for bee venom-mediated apoptosis. The images revealed evidence of nuclear condensation and formation of apoptotic bodies by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis showed the DNA fragmentation in TSGH-8301 cells. Bee venom treatment induces both caspase-dependent and caspase-independent apoptotic death through intracellular Ca(2+) -modulated intrinsic death pathway in TSGH-8301 cells. © 2011 The Japanese Urological Association.

  12. A Cajal body-independent pathway for telomerase trafficking in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M., E-mail: rterns@bmb.uga.edu; Terns, Michael P., E-mail: mterns@bmb.uga.edu

    2010-10-15

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  13. A Cajal body-independent pathway for telomerase trafficking in mice

    International Nuclear Information System (INIS)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M.; Terns, Michael P.

    2010-01-01

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  14. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones.

    Science.gov (United States)

    Mbah, Nneka E; Overmeyer, Jean H; Maltese, William A

    2017-06-01

    Methuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes. In contrast, secretion of the ectodomain derived from a prototypical type-I membrane glycoprotein, β-amyloid precursor protein, is increased rather than diminished. A closely related MOMIPP analog, which causes substantial vacuolization without reducing cell viability, also impedes cathepsin processing and autophagic flux, but has more modest effects on receptor degradation. A third analog, which causes neither vacuolization nor loss of viability, has no effect on endolysosomal trafficking. The results suggest that differential cytotoxicity of structurally similar indole-based chalcones is related, at least in part, to the severity of their effects on endolysosomal trafficking pathways.

  15. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans.

    Science.gov (United States)

    Lažetić, Vladimir; Fay, David S

    2017-01-01

    Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species. Copyright © 2017 by the Genetics Society of America.

  16. Association between Rare Variants in AP4E1, a Component of Intracellular Trafficking, and Persistent Stuttering.

    Science.gov (United States)

    Raza, M Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S; Drayna, Dennis

    2015-11-05

    Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Three cardiovirus Leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ciomperlik, Jessica J. [Institute for Molecular Virology, and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI (United States); Basta, Holly A. [Department of Biology, Rocky Mountain College, Billings, MT (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology, and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI (United States)

    2015-10-15

    Cardiovirus infections inhibit nucleocytoplasmic trafficking by Leader protein-induced phosphorylation of Phe/Gly-containing nucleoporins (Nups). Recombinant Leader from encephalomyocarditis virus, Theiler's murine encephalomyelitis virus and Saffold virus target the same subset of Nups, including Nup62 and Nup98, but not Nup50. Reporter cell lines with fluorescence mCherry markers for M9, RS and classical SV40 import pathways, as well as the Crm1-mediated export pathway, all responded to transfection with the full panel of Leader proteins, showing consequent cessation of path-specific active import/export. For this to happen, the Nups had to be presented in the context of intact nuclear pores and exposed to cytoplasmic extracts. The Leader phosphorylation cascade was not effective against recombinant Nup proteins. The findings support a model of Leader-dependent Nup phosphorylation with the purpose of disrupting Nup-transportin interactions. - Highlights: • Nup98, but not Nup50 becomes phosphorylated by cardiovirus Leader protein-dependent mechanisms. • At least four independent nucleocytoplasmic trafficking pathways are inhibited by this process. • Nups must be presented in a nuclear pore context for Leader-directed phosphorylation. • Leader, by itself, does not cause activation of cellular kinases.

  18. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells.

    Science.gov (United States)

    Tan, Lei; Zhang, Yuqiang; Zhan, Yuan; Yuan, Yanmei; Sun, Yingjie; Qiu, Xusheng; Meng, Chunchun; Song, Cuiping; Liao, Ying; Ding, Chan

    2016-12-27

    Oncolytic Newcastle disease virus (NDV) reportedly employs direct fusion of the viral envelope with the plasma membrane and caveolae-dependent endocytosis to enter cells. Here, we show that macropinocytosis and clathrin-mediated endocytosis are involved in NDV entry into a galline embryonic fibroblast cell line. Upon specific inhibition of clathrin assembly, GTPase dynamin, Na+/H+ exchangers, Ras-related C3 botulinum toxin substrate 1, p21 activated kinase 1 or protein kinase C, entry of NDV and its propagation were suppressed. NDV entry into cells triggers Rac1-Pak1 signaling and elicits actin rearrangement and plasma membrane ruffling. Moreover, NDV internalization within macropinosomes and trafficking involve Rab5a-positive vesicles. This is the first report demonstrating that NDV utilizes clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter cells. These findings shed new light on the molecular mechanisms underlying NDV entry into cells, and provide potential targets for NDV-mediated therapy in cancer.

  19. Bioinspired Nanocarriers Designed to Enhance Intracellular Delivery of Biotherapeutics

    Science.gov (United States)

    2001-10-25

    therapeutic and vaccine development. Keywords - gene therapy, vaccine, bioinspired, biotherapeutic I. INTRODUCTION The efficacy of many protein and DNA...DNA, RNA and proteins . While these therapeutics have tremendous potential, effectively formulating and delivering them has also been a widely...intracellular trafficking that is inspired by biological polymers, i.e. proteins , that are involved in controlling vesicular trafficking pathways. For

  20. New regulatory mechanisms for the intracellular localization and trafficking of influenza A virus NS1 protein revealed by comparative analysis of A/PR/8/34 and A/Sydney/5/97.

    Science.gov (United States)

    Han, Han; Cui, Zong-Qiang; Wang, Wei; Zhang, Zhi-Ping; Wei, Hong-Ping; Zhou, Ya-Feng; Zhang, Xian-En

    2010-12-01

    During influenza A virus infection, the NS1 protein is engaged in different functions in different intracellular compartments. In this study, we showed that the NS1 of A/PR/8/34 localized in different positions from that of A/Sydney/5/97 when transiently expressed in Madin-Darby canine kidney cells. Residue 221 of NS1 was identified to be a new key residue involved in the C-terminal nuclear localization signal (NLS) and nucleolar localization signal (NoLS) of NS1 from A/Sydney/5/97. Analysis of chimeric NS1 and further mutants showed that residues responsible for the binding between NS1 and the cleavage and polyadenylation specificity factor (CPSF) are correlated with the intracellular localization of transiently expressed NS1 proteins. Fluorescence loss in photobleaching imaging revealed that the NS1 protein with both functional NLSs and nuclear export signal (NES) was able to shuttle between the nucleus and cytoplasm. Drug inhibition experiments and fluorescence resonance energy transfer analysis suggested that NS1 was exported out of the cell nuclei via a Crm1-independent pathway. Moreover, it is likely that another cytoplasmic localization-related sequence exists in the NS1 protein other than the leucine-rich NES. These findings provide new insights into the mechanism of intracellular localization and trafficking of influenza A virus NS1 protein, which is important for understanding its function.

  1. Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins

    NARCIS (Netherlands)

    Harterink, M.; Korswagen, H.C.

    2012-01-01

    The Wnt family of signalling proteins has essential functions in development and adult tissue homoeostasis throughout the animal kingdom. Although signalling cascades triggered by Wnt proteins have been extensively studied, much remains to be learned about how Wnts are produced and secreted. Over

  2. The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells.

    Science.gov (United States)

    Fratangeli, Alessandra; Parmigiani, Elena; Fumagalli, Marta; Lecca, Davide; Benfante, Roberta; Passafaro, Maria; Buffo, Annalisa; Abbracchio, Maria P; Rosa, Patrizia

    2013-02-15

    GPR17 is a G-protein-coupled receptor that is activated by two classes of molecules: uracil-nucleotides and cysteinyl-leukotrienes. GPR17 is required for initiating the differentiation of oligodendrocyte precursors but has to be down-regulated to allow cells to undergo terminal maturation. Although a great deal has been learned about GPR17 expression and signaling, no information is currently available about the trafficking of native receptors after the exposure of differentiating oligodendrocytes to endogenous agonists. Here, we demonstrate that neuron-conditioned medium induces the transcriptionally mediated, time-regulated expression of GPR17 in Oli-neu, an oligodendrocyte precursor cell line, making these cells suitable for studying the endocytic traffic of the native receptor. Agonist-induced internalization, intracellular trafficking, and membrane recycling of GPR17 were analyzed by biochemical and immunofluorescence assays using an ad hoc-developed antibody against the extracellular N-terminal of GPR17. Both UDP-glucose and LTD(4) increased GPR17 internalization, although with different efficiency. At early time points, internalized GPR17 co-localized with transferrin receptor, whereas at later times it partially co-localized with the lysosomal marker Lamp1, suggesting that a portion of GPR17 is targeted to lysosomes upon ligand binding. An analysis of receptor recycling and degradation demonstrated that a significant aliquot of GPR17 is recycled to the cell surface. Furthermore, internalized GPR17 displayed a co-localization with the marker of the "short loop" recycling endosomes, Rab4, while showing very minor co-localization with the "long loop" recycling marker, Rab11. Our results provide the first data on the agonist-induced trafficking of native GPR17 in oligodendroglial cells and may have implications for both physiological and pathological myelination.

  3. Lung cancer, intracellular signaling pathways, and preclinical models

    International Nuclear Information System (INIS)

    Mordant, P.

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  4. Mammalian farnesyltransferase α subunit regulates vacuolar protein sorting-associated protein 4A (Vps4A)--dependent intracellular trafficking through recycling endosomes.

    Science.gov (United States)

    Kubala, Marta H; Norwood, Suzanne J; Gomez, Guillermo A; Jones, Alun; Johnston, Wayne; Yap, Alpha S; Mureev, Sergey; Alexandrov, Kirill

    2015-12-25

    The protein farnesyltransferase (FTase) mediates posttranslational modification of proteins with isoprenoid lipids. FTase is a heterodimer and although the β subunit harbors the active site, it requires the α subunit for its activity. Here we explore the other functions of the FTase α subunit in addition to its established role in protein prenylation. We found that in the absence of the β subunit, the α subunit of FTase forms a stable autonomous dimeric structure in solution. We identify interactors of FTase α using mass spectrometry, followed by rapid in vitro analysis using the Leishmania tarentolae cell - free system. Vps4A was validated for direct binding to the FTase α subunit both in vitro and in vivo. Analysis of the interaction with Vps4A in Hek 293 cells demonstrated that FTase α controls trafficking of transferrin receptor upstream of this protein. These results point to the existence of previously undetected biological functions of the FTase α subunit that includes control of intracellular membrane trafficking. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Intracellular trafficking of bio-nanocapsule-liposome complex: Identification of fusogenic activity in the pre-S1 region of hepatitis B virus surface antigen L protein.

    Science.gov (United States)

    Somiya, Masaharu; Sasaki, Yasuo; Matsuzaki, Takashi; Liu, Qiushi; Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés Daniel; Kuroda, Shun'ichi

    2015-08-28

    Bio-nanocapsules (BNCs) are a hollow nanoparticle consisting of about 100-nm liposome (LP) embedding about 110 molecules of hepatitis B virus (HBV) surface antigen (HBsAg) L protein as a transmembrane protein. Owing to the human hepatocyte-recognizing domains on the N-terminal region (pre-S1 region), BNCs have recently been shown to attach and enter into human hepatic cells using the early infection mechanism of HBV. Since BNCs could form a complex with an LP containing various drugs and genes, BNC-LP complexes have been used as a human hepatic cell-specific drug and gene-delivery system in vitro and in vivo. However, the role of BNCs in cell entry and intracellular trafficking of payloads in BNC-LP complexes has not been fully elucidated. In this study, we demonstrate that low pH-dependent fusogenic activity resides in the N-terminal part of pre-S1 region (NPLGFFPDHQLDPAFG), of which the first FF residues are essential for the activity, and which facilitates membrane fusion between LPs in vitro. Moreover, BNC-LP complexes can bind human hepatic cells specifically, enter into the cells via clathrin-mediated endocytosis, and release their payloads mostly into the cytoplasm. Taken together, the BNC portion of BNC-LP complexes can induce membrane fusion between LPs and endosomal membranes under low pH conditions, and thereby facilitate the endosomal escape of payloads. Furthermore, the fusogenic domain of the pre-S1 region of HBsAg L protein may play a pivotal role in the intracellular trafficking of not only BNC-LP complexes but also of HBV. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Pedersen, Per Amstrup; Thorborg, Sidsel Salling

    2017-01-01

    led to trapping of the protein in TGN and displayed essentially no activity in a yeast-based functional assay. These were predicted to inhibit the catalytic phosphorylation of the protein. Four mutants showed diffuse post-TGN localization, while two displayed copper dependent trafficking. These six...... variants were identified in patients with mild MD and typically displayed activity in the yeast assay. The four post-TGN located mutants were presumably affected in the catalytic dephosphorylation of the protein. Together these results indicate that the severity of MD correlate with cellular localization...

  7. Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles.

    Science.gov (United States)

    Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico; Caracciolo, Giulio

    2016-09-15

    Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these techniques can explore intracellular dynamics with high time resolution at the nanoscale. Here we extended one of the Image Correlation Spectroscopy (ICS) methods, i.e. the image Mean Square Displacement, in order to study 2-dimensional diffusive and flow motion in confined systems, whose driving speed is uniformly distributed in a variable angular range. Although these conditions are not deeply investigated in the current literature, they can be commonly found in the intracellular trafficking of nanocarriers, which diffuse in the cytoplasm and/or may move along the cytoskeleton in different directions. The proposed approach could reveal the underlying system's symmetry using methods derived from fluorescence correlation concepts and could recover dynamic and geometric features which are commonly done by single particle analyses. Furthermore, it improves the characterization of low-speed flow motions, when compared to SpatioTemporal Image Correlation Spectroscopy (STICS). Although we present a specific example (lipoplexes in living cells), the emphasis is in the discussion of the method, its basic assumptions and its validation on numeric simulations. Recent advances in nanoparticle-based drug and gene delivery systems have pointed out the interactions at cellular and subcellular levels as key-factors for the efficiency of the adopted biomaterials. Such biochemical and biophysical interactions drive and affect the intracellular dynamics, that is commonly characterized by means of fluorescence microscopy and spectroscopy techniques. Here we present a novel Image Correlation Spectroscopy (ICS) method as a promising tool to capture the intracellular behavior of nanoparticles with high resolution and low background's sensitivity. This study overcomes some of the approximations

  8. Donepezil suppresses intracellular Ca2+mobilization through the PI3K pathway in rodent microglia.

    Science.gov (United States)

    Haraguchi, Yoshinori; Mizoguchi, Yoshito; Ohgidani, Masahiro; Imamura, Yoshiomi; Murakawa-Hirachi, Toru; Nabeta, Hiromi; Tateishi, Hiroshi; Kato, Takahiro A; Monji, Akira

    2017-12-22

    Microglia are resident innate immune cells which release many factors including proinflammatory cytokines or nitric oxide (NO) when they are activated in response to immunological stimuli. Pathophysiology of Alzheimer's disease (AD) is related to the inflammatory responses mediated by microglia. Intracellular Ca 2+ signaling is important for microglial functions such as release of NO and cytokines. In addition, alteration of intracellular Ca 2+ signaling underlies the pathophysiology of AD, while it remains unclear how donepezil, an acetylcholinesterase inhibitor, affects intracellular Ca 2+ mobilization in microglial cells. We examined whether pretreatment with donepezil affects the intracellular Ca 2+ mobilization using fura-2 imaging and tested the effects of donepezil on phagocytic activity by phagocytosis assay in rodent microglial cells. In this study, we observed that pretreatment with donepezil suppressed the TNFα-induced sustained intracellular Ca 2+ elevation in both rat HAPI and mouse primary microglial cells. On the other hand, pretreatment with donepezil did not suppress the mRNA expression of both TNFR1 and TNFR2 in rodent microglia we used. Pretreatment with acetylcholine but not donepezil suppressed the TNFα-induced intracellular Ca 2+ elevation through the nicotinic α7 receptors. In addition, sigma 1 receptors were not involved in the donepezil-induced suppression of the TNFα-mediated intracellular Ca 2+ elevation. Pretreatment with donepezil suppressed the TNFα-induced intracellular Ca 2+ elevation through the PI3K pathway in rodent microglial cells. Using DAF-2 imaging, we also found that pretreatment with donepezil suppressed the production of NO induced by TNFα treatment and the PI3K pathway could be important for the donepezil-induced suppression of NO production in rodent microglial cells. Finally, phagocytosis assay showed that pretreatment with donepezil promoted phagocytic activity of rodent microglial cells through the PI3K but not

  9. Suppression of Antifolate Resistance by Targeting the Myosin Va Trafficking Pathway in Melanoma

    Directory of Open Access Journals (Sweden)

    María Piedad Fernández-Pérez

    2013-07-01

    Full Text Available Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX altered melanogenesis and accelerated the exportation of melanosomes; however, the cellular and molecular processes by which MTX is trapped into melanosomes and exported out of cells have not been elucidated. In this study, we identified myosin Va (MyoVa as a possible mediator of these cellular processes. The results demonstrated that melanoma treatment with MTX leads to Akt2- dependent MyoVa phosphorylation, which enhances its ability to interact with melanosomes and accelerates their exportation. To understand the mechanism(s by which MTX activates Akt2, we examined the effects of this drug on the activity of protein phosphatase 2A, an Akt inhibitor activated by the methylation of its catalytic subunit. Taken together, this study identified a novel trafficking pathway in melanoma that promotes tumor resistance through Akt2/MyoVa activation. Because of these findings, we explored several MTX combination therapies to increase the susceptibility of melanoma to this drug. By avoiding MTX exportation, we observed that the E2F1 apoptotic pathway is functional in melanoma, and its induction activates p73 and apoptosis protease-activating factor 1 following a p53-autonomous proapoptotic signaling event.

  10. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  11. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury.

    Directory of Open Access Journals (Sweden)

    Martina Bielaszewska

    2017-02-01

    Full Text Available Outer membrane vesicles (OMVs are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a, cytolethal distending toxin V (CdtV, EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV

  12. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo

    DEFF Research Database (Denmark)

    Wagenaar-Miller, Rebecca A; Engelholm, Lars H; Gavard, Julie

    2007-01-01

    Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these ...... failure and poor survival of cartilage- and bone-forming cells within their collagen-rich microenvironment. These findings have important implications for the use of pharmacological inhibitors of collagenase activity to prevent connective tissue destruction in a variety of diseases....

  13. Influence of Cellular Trafficking Pathway on Bluetongue Virus Infection in Ovine Cells

    Directory of Open Access Journals (Sweden)

    Bishnupriya Bhattacharya

    2015-05-01

    Full Text Available Bluetongue virus (BTV, a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.

  14. Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    Science.gov (United States)

    Sim, Min Sub; Paris, Guillaume; Adkins, Jess F.; Orphan, Victoria J.; Sessions, Alex L.

    2017-06-01

    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in 34S and producing sulfide that is depleted in 34S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in 34S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This 'reservoir effect' diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope

  15. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  16. The GRIP1/14-3-3 pathway coordinates cargo trafficking and dendrite development

    NARCIS (Netherlands)

    Geiger, J.C.; Lipka, Joanna; Hoyer, S.; Schlager, M.A.; Wulf, Phebe; Weinges, S.; Demmers, J.; Hoogenraad, Casper

    2014-01-01

    Regulation of cargo transport via adaptor molecules is essential for neuronal development. However, the role of PDZ scaffolding proteins as adaptors in neuronal cargo trafficking is still poorly understood. Here, we show by genetic deletion in mice that the multi-PDZ domain scaffolding protein

  17. Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Michael C Carlsson

    Full Text Available Sera from 25 metastatic breast cancer patients and 25 healthy controls were subjected to affinity chromatography using immobilized galectin-1. Serum from the healthy subjects contained on average 1.2 mg per ml (range 0.7-2.2 galectin-1 binding glycoproteins, whereas serum from the breast cancer patients contained on average 2.2 mg/ml (range 0.8-3.9, with a higher average for large primary tumours. The major bound glycoproteins were α-2-macroglobulin, IgM and haptoglobin. Both the IgM and haptoglobin concentrations were similar in cancer compared to control sera, but the percentage bound to galectin-1 was lower for IgM and higher for haptoglobin: about 50% (range 20-80 in cancer sera and about 30% (range 25-50 in healthy sera. Galectin-1 binding and non-binding fractions were separated by affinity chromatography from pooled haptoglobin from healthy sera. The N-glycans of each fraction were analyzed by mass spectrometry, and the structural differences and galectin-1 mutants were used to identify possible galectin-1 binding sites. Galectin-1 binding and non-binding fractions were also analyzed regarding their haptoglobin function. Both were similar in forming complex with haemoglobin and mediate its uptake into alternatively activated macrophages. However, after uptake there was a dramatic difference in intracellular targeting, with the galectin-1 non-binding fraction going to a LAMP-2 positive compartment (lysosomes, while the galectin-1 binding fraction went to larger galectin-1 positive granules. In conclusion, galectin-1 detects a new type of functional biomarker for cancer: a specific type of glycoform of haptoglobin, and possibly other serum glycoproteins, with a different function after uptake into tissue cells.

  18. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    International Nuclear Information System (INIS)

    Doller, Anke; Badawi, Amel; Schmid, Tobias; Brauß, Thilo; Pleli, Thomas; Meyer zu Heringdorf, Dagmar; Piiper, Albrecht; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2015-01-01

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D 1 encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E 2 synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on different Hu

  19. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Doller, Anke; Badawi, Amel [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Schmid, Tobias; Brauß, Thilo [Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pleli, Thomas [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Meyer zu Heringdorf, Dagmar [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Piiper, Albrecht [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Eberhardt, Wolfgang, E-mail: w.eberhardt@em.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany)

    2015-01-01

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  20. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

    OpenAIRE

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-01-01

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogene...

  1. Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses.

    Directory of Open Access Journals (Sweden)

    Michael D Moore

    2009-10-01

    Full Text Available Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.

  2. Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli.

    Science.gov (United States)

    Fischer, Curt R; Tseng, Hsien-Chung; Tai, Mitchell; Prather, Kristala L J; Stephanopoulos, Gregory

    2010-09-01

    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways.

  3. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Directory of Open Access Journals (Sweden)

    Binod Kumar

    2016-11-01

    Full Text Available Kaposi’s sarcoma associated herpesvirus (KSHV is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS, integrins (α3β1, αVβ3 and αVβ5, and EphA2 receptor tyrosine kinase (EphA2R. This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR, inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of

  4. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Science.gov (United States)

    Kumar, Binod; Chandran, Bala

    2016-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of

  5. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  6. Intracellular Signaling Pathway Regulation of Myelination and Remyelination in the CNS

    Science.gov (United States)

    Gaesser, Jenna M.; Fyffe-Maricich, Sharyl L.

    2016-01-01

    The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed. PMID:26957369

  7. Regulation of HTLV-1 Tax Stability, Cellular Trafficking and NF-κB Activation by the Ubiquitin-Proteasome Pathway

    Science.gov (United States)

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660

  8. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  9. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    Science.gov (United States)

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation

  10. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  11. DMPD: NOD-like receptors (NLRs): bona fide intracellular microbial sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18585455 NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Shaw...tml) (.csml) Show NOD-like receptors (NLRs): bona fide intracellular microbial sensors. PubmedID 18585455 Ti...tle NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Authors

  12. DMPD: Intracellular DNA sensors in immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18573338 Intracellular DNA sensors in immunity. Takeshita F, Ishii KJ. Curr Opin Im...munol. 2008 Aug;20(4):383-8. Epub 2008 Jun 23. (.png) (.svg) (.html) (.csml) Show Intracellular DNA sensors ...in immunity. PubmedID 18573338 Title Intracellular DNA sensors in immunity. Authors Takeshita F, Ishii KJ. P

  13. Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism

    Directory of Open Access Journals (Sweden)

    De Craene Johan-Owen

    2012-07-01

    Full Text Available Abstract Background Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. Results Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. Conclusions Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa.

  14. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways.

    Science.gov (United States)

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.

  15. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@

    Directory of Open Access Journals (Sweden)

    Band Vimla

    2009-11-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear. Results This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association. Conclusion The findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis.

  16. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway.

    Science.gov (United States)

    Gutiérrez-Martínez, Enric; Fernández-Ulibarri, Inés; Lázaro-Diéguez, Francisco; Johannes, Ludger; Pyne, Susan; Sarri, Elisabet; Egea, Gustavo

    2013-06-15

    The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.

  17. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles and an alternative pathway with DMSO

    Directory of Open Access Journals (Sweden)

    Marilena Carbone

    2016-03-01

    Full Text Available Proton caged compounds exhibit a characteristic behavior when directly dosed into cells or being coupled to gold nanoparticles prior to the dosing. When irradiated in the near ultraviolet region, they release protons that interact with intracellular HCO3− to yield H2CO3. The dissociation of carbonic acid, then, releases CO2 that can be distinctively singled out in infrared spectra.In the process of searching a pathway to augment the intracellular uptake of proton caged compounds, we probed the association of 1-(2-nitrophenyl-ethylhexadecyl sulfonate (HDNS with DMSO, an agent to enhance the membrane permeability. We found out a different UV-induced protonation mechanism that opens up to new conduits of employing of proton caged compounds. Here, we report the infrared data we collected in this set of experiments. Keywords: Proton caged compounds, DMSO, Intracellular proton release

  18. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway.

    Directory of Open Access Journals (Sweden)

    Seii eOHKA

    2012-04-01

    Full Text Available In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV via the blood-brain barrier (BBB. After the virus enters the central nervous system (CNS, it replicates in neurons, especially in motor neurons (MNs, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155-transgenic (Tg mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. Recently, we identified transferrin receptor 1 (TfR1 of mouse brain capillary endothelial cells as a binding protein to PV, implicating that TfR1 is a possible receptor for PV to permeate the BBB.

  19. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Science.gov (United States)

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  20. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Giulia Chiaruttini

    2016-03-01

    Full Text Available Interleukin-12 (IL-12, produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells.

  1. Effects of Kynurenine Pathway Metabolites on Intracellular NAD+ Synthesis and Cell Death in Human Primary Astrocytes and Neurons

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2009-01-01

    Full Text Available The kynurenine pathway (KP is a major route of L-tryptophan catabolism resulting in the production of the essential pyridine nucleotide nicotinamide adenine dinucleotide, (NAD+. Up-regulation of the KP during inflammation leads to the release of a number of biologically active metabolites into the brain. We hypothesised that while some of the extracellular KP metabolites may be beneficial for intracellular NAD+ synthesis and cell survival at physiological concentrations, they may contribute to neuronal and astroglial dysfunction and cell death at pathophysiological concentrations. In this study, we found that treatment of human primary neurons and astrocytes with 3-hydroxyanthranilic acid (3-HAA, 3-hydroxykynurenine (3-HK, quinolinic acid (QUIN, and picolinic acid (PIC at concentrations below 100 nM significantly increased intracellular NAD+ levels compared to non-treated cells. However, a dose dependent decrease in intracellular NAD+ levels and increased extracellular LDH activity was observed in human astrocytes and neurons treated with 3-HAA, 3-HK, QUIN and PIC at concentrations 100 nM and kynurenine (KYN, at concentrations above 1 μM. Intracellular NAD+ levels were unchanged in the presence of the neuroprotectant, kynurenic acid (KYNA, and a dose dependent increase in intracellular NAD+ levels was observed for TRP up to 1 mM. While anthranilic acid (AA increased intracellular NAD+ levels at concentration below 10 μM in astrocytes. NAD+ depletion and cell death was observed in AA treated neurons at concentrations above 500 nM. Therefore, the differing responses of astrocytes and neurons to an increase in KP metabolites should be considered when assessing KP toxicity during neuroinflammation.

  2. Effects of Kynurenine Pathway Metabolites on Intracellular NAD Synthesis and Cell Death in Human Primary Astrocytes and Neurons

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2009-01-01

    Full Text Available The kynurenine pathway (KP is a major route of L-tryptophan catabolism resulting in the production of the essential pyridine nucleotide nicotinamide adenine dinucleotide, (NAD + . Up-regulation of the KP during inflammation leads to the release of a number of biologically active metabolites into the brain. We hypothesised that while some of the extracellular KP metabolites may be beneficial for intracellular NAD + synthesis and cell survival at physiological concentrations, they may contribute to neuronal and astroglial dysfunction and cell death at pathophysiological concentrations. In this study, we found that treatment of human primary neurons and astrocytes with 3-hydroxyanthranilic acid (3-HAA, 3-hydroxykynurenine (3-HK, quinolinic acid (QUIN, and picolinic acid (PIC at concentrations below 100 nM significantly increased intracellular NAD + levels compared to non-treated cells. However, a dose dependent decrease in intracellular NAD + levels and increased extracellular LDH activity was observed in human astrocytes and neurons treated with 3-HAA, 3-HK, QUIN and PIC at concentrations >100 nM and kynurenine (KYN, at concentrations above 1 μM. Intracellular NAD + levels were unchanged in the presence of the neuroprotectant, kynurenic acid (KYNA, and a dose dependent increase in intracellular NAD + levels was observed for TRP up to 1 mM. While anthranilic acid (AA increased intracellular NAD + levels at concentration below 10 μM in astrocytes. NAD + depletion and cell death was observed in AA treated neurons at concentrations above 500 nM. Therefore, the differing responses of astrocytes and neurons to an increase in KP metabolites should be considered when assessing KP toxicity during neuroinflammation.

  3. Oxidation inhibits PTH receptor signaling and trafficking.

    Science.gov (United States)

    Ardura, Juan A; Alonso, Verónica; Esbrit, Pedro; Friedman, Peter A

    2017-01-22

    Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H 2 O 2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H 2 O 2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H 2 O 2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    Directory of Open Access Journals (Sweden)

    Peifer Susanne

    2012-10-01

    Full Text Available Abstract Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1. Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1 derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  5. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine.

    Science.gov (United States)

    Peifer, Susanne; Barduhn, Tobias; Zimmet, Sarah; Volmer, Dietrich A; Heinzle, Elmar; Schneider, Konstantin

    2012-10-24

    Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol g(CDW)⁻¹. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol g(CDW)⁻¹). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol g(CDW)⁻¹) derived from IMP degradation. The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  6. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p....... This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras......Eukaryotic cells have developed several strategies to respond and adapt to changes in their intracellular and extracellular environment. The unfolded protein response (UPR) pathway is activated following accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), whereas...

  7. Intracellular trafficking of LET-756, a fibroblast growth factor of C. elegans, is controlled by a balance of export and nuclear signals

    International Nuclear Information System (INIS)

    Popovici, Cornel; Fallet, Mathieu; Marguet, Didier; Birnbaum, Daniel; Roubin, Regine

    2006-01-01

    The superfamily of fibroblast growth factors (FGF), which counts 22 members in humans, exerts many functions during animal development and adult life. LET-756 is one of the two FGFs of the nematode C. elegans. Re-introduction of LET-756 in a null mutant strain restores viability, allowing the study of structural requirements for LET-756 trafficking and function. LET-756 protein has several regions and motifs, including a non-classical internal motif required for secretion. We show here that a main difference in the wild-type LET-756 molecule and a truncated molecule that mimics a partial loss-of-function mutant lies on subnuclear expression. Using Cos-1 cells and rescue activity we show that: (i) nuclear localization is due to various redundant NLS, one of them acting as a nucleolar localization signal; (ii) nuclear LET-756 is addressed to the speckles by a stretch of glutamine residues; (iii) nuclear LET-756 is trafficking between speckles and nucleoli; (iv) in the nucleolus, LET-756 is associated with proteins of the rRNA splicing compartment; (v) changing LET-756 secretion signal prevents its nuclear localization. We propose that LET-756 exerts its functions through a balance between secreted and nuclear forms due to two opposite addressing signals (i) synergy of several NLS and (ii) attenuated secretion signal

  8. Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research.

    Science.gov (United States)

    Gruber, Ansgar; Kroth, Peter G

    2017-09-05

    Diatoms are important primary producers in the oceans and can also dominate other aquatic habitats. One reason for the success of this phylogenetically relatively young group of unicellular organisms could be the impressive redundancy and diversity of metabolic isoenzymes in diatoms. This redundancy is a result of the evolutionary origin of diatom plastids by a eukaryote-eukaryote endosymbiosis, a process that implies temporary redundancy of functionally complete eukaryotic genomes. During the establishment of the plastids, this redundancy was partially reduced via gene losses, and was partially retained via gene transfer to the nucleus of the respective host cell. These gene transfers required re-assignment of intracellular targeting signals, a process that simultaneously altered the intracellular distribution of metabolic enzymes compared with the ancestral cells. Genome annotation, the correct assignment of the gene products and the prediction of putative function, strongly depends on the correct prediction of the intracellular targeting of a gene product. Here again diatoms are very peculiar, because the targeting systems for organelle import are partially different to those in land plants. In this review, we describe methods of predicting intracellular enzyme locations, highlight findings of metabolic peculiarities in diatoms and present genome-enabled approaches to study their metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  9. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking.

    Science.gov (United States)

    Al-Kindi, Adila; Kizhakkedath, Praseetha; Xu, Huifang; John, Anne; Sayegh, Abeer Al; Ganesh, Anuradha; Al-Awadi, Maha; Al-Anbouri, Lamya; Al-Gazali, Lihadh; Leitinger, Birgit; Ali, Bassam R

    2014-04-11

    The rare autosomal genetic disorder, Spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL), is reported to be caused by missense or splice site mutations in the human discoidin domain receptor 2 (DDR2) gene. Previously our group has established that trafficking defects and loss of ligand binding are the underlying cellular mechanisms of several SMED-SL causing mutations. Here we report the clinical characteristics of two siblings of consanguineous marriage with suspected SMED-SL and identification of a novel disease-causing mutation in the DDR2 gene. Clinical evaluation and radiography were performed to evaluate the patients. All the coding exons and splice sites of the DDR2 gene were sequenced by Sanger sequencing. Subcellular localization of the mutated DDR2 protein was determined by confocal microscopy, deglycosylation assay and Western blotting. DDR2 activity was measured by collagen activation and Western analysis. In addition to the typical features of SMED-SL, one of the patients has an eye phenotype including visual impairment due to optic atrophy. DNA sequencing revealed a novel homozygous dinucleotide deletion mutation (c.2468_2469delCT) on exon 18 of the DDR2 gene in both patients. The mutation resulted in a frameshift leading to an amino acid change at position S823 and a predicted premature termination of translation (p.S823Cfs*2). Subcellular localization of the mutant protein was analyzed in mammalian cell lines, and it was found to be largely retained in the endoplasmic reticulum (ER), which was further supported by its N-glycosylation profile. In keeping with its cellular mis-localization, the mutant protein was found to be deficient in collagen-induced receptor activation, suggesting protein trafficking defects as the major cellular mechanism underlying the loss of DDR2 function in our patients. Our results indicate that the novel mutation results in defective trafficking of the DDR2 protein leading to loss of

  10. OncoFinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data

    Directory of Open Access Journals (Sweden)

    Anton A. Buzdin

    2014-03-01

    Full Text Available We propose a new biomathematical method, OncoFinder, for both quantitative and qualitative analysis of the intracellular signaling pathway activation (SPA. This method is universal and may be used for the analysis of any physiological, stress, malignancy and other perturbed conditions at the molecular level. In contrast to the other existing techniques for aggregation and generalization of the gene expression data for individual samples, we suggest to distinguish the positive/activator and negative/repressor role of every gene product in each pathway. We show that the relative importance of each gene product in a pathway can be assessed using kinetic models for low-level protein interactions. Although the importance factors for the pathway members cannot be so far established for most of the signaling pathways due to the lack of the required experimental data, we showed that ignoring these factors can be sometimes acceptable and that the simplified formula for SPA evaluation may be applied for many cases. We hope that due to its universal applicability, the method OncoFinder will be widely used by the researcher community.

  11. Glucose Metabolism in Legionella pneumophila: Dependence on the Entner-Doudoroff Pathway and Connection with Intracellular Bacterial Growth† ▿

    Science.gov (United States)

    Harada, Eiji; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2010-01-01

    Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation. PMID:20363943

  12. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profilin...

  13. Human Trafficking

    Science.gov (United States)

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  14. Ligand-directed trafficking of receptor stimulus.

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes.

    Science.gov (United States)

    Kern, Beate; Jain, Utkarsh; Utsch, Ciara; Otto, Andreas; Busch, Benjamin; Jiménez-Soto, Luisa; Becher, Dörte; Haas, Rainer

    2015-12-01

    The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures. © 2015 John Wiley & Sons Ltd.

  16. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy

    Directory of Open Access Journals (Sweden)

    Elzbieta Gocek

    2015-03-01

    Full Text Available The current standard regimens for the treatment of acute myeloid leukemia (AML are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.

  17. Rebooting Trafficking

    Directory of Open Access Journals (Sweden)

    Nicholas de Villiers

    2016-09-01

    Full Text Available While popular psychology and appeals to emotion have unfortunately dominated discussions of ‘sex trafficking’, this article suggests that feminist psychoanalytic film theory and theories of affect are still useful for making sense of the appeal of sensational exposés like Lifetime Television’s Human Trafficking (2005. The dynamic of identification with (and impersonation of a human trafficking ‘victim’ by the rescuing Immigration and Customs Enforcement agent (Mira Sorvino is particularly worthy of scrutiny. Film theory about the ‘rebooting’ of film franchises (iconic brands like Batman also helps explain the preponderance of similar programming—Sex Slaves (2005, Selling the Girl Next Door (2011, Trafficked (2016—and the way contemporary discourses of human trafficking have effectively rebranded the myth of ‘white slavery’.

  18. Profiling single nucleotide polymorphisms (SNPs) across intracellular folate metabolic pathway in healthy Indians.

    Science.gov (United States)

    Ghodke, Yogita; Chopra, Arvind; Shintre, Pooja; Puranik, Amrutesh; Joshi, Kalpana; Patwardhan, Bhushan

    2011-03-01

    Many pharmacologically-relevant polymorphisms show variability among different populations. Though limited, data from Caucasian subjects have reported several single nucleotide polymorphism (SNPs) in folate biosynthetic pathway. These SNPs may be subjected to racial and ethnic differences. We carried out a study to determine the allelic frequencies of these SNPs in an Indian ethnic population. Whole blood samples were withdrawn from 144 unrelated healthy subjects from west India. DNA was extracted and genotyping was performed using PCR-RFLP and Real-time Taqman allelic discrimination for 12 polymorphisms in 9 genes of folate-methotrexate (MTX) metabolism. Allele frequencies were obtained for MTHFR 677T (10%) and 1298 C (30%), TS 3UTR 0bp (46%), MDR1 3435T and 1236T (62%), RFC1 80A (57%), GGH 401T (61%), MS 2756G (34%), ATIC 347G (52%) and SHMT1 1420T (80%) in healthy subjects (frequency of underlined SNPs were different from published study data of European and African populations). The current study describes the distribution of folate biosynthetic pathway SNPs in healthy Indians and validates the previous finding of differences due to race and ethnicity. Our results pave way to study the pharmacogenomics of MTX in the Indian population.

  19. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways.

    Science.gov (United States)

    Gupta, Arnab; Das, Santanu; Ray, Kunal

    2018-03-01

    Wilson disease (WD), a Mendelian disorder of copper metabolism caused by mutations in the ATP7B gene, manifests a large spectrum of phenotypic variability. This phenomenon of extensive symptom variation is not frequently associated with a monogenic disorder. We hypothesize that the phenotypic variability in WD is primarily driven by the variations in interacting proteins that regulate the ATP7B function and localization in the cell. Based on existing literature, we delineated a potential molecular mechanism for ATP7B mediated copper transport in the milieu of its interactome, its dysfunction in WD and the resulting variability in the phenotypic manifestation. Understanding the copper-induced apical trafficking of ATP7B also significantly contributes to the appreciation of the complexities of the ligand-induced transport pathway. We believe that this holistic view of WD will pave the way for a better opportunity for rational drug design and therapeutics.

  20. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  1. Murine Myocardial Transcriptome Analysis Reveals a Critical Role of COPS8 in the Gene Expression of Cullin-RING Ligase Substrate Receptors and Redox and Vesicle Trafficking Pathways

    Directory of Open Access Journals (Sweden)

    Ammara Abdullah

    2017-08-01

    the Ingenuity Pathway Analysis (IPA revealed significant enrichment of DEGs in multiple pathways, especially those responding to oxidative stress, in homozygous Cops8-CKO hearts at both 2 and 3 weeks, corroborating the occurrence of massive cardiomyocyte necrosis at 3 weeks; (2 the decreases in multiple CRL SR proteins were associated with decreased transcript levels; and (3 enrichment of DEGs in the chromatin remodeling pathway and the microtubule motility and vesicle trafficking pathways.Conclusions: Our data are consistent with the notion that Cops8/CSN plays a role in the transcriptional regulation of CRL SRs and in the redox and vesicle trafficking pathways.

  2. Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Gabriela Bomfim Ferreira

    2015-02-01

    Full Text Available Metabolic switches in various immune cell subsets enforce phenotype and function. In the present study, we demonstrate that the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH2D3, induces human monocyte-derived tolerogenic dendritic cells (DC by metabolic reprogramming. Microarray analysis demonstrated that 1,25(OH2D3 upregulated several genes directly related to glucose metabolism, tricarboxylic acid cycle (TCA, and oxidative phosphorylation (OXPHOS. Although OXPHOS was promoted by 1,25(OH2D3, hypoxia did not change the tolerogenic function of 1,25(OH2D3-treated DCs. Instead, glucose availability and glycolysis, controlled by the PI3K/Akt/mTOR pathway, dictate the induction and maintenance of the 1,25(OH2D3-conditioned tolerogenic DC phenotype and function. This metabolic reprogramming is unique for 1,25(OH2D3, because the tolerogenic DC phenotype induced by other immune modulators did not depend on similar metabolic changes. We put forward that these metabolic insights in tolerogenic DC biology can be used to advance DC-based immunotherapies, influencing DC longevity and their resistance to environmental metabolic stress.

  3. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 16982211 Title Ubiq

  4. Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway.

    Science.gov (United States)

    Xu, Guang; Takashi, En; Kudo, Mitsuhiro; Ishiwata, Toshiyuki; Naito, Zenya

    2004-02-01

    Although clinical diabetes mellitus is obviously a high risk factor for myocardial infarction, there is disagreement about the sensitivity of ischemic injury of an infarcted myocardium in experimental studies. The present study evaluated the influences of different durations of hyperglycemia on ischemic and reperfusion injuries of the myocardium, and focused on extracellular signal-regulated kinase 1/2 (ERK1/2), which plays an important role in the intracellular signaling pathway and is reported to be associated with myocardial protection against heart injury. Short- and long-term hyperglycemias were induced in rats by streptozotocin (STZ) injection and the rats were examined 4 (4WDM) and 20 weeks (20WDM) after the treatment. Ischemia and reperfusion were induced by occlusion and reperfusion (I/R) of the left coronary artery (LCA). I/R-induced infarct size was determined using triphenyltetrazolium chloride (TTC) staining. After 20 weeks of STZ treatment (20WDM+I/R), the infarct size in the rat heart increased by 65.2 +/- 4.3%, whereas after 4 weeks of STZ treatment (4WDM+I/R), the infarct size decreased compared with the time-matched I/R group (43.1 +/- 3.6% and 59.5 +/- 5.6%, respectively). The number of dead myocytes including necrotic and apoptotic cells was determined using horseradish peroxidase (HRP) and terminal deoxynucleotide nick-end labeling (TUNEL) methods. The number of dead myocytes decreased in the 4WDM+I/R group, while the number of dead myocytes increased markedly in the 20WDM+I/R group, compared with the time-matched I/R group. The increment of ERK1/2 phosphorylation in the 4WDM group and the slight enhancement of this phosphorylation by I/R treatment were observed by western blotting. However, in the 20WDM group, the level of ERK1/2 phosphorylation reduced by approximately 1/3 compared with the time-matched control group; moreover, I/R treatment did not enhance the phosphorylation level. This study demonstrated that short- and long

  5. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    Directory of Open Access Journals (Sweden)

    María Milagros López de Armentia

    2016-03-01

    Full Text Available Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila. The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  6. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles.

    Science.gov (United States)

    López de Armentia, María Milagros; Amaya, Celina; Colombo, María Isabel

    2016-03-08

    Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host's response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  7. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Yadav, Rajkumar Singh; Garg, Satish Kumar

    2017-04-01

    This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca 2+ channels blocker) and NNC55-0396 (T-type Ca 2+ channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca 2+ free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca 2+ -free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (E max ) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway.

    Science.gov (United States)

    Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J

    2014-09-01

    NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Peroxicretion: a novel secretion pathway in the eukaryotic cell

    Directory of Open Access Journals (Sweden)

    Luesken Francisca A

    2009-05-01

    Full Text Available Abstract Background Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzymes could be secreted by the cell the potential of industrial applications of enzymes would be enlarged. Therefore a novel secretion pathway for intracellular proteins was developed, using peroxisomes as secretion vesicles. Results Peroxisomes were decorated with a Golgi derived v-SNARE using a peroxisomal membrane protein as an anchor. This allowed the peroxisomes to fuse with the plasma membrane. Intracellular proteins were transported into the peroxisomes by adding a peroxisomal import signal (SKL tag. The proteins which were imported in the peroxisomes, were released into the extra-cellular space through this artificial secretion pathway which was designated peroxicretion. This concept was supported by electron microscopy studies. Conclusion Our results demonstrate that it is possible to reroute the intracellular trafficking of vesicles by changing the localisation of SNARE molecules, this approach can be used in in vivo biological studies to clarify the different control mechanisms regulating intracellular membrane trafficking. In addition we demonstrate peroxicretion of a diverse set of intracellular proteins. Therefore, we anticipate that the concept of peroxicretion may revolutionize the production of intracellular proteins from fungi and other microbial cells, as well as from mammalian cells.

  10. Does GRK-β arrestin machinery work as a "switch on" for GPR17-mediated activation of intracellular signaling pathways?

    Science.gov (United States)

    Daniele, Simona; Trincavelli, Maria Letizia; Fumagalli, Marta; Zappelli, Elisa; Lecca, Davide; Bonfanti, Elisabetta; Campiglia, Pietro; Abbracchio, Maria P; Martini, Claudia

    2014-06-01

    During oligodendrocyte-precursor cell (OPC) differentiation program, an impairment in the regulatory mechanisms controlling GPR17 spatio-temporal expression and functional activity has been suggested to contribute to defective OPC maturation, a crucial event in the pathogenesis of multiple sclerosis. GRK-β arrestin machinery is the primary actor in the control of G-protein coupled receptor (GPCR) functional responses and changes in these regulatory protein activities have been demonstrated in several immune/inflammatory diseases. Herein, in order to shed light on the molecular mechanisms controlling GPR17 regulatory events during cell differentiation, the role of GRK/β-arrestin machinery in receptor desensitization and signal transduction was investigated, in transfected cells and primary OPC. Following cell treatment with the two classes of purinergic and cysteinyl-leukotriene (cysLT) ligands, different GRK isoforms were recruited to regulate GPR17 functional responses. CysLT-mediated receptor desensitization mainly involved GRK2; this kinase, via a G protein-dependent mechanism, promoted a transient binding of the receptor to β-arrestins, rapid ERK phosphorylation and sustained nuclear CREB activation. Furthermore, GRK2, whose expression parallels that of the receptor during differentiation process, appeared to be crucial to induce cysLT-mediated maturation of OPCs. On the other hand, purinergic ligand exclusively recruited the GRK5 subtype, and induced, via a G protein-independent/β-arrestin-dependent mechanism, a receptor/β-arrestin stable association, slower and sustained ERK stimulation and marginal CREB activation. These results show that purinergic and cysLT ligands, through the recruitment of specific GRK isoforms, address distinct intracellular pathways, most likely reinforcing the same final response. The identification of these mechanisms and players controlling GPR17 responses during OPC differentiation could be useful to identify new targets in

  11. [Legionella pneumophila eukaryotic-like effector LegK3 inhibits growth of Saccharomyces cerevisiae and modulates its vesicle trafficking pathway].

    Science.gov (United States)

    Wang, Jiaming; Li, Xianghui; Chen, Aifeng; Lu, Yongjun

    2014-04-04

    To study biochemical functions of the Legionella pneumophila eukaryotic-like effector protein LegK3, the budding yeast Saccharomyces cerevisiae was used as an alternative host in which growth defect induced by the ectopic expression of LegK3 was assessed. Using genomic DNA of the L. pneumophila strain Lp02 as template, we respectively amplified and inserted the ORF sequences of legK3, ralF or lidA into the plasmid pESC-HK to yield the ectopic-expression plasmids. Then, the recombination plasmids were transformed into the yeast strain W301-1A. With 2% -galactose induction, growth defect and carboxypeptidase Y (CPY) delay were determined simultaneously. In parallel, total yeast proteins before or after induction were extracted and subjected to Immunoblot assay. For detecting the expression of effector proteins or determining CPY delay, anti-c-myc or anti-PGK/anti-CPY antibodies were utilized respectively. The expression of LegK3 resulted in visible growth defect in yeast cells, together with obvious retard in CPY processing. L. pneumophila eukaryotic-like effector LegK3 might target and interfere with the vesicle-trafficking pathways, thereby to inhibit the growth and division of host cells.

  12. Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV

    International Nuclear Information System (INIS)

    LaPlante, Janice M.; Ye, C.P.; Quinn, Stephen J.; Goldin, Ehud; Brown, Edward M.; Slaugenhaupt, Susan A.; Vassilev, Peter M.

    2004-01-01

    Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca 2+ (Ca i ). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca 2+ -permeable cation channel that is transiently modulated by changes in Ca i . The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca 2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca 2+ -dependent process related to signaling pathways involved in regulation of Ca 2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca 2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca 2+ -dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking

  13. Illicit Trafficking of Natural Radionuclides

    Science.gov (United States)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  14. Intracellular APP Sorting and Aβ Secretion are Regulated by Src-mediated Phosphorylation of Mint2

    Science.gov (United States)

    Chaufty, Jeremy; Sullivan, Sarah E.; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the membrane-bound amyloid precursor protein (APP) and affect the production of pathogenic amyloid-beta (Aβ) peptides related to Alzheimer’s disease (AD). Previous studies have shown that loss of each of the three Mint proteins delays the age-dependent production of amyloid plaques in transgenic mouse models of AD. However, the cellular and molecular mechanisms underlying Mints effect on amyloid production are unclear. Because Aβ generation involves the internalization of membrane-bound APP via endosomes and Mints bind directly to the endocytic motif of APP, we proposed that Mints are involved in APP intracellular trafficking, which in turn, affects Aβ generation. Here, we show that APP endocytosis was attenuated in Mint knockout neurons, revealing a role for Mints in APP trafficking. We also show that the endocytic APP sorting processes are regulated by Src-mediated phosphorylation of Mint2 and that internalized APP is differentially sorted between autophagic and recycling trafficking pathways. A Mint2 phospho-mimetic mutant favored endocytosis of APP along the autophagic sorting pathway leading to increased intracellular Aβ accumulation. Conversely, the Mint2 phospho-resistant mutant increased APP localization to the recycling pathway and back to the cell surface thereby enhancing Aβ42 secretion. These results demonstrate that Src-mediated phosphorylation of Mint2 regulates the APP endocytic sorting pathway, providing a mechanism for regulating Aβ secretion. PMID:22787047

  15. Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells.

    Directory of Open Access Journals (Sweden)

    Melanie J Harriff

    2016-03-01

    Full Text Available Mucosal-Associated Invariant T (MAIT cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb. MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP. To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.

  16. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Directory of Open Access Journals (Sweden)

    Cecilia Bucci

    2014-10-01

    Full Text Available Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC and p75NTR, a member of the tumor necrosis factor (TNF receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.

  17. PAM, OLA, and LNA are Differentially Taken Up and Trafficked Via Different Metabolic Pathways in Porcine Adipocytes.

    Science.gov (United States)

    Yu, Caihua; Xi, Lingling; Chen, Jin; Jiang, Qin; Yi, Hongbo; Wang, Yizhen; Wang, Xinxia

    2017-11-01

    Dietary fatty acids have different effects on fat deposition in pigs. To clarify the underlying mechanisms of this difference, we compared the metabolism of palmitic (PAM, saturated), oleic (OLA, monounsaturated) and linoleic acid (LNA, polyunsaturated) in porcine adipocytes treated with 100 μM PAM, OLA or LNA. We observed that the adipocytes incubated with LNA accumulated more lipids compared with those treated with PAM and OLA. We then probed the metabolism of these fatty acids in porcine adipocytes by using isotope-labelled fatty acids. The results showed that 42% of the [1- 14 C] LNA, 34% of the [1- 14 C] PAM and 28% of the [1- 14 C] OLA were recovered in the cellular lipids. The gene expression analyses showed that LNA significantly increased the expression of adipogenesis- and oxidation-related genes including PPARγ, C/EBPα, ap2 and NRF1. In addition, the cells incubated with LNA showed a decreased Ser 112 phosphorylation in PPARγ compared to those incubated with PAM and OLA. Furthermore, when PPARγ Ser 112 phosphorylation was inhibited, no significant difference in the triacylglycerol contents in the adipocytes was observed. These results showed the dietary fatty acids had different metabolism pathways in porcine adipocytes, and LNA significantly promoted lipid accumulation, probably by regulating PPARγ phosphorylation in adipocytes.

  18. Economics of human trafficking.

    Science.gov (United States)

    Wheaton, Elizabeth M; Schauer, Edward J; Galli, Thomas V

    2010-01-01

    Because freedom of choice and economic gain are at the heart of productivity, human trafficking impedes national and international economic growth. Within the next 10 years, crime experts expect human trafficking to surpass drug and arms trafficking in its incidence, cost to human well-being, and profitability to criminals (Schauer and Wheaton, 2006: 164-165). The loss of agency from human trafficking as well as from modern slavery is the result of human vulnerability (Bales, 2000: 15). As people become vulnerable to exploitation and businesses continually seek the lowest-cost labour sources, trafficking human beings generates profit and a market for human trafficking is created. This paper presents an economic model of human trafficking that encompasses all known economic factors that affect human trafficking both across and within national borders. We envision human trafficking as a monopolistically competitive industry in which traffickers act as intermediaries between vulnerable individuals and employers by supplying differentiated products to employers. In the human trafficking market, the consumers are employers of trafficked labour and the products are human beings. Using a rational-choice framework of human trafficking we explain the social situations that shape relocation and working decisions of vulnerable populations leading to human trafficking, the impetus for being a trafficker, and the decisions by employers of trafficked individuals. The goal of this paper is to provide a common ground upon which policymakers and researchers can collaborate to decrease the incidence of trafficking in humans.

  19. Intracellular Calcium Plays a Critical Role in the Microcystin-LR-Elicited Neurotoxicity Through PLC/IP3 Pathway.

    Science.gov (United States)

    Cai, Fei; Liu, Jue; Li, Cairong; Wang, Jianghua

    2015-01-01

    Neurotoxicity of microcystin-leucine-arginine (MCLR) has been widely reported. However, the mechanism is not fully understood. Using primary hippocampal neurons, we tested the hypothesis that MCLR-triggered activation in intracellular free calcium concentration ([Ca(2+)](i)) induces the death of neurons. Microcystin-leucine-arginine inhibited cell viability at a range of 0.1 to 30 μmol/L and caused a dose-dependent increase in [Ca(2+)](i). This increase in [Ca(2+)](i) was observed in Ca(2+)-free media and blocked by an endoplasmic reticulum Ca(2+) pump inhibitor, suggesting intracellular Ca(2+) release. Moreover, pretreatment of hippocampal neurons with intracellular Ca(2+) chelator (O,O'-bis (2-aminophenyl) ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxy-methyl ester) and inositol 1,4,5-trisphosphate receptor antagonist (2-aminoethoxydiphenyl borate) could block both the Ca(2+) mobilization and the neuronal death following MCLR exposure. In contrast, the ryanodine receptor inhibitor (dantrolene) did not ameliorate the effect of MCLR. In conclusion, MCLR disrupts [Ca(2+)](i) homeostasis in neurons by releasing Ca(2+) from intracellular stores, and this increase in [Ca(2+)](i) may be a key determinant in the mechanism underlying MCLR-induced neurotoxicity. © The Author(s) 2015.

  20. Phage display of an intracellular carboxylesterase of Bacillus subtilis : Comparison of sec and tat pathway export capabilities

    NARCIS (Netherlands)

    Droge, Melloney J.; Boersma, Ykelien L.; Braun, Peter G.; Buining, Robbert Jan; Julsing, Mattijs K.; Selles, Karin G. A.; van Dijl, Jan Maarten; Quax, Wim J.

    Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The

  1. PI3KC2{alpha}, a class II PI3K, is required for dynamin-independent internalization pathways

    DEFF Research Database (Denmark)

    Krag, Claudia; Malmberg, Emily Kim; Salcini, Anna Elisabetta

    2010-01-01

    as fluid-phase endocytosis. Our data suggest a general role for PI3KC2a in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated...

  2. Regulation of vesicular trafficking by Parkinson's disease-associated genes

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Inoshita

    2015-10-01

    Full Text Available The regulatory mechanisms that control intracellular vesicular trafficking play important roles in cellular function and viability. Neurons have specific vesicular trafficking systems for synaptic vesicle formation, release and recycling. Synaptic vesicular trafficking impairments induce neuronal dysfunction and physiological and behavioral disorders. Parkinson's disease (PD is an age-dependent neurodegenerative disorder characterized by dopamine depletion and loss of dopamine neurons in the midbrain. The molecular mechanism responsible for the neurodegeneration that occurs during PD is still not understood; however, recent functional analyses of familial PD causative genes suggest that a number of PD causative genes regulate intracellular vesicular trafficking, including synaptic vesicular dynamics. This review focuses on recent insights regarding the functions of PD causative genes, their relationship with vesicular trafficking and how mutations associated with PD affect vesicular dynamics and neuronal survival.

  3. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  4. MITOCHONDRIAL REACTIVE OXYGEN SPECIES (ROS AS SIGNALLING MOLECULES OF INTRACELLULAR PATHWAYS TRIGGERED BY THE CARDIAC RENIN-ANGIOTENSIN II-ALDOSTERONE SYSTEM (RAAS.

    Directory of Open Access Journals (Sweden)

    Verónica Celeste De Giusti

    2013-05-01

    Full Text Available Mitochondria represent major sources of basal reactive oxygen species (ROS production of the cardiomyocyte. The role of ROS as signalling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1 and sodium/bicarbonate cotransporter (NBC via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.

  5. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction.

    Science.gov (United States)

    Wang, Wenjie; Cai, Qingyun; Zhou, Fang; Liu, Jiali; Jin, Xiaoliang; Ni, Ping; Lu, Meng; Wang, Guangji; Zhang, Jingwei

    2018-05-01

    Although metabolic reprogramming and redox imbalance are widely reported to be involved in chemo-resistance in cancer treatment, much more attention was paid to anti-cancer drug induced effect. Our previous studies showed that cancer cells can develop P-gp overexpression-mediated intrinsic drug resistance in the formation of 3D MCF-7 multi-cellular layers (MCLs) without any drug induction. However, whether metabolic reprogramming and redox imbalance functioned during this progress remained unrevealed. In our present study, LC-Q/TOF-MS and GC-MS were used in combination for analysing intracellular metabolites. The contribution of pentose phosphate pathway (PPP) and its related redox status were checked by chemical interfering and silencing/over-expression of glucose-6-phosphate dehydrogenase (G6PD). The downstream products of G6PD were assayed by quantitative real-time PCR, western blot and flow cytometry. Results showed that not only G6PD expression but also G6PD activity was significantly lowered along with 3D MCF-7 cells culture time. Impaired PPP disturbed redox-cycling, generated reactive oxygen species (ROS), which triggered cell cycle arrest and caused the switch to Chk2/p53/NF-κB pathway-mediated P-gp induction. Our results provided a new attempt to associate intrinsic small molecule metabolites (impaired PPP) communicating with cell signalling pathways through disturbed intracellular redox status to elucidate multi-cellular resistance (MCR) in 3D MCF-7 cells, which improved the understanding of the mechanisms of P-gp up-regulation in MCR with metabolomic and related redox status support. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  7. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells.

    Science.gov (United States)

    Dikshit, Neha; Bist, Pradeep; Fenlon, Shannon N; Pulloor, Niyas Kudukkil; Chua, Christelle En Lin; Scidmore, Marci A; Carlyon, Jason A; Tang, Bor Luen; Chen, Swaine L; Sukumaran, Bindu

    2015-08-01

    Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.

  8. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells

    International Nuclear Information System (INIS)

    Born, E J; Hartman, S V; Holstein, S A

    2013-01-01

    Multiple myeloma is characterized by the production of substantial quantities of monoclonal protein. We have previously demonstrated that select inhibitors of the isoprenoid biosynthetic pathway (IBP) induce apoptosis of myeloma cells via inhibition of Rab geranylgeranylation, leading to disruption of monoclonal protein trafficking and induction of the unfolded protein response (UPR) pathway. Heat-shock protein 90 (HSP90) inhibitors disrupt protein folding and are currently under clinical investigation in myeloma. The effects of combining IBP and HSP90 inhibitors on cell death, monoclonal protein trafficking, the UPR and chaperone regulation were investigated in monoclonal protein-producing cells. An enhanced induction of cell death was observed following treatment with IBP and HSP90 inhibitors, which occurred through both ER stress and non-ER stress pathways. The HSP90 inhibitor 17-AAG abrogated the effects of the IBP inhibitors on intracellular monoclonal protein levels and localization as well as induction of the UPR in myeloma cells. Disparate effects on chaperone expression were observed in myeloma vs amyloid light chain cells. Here we demonstrate that the novel strategy of targeting MP trafficking in concert with HSP90 enhances myeloma cell death via a complex modulation of ER stress, UPR, and cell death pathways

  9. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.

    Science.gov (United States)

    Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise

    2016-08-31

    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.

  10. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways.

    Directory of Open Access Journals (Sweden)

    Sudin Bhattacharya

    Full Text Available The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC report Toxicity Testing in the 21(st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals and (b the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU. EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.

  11. Decomposition pathways and in vitro HIV inhibitory effects of isoddA pronucleotides: toward a rational approach for intracellular delivery of nucleoside 5'-monophosphates.

    Science.gov (United States)

    Valette, G; Pompon, A; Girardet, J L; Cappellacci, L; Franchetti, P; Grifantini, M; La Colla, P; Loi, A G; Périgaud, C; Gosselin, G; Imbach, J L

    1996-05-10

    The decomposition pathways and kinetics in various biological media and the in vitro anti-HIV-1 and anti-HIV-2 activities of four derivatives of the 5'-mononucleotide of isoddA incorporating carboxylate esterase-labile transient phosphate protecting groups are reported and compared: namely, two mononucleoside aryl phosphoramidate derivatives 1a,b and two mononucleoside phosphotriester derivatives incorporating two S-acyl-2-thioethyl groups 2a,b. All four compounds show better antiviral activity, compared to the parent nucleoside analog isoddA. The results highlight that both types of compounds act as pronucleotides, i.e. they exert their antiviral effect via intracellular delivery of the 5'-mononucleotide of isoddA. The results may give insights for the design of new more efficient pronucleotides.

  12. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus.

    Science.gov (United States)

    Kim, Hye-Ryun; Cho, Kil-Sang; Kim, Eunhye; Lee, Ok-Hee; Yoon, Hyemin; Lee, Sangho; Moon, Sohyeon; Park, Miseon; Hong, Kwonho; Na, Younghwa; Shin, Ji-Eun; Kwon, Hwang; Song, Haengseok; Choi, Dong Hee; Choi, Youngsok

    2017-05-05

    Dexamethasone-induced RAS-related protein 1 (RASD1) is a signaling protein that is involved in various cellular processes. In a previous study, we found that RASD1 expression was down-regulated in the uterine endometrium of repeated implantation failure patients. The study aim was to determine whether RASD1 is expressed in the endometrium of mouse uterus and how it is regulated by steroid hormones during the estrous cycle. In this study, we investigated RASD1 expression and regulation in an ovariectomized female mouse model. Rasd1 mRNA was highly expressed in mouse reproductive tissues, including the uterus. Rasd1 expression was detected exclusively in the endometrial epithelium at the proestrus stage of the estrous cycle. Rasd1 expression in uteri increased with administration of estradiol, but not progesterone. Its expression was rapidly induced within 2 h after E 2 treatment. Pretreatment with ICI 182,780, an estrogen receptor antagonist, reduced RASD1 protein expression. In addition, we identified that rapid expression of Rasd1 was mediated by the estrogen intracellular signaling including both p38-mitogen-activated protein kinase and the extracellular signal-regulated kinase. These findings suggest that RASD1 acts as a novel signaling molecule and plays an important role in regulating dynamic uterine remodeling during the estrous cycle in the uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  14. Murrayafoline A attenuates the Wnt/β-catenin pathway by promoting the degradation of intracellular β-catenin proteins

    International Nuclear Information System (INIS)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung; Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho; Lee, Gye Won; Yun, Mi-Young; Cuong, Nguyen Manh; Shin, Jae-Gook; Song, Gyu-Yong; Oh, Sangtaek

    2010-01-01

    Molecular lesions in Wnt/β-catenin signaling and subsequent up-regulation of β-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3β (GSK-3β), and promoted the degradation of intracellular β-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known β-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  15. TRAFFICKING PRESPEKTIF HUKUM PIDANA

    Directory of Open Access Journals (Sweden)

    Dian Novita Dian Novita

    2012-07-01

    Full Text Available Abstract: Trafficking is a classic matter that has been existed since the establishment of human culture.  The major cause of the trafficking is the lack of information about trafficking, poverty  and the law level of education and skill of people, specifically villagers. To fight against trafficking, the government needs to accelarate the education and skill quality and cooperate with other countries. Besides, it is important to provide a sufficient law device for international scale in order to drag feet the trafficking network. Furthermore, trafficker must be punished with heavy penalties and the victim must be protected properly.     Key Words: Trafficking, hukum pidana, pelaku dan korban

  16. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  17. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins.

    Science.gov (United States)

    Weber, Mary M; Faris, Robert

    2018-01-01

    Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis , and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  18. Cytomegalovirus immune evasion by perturbation of endosomal trafficking.

    Science.gov (United States)

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-03-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.

  19. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    Science.gov (United States)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  20. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling

    Directory of Open Access Journals (Sweden)

    Tanja ePetnicki-Ocwieja

    2014-12-01

    Full Text Available Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs. However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs. Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.

  1. The Steroid Catabolic Pathway of the Intracellular Pathogen Rhodococcus equi Is Important for Pathogenesis and a Target for Vaccine Development

    Science.gov (United States)

    van der Geize, R.; Grommen, A. W. F.; Hessels, G. I.; Jacobs, A. A. C.; Dijkhuizen, L.

    2011-01-01

    Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3′-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections. PMID:21901092

  2. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  3. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Ioannis Vouldoukis

    Full Text Available BACKGROUND: In addition to helminthic infections, elevated serum IgE levels were observed in many protozoal infections, while their contribution during immune response to these pathogens remained unclear. As IgE/antigen immune complexes (IgE-IC bind to human cells through FcεRI or FcεRII/CD23 surface molecules, the present study aimed to identify which functional receptor may be involved in IgE-IC interaction with human macrophages, the major effector cell during parasite infection. METHODOLOGY/PRINCIPAL FINDINGS: Human monocyte-derived macrophages were infected with Toxoplasma gondii before being incubated with IgE-IC. IgE receptors were then identified using appropriate blocking antibodies. The activation of cells and parasiticidal activity were evaluated by mediator quantification and direct counting of infected macrophages. RNAs were extracted and cell supernatants were also collected for their content in tumor necrosis factor (TNF-α, interleukin-10 (IL-10 and nitrites. Sera from symptomatic infected patients were also tested for their content of IgE, IL-10 and nitrites, and compared to values found in healthy donors. Results showed that IgE-IC induced intracellular elimination of parasites by human macrophages. IgE-mediated effect was FcεRI-independent, but required cross-linking of surface FcεRII/CD23, cell activation and the generation of nitric oxide (NO. Although TNF-α was shown to be produced during cell activation, this cytokine had minor contribution in this phenomenon while endogenous and exogenous IL-10 down-regulated parasite killing. Inverse relationship was found between IL-10 and NO expression by infected human macrophages at both mRNA and mediator levels. The relationship between these in vitro data and in vivo levels of various factors in T. gondii infected patients supports the involvement of CD23 antigen and IL-10 expression in disease control. CONCLUSION: Thus, IgE may be considered as immune mediator during

  4. Redox environment is an intracellular factor to operate distinct pathways for aggregation of Cu,Zn-superoxide dismutase in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Yoshiaki eFurukawa

    2013-11-01

    Full Text Available Dominant mutations in Cu,Zn-superoxide dismutase (SOD1 cause a familial form of amyotrophic lateral sclerosis (fALS. Misfolding and aggregation of mutant SOD1 proteins are a pathological hallmark of SOD1-related fALS cases; however, the molecular mechanism of SOD1 aggregation remains controversial. Here, I have used E. coli as a model organism and shown multiple distinct pathways of SOD1 aggregation that are dependent upon its thiol-disulfide status. Overexpression of fALS-mutant SOD1s in the cytoplasm of E. coli BL21 and SHuffleTM, where redox environment is reducing and oxidizing, respectively, resulted in the formation of insoluble aggregates with notable differences; a disulfide bond of SOD1 was completely reduced in BL21 or abnormally formed between SOD1 molecules in SHuffleTM. Depending upon intracellular redox environment, therefore, mutant SOD1 is considered to misfold/aggregate through distinct pathways, which would be relevant in description of the pathological heterogeneity of SOD1-related fALS cases.

  5. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    /dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...... the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which...

  6. Protein trafficking and maturation regulate intramembrane proteolysis.

    Science.gov (United States)

    Morohashi, Yuichi; Tomita, Taisuke

    2013-12-01

    Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves, E-mail: camilab@icb.usp.br; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  8. Getting out of the game: desistance from drug trafficking.

    Science.gov (United States)

    Campbell, Howard; Hansen, Tobin

    2012-11-01

    This ethnographic study was conducted along the U.S.-Mexico border, the centre of the western hemispheric illicit drugs trade. It examines factors that encouraged or discouraged drug traffickers to "get out of the game" (a common slang reference to leaving the drug business). In-depth, life history interviews were conducted of thirty ex-traffickers in the El Paso/Ciudad Juárez area. Participants discussed their experiences exiting drug trafficking and their retrospective, often conflicted, feelings about the trade. Although leaving drug trafficking is a complex and multi-faceted process, the principle factors for study participants were (1) punishment (by authorities or other traffickers), (2) self-image and identity, (3) social ties, (4) life course changes and (5) drug use/abuse. Traffickers often want to quit, but their divided self-identities make it difficult to relinquish the power and exhilaration they derive from the illicit drugs business. Harm reduction policies are needed that address the embeddedness of trafficker identities in dense webs of family, community, street gangs and transnational cartels, and the larger society, as well as the seductive appeal of Hollywood and pro-cartel narco-media. Traffickers need pathways that allow them to exit the illicit drugs business without surrendering their identity. Prison sentences are not enough to encourage traffickers to stop-also needed are culturally sensitive policies that help traffickers get out of the game and stay out. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages.

    Directory of Open Access Journals (Sweden)

    Auricelio A Macedo

    Full Text Available Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi. In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment.

  10. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Directory of Open Access Journals (Sweden)

    Jerry eCurran

    2015-02-01

    Full Text Available The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart and cardiovascular system. In the heart, these systems are essential for the regulation of cardiac calcium, both at the level of the plasma membrane, but also at local domains of the endoplasmic reticulum, sarcoplasmic reticulum, mitochondria, nucleus, and nuclear envelope. One intracellular pathway often overlooked in relation to cardiovascular calcium regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. The vast majority of what is known has been derived from heterologous cell systems. However, recently, more appropriate cell and animal models been developed that have allowed researchers to begin to understand how this system functions within the intact physiological environment. All excitable cells, including cardiomyocytes, depend on the proper expression and organization of multiple ion channels, pumps, exchangers, and transporters within the plasma membrane. As the endosomal system acts to regulate the expression and localization of membrane proteins, understanding the in vivo function of this system in the heart is important. This review will focus on endosome-based protein trafficking in the heart in both health and disease. Special emphasis will be given to the role played by the family of endocytic regulatory proteins, C-terminal Eps15 homology domain -containing proteins (EHDs, as recent data demonstrates that this family of proteins is essential for the proper trafficking and localization and of key proteins involved in excitation-contraction coupling.

  11. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.

    Directory of Open Access Journals (Sweden)

    Cherilyn A Elwell

    2011-09-01

    Full Text Available The strain designated Chlamydia trachomatis serovar that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis. [corrected]. The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM, a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM, for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic

  12. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Directory of Open Access Journals (Sweden)

    William R. Critchley

    2018-03-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.

  13. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Science.gov (United States)

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  14. Smuggled or trafficked?

    Directory of Open Access Journals (Sweden)

    Jacqueline Bhabha

    2006-05-01

    Full Text Available The UN Convention Against Transnational Organized Crime (TNC and its two Protocols on Trafficking and Smuggling, adopted in 2000, seek to distinguish between trafficking and smuggling. In reality these distinctions are often blurred. A more nuanced approach is needed to ensure protection for all those at risk.

  15. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  16. Regulation of serotonin-induced trafficking and migration of eosinophils.

    Directory of Open Access Journals (Sweden)

    Bit Na Kang

    Full Text Available Association of the neurotransmitter serotonin (5-HT with the pathogenesis of allergic asthma is well recognized and its role as a chemoattractant for eosinophils (Eos in vitro and in vivo has been previously demonstrated. Here we have examined the regulation of 5-HT-induced human and murine Eos trafficking and migration at a cellular and molecular level. Eos from allergic donors and bone marrow-derived murine Eos (BM-Eos were found to predominantly express the 5-HT2A receptor. Exposure to 5-HT or 2,5-dimethoxy-4-iodoamphetamine (DOI, a 5-HT2A/C selective agonist, induced rolling of human Eos and AML14.3D10 human Eos-like cells on vascular cell adhesion molecule (VCAM-1 under conditions of flow in vitro coupled with distinct cytoskeletal and cell shape changes as well as phosphorylation of MAPK. Blockade of 5-HT2A or of ROCK MAPK, PI3K, PKC and calmodulin, but not G(αi-proteins, with specific inhibitors inhibited DOI-induced rolling, actin polymerization and changes in morphology of VCAM-1-adherent AML14.3D10 cells. More extensive studies with murine BM-Eos demonstrated the role of 5-HT in promoting rolling in vivo within inflamed post-capillary venules of the mouse cremaster microcirculation and confirmed that down-stream signaling of 5-HT2A activation involves ROCK, MAPK, PI3K, PKC and calmodulin similar to AML14.3D10 cells. DOI-induced migration of BM-Eos is also dependent on these signaling molecules and requires Ca(2+. Further, activation of 5-HT2A with DOI led to an increase in intracellular Ca(2+ levels in murine BM-Eos. Overall, these data demonstrate that 5-HT (or DOI/5-HT2A interaction regulates Eos trafficking and migration by promoting actin polymerization associated with changes in cell shape/morphology that favor cellular trafficking and recruitment via activation of specific intracellular signaling molecules (ROCK, MAPK, PI3K and the PKC-calmodulin pathway.

  17. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging

    Science.gov (United States)

    Liu, Mengmeng; Li, Qian; Liang, Le; Li, Jiang; Wang, Kun; Li, Jiajun; Lv, Min; Chen, Nan; Song, Haiyun; Lee, Joon; Shi, Jiye; Wang, Lihua; Lal, Ratnesh; Fan, Chunhai

    2017-05-01

    Mechanistic understanding of the endocytosis and intracellular trafficking of nanoparticles is essential for designing smart theranostic carriers. Physico-chemical properties, including size, clustering and surface chemistry of nanoparticles regulate their cellular uptake and transport. Significantly, even single nanoparticles could cluster intracellularly, yet their clustering state and subsequent trafficking are not well understood. Here, we used DNA-decorated gold (fPlas-gold) nanoparticles as a dually emissive fluorescent and plasmonic probe to examine their clustering states and intracellular transport. Evidence from correlative fluorescence and plasmonic imaging shows that endocytosis of fPlas-gold follows multiple pathways. In the early stages of endocytosis, fPlas-gold nanoparticles appear mostly as single particles and they cluster during the vesicular transport and maturation. The speed of encapsulated fPlas-gold transport was critically dependent on the size of clusters but not on the types of organelle such as endosomes and lysosomes. Our results provide key strategies for engineering theranostic nanocarriers for efficient health management.

  18. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  19. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    Science.gov (United States)

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions. Simil...... specific protein-lipid and protein-protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid-protein interactions.......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions....... Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways...

  1. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    Science.gov (United States)

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  2. Regulation of GPCR Trafficking by Ubiquitin.

    Science.gov (United States)

    Kennedy, Justine E; Marchese, Adriano

    2015-01-01

    G protein-coupled receptor (GPCR)-promoted signaling mediates cellular responses to a variety of stimuli involved in diverse physiological processes. In addition, GPCRs are also the largest class of target for many drugs used to treat a variety of diseases. Despite the role of GPCR signaling in health and disease, the molecular mechanisms governing GPCR signaling remain poorly understanding. Classically, GPCR signaling is tightly regulated by GPCR kinases and β-arrestins, which act in a concerted fashion to govern GPCR desensitization and also GPCR trafficking. Ubiquitination has now emerged as an important posttranslational modification that has multiple roles, either directly or indirectly, in governing GPCR trafficking. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins, and ubiquitination. Here, we review recent developments in our understanding of how ubiquitin regulates GPCR trafficking within the endocytic pathway. © 2015 Elsevier Inc. All rights reserved.

  3. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway.

    Science.gov (United States)

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-09-26

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca(2+)]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca(2+)]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.

  4. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  5. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  6. Human Trafficking and Regulating Prostitution

    OpenAIRE

    Lee, Samuel; Persson, Petra

    2013-01-01

    We study sex trafficking in a marriage market model of prostitution. When traffickers can coerce women to sell sex, trafficked prostitutes constitute a non-zero share of supply in any unregulated market for sex. We ask if regulation can eradicate trafficking and restore the equilibrium that would arise in an unregulated market without traffickers. While all existing approaches – criminalization of prostitutes (“the traditional model”), licensed prostitution (“the Dutch model”), and criminaliz...

  7. Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier.

    Science.gov (United States)

    Sancho-Andrés, Gloria; Soriano-Ortega, Esther; Gao, Caiji; Bernabé-Orts, Joan Miquel; Narasimhan, Madhumitha; Müller, Anna Ophelia; Tejos, Ricardo; Jiang, Liwen; Friml, Jiří; Aniento, Fernando; Marcote, María Jesús

    2016-07-01

    In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a μA (μ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a μD (μ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of μA (μ2)- and μD (μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this

  9. Active trafficking of alpha 1 antitrypsin across the lung endothelium.

    Directory of Open Access Journals (Sweden)

    Angelia D Lockett

    Full Text Available The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency.

  10. Sex for Sale: Globalization and Human Trafficking

    OpenAIRE

    Aiello, Annmarie

    2009-01-01

    The practice of trafficking has many different facets; drug trafficking, arms trafficking and human trafficking complete the top three illegal trafficking practices today. Human trafficking may be the third highest illegal trafficking practice, however there is inadequate mainstream information on the affects of the trade and horrifying issues that incorporate trafficking in human beings. This paper will discuss how the globalized world has been enabling trafficking in human beings with a con...

  11. UK victims of trafficking

    Directory of Open Access Journals (Sweden)

    Bob Burgoyne

    2006-05-01

    Full Text Available Analysis of court cases shows how hard it is forvictims of trafficking to win the right to remain in the UK. Case law is inconsistent and more research and data collection are urgently needed.

  12. Prostitution and Human Trafficking

    Directory of Open Access Journals (Sweden)

    Luca Luccitelli

    2015-05-01

    Full Text Available The author analyses the activity of an association: the Community Pope John XXIII, where he works on the liberation of thousands of victims of human trafficking and the fight against prostitution. More specifically, he describes the methods of intervention and provides some data about people who are trafficked for and clients of prostitutes. In conclusion, some legislation models about prostitution in Europe are briefly discussed.

  13. Prostitution and Human Trafficking

    OpenAIRE

    Luca Luccitelli

    2015-01-01

    The author analyses the activity of an association: the Community Pope John XXIII, where he works on the liberation of thousands of victims of human trafficking and the fight against prostitution. More specifically, he describes the methods of intervention and provides some data about people who are trafficked for and clients of prostitutes. In conclusion, some legislation models about prostitution in Europe are briefly discussed.

  14. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    Science.gov (United States)

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  15. Involvement of histone H3 phosphorylation via the activation of p38 MAPK pathway and intracellular redox status in cytotoxicity of HL-60 cells induced by Vitex agnus-castus fruit extract.

    Science.gov (United States)

    Kikuchi, Hidetomo; Yuan, Bo; Yuhara, Eisuke; Imai, Masahiko; Furutani, Ryota; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Takagi, Norio; Toyoda, Hiroo

    2014-08-01

    We have demonstrated that an extract from the ripe fruit of Vitex angus-castus (Vitex), might be a promising anticancer candidate. In order to further provide a molecular rationale for clinical development in anticancer therapy, a detailed mechanism underlying the efficacy of Vitex against HL-60 cells was investigated. Vitex induced a dose- and time-dependent decrease in cell viability associated with induction of apoptosis and G(2)/M cell cycle arrest, both of which were suppressed by the addition of SB203580, an inhibitor for p38 MAPK. Furthermore, SB203580 significantly suppressed Vitex-induced phosphorylation of histone H3, a downstream molecule of p38 MAPK known to be involved in apoptosis induction in tumor cells. Notably, Vitex induced upregulation of intracellular ATP, known to bind its binding pocket inside activated p38 MAPK and to be required for the activation of p38 MAPK pathway. These results, thus, suggest that upregulation of intracellular ATP and phosphorylation of histone H3 are closely associated with the activation of p38 MAPK pathway, consequently contributing to Vitex-mediated cytotoxicity. Intriguingly, a significant decrease of intracellular ROS levels and downregulation of expression level of gp91(phox), an important component of NADPH oxidase, were observed in Vitex-treated cells. A greater decline in ROS levels along with enhanced apoptosis was observed after treatment with Vitex in combination with SnPP, an inhibitor specific for HO-1. Since NADPH oxidase and HO-1 are closely correlated to redox status associated with intracellular ROS levels, the two enzymes are suggested to be implicated in Vitex-mediated cytotoxicity in HL-60 cells by regulating ROS generation. We also suggest that activation of the p38 MAPK pathway may be dependent on the alterations of intracellular ATP levels, rather than that of intracellular ROS levels. These results may have important implications for appropriate clinical uses of Vitex and provide novel insights

  16. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.

    Science.gov (United States)

    Bahouth, Suleiman W; Nooh, Mohammed M

    2017-08-01

    Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction

  17. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  18. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway [version 2; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Paul Fineran

    2017-06-01

    Full Text Available Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC, a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC.  Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed.  Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in

  19. A Salmonella virulence protein that inhibits cellular trafficking.

    Science.gov (United States)

    Uchiya, K; Barbieri, M A; Funato, K; Shah, A H; Stahl, P D; Groisman, E A

    1999-07-15

    Salmonella enterica requires a type III secretion system, designated Spi/Ssa, to survive and proliferate within macrophages. The Spi/Ssa system is encoded within the SPI-2 pathogenicity island and appears to function intracellularly. Here, we establish that the SPI-2-encoded SpiC protein is exported by the Spi/Ssa type III secretion system into the host cell cytosol where it interferes with intracellular trafficking. In J774 macrophages, wild-type Salmonella inhibited fusion of Salmonella-containing phagosomes with lysosomes and endosomes, and interfered with trafficking of vesicles devoid of the microorganism. These inhibitory activities required living Salmonella and a functional spiC gene. Purified SpiC protein inhibited endosome-endosome fusion in vitro. A Sindbis virus expressing the SpiC protein interfered with normal trafficking of the transferrin receptor in vivo. A spiC mutant was attenuated for virulence, suggesting that the ability to interfere with intracellular trafficking is essential for Salmonella pathogenesis.

  20. Sex Trafficking of Minors.

    Science.gov (United States)

    Moore, Jessica L; Kaplan, Dana M; Barron, Christine E

    2017-04-01

    Sex trafficking is an increasingly recognized global health crisis affecting every country and region in the world. Domestic minor sex trafficking is a subset of commercial sexual exploitation of children, defined as engagement of minors (sexual acts for items of value (eg, food, shelter, drugs, money) involving children victimized within US borders. These involved youth are at risk for serious immediate and long-term physical and mental health consequences. Continued efforts are needed to improve preventive efforts, identification, screening, appropriate interventions, and subsequent resource provision for victimized and high-risk youth. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  2. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  3. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers

    Directory of Open Access Journals (Sweden)

    Planque Nathalie

    2006-10-01

    Full Text Available Abstract Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.

  4. MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Genc Basha

    Full Text Available BACKGROUND: Cross-presentation by dendritic cells (DCs is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. CONCLUSIONS/SIGNIFICANCE: We conclude that DCs have 'hijacked' and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.

  5. Metabolic and transcriptomic analysis of Huntington’s disease model reveal changes in intracellular glucose levels and related genes

    Directory of Open Access Journals (Sweden)

    Gepoliano Chaves

    2017-08-01

    Full Text Available Huntington’s Disease (HD is a neurodegenerative disorder caused by an expansion in a CAG-tri-nucleotide repeat that introduces a poly-glutamine stretch into the huntingtin protein (mHTT. Mutant huntingtin (mHTT has been associated with several phenotypes including mood disorders and depression. Additionally, HD patients are known to be more susceptible to type II diabetes mellitus (T2DM, and HD mice model develops diabetes. However, the mechanism and pathways that link Huntington’s disease and diabetes have not been well established. Understanding the underlying mechanisms can reveal potential targets for drug development in HD. In this study, we investigated the transcriptome of mHTT cell populations alongside intracellular glucose measurements using a functionalized nanopipette. Several genes related to glucose uptake and glucose homeostasis are affected. We observed changes in intracellular glucose concentrations and identified altered transcript levels of certain genes including Sorcs1, Hh-II and Vldlr. Our data suggest that these can be used as markers for HD progression. Sorcs1 may not only have a role in glucose metabolism and trafficking but also in glutamatergic pathways affecting trafficking of synaptic components.

  6. Aberrant dynamin 2-dependent Na+/H+ exchanger-1 trafficking contributes to cardiomyocyte apoptosis

    OpenAIRE

    Li, Jun; Xu, Liang; Ye, Jiangchuan; Li, Xiang; Zhang, Dasheng; Liang, Dandan; Xu, Xinran; Qi, Man; Li, Changming; Zhang, Hong; Wang, Jing; Liu, Yi; Zhang, Yuzhen; Zhou, Zhaonian; Liang, Xingqun

    2013-01-01

    Sarcolemmal Na+/H+ exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipit...

  7. Cytoplasmic tail of coronavirus spike protein has intracellular

    Indian Academy of Sciences (India)

    Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is localized in the ER or ERGIC compartment and OC43 spike protein is predominantly localized in thelysosome. Differential localization can be explained by signal sequence. The sequence alignment ...

  8. Trafficking in Persons Report

    Science.gov (United States)

    2009-06-01

    Venezuela’s Orinoco River Basin area and border regions of Tachira State, where political violence and infiltration by armed rebel groups are common. The...was too good to miss. But the reality he faced at the work site was far from the opportunity he expected. The workers drank from the same river ...routes along the Yalu River to traffic North Korean women into China. While many women trafficked into China are sold as brides, some North Korean

  9. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  10. A Salmonella virulence protein that inhibits cellular trafficking.

    OpenAIRE

    Uchiya, K; Barbieri, M A; Funato, K; Shah, A H; Stahl, P D; Groisman, E A

    1999-01-01

    Salmonella enterica requires a type III secretion system, designated Spi/Ssa, to survive and proliferate within macrophages. The Spi/Ssa system is encoded within the SPI-2 pathogenicity island and appears to function intracellularly. Here, we establish that the SPI-2-encoded SpiC protein is exported by the Spi/Ssa type III secretion system into the host cell cytosol where it interferes with intracellular trafficking. In J774 macrophages, wild-type Salmonella inhibited fusion of Salmonella-con...

  11. Health implications of human trafficking.

    Science.gov (United States)

    Richards, Tiffany A

    2014-01-01

    Freedom is arguably the most cherished right in the United States. But each year, approximately 14,500 to 17,500 women, men and children are trafficked into the United States for the purposes of forced labor or sexual exploitation. Human trafficking has significant effects on both physical and mental health. This article describes the features of human trafficking, its physical and mental health effects and the vital role nurses can play in providing care to this vulnerable population. © 2014 AWHONN.

  12. Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity.

    Science.gov (United States)

    Beagle, Brandon; Mi, Kaihong; Johnson, Gail V W

    2009-11-01

    The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression. (c) 2009 Wiley-Liss, Inc.

  13. Expression and intracellular localization of TBC1D9, a Rab GTPase-accelerating protein, in mouse testes.

    Science.gov (United States)

    Nakamura, Yutaka; Asano, Atsushi; Hosaka, Yoshinao; Takeuchi, Takashi; Iwanaga, Toshihiko; Yamano, Yoshiaki

    2015-01-01

    Membrane trafficking in male germ cells contributes to their development via cell morphological changes and acrosome formation. TBC family proteins work as Rab GTPase accelerating proteins (GAPs), which negatively regulate Rab proteins, to mediate membrane trafficking. In this study, we analyzed the expression of a Rab GAP, TBC1D9, in mouse organs and the intracellular localization of the gene products. Tbc1d9 showed abundant expression in adult mice testis. We found that the Tbc1d9 mRNA was expressed in primary and secondary spermatocytes, and that the TBC1D9 protein was expressed in spermatocytes and round spermatids. In 293T cells, TBC1D9-GFP proteins were localized in the endosome and Golgi apparatus. Compartments that were positive for the constitutive active mutants of Rab7 and Rab9 were also positive for TBC1D9 isoform 1. In addition, TBC1D9 proteins were associated with Rab7 and Rab9, respectively. These results indicate that TBC1D9 is expressed mainly in spermatocytes, and suggest that TBC1D9 regulates membrane trafficking pathways related to Rab9- or Rab7-positive vesicles.

  14. Photoactivatable Drug-Caged Fluorophore Conjugate Allows Direct Quantification of Intracellular Drug Transport

    Science.gov (United States)

    Kohler, Rainer H.; Weissleder, Ralph

    2013-01-01

    We report here a method that utilizes photoactivatable drug-caged fluorophore conjugate to quantify intracellular drug trafficking processes at single cell resolution. Photoactivation is performed in labeled cellular compartments to visualize intracellular drug exchange at physiologic conditions, without the need for washing, facilitating its translation to in vivo cancer models. PMID:24135896

  15. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  16. Illicit Nuclear Trafficking Scams

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    Nuclear Trafficking Scams are situations where the scam artist(s) offer something (material or information) that is not what he/she/they represent it to be. Example of a scam is when attempt is made to sell fake nuclear material. The offered material may not be nuclear material or may be of a lower grade. The offered material may not actually exist . Radioactive material may be offered as nuclear material. A small sample of actual nuclear material may be offered, but the bulk material may be something else.

  17. Investigation of SNARE-Mediated Membrane Trafficking in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Li, Xin

    2003-01-01

    In order to better understand how polarized membrane trafficking pathways change during the loss of epithelial cell polarity during cancer progression we have studied syntaxins 3 and 4 in prostate cancer...

  18. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis.

  19. Sucrose Ingestion Induces Rapid AMPA Receptor Trafficking

    Science.gov (United States)

    Tukey, David S.; Ferreira, Jainne M.; Antoine, Shannon O.; D’amour, James A.; Ninan, Ipe; de Vaca, Soledad Cabeza; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K.; Hartner, Diana T.; Guarini, Carlo B.; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F.; Khatri, Megna; Marzan, Dave S.; Mahajan, Shahana S.; Wang, Jing; Froemke, Robert C.; Carr, Kenneth D.; Aoki, Chiye; Ziff, Edward B.

    2013-01-01

    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPA receptors containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca2+-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPA receptors. Electrophysiological, biochemical and quantitative electron microscopy studies revealed that sucrose training (7 days) induced a stable (>24 hr) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 hr) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7-day protocol of daily ingestion of a 3% solution of saccharin, a non-caloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multi-step GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose. PMID:23554493

  20. Localization and Trafficking of Amyloid-β Protein Precursor and Secretases: Impact on Alzheimer's Disease.

    Science.gov (United States)

    Agostinho, Paula; Pliássova, Anna; Oliveira, Catarina R; Cunha, Rodrigo A

    2015-01-01

    Alzheimer's disease (AD) affects almost 35 million people worldwide. One of the neuropathological features of AD is the presence of extracellular amyloid plaques, which are mainly composed of amyloid-β (Aβ) peptides. These peptides derive from the amyloidogenic proteolytic processing of the amyloid-β protein precursor (AβPP), through the sequential action of β- and γ-secretases. However, AβPP can also be cleaved by a non-amyloidogenic pathway, involving an α-secretase, and in this case the Aβ formation is precluded. The production of Aβ and of other AβPP catabolites depends on the spatial and temporal co-localization of AβPP with α- or β-secretases and γ-secretase, which traffic through the secretory pathway in a highly regulated manner. Disturbances on AβPP and secretases intracellular trafficking and, consequently, in their localization may affect dynamic interactions between these proteins with consequences in the AD pathogenesis. In this article, we critically review the recent knowledge about the trafficking and co-localization of AβPP and related secretases in the brain under physiological and AD conditions. A particular focus is given to data concerning the distribution of AβPP and secretases in different types of synapses relatively to other neuronal or glial localizations. Furthermore, we discuss some possible signals that govern the dynamic encounter of AβPP with each group of secretases, such as AβPP mutations, estrogen deprivation, chronic stress, metabolic impairment, and alterations in sleep pattern-associated with aging. The knowledge of key signals that are responsible for the shifting of AβPP processing away from α-secretases and toward the β-secretases might be useful to develop AD therapeutic strategies.

  1. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  2. HUMAN TRAFFICKING DRUG TRAFFICKING, AND THE DEATH PENALTY

    Directory of Open Access Journals (Sweden)

    Felicity Gerry

    2016-12-01

    Full Text Available Both Australia and Indonesia have made commitments to combatting human trafficking.  Through the experience of Mary Jane Veloso it can be seen that it is most often the vulnerable ‘mule’ that is apprehended by law enforcement and not the powerful leaders of crime syndicates. It is unacceptable that those vulnerable individuals may face execution for acts committed under threat of force, coercion, fraud, deception or abuse of power. For this reason it is vital that a system of victim identification is developed, including better training for law enforcement, legal representatives and members of the judiciary. This paper builds on submissions by authors for Australian Parliamentary Inquiry into Human Trafficking, and focusses on issues arising in the complex cross section of human trafficking, drug trafficking, and the death penalty with particular attention on identifying victims and effective reporting mechanisms in both Australia and Indonesia. It concludes that, in the context of human trafficking both countries could make three main improvements to law and policy, among others, 1 enactment of laws that create clear mandatory protection for human trafficking victims; 2 enactment of criminal laws that provides complete defence for victim of human trafficking; 3 enactment of corporate reporting mechanisms. Systemic protection and support is not sufficiently available without clear legislative protection as this paper suggests together with standardised referral mechanisms and effective financial reporting mechanisms. The implementation can be achieved through collaborative responses and inter-agency coordination with data collection and properly trained specialists.

  3. Switching of N-Methyl-d-aspartate (NMDA) Receptor-favorite Intracellular Signal Pathways from ERK1/2 Protein to p38 Mitogen-activated Protein Kinase Leads to Developmental Changes in NMDA Neurotoxicity*

    Science.gov (United States)

    Xiao, Lin; Hu, Chun; Feng, Chunzhi; Chen, Yizhang

    2011-01-01

    Excitotoxicity mediated by overactivation of N-methyl-d-aspartate receptors (NMDARs) has been implicated in a variety of neuropathological conditions in the central nervous system (CNS). It has been suggested that N-methyl-d-aspartate (NMDA) neurotoxicity is developmentally regulated, but the definite pattern of the regulation has been controversial, and the underlying mechanism remains largely unknown. Here, we show that NMDA treatment leads to significant cell death in mature (9 and 12 days in vitro) hippocampal neurons or hippocampi of young postnatal day 12 and adult rats but not in immature (3 and 6 days in vitro) neurons or embryonic day 18 and neonatal rat hippocampi. In contrast, NMDA promotes survival of immature neurons against tropic deprivation. Interestingly, it is found that NMDA preferentially activates p38 MAPK in mature neuron and adult rat hippocampus, but it favors ERK1/2 activation in immature neuron and postnatal day 0 rat hippocampus. Moreover, it is shown that NMDA neurotoxicity in mature neuron is mediated via p38 MAPK activation, and neuroprotection in immature neuron is mediated via ERK1/2 activation, whereas all these effects are NR2B-containing NMDAR-dependent, as well as Ca2+-dependent. We also revealed that mature and immature neurons showed no difference in the amplitude of NMDA-induced intracellular calcium ([Ca2+]i) increase. However, the basal level of [Ca2+]i is shown to elevate with the maturation of neuron, and this elevation is attributable to the changes in NMDA neurotoxicity but not to the switch of the NMDAR signaling pathway. Taken together, our results suggest that a switch of NMDA receptor-favorite intracellular signal pathways from ERK1/2 to p38 MAPK and the elevated basal level of [Ca2+]i with age might be critical for the developmental changes in NMDA neurotoxicity in the hippocampal neuron. PMID:21474451

  4. Switching of N-methyl-D-aspartate (NMDA) receptor-favorite intracellular signal pathways from ERK1/2 protein to p38 mitogen-activated protein kinase leads to developmental changes in NMDA neurotoxicity.

    Science.gov (United States)

    Xiao, Lin; Hu, Chun; Feng, Chunzhi; Chen, Yizhang

    2011-06-10

    Excitotoxicity mediated by overactivation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in a variety of neuropathological conditions in the central nervous system (CNS). It has been suggested that N-methyl-D-aspartate (NMDA) neurotoxicity is developmentally regulated, but the definite pattern of the regulation has been controversial, and the underlying mechanism remains largely unknown. Here, we show that NMDA treatment leads to significant cell death in mature (9 and 12 days in vitro) hippocampal neurons or hippocampi of young postnatal day 12 and adult rats but not in immature (3 and 6 days in vitro) neurons or embryonic day 18 and neonatal rat hippocampi. In contrast, NMDA promotes survival of immature neurons against tropic deprivation. Interestingly, it is found that NMDA preferentially activates p38 MAPK in mature neuron and adult rat hippocampus, but it favors ERK1/2 activation in immature neuron and postnatal day 0 rat hippocampus. Moreover, it is shown that NMDA neurotoxicity in mature neuron is mediated via p38 MAPK activation, and neuroprotection in immature neuron is mediated via ERK1/2 activation, whereas all these effects are NR2B-containing NMDAR-dependent, as well as Ca(2+)-dependent. We also revealed that mature and immature neurons showed no difference in the amplitude of NMDA-induced intracellular calcium ([Ca(2+)](i)) increase. However, the basal level of [Ca(2+)](i) is shown to elevate with the maturation of neuron, and this elevation is attributable to the changes in NMDA neurotoxicity but not to the switch of the NMDAR signaling pathway. Taken together, our results suggest that a switch of NMDA receptor-favorite intracellular signal pathways from ERK1/2 to p38 MAPK and the elevated basal level of [Ca(2+)](i) with age might be critical for the developmental changes in NMDA neurotoxicity in the hippocampal neuron.

  5. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution.

    Science.gov (United States)

    Bertoli, Filippo; Garry, David; Monopoli, Marco P; Salvati, Anna; Dawson, Kenneth A

    2016-11-22

    It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.

  6. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    Science.gov (United States)

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    Science.gov (United States)

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  8. Characterization of intracellular dynamics of inoculated PrP-res and newly generated PrPSc during early stage prion infection in Neuro2a cells

    Science.gov (United States)

    Yamasaki, Takeshi; Baron, Gerald S; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2014-01-01

    Summary To clarify the cellular mechanisms for the establishment of prion infection, we analyzed the intracellular dynamics of inoculated and newly generated abnormal isoform of prion protein (PrPSc) in Neuro2a cells. Within 24 h after inoculation, the newly generated PrPSc was evident at the plasma membrane, in early endosomes, and in late endosomes, but this PrPSc was barely evident in lysosomes; in contrast, the majority of the inoculated PrPSc was evident in late endosomes and lysosomes. However, during the subsequent 48 h, the newly generated PrPSc increased remarkably in early endosomes and recycling endosomes. Overexpression of wild-type and mutant Rab proteins showed that membrane trafficking along not only the endocytic-recycling pathway but also the endo-lysosomal pathway is involved in de novo PrPSc generation. These results suggest that the trafficking of exogenously introduced PrPSc from the endo-lysosomal pathway to the endocytic-recycling pathway is important for the establishment of prion infection. PMID:24503096

  9. Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks.

    Science.gov (United States)

    Schoenherr, Christina; Byron, Adam; Sandilands, Emma; Paliashvili, Ketevan; Baillie, George S; Garcia-Munoz, Amaya; Valacca, Cristina; Cecconi, Francesco; Serrels, Bryan; Frame, Margaret C

    2017-03-31

    Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.

  10. Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner.

    Science.gov (United States)

    Alford, Justine E; Marongiu, Michela; Watkins, Gemma L; Anderson, Emma C

    2016-01-01

    Although human immunodeficiency virus (HIV) types 1 and 2 are closely related lentiviruses with similar replication cycles, HIV-2 infection is associated with slower progression to AIDS, a higher proportion of long term non-progressors, and lower rates of transmission than HIV-1, likely as a consequence of a lower viral load during HIV-2 infection. A mechanistic explanation for the differential viral load remains unclear but knowledge of differences in particle production between HIV-1 and HIV-2 may help to shed light on this issue. In contrast to HIV-1, little is known about the assembly of HIV-2 particles, and the trafficking of HIV-2 Gag, the structural component of the virus, within cells. We have established that HIV-2 Gag accumulates in intracellular CD63 positive compartments, from which it may be delivered or recycled to the cell surface, or degraded. HIV-2 particle release was dependent on the adaptor protein complex AP-3 and the newly identified AP-5 complex, but much less so on AP-1. In contrast, HIV-1 particle release required AP-1 and AP-3, but not AP-5. AP-2, an essential component of clathrin-mediated endocytosis, which was previously shown to be inhibitory to HIV-1 particle release, had no effect on HIV-2. The differential requirement for adaptor protein complexes confirmed that HIV-1 and HIV-2 Gag have distinct cellular trafficking pathways, and that HIV-2 particles may be more susceptible to degradation prior to release.

  11. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion.

    Science.gov (United States)

    Hiltunen, Mikko; Lu, Alice; Thomas, Anne V; Romano, Donna M; Kim, Minji; Jones, Phill B; Xie, Zhongcong; Kounnas, Maria Z; Wagner, Steven L; Berezovska, Oksana; Hyman, Bradley T; Tesco, Giuseppina; Bertram, Lars; Tanzi, Rudolph E

    2006-10-27

    Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.

  12. Roles of membrane trafficking in plant cell wall dynamics

    Directory of Open Access Journals (Sweden)

    Kazuo eEbine

    2015-10-01

    Full Text Available The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.

  13. Herpes simplex virus type I induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells.

    Science.gov (United States)

    Santana, Soraya; Recuero, Maria; Bullido, Maria Jesús; Valdivieso, Fernando; Aldudo, Jesus

    2012-02-01

    Mounting evidence suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer's disease (AD). Epidemiological analyses have shown that HSV-1 is a risk factor for AD in people with at least 1 type 4 allele of the apolipoprotein E gene. Recent studies have also suggested that HSV-1 contributes to the appearance of the biochemical anomalies characteristic of AD brains. In addition, autophagic activity appears to be reduced with aging, and the final stages of autophagy in neurodegenerative process appear to be impaired. The present work reports that HSV-1 provokes the strong intracellular accumulation of both the main species of β-amyloid (Aβ) in the autophagic compartments and that it is associated with a marked inhibition of Aβ secretion. Autophagosomes containing Aβ failed to fuse with lysosomes in HSV-1-infected cells, indicating the impaired degradation of Aβ localized in the autophagic vesicles. In addition, HSV-1 infection was associated with the inhibition of the nonamyloidogenic pathway of amyloid precursor protein (APP) processing without significantly affecting the activity of the secretases involved in the amyloidogenic pathway. Taken together, these data suggest that HSV-1 infection modulates autophagy and amyloid precursor protein processing, contributing to the accumulation of Aβ characteristic of AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    IAS Admin

    hemophagocytic syndrome) and metabolic (diabe- tes) disorders [2, 23, 33]. Mutations in the genes of the basic secretory protein machinery lead to a number of membrane trafficking diseases such as Charcot–Marie–Tooth disease, Cohen.

  15. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways.

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-12-13

    Ca(2+) and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca(2+) and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca(2+)]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca(2+) and Wnt/β-catenin pathways act in a coordinated manner and that [Ca(2+)]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca(2+)]i but Wnt11 did not. Based upon dwell time (range = 15-30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca(2+)]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca(2+)]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca(2+)]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca(2+) and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner.

  16. Sex trafficking in South Asia.

    Science.gov (United States)

    Huda, S

    2006-09-01

    Economic and social inequalities and political conflicts have led to the movement of persons within each country and across the borders in South Asia. Globalization has encouraged free mobility of capital, technology, experts and sex tourism. Illiteracy, dependency, violence, social stigma, cultural stereotypes, gender disparity and endemic poverty, among other factors, place women and children in powerless, non-negotiable situations that have contributed to the emergence and breeding of the cavernous problem of sex trafficking in the entire region. This alarming spread of sex trafficking has fuelled the spread of HIV infection in South Asia, posing a unique and serious threat to community health, poverty alleviation and other crucial aspects of human development. Although the SAARC (South Asian Association for Regional Cooperation) Convention on Trafficking in Women and Children has been an important breakthrough, most of the countries in the region do not have anti-trafficking legislation or means to protect the victims. Countries of the region should make a concerted effort to treat trafficking victims as "victims" of human rights violations in all anti-trafficking strategies and actions.

  17. Protective effects of Cassia tora leaves in experimental cataract by modulating intracellular communication, membrane co-transporters, energy metabolism and the ubiquitin-proteasome pathway.

    Science.gov (United States)

    Sreelakshmi, V; Abraham, Annie

    2017-12-01

    Cataract is the clouding of eye lens which causes impairment in vision and accounts for the leading factor of global blindness. Functional food-based prevention of cataract finds application in vision research because of its availability and easy access to all classes of the society. Cassia tora Linn. (Caesalpinaceae) is an edible plant mentioned in the traditional systems of medicine for whole body health, especially to the eyes. The present study evaluates the potential of ethyl acetate fraction of Cassia tora leaves (ECT) on experimental cataract. Cataract was induced by a single subcutaneous injection of sodium selenite (4 μg/g body weight) on 10th day. ECT was supplemented orally from 8th day up to 12th day at a concentration of 5 μg/g body weight and marker parameters were evaluated after 30 days. The production of MPO and the activation of calpain were reduced 52.17% and 36.67% by ECT in lens tissue, respectively. It modulated the energy status by significantly increasing the activity of CCO 1 (55.56%) and ATP production (41.88%). ECT maintained the ionic balance in the lens by reducing the level of sodium (50%) and increasing the level of potassium (42.5%). It also reduced cell junction modifications and preserved a functional ubiquitin-proteasome pathway. The results reinforce the growing attention on wild plant food resources for preventive protection against cataract. The data suggest the value of Cassia tora leaves as a functional food for ameliorating cataract pathology.

  18. To discuss illicit nuclear trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Galya I [Los Alamos National Laboratory; Severe, William R [Los Alamos National Laboratory; Wallace, Richard K [Los Alamos National Laboratory

    2010-01-01

    The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' The Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope

  19. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emily Bergbower

    2018-01-01

    Full Text Available Background/Aims: The CFTR-Associated Ligand (CAL, a PDZ domain containing protein with two coiled-coil domains, reduces cell surface WT CFTR through degradation in the lysosome by a well-characterized mechanism. However, CAL’s regulatory effect on ΔF508 CFTR has remained almost entirely uninvestigated. Methods: In this study, we describe a previously unknown pathway for CAL by which it regulates the membrane expression of ΔF508 CFTR through arrest of ΔF508 CFTR trafficking in the endoplasmic reticulum (ER using a combination of cell biology, biochemistry and electrophysiology. Results: We demonstrate that CAL is an ER localized protein that binds to ΔF508 CFTR and is degraded in the 26S proteasome. When CAL is inhibited, ΔF508 CFTR retention in the ER decreases and cell surface expression of mature functional ΔF508 CFTR is observed alongside of enhanced expression of plasma membrane scaffolding protein NHERF1. Chaperone proteins regulate this novel process, and ΔF508 CFTR binding to HSP40, HSP90, HSP70, VCP, and Aha1 changes to improve ΔF508 CFTR cell surface trafficking. Conclusion: Our results reveal a pathway in which CAL regulates the cell surface availability and intracellular retention of ΔF508 CFTR.

  20. Endosomal "sort" of signaling control: The role of ESCRT machinery in regulation of receptor-mediated signaling pathways.

    Science.gov (United States)

    Szymanska, Ewelina; Budick-Harmelin, Noga; Miaczynska, Marta

    2018-02-01

    The endosomal sorting complexes required for transport (ESCRTs) machinery consists of four protein assemblies (ESCRT-0 to -III subcomplexes) which mediate various processes of membrane remodeling in the cell. In the endocytic pathway, ESCRTs sort cargo destined for degradation into intraluminal vesicles (ILVs) of endosomes. Cargos targeted by ESCRTs include various signaling molecules, mainly internalized cell-surface receptors but also some cytosolic proteins. It is therefore expected that aberrant trafficking caused by ESCRT dysfunction affects different signaling pathways. Here we review how perturbation of ESCRT activity alters intracellular transport of membrane receptors, causing their accumulation on endocytic compartments, decreased degradation and/or altered recycling to the plasma membrane. We further describe how perturbed trafficking of receptors impacts the activity of their downstream signaling pathways, with or without changes in transcriptional responses. Finally, we present evidence that ESCRT components can also control activity and intracellular distribution of cytosolic signaling proteins (kinases, other effectors and soluble receptors). The underlying mechanisms involve sequestration of such proteins in ILVs, their sorting for degradation or towards non-lysosomal destinations, and regulating their availability in various cellular compartments. All these ESCRT-mediated processes can modulate final outputs of multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Trafficking in persons: a health concern?

    Directory of Open Access Journals (Sweden)

    Cathy Zimmerman

    Full Text Available Human trafficking is a phenomenon that has now been documented in most regions in the world. Although trafficking of women and girls for sexual exploitation is the most commonly recognised form of trafficking, it is widely acknowledged that human trafficking also involves men, women and children who are trafficked for various forms of labour exploitation and into other abusive circumstances. Despite the violence and harm inherent in most trafficking situations, there remains extremely little evidence on the individual and public health implications of any form of human trafficking. The Brazilian government has recently launched a national plan to combat human trafficking. However, because the health risks associated with human trafficking have not been well-recognised or documented, there is extremely limited reliable data on the health needs of trafficked persons to inform policy and practices.. Brazilian policy-makers and service providers should be encouraged to learn about the likely range of health impacts of trafficking, and incorporate this into anti-trafficking protection and response strategies. As well as prevention activities, the government, international and local organisations should work together with the public health research community to study the health needs of trafficked persons and explore opportunities to provide safe and appropriate services to victims in need of care.

  2. Trafficking: a perspective from Asia.

    Science.gov (United States)

    Skeldon, R

    2000-01-01

    The main theme of this article is market development and trafficking as a business. It touches upon most of the aspects of the phenomenon, which have been encountered elsewhere, and translates them into the relatively unfamiliar context of many of the Asian and South-East Asian economies. Equally, the literature cited is also probably unfamiliar. Themes touched upon include democratization, inter-state relations, human rights, and scale and perspectives, together with the problems of definitions, theory, and the reliability of data. The directions and characteristics of trafficking flows together with routes and border control are also considered. Coordinated official responses to criminality and criminal organizations, as well as to trafficked individuals, are beginning to emerge. There is a note of caution sounded that contextual and cultural perspectives, particularly on sex workers, must be viewed somewhat differently to those in Western societies. The article concludes that as long as countries in Asia maintain their policies of restrictive immigration, trafficking can be expected to continue and almost certainly increase. This is because accelerating development creates demand for labor at various skill levels and because even in times of recession migrants and brokers will seek to side-step attempts to expel immigrants and restrict access to labor markets. The elimination of trafficking is unlikely to be realistically achieved through legislation and declarations of intent but by improvements in the socioeconomic status of the population.

  3. Ghrelin modulates gene and protein expression of digestive enzymes in the intestine and hepatopancreas of goldfish (Carassius auratus) via the GHS-R1a: Possible roles of PLC/PKC and AC/PKA intracellular signaling pathways.

    Science.gov (United States)

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Sánchez-Bretaño, Aída; Delgado, María Jesús; Valenciano, Ana Isabel; Unniappan, Suraj

    2017-02-15

    Ghrelin, a multifunctional gut-brain hormone, is involved in the regulation of gastric functions in mammals. This study aimed to determine whether ghrelin modulates digestive enzymes in goldfish (Carassius auratus). Immunofluorescence microscopy found colocalization of ghrelin, GHS-R1a and the digestive enzymes sucrase-isomaltase, aminopeptidase A, trypsin and lipoprotein lipase in intestinal and hepatopancreatic cells. In vitro ghrelin treatment in intestinal and hepatopancreas explant culture led to a concentration- and time-dependent modulation (mainly stimulatory) of most of the digestive enzymes tested. The ghrelin-induced upregulations of digestive enzyme expression were all abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6, and most of them by the phospholipase C inhibitor U73122 or the protein kinase A inhibitor H89. This indicates that ghrelin effects on digestive enzymes are mediated by GHS-R1a, partly by triggering the PLC/PKC and AC/PKA intracellular signaling pathways. These data suggest a role for ghrelin on digestive processes in fish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Metabolic inhibitors as tools to delineate participation of distinct intracellular pathways in enhancement of lactose-induced dissociation of neutrophil and thymocyte aggregates formed by mediation of a plant lectin.

    Science.gov (United States)

    Timoshenko, A V; Gorudko, I V; Kaltner, H; Cherenkevich, S N; Gabius, H J

    1997-10-01

    Signaling processes in the course of the formation of the lectin-mediated aggregates may partake in conveying enhanced stability to the cell clusters. To prove the validity of this reasoning in a model, we have studied the impact of addition of three metabolic inhibitors (N-ethylmaleimide, nordihydroguaiaretic acid, and trifluoperazine) on lactose-dependent dissociation of cell aggregates, formed in the presence of the galactoside-binding mistletoe lectin. Using both human neutrophils and rat thymocytes to avoid measurement of responses restricted to a single cell type, an enhanced dissociation of lectin-formed cell aggregates was observed, when lactose and an inhibitor were present. Among the tested inhibitors, nordihydroguaiaretic acid and N-ethylmaleimide were more potent enhancers of cell dissociation than trifluoperazine. These results suggest that biosignalling pathways connected with lipoxygenase activity as well as the level of intracellular sulfhydryl groups confer further stability to lectin-dependent cell aggregates. The systematic evaluation of inhibitors for defined activities is thus suggested as a tool to disclose the nature and the contribution of individual signaling mechanisms to post-binding effects following lectin-initiated cell contact formation.

  5. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  6. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC.

    Science.gov (United States)

    Garbarino, Jeanne; Pan, Meihui; Chin, Harvey F; Lund, Frederik W; Maxfield, Frederick R; Breslow, Jan L

    2012-12-01

    STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.

  7. Understanding human trafficking in the United States.

    Science.gov (United States)

    Logan, T K; Walker, Robert; Hunt, Gretchen

    2009-01-01

    The topic of modern-day slavery or human trafficking has received increased media and national attention. However, to date there has been limited research on the nature and scope of human trafficking in the United States. This article describes and synthesizes nine reports that assess the U.S. service organizations' legal representative knowledge of, and experience with, human trafficking cases, as well as information from actual cases and media reports. This article has five main goals: (a) to define what human trafficking is, and is not; (b) to describe factors identified as contributing to vulnerability to being trafficked and keeping a person entrapped in the situation; (c) to examine how the crime of human trafficking differs from other kinds of crimes in the United States; (d) to explore how human trafficking victims are identified; and, (e) to provide recommendations to better address human trafficking in the United States.

  8. Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking.

    Science.gov (United States)

    Ji, Yuan; Takanari, Hiroki; Qile, Muge; Nalos, Lukas; Houtman, Marien J C; Romunde, Fee L; Heukers, Raimond; van Bergen En Henegouwen, Paul M P; Vos, Marc A; van der Heyden, Marcel A G

    2017-10-01

    Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. K IR 2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (I K 1 ), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in K IR 2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited I K 1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased K IR 2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 μM, 24 hrs) and late-endosomal/lysosomal K IR 2.1 accumulation. Increased K IR 2.1 expression level was also observed in the presence of Na v 1.5 co-expression. Augmented K IR 2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on K v 11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P KIR 2.1 upon 24-hrs treatment, whereas dronedarone tended to increase I KIR 2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at -120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced I K 1 by inhibiting K IR 2.1 degradation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Does Legalized Prostitution Increase Human Trafficking?

    OpenAIRE

    Seo-Young Cho; Axel Dreher; Eric Neumayer

    2012-01-01

    This paper investigates the impact of legalized prostitution on human trafficking inflows. According to economic theory, there are two opposing effects of unknown magnitude. The scale effect of legalized prostitution leads to an expansion of the prostitution market, increasing human trafficking, while the substitution effect reduces demand for trafficked women as legal prostitutes are favored over trafficked ones. Our empirical analysis for a cross-section of up to 150 countries shows that th...

  10. Sex trafficking and the exploitation of adolescents.

    Science.gov (United States)

    McClain, Natalie M; Garrity, Stacy E

    2011-01-01

    Human trafficking affects a surprisingly large number of adolescents around the globe. Women and girls make up the majority of sex trafficking victims. Nurses must be aware of sex trafficking as a form of sexual violence in the adolescent population. Nurses can play a role in identifying, intervening, and advocating for victims of human trafficking as they currently do for patients that are the victims of other types of violent crimes. © 2011 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  11. Security Implications of Human-Trafficking Networks

    Science.gov (United States)

    2007-06-15

    to those security concerns. Background How is Human Trafficking Carried Out? While trafficking victims are often found in sweatshops , domestic...labor. This type of trafficking is often found in agricultural labor, the production of goods (typically called sweatshops ) and construction labor

  12. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  13. Human trafficking in domestic legislature

    Directory of Open Access Journals (Sweden)

    Skakavac Zdravko

    2008-01-01

    Full Text Available Human trafficking is an occurrence that, even in our time, is present in alarming proportions, in its actuality and consequences. It is a phenomenon with a long history and has been qualified as a serious international problem and is the object of interest for a large number of international subjects. However, the key international document that defines this phenomenon is the Convention against Transnational Organized Crime from Palermo 2000; specifically its Protocol to Prevent, Suppress and Punish Trafficking in Persons, especially Women and Children. After its adoption, intensive actions were undertaken to regulate the phenomenon on the level of national legislature. It's done so in the local legislature too. According to the criminal law of the republic of Serbia, besides the concrete law against human trafficking, a number of other crimes are connected to human trafficking. This paper deals with the most important ones. The purpose of this paper is to review the legislature on the phenomenon in the domestic law, then the accordance of incrimination with international standards, as well as to indicate the need for further changes in domestic legislature.

  14. Routledge handbook of human trafficking

    NARCIS (Netherlands)

    Rijken, Conny; Piotrowicz, Ryszard; Uhl, Baerbe Heide

    2017-01-01

    Trafficking in human beings (THB) has been described as modern slavery. It is a serious criminal activity that has significant ramifications for the human rights of the victims. It poses major challenges to the state, society and individual victims. THB is not a static given but a constantly

  15. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  16. Anti-Human Trafficking Interventions

    Science.gov (United States)

    Davy, Deanna

    2016-01-01

    Since the early 2000s, a significant number of programs and policies have been developed and implemented to prevent and combat human trafficking. At the international, regional and national levels, government, and international, and nongovernment organizations have established plans of action, conducted training, developed policy tools, and…

  17. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    Science.gov (United States)

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  18. Human trafficking and the healthcare professional.

    Science.gov (United States)

    Barrows, Jeffrey; Finger, Reginald

    2008-05-01

    Despite the legislation passed in the 19th century outlawing human slavery, it is more widespread today than at the conclusion of the civil war. Modern human slavery, termed human trafficking, comes in several forms. The most common type of human trafficking is sex trafficking, the sale of women and children into prostitution. Labor trafficking is the sale of men, women, and children into hard labor for which they receive little or no compensation. Other forms of trafficking include child soldiering, war brides, and organ removal. Healthcare professionals play a critical role in both finding victims of human trafficking while they are still in captivity, as well as caring for their mental and physical needs upon release. Those working in the healthcare profession need to be educated regarding how a trafficking victim may present, as well as their unique healthcare needs.

  19. Spatio-temporal dependence of the signaling response in immune-receptor trafficking networks regulated by cell density: a theoretical model.

    Directory of Open Access Journals (Sweden)

    Pilar García-Peñarrubia

    Full Text Available Cell signaling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signaling pathways. In most experimental systems, ligand concentration and cell density vary within a wide range of values. Dependence of the signal response on cell density is related with the extracellular volume available per cell. This dependence has previously been studied using non-spatial models which assume that signaling components are well mixed and uniformly distributed in a single compartment. In this paper, a mathematical model that shows the influence exerted by cell density on the spatio-temporal evolution of ligands, cell surface receptors, and intracellular signaling molecules is developed. To this end, partial differential equations were used to model ligand and receptor trafficking dynamics through the different domains of the whole system. This enabled us to analyze several interesting features involved with these systems, namely: a how the perturbation caused by the signaling response propagates through the system; b receptor internalization dynamics and how cell density affects the robustness of dose-response curves upon variation of the binding affinity; and c that enhanced correlations between ligand input and system response are obtained under conditions that result in larger perturbations of the equilibrium ligand + surface receptor [Please see text] ligand - receptor complex. Finally, the results are compared with those obtained by considering that the above components are well mixed in a single compartment.

  20. Traffic jam: a compendium of human diseases that affect intracellular transport processes.

    Science.gov (United States)

    Aridor, M; Hannan, L A

    2000-11-01

    As sequencing of the human genome nears completion, the genes that cause many human diseases are being identified and functionally described. This has revealed that many human diseases are due to defects of intracellular trafficking. This 'Toolbox' catalogs and briefly describes these diseases.

  1. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Ganguli P, Chowdhury S, Bhowmick R and Sarkar RR 2015 Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A ... cells and tissues by studying different signalling pathways, such as Hedgehog ...... Murray JD 2003 On the mechanochemical theory of biological.

  2. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    Directory of Open Access Journals (Sweden)

    Sarah J Fletcher

    Full Text Available Tight junctions (TJs link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes. By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  3. Roles of rho GTPases in intracellular transport and cellular transformation.

    Science.gov (United States)

    Chi, Xiaojuan; Wang, Song; Huang, Yifan; Stamnes, Mark; Chen, Ji-Long

    2013-03-28

    Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.

  4. Maternity care for trafficked women: Survivor experiences and clinicians' perspectives in the United Kingdom's National Health Service.

    Science.gov (United States)

    Bick, Debra; Howard, Louise M; Oram, Sian; Zimmerman, Cathy

    2017-01-01

    . Given the prevalence of sexual exploitation and abuse among trafficking survivors, clinicians should ensure antenatal care and screening for sexually transmitted infections can be readily accessed by women. Clinicians require specialised training alongside designated pathways and protocols with clear referral options to ensure confidential maternity care tailored to each woman's needs.

  5. Maternity care for trafficked women: Survivor experiences and clinicians' perspectives in the United Kingdom's National Health Service.

    Directory of Open Access Journals (Sweden)

    Debra Bick

    and care. Given the prevalence of sexual exploitation and abuse among trafficking survivors, clinicians should ensure antenatal care and screening for sexually transmitted infections can be readily accessed by women. Clinicians require specialised training alongside designated pathways and protocols with clear referral options to ensure confidential maternity care tailored to each woman's needs.

  6. The trafficking of women and the role of the midwife.

    Science.gov (United States)

    Tizard, Hannah

    2016-04-01

    Health can be contextualised in relation to globalisation. Economic and societal influences, increasing gaps between middle income and impoverished groups, mass media, culture sexualisation, consumerism, psychological control and criminal activities, such as the drugs and sex trades, amplify challenges to maintaining the health and wellbeing of populations (Lee 2004). UK policy makers develop tools to determine care pathways, in theory allowing those working in public health roles to support individuals to better long-term health. The health needs of trafficked women and the role of the midwife require particular consideration so that this group is not further exposed and unprotected. It requires partnership with a great number of agencies within healthcare itself, but also with charities, government bodies, external organisations and the police. This article explores the health problems associated with the trafficking of women and the clinical implications in the identification and treatment of these victims for the midwife in a public health capacity.

  7. Glycerolipid synthesis and lipid trafficking in plant mitochondria.

    Science.gov (United States)

    Michaud, Morgane; Prinz, William A; Jouhet, Juliette

    2017-02-01

    Lipid trafficking between mitochondria and other organelles is required for mitochondrial membrane biogenesis and signaling. This lipid exchange occurs by poorly understood nonvesicular mechanisms. In yeast and mammalian cells, this lipid exchange is thought to take place at contact sites between mitochondria and the ER or vacuolar membranes. Some proteins involved in the tethering between membranes or in the transfer of lipids in mitochondria have been identified. However, in plants, little is known about the synthesis of mitochondrial membranes. Mitochondrial membrane biogenesis is particularly important and noteworthy in plants as the lipid composition of mitochondrial membranes is dramatically changed during phosphate starvation and other stresses. This review focuses on the principal pathways involved in the synthesis of the most abundant mitochondrial glycerolipids in plants and the lipid trafficking that is required for plant mitochondria membrane biogenesis. © 2016 Federation of European Biochemical Societies.

  8. Central Asian Drug Trafficking Dilemma

    Science.gov (United States)

    2003-12-01

    Afghanistan and Central Asia have made the region a perfect environment for drug trafficking and use. Weakened governments, corrupt officials, lack of...expanding and increasing the role of the KOGG. If governments in Central Asia are serious about wanting stability, corruption is one of the most...concerning expanding and increasing the role of the KOGG. If governments in Central Asia are serious about wanting stability, corruption is one of the most

  9. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    Science.gov (United States)

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  10. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    Science.gov (United States)

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The political aspects of human trafficking

    Directory of Open Access Journals (Sweden)

    N. M. Lukach

    2014-01-01

    The negative international results of human trafficking are researched by the author. Namely, problems of governance organization that are created by powerful criminal groups of human traffickers and smugglers, mass stay of a significant number of non­citizens in the country; formation of the negative international image of the origin, destination or transit country as the state which is unable to counter effectively illegal migration and human trafficking.

  12. Human organ trafficking in the cyber space

    Directory of Open Access Journals (Sweden)

    Vuletić Dejan

    2009-01-01

    Full Text Available The accelerated growth of the information-communication technology use brought about cyber crime as a new form of crime connected with the misuse of computer network. Human trafficking and human organ trafficking are changing in line with the state-of-art technological achievements i.e. becoming more and more characteristic of cyber space. Passing appropriate regulations at both national and international levels presents an important step in solving the problem of human organ trafficking through Internet.

  13. Human trafficking and exploitation: A global health concern.

    Science.gov (United States)

    Zimmerman, Cathy; Kiss, Ligia

    2017-11-01

    In this collection review, Cathy Zimmerman and colleague introduce the PLOS Medicine Collection on Human Trafficking, Exploitation and Health, laying out the magnitude of the global trafficking problem and offering a public health policy framework to guide responses to trafficking.

  14. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia.

    Science.gov (United States)

    Caparrós-Martín, Jose A; Valencia, María; Reytor, Edel; Pacheco, María; Fernandez, Margarita; Perez-Aytes, Antonio; Gean, Esther; Lapunzina, Pablo; Peters, Heiko; Goodship, Judith A; Ruiz-Perez, Victor L

    2013-01-01

    Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyer's acrodental dysostosis (Evc2Δ43) caused mislocalization of Evc/Evc2Δ43 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2(-/-) chondrocytes. Moreover, Evc silencing in Sufu(-/-) cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation.

  15. Intensifying Insecurities: The impact of climate change on vulnerability to human trafficking in the Indian Sundarbans

    Directory of Open Access Journals (Sweden)

    Nicole Molinari

    2017-04-01

    Full Text Available Despite an enormous amount of attention paid to the factors that shape vulnerability to human trafficking, such as poverty and a lack of economic opportunity, the debate of evidence for what enables these factors to exist in the first place is relatively less explored. Presently, discussions of the relationship between climate change and human insecurity have been marginal to broader debates about vulnerability to trafficking. This paper argues that this signifies a gap in our understanding of the underlying drivers that push individuals and communities into situations where vulnerability to trafficking amplifies, but also that increase the pull of risky migration pathways and exploitative work situations. This paper proceeds by examining and problematising dominant conceptualisations of vulnerability in human trafficking and climate change discourses. Next, it presents a case study of the Sundarbans region of India to highlight how climate change impacts compound and exacerbate the same factors that shape vulnerability to human trafficking—including environmental degradation, loss of livelihood, destitution, and forced migration. Lastly, it argues for enhanced attention to climate change-related insecurity as evidence of vulnerability to trafficking and outlines what such insights can bring to anti-trafficking efforts.

  16. Key challenges in the combat of human trafficking : Evaluating the EU trafficking strategy and EU trafficking directive

    NARCIS (Netherlands)

    Bosma, Alice; Rijken, Conny

    2016-01-01

    The problem of trafficking in human beings (THB) is still omnipresent in Europe, despite the numerous preventive and retributive actions taken. This article evaluates the two most important EU-instruments to combat trafficking: the EU Directive and the EU Strategy. Based on secondary analysis of

  17. Responding to the health needs of survivors of human trafficking: a systematic review.

    Science.gov (United States)

    Hemmings, Stacey; Jakobowitz, Sharon; Abas, Melanie; Bick, Debra; Howard, Louise M; Stanley, Nicky; Zimmerman, Cathy; Oram, Sian

    2016-07-29

    Despite the multiple physical and psychological health consequences associated with human trafficking, there is little evidence-based guidance available for health providers on assessing and meeting the health needs of trafficked people. We aimed to review literature that provided guidance or research on care provision for people who had been trafficked. We conducted a systematic review and qualitative analysis of peer-reviewed and grey literature. Data sources included electronic databases, reference list screening, citation tracking, and expert recommendations. Documents were included if they reported on: 1) male or females (adults or children) who were currently or had previously been trafficked; 2) health interventions or service provision; 3) primary, secondary, tertiary or specialist post-trafficking services; and 4) World Bank high income countries. Two reviewers independently screened and quality appraised documents. Framework analysis was used to analyse extracted data. Forty-four documents were included, 19 of which reported findings of primary studies and nine of which exclusively addressed children. Evidence to inform the identification, referral and care of trafficked people is extremely limited. Within current literature on survivor identification, key indicators included signs of physical and sexual abuse, absence of documentation, and being accompanied by a controlling companion. Findings highlighted the importance of interviewing possible victims in private, using professional interpreters, and building trust. For provision of care, key themes included the importance of comprehensive needs assessments, adhering to principles of trauma-informed care, and cultural sensitivity. Further prominent themes were the necessity of multi-agency working strategies and well-defined referral pathways. Human trafficking survivors require healthcare that is trauma-informed and culturally sensitive to their particular needs. Coordination is needed between health

  18. Apical trafficking in epithelial cells: signals, clusters and motors.

    Science.gov (United States)

    Weisz, Ora A; Rodriguez-Boulan, Enrique

    2009-12-01

    In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.

  19. Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin.

    Science.gov (United States)

    Eggert, Simone; Thomas, Carolin; Kins, Stefan; Hermey, Guido

    2017-10-27

    The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.

  20. Real-time visualization of HIV-1 GAG trafficking in infected macrophages.

    Directory of Open Access Journals (Sweden)

    Karine Gousset

    2008-03-01

    Full Text Available HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag. Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.

  1. Cambodia: human trafficking legislation threatens HIV response.

    Science.gov (United States)

    Pearshouse, Richard

    2008-12-01

    In February 2008, Cambodia's new Law on the Suppression of Human Trafficking and Sexual Exploitation was promulgated and went into effect. The law criminalizes sex for money, public soliciting for prostitution and many forms of financial transactions connected to sex work. The law has been criticized for conflating sex work and trafficking.

  2. The Palermo Protocol: Trafficking Takes it All

    Directory of Open Access Journals (Sweden)

    Jónína Einarsdóttir

    2014-12-01

    Full Text Available The Palermo Protocol is the outcome of bargain and lobbying with global institutions, NGOs and government representatives embattling to enforce their interests. The outcome is the concept of trafficking that embraces the struggles against prostitution, slavery and child labour. This broad concept has allowed various local cultural practices and survival strategies of those who live under difficult conditions to become classified as trafficking. While such definition may facilitate fundraising there are adverse consequences to be considered. Firstly, hazardous conditions of children that obviously are not trafficking tend to become ignored. Second, the victims of “real” trafficking become invisible by the excessive number of children allegedly trafficked. Third, the broad definition of trafficking has contributed to criminalization of whole communities and consequent conflicts between NGOs engaged in anti-trafficking activities and the communities involved. Such a situation is not in the best interest of the children involved. Rather than spending huge amount of resources on the conventional anti-trafficking measures there is a need to address the root causes of whatsoever unacceptable condition a child is suffering from.

  3. TRACE-ing human trafficking : Project Findings

    NARCIS (Netherlands)

    Rijken, Conny; Pijnenburg, Annick

    2016-01-01

    Human trafficking is one of the largest criminal enterprises in the world. It is a multi-billion-dollar crime of global scale. This is because human trafficking as a criminal enterprise continues to evolve as a high profit-low risk business for perpetrators and challenges policy makers, law

  4. Human Trafficking. Ministering to The 'Invisible' Victim.

    Science.gov (United States)

    Scanlon, Colleen; Krausa, Laura

    2016-07-01

    Human trafficking is modern-day slavery - an insidious, criminal industry that gener- ates billions of dollars in labor trafficking alone. It knows no boundary of continent, country, race or class; it is a shattering, impartial predator that robs individuals of their basic human dignity.

  5. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Lip Nam Loh

    2017-01-01

    Full Text Available The Gram-positive bacterial cell wall (CW peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2 ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl amiloride (EIPA and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling.

  6. Cellular Localization and Trafficking of the Human ABCG1 Transporter

    Science.gov (United States)

    Neufeld, Edward B.; O’Brien, Katherine; Walts, Avram D.; Stonik, John A.; Demosky, Steven J.; Malide, Daniela; Combs, Christian A.; Remaley, Alan T.

    2014-01-01

    We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface. PMID:25405320

  7. Was Trafficking in Persons Really Criminalised?

    Directory of Open Access Journals (Sweden)

    Kristiina Kangaspunta

    2015-04-01

    Full Text Available This paper examines the successes and setbacks in the criminal justice response to trafficking in persons. While today, the majority of countries have passed specific legislation criminalising human trafficking in response to the United Nations Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children, there are still very few convictions of trafficking. Using currently available knowledge, this paper discusses four possible reasons for low conviction rates. Further, the paper suggests that due to the heavy dependency on victim testimonies when prosecuting trafficking in persons crimes, members of criminal organisations that are easily identifiable by victims may face criminal charges more frequently than other members of the criminal group, particularly those in positions of greater responsibility who profit the most from the criminal activities. In this context, the exceptionally high number of women among convicted offenders is explored.

  8. Examining the Risk of Nuclear Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Galya [Los Alamos National Laboratory; Severe, William R [Los Alamos National Laboratory; Schoeneck, Jeffery [DHS

    2009-01-01

    The need to stop illicit trafficking of nuclear and radioactive materials around the world is undeniable and urgent. This issue is particularly evident due to the highly dangerous consequences of the risks involved, the known interest of terrorist groups in acquiring such materials and the vulnerability of theft and diversion of such materials. Yet the phenomenon of nuclear trafficking remains a subject where the unknown dominates what is known on the subject. The trafficking panel at the Institute for Nuclear Materials Management (INMM) Workshop on Reducing the Risk of Radioactive and Nuclear Materials that took place in Albuquerque, New Mexico, March 10-11, 2009, dealt with some of the issues associated with nuclear trafficking. Different points of view on how to better address trafficking and thwart perpetrator efforts were discussed. This paper presents some of these views and addresses practical measures that should be considered to improve the situation.

  9. The intracellular fate of an amphipathic pH-responsive polymer: Key characteristics towards drug delivery.

    Science.gov (United States)

    Mercado, S A; Orellana-Tavra, C; Chen, A; Slater, N K H

    2016-12-01

    Biopolymers have become important drug delivery systems for therapeutic molecules by enhancing their accessibility and efficacy intracellularly. However, the transport of these drugs across the cell membrane and their release into the cytosol remain a challenge. The trafficking of poly (l-lysine iso-phthalamide) grafted with phenylalanine (PP-50) was investigated using an osteosarcoma cell line (SAOS-2). Colocalisation of this amphipathic biopolymer with endocytosis tracers, such as transferrin and lactosylceramide, suggested that PP-50 is partially internalised by both clathrin and caveolin-mediated endocytosis. Macropinocytosis was also investigated, but a smaller correlation was found between this mechanism and PP-50 transport. A significant decrease in polymer-mediated calcein uptake was found when cells were pre-incubated with endocytosis inhibitors, suggesting also the use of a combination of mechanisms for cell internalisation. In addition, PP-50 colocalisation with endosome and lysosome pathway markers showed that the polymer was able to escape the endolysosomal compartment before maturation. This is a critical characteristic of a biopolymer towards use as drug delivery systems and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  11. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.

    Directory of Open Access Journals (Sweden)

    Harshini Sarojini

    Full Text Available We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery-extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold

  12. Tracking Traffickers. The IAEA Incident and Trafficking Database

    International Nuclear Information System (INIS)

    Webb, Greg

    2013-01-01

    Radioactive material is missing from a hospital. Contaminated metal is found in a scrap yard. Smugglers try to peddle nuclear- weapon-usable material. These different scenarios illustrate the risks that these materials can pose to human safety and security. To assess those risks and to develop strategies to reduce them, States must understand the implications and the scope of such incidents that are occurring around the world. To better understand and respond to these events, the IAEA maintains an Incident and Trafficking Database (ITDB) which collects information from 122 participating States and some select international organizations. They are asked to share data on a voluntary basis about incidents in which nuclear and other radioactive material has fallen ''out of regulatory control.'' This could mean reporting cases of material that has gone missing, or discoveries of material where none was expected. The cases range from the innocent misplacement of industrial radioactive sources to criminal smuggling efforts which could aid terrorist acts. This information is shared among ITDB participants, and IAEA analysts try to identify trends and characteristics that could help prevent the misuse of these potentially dangerous materials. ''The ITDB has become an internationally recognized tool for States to study the extent and nature of these incidents,'' said John Hilliard, head of the Information Management and Coordination Section that administers the database. ''We've learned a lot by studying them, and we hope the information helps us prevent accidents or crimes in the future.'' The IAEA established the database in 1995 after States became alarmed by a growing number of trafficking incidents in the early 1990s. The service was originally operated by the Department of Safeguards, but later moved to the Department of Nuclear Safety and Security, where the Office of Nuclear Security now administers all the data collection and analysis

  13. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  14. HPMA based macromolecular therapeutics: Internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Ondřej; Etrych, Tomáš; Šubr, Vladimír; Strohalm, Jiří; Ulbrich, Karel; Říhová, Blanka

    2006-01-01

    Roč. 14, č. 6 (2006), s. 391-403 ISSN 1061-186X R&D Projects: GA ČR GP305/04/P004; GA ČR GA305/05/2268; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40500505 Keywords : hpma * intracellular transport * polymeric conjugates Subject RIV: EE - Microbiology, Virology Impact factor: 1.699, year: 2006

  15. Human trafficking and the dental professional.

    Science.gov (United States)

    O'Callaghan, Michael G

    2012-05-01

    "Human trafficking" is a term for a modern form of slavery. It is a criminal human rights violation and a significant health issue. Dental professionals can assist in recognizing victims of trafficking. The author conducted a PubMed search of the English-language literature through May 2011, which yielded no articles meeting the search criteria "dentistry" and "human trafficking prostitution." Given these results, the author reviewed articles published in medical journals, reports from both governmental and nongovernmental agencies and lay literature. The author examines the present state of human trafficking and provides information--including specific questions to ask--to help dentists identify victims. In addition, the author suggests means of notifying authorities and assisting trafficking victims. He also examines the health care needs of these patients. Human trafficking is a global problem, with thousands of victims in the United States, including many women and children. Dentists have a responsibility to act for the benefit of others, which includes detecting signs of abuse and neglect. Dental professionals are on the front lines with respect to encountering and identifying potential victims who seek dental treatment. Dentists can combat human trafficking by becoming informed and by maintaining vigilance in their practices.

  16. Lung T lymphocyte trafficking and activation during ischemic acute kidney injury.

    Science.gov (United States)

    Lie, Mihaela L; White, Laura E; Santora, Rachel J; Park, Jong M; Rabb, Hamid; Hassoun, Heitham T

    2012-09-15

    Despite advances in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely owing to extrarenal organ dysfunction. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that facilitate organ crosstalk and induce caspase-dependent lung apoptosis and injury through a TNFR1-dependent pathway. Given that T lymphocytes mediate local IRI in the kidney and are known to drive TNFR1-mediated apoptosis, we hypothesized that T lymphocytes activated during kidney IRI would traffic to the lung and mediate pulmonary apoptosis during AKI. In an established murine model of kidney IRI, we identified trafficking of CD3+ T lymphocytes to the lung during kidney IRI by flow cytometry and immunohistochemistry. T lymphocytes were primarily of the CD3+CD8+ phenotype; however, both CD3+CD4+ and CD3+CD8+ T lymphocytes expressed CD69 and CD25 activation markers during ischemic AKI. The activated lung T lymphocytes did not demonstrate an increased expression of intracellular TNF-α or surface TNFR1. Kidney IRI induced pulmonary apoptosis measured by caspase-3 activation in wild-type controls, but not in T cell-deficient (T(nu/nu)) mice. Adoptive transfer of murine wild-type T lymphocytes into T(nu/nu) mice restored the injury phenotype with increased cellular apoptosis and lung microvascular barrier dysfunction, suggesting that ischemic AKI-induced pulmonary apoptosis is T cell dependent. Kidney-lung crosstalk during AKI represents a complex biological process, and although T lymphocytes appear to serve a prominent role in the interorgan effects of AKI, further experiments are necessary to elucidate the specific role of activated T cells in modulating pulmonary apoptosis.

  17. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Science.gov (United States)

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  18. Update: What Nurses Need to Know about Human Trafficking.

    Science.gov (United States)

    Washburn, Joy

    Nurses are key people who interact with victims of human trafficking in healthcare and other settings. This article provides a current overview of human trafficking, explains legal definitions, elements for protocols in healthcare settings when trafficking is suspected, nursing roles and responses, interview tools, resources, public health recommendations, and nursing education approaches to address human trafficking.

  19. An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G.

    Science.gov (United States)

    Tesar, Devin B; Björkman, Pamela J

    2010-04-01

    Recent advances in imaging techniques along with more powerful in vitro and in vivo models of receptor-mediated ligand transport are facilitating advances in our understanding of how cells efficiently direct receptors and their cargo to target destinations within the cytoplasm and at the plasma membrane. Specifically, light and 3D electron microscopy studies examining the trafficking behavior of the neonatal Fc receptor (FcRn), a transport receptor for immunoglobulin G (IgG), have given us new insights into the dynamic interplay between the structural components of the cytosolic trafficking machinery, its protein regulators, and the receptors it directs to various locations within the cell. These studies build upon previous biochemical characterizations of FcRn transport and are allowing us to begin formulation of a more complete model for the intracellular trafficking of receptor-ligand complexes.

  20. Following Intracellular Cholesterol Transport by Linear and Non-Linear Optical Microscopy of Intrinsically Fluorescent Sterols

    DEFF Research Database (Denmark)

    Wustner, D.

    2012-01-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow...... the cellular movement of this essential lipid molecule. In this article, a survey of the various methods being used for analysis of sterol trafficking is given. Various classical biochemical methods are presented and their suitability for analysis of sterol trafficking is assessed. Special emphasis...... analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented....

  1. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    Science.gov (United States)

    Khan, Selina; Bijker, Martijn S; Weterings, Jimmy J; Tanke, Hans J; Adema, Gosse J; van Hall, Thorbald; Drijfhout, Jan W; Melief, Cornelis J M; Overkleeft, Hermen S; van der Marel, Gijsbert A; Filippov, Dmitri V; van der Burg, Sjoerd H; Ossendorp, Ferry

    2007-07-20

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam(3)CysSK(4) (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG approximately conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam approximately conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG approximately conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8(+) T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen

  2. Decreasing Human Trafficking through Sex Work Decriminalization.

    Science.gov (United States)

    Albright, Erin; D'Adamo, Kate

    2017-01-01

    In order to decrease human trafficking, health care workers should support the full decriminalization of prostitution. Similar to trafficking in other forms of labor, preventing trafficking in the sex trade requires addressing the different forms of marginalization that create vulnerable communities. By removing punitive laws that prevent reporting of exploitation and abuse, decriminalization allows sex workers to work more safely, thereby reducing marginalization and vulnerability. Decriminalization can also help destigmatize sex work and help resist political, social, and cultural marginalization of sex workers. © 2017 American Medical Association. All Rights Reserved.

  3. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in native...... pathways in pancreatic ducts cells....

  4. How to Use a Trafficked Woman. The Alliance between Political and Criminal Trafficking Organisations

    Directory of Open Access Journals (Sweden)

    John Davies

    2011-03-01

    Full Text Available The principal argument of this paper is that migrant women with secure mobility rights and supportive social networks can avoid or mitigate many trafficking harms. However the paper contends that some actors have conspired to prevent such circumstances so as to pursue diverse political agendas at the expense of migrant women. The paper’s analysis restructures the trafficking contest from organised criminals versus law enforcement agencies to principally a contest between migrant women and those political agents who benefit from the moral panic associated with trafficking. It is then argued that it is these more sophisticated political actors rather than organised criminals and the clients of sex workers are the most important stakeholders in sustaining or exploiting trafficking harm. Therefore, it is concluded that resolving many trafficking harms in the EEA could be achieved by subverting political traffickers through improving migration policy rather than fighting organised crime.

  5. Nuclear trafficking latest statistics released

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: Countries reported 121 incidents to the IAEA in 2004 of illicit trafficking and other unauthorized activities involving nuclear and other radioactive materials, newly released statistics from the Agency's Illicit Trafficking Database (ITDB) show. The ITDB report also shows that one incident was reported since 2003 that involved fissile material - highly enriched uranium (HEU) or plutonium - that is needed to make a nuclear weapon. It occurred in June 2003 when an individual was arrested in possession of 170 grams of HEU, attempting to illegally transport it across the border. During the two-year period 2003-2004, the number of incidents reported by States substantially increased compared with previous years. 'Improved reporting may in part account for it,' the report said. 'The majority of the incidents reported in 2003-2004 showed no evidence of criminal activity.' The Past Twelve Years: 1993 - 2004 Nuclear Weapons Grade Material. Since the database started in 1993, there have been eighteen confirmed incidents involving trafficking in HEU and plutonium. A few of these incidents involved seizures of kilogram quantities of weapons-usable nuclear material but most involved very small quantities. In some of the cases the seized material was allegedly a sample of larger quantities available for illegal sale or at risk of theft. More than two dozens incidents involved trace amounts of plutonium sources. Table can be viewed: Incidents involving HEU and Pu confirmed to the ITDB (1993-2004). Nuclear Materials. In the past twelve years, 220 incidents involved nuclear materials. The majority of confirmed cases with nuclear materials involved low-grade nuclear materials, mostly in the form of reactor fuel pellets, and natural uranium, depleted uranium and thorium. While the quantities of these materials have been rather small to be significant for nuclear proliferation or use in a terrorist nuclear explosive device, these cases are indicative of gaps in the control

  6. Female sex trafficking: conceptual issues, current debates, and future directions.

    Science.gov (United States)

    Meshkovska, Biljana; Siegel, Melissa; Stutterheim, Sarah E; Bos, Arjan E R

    2015-01-01

    Female sex trafficking is a pressing concern. In this article, we provide a comprehensive overview of relevant issues regarding the concept of female sex trafficking and research in the field of human trafficking, drawing on a variety of disciplines, including economics, gender and sexuality studies, psychology, sociology, law, and social work. We discuss the debates surrounding the definition of human trafficking, compare and contrast it with human smuggling, and outline connections between female sex trafficking and the issue of sex work and prostitution. We further discuss the history and current estimations of female sex trafficking. We then outline the main actors in female sex trafficking, including trafficked persons, traffickers, clients, and service providers, and we overview the trafficking process from recruitment to identification, recovery, and (re)integration. Finally, we conclude with recommendations for future research that tie together the concepts of vulnerability, exploitation, and long-term recovery and (re)integration.

  7. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    Science.gov (United States)

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  8. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have......) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue...... coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression...

  9. The nutrient stress-induced small GTPase Rab5 contributes to the activation of vesicle trafficking and vacuolar activity.

    Science.gov (United States)

    Nakatsukasa, Kunio; Kanada, Akira; Matsuzaki, Mariko; Byrne, Stuart D; Okumura, Fumihiko; Kamura, Takumi

    2014-07-25

    Rab family small GTPases regulate membrane trafficking by spatiotemporal recruitment of various effectors. However, it remains largely unclear how the expression and functions of Rab proteins are regulated in response to extracellular or intracellular stimuli. Here we show that Ypt53, one isoform of Rab5 in Saccharomyces cerevisiae, is up-regulated significantly under nutrient stress. Under non-stress conditions, Vps21, a constitutively expressed Rab5 isoform, is crucial to Golgi-vacuole trafficking and to vacuolar hydrolase activity. However, when cells are exposed to nutrient stress for an extended period of time, the up-regulated Ypt53 and the constitutive Vps21 function redundantly to maintain these activities, which, in turn, prevent the accumulation of reactive oxygen species and maintain mitochondrial respiration. Together, our results clarify the relative roles of these constitutive and nutrient stress-inducible Rab5 proteins that ensure adaptable vesicle trafficking and vacuolar hydrolase activity, thereby allowing cells to adapt to environmental changes.

  10. Perdagangan Orang (Trafficking) sebagai Pelanggaran Hak Asasi Manusia

    OpenAIRE

    Munthe, Riswan

    2015-01-01

    Human trafficking is garbage of civilization which is hard to be fought. This sentence provide an invasion for all that human trafficking is a common enemy. Human trafficking is often done by agent who has national even international network, has power, strong physically and arrogance. Due to the victim of human trafficking is the group in the lower class of economy and education. Generally the victim of human trafficking is everyone without exception. Since Indonesian independence, it is con...

  11. Human trafficking in Asia: a heinous crime against humanities

    OpenAIRE

    Mohajan, Haradhan

    2012-01-01

    This paper discusses the human trafficking especially women and children trafficking in Asia. Human trafficking is not only a local problem but also a global concern. It is performed for various purposes such as labor, prostitution, organ transplant, drug couriers, and arm smuggling and affects virtually every country in the world. Recently trafficking of human being increased alarmingly due to globalization and liberalization. In Bangladesh and Nepal trafficking becomes an important issue re...

  12. The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Mutations in the immunoglobulin superfamily, member 1 gene (IGSF1/Igsf1 cause an X-linked form of central hypothyroidism. The canonical form of IGSF1 is a transmembrane glycoprotein with 12 immunoglobulin (Ig loops. The protein is co-translationally cleaved into two sub-domains. The carboxyl-terminal domain (CTD, which contains the last 7 Ig loops, is trafficked to the plasma membrane. Most pathogenic mutations in IGSF1 map to the portion of the gene encoding the CTD. IGSF1/Igsf1 encodes a variety of transcripts. A little studied, but abundant splice variant encodes a truncated form of the protein, predicted to contain the first 2 Ig loops of the full-length IGSF1. The protein (hereafter referred to as IGSF1 isoform 2 or IGSF1-2 is likely retained in most individuals with IGSF1 mutations. Here, we characterized basic biochemical properties of the protein as a foray into understanding its potential function. IGSF1-2, like the IGSF1-CTD, is a glycoprotein. In both mouse and rat, the protein is N-glycosylated at a single asparagine residue in the first Ig loop. Contrary to earlier predictions, neither the murine nor rat IGSF1-2 is secreted from heterologous or homologous cells. In addition, neither protein associates with the plasma membrane. Rather, IGSF1-2 appears to be retained in the endoplasmic reticulum. Whether the protein plays intracellular functions or is trafficked through the secretory pathway under certain physiologic or pathophysiologic conditions has yet to be determined.

  13. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  14. Human trafficking law and social structures.

    Science.gov (United States)

    Wooditch, Alese

    2012-08-01

    Human trafficking has only recently emerged at the forefront of policy reform, even in developed nations. Yet, heightened awareness of the issue has not translated into effective policy as the majority of nations have ineffective antitrafficking practices; many countries have failed to criminalize human trafficking, whereas others do not actively enforce statutes in place. By applying Black's theory of law, this study offers a preliminary understanding into the variation of global prosecutorial efforts in human trafficking and adequacy of antitrafficking law. To isolate this relationship, the effects of trafficking markets are controlled. As with prior research, the study finds limited support for the theory. The article concludes with a discussion on the implications of the quantity of antitrafficking law and morphology association for policy development.

  15. Committee opinion no. 507: human trafficking.

    Science.gov (United States)

    2011-09-01

    Human trafficking is a widespread problem with estimates ranging from 14,000 to 50,000 individuals trafficked into the United States annually. This hidden population involves the commercial sex industry, agriculture, factories, hotel and restaurant businesses, domestic workers, marriage brokers, and some adoption firms. Because 80% of trafficked individuals are women and girls, women’s health care providers may better serve their diverse patient population by increasing their awareness of this problem. The exploitation of people of any race, gender, sexual orientation, or ethnicity is unacceptable at any time, in any place. The members of the American College of Obstetricians and Gynecologists should be aware of this problem and strive to recognize and assist their patients who are victims or who have been victims of human trafficking.

  16. Sex trafficking of women and girls.

    Science.gov (United States)

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women's rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services.

  17. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  18. Trafficking of α-L-fucosidase in lymphoid cells

    International Nuclear Information System (INIS)

    DiCioccio, R.A.; Brown, K.S.

    1987-01-01

    The quantity of α-L-fucosidase in human serum is determined by heredity. The mechanism controlling levels of the enzyme in serum is unknown. To investigate this, lymphoid cell lines derived from individuals with either low, intermediate or high α-L-fucosidase in serum were established. Steady state levels of extracellular α-L-fucosidase protein and activity overlapped among the cell lines. Thus, in vivo serum phenotypes of α-L-fucosidase are not adequately expressed in this system. α-L-Fucosidase was also metabolically labelled with 35 S-methionine, immunoprecipitated, and examined by SDS-PAGE. Cells pulse-labelled from 0.25-2 h had a major intracellular form of enzyme (Mr = 58,000). Cells pulsed for 1.5 h and chased for 21 h with unlabeled methionine had an intracellular form of Mr = 60,000 and an extracellular form of Mr = 62,000. Cells treated with chloroquine had only the 58,000-form both intra- and extra-cellularly. Moreover, chloroquine did not effect the quantitative distribution of α-L-fucosidase between cells and medium. In fibroblasts, chloroquine enhanced the secretion of newly made lysosomal enzymes and blocked the processing of intercellular enzyme forms from a higher to a lower molecular mass. Thus, there are trafficking differences between α-L-fucosidase in lymphoid cells and lysosomal enzymes in fibroblasts. This suggests that alternative targeting mechanisms for lysosomal enzymes exist in these cells

  19. Trafficking in Persons Report 10th Edition

    Science.gov (United States)

    2010-06-01

    Venezuela. Human trafficking is reportedly increasing in Venezuela’s Orinoco River Basin area, where victims are exploited in mining operations, and in...Khansee trusted him because he was a fellow Lao, but he never made it to the garment factory. They crossed the river at night and boarded a van that...Equatorial Guinea – caused traffickers to change their routes, including utilizing estuaries and rivers to transport children. The majority of victims

  20. Debate: Strategically Working in Parallel to Traffickers

    OpenAIRE

    Vincent Tournecuillert

    2014-01-01

    Let’s be realistic, counter-trafficking teams will never be as effective as the proactive and flexible networks of outlaws that violate the rights of millions of people each year. The ‘bad guys’ operate without the same financial limitations such as bureaucratic red tape and donor criteria, and take advantage of patchy and often uncoordinated border surveillance that is chronically untrained in detecting trafficking in persons.  Non-governmental organisations (NGOs) involved in the fight agai...

  1. Liberal Coercion? - Prostitution, Human Trafficking and Policy

    OpenAIRE

    Seo-Young Cho

    2013-01-01

    Liberal prostitution policy aims at improving labour conditions for prostitutes and protecting victims of forced prostitution. Its policy orientation predicts that the policy choice of liberalizing prostitution is positively associated with better protection policy for trafficking victims and enhanced anti-trafficking measures. In this paper, I investigate empirically whether the legalization of prostitution improves protection policy for victims, as it is presumed. The results of my analysis...

  2. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  3. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  4. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  5. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  6. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  7. Altered neutrophil trafficking during sepsis.

    Science.gov (United States)

    Guo, Ren-Feng; Riedemann, Niels C; Laudes, Ines J; Sarma, Vidya J; Kunkel, Robin G; Dilley, Kari A; Paulauskis, Joseph D; Ward, Peter A

    2002-07-01

    In sepsis, dysregulation of the inflammatory system is well known, as reflected in excessive inflammatory mediator production, complement activation, and appearance of defects in phagocytic cells. In the current study sepsis was induced in rats by cecal ligation/puncture. Early in sepsis the beta(1) and beta(2) integrin content on blood neutrophils increased in a nontranscriptional manner, and the increase in beta(2), but not beta(1), integrin content was C5a dependent. Similar changes could be induced in vitro on blood neutrophils following contact with phorbol ester or C5a. Direct injury of lungs of normal rats induced by deposition of IgG immune complexes (IgG-IC) caused 5-fold increases in the myeloperoxidase content that was beta(2), but not beta(1), dependent. In contrast, in cecal ligation/puncture lungs myeloperoxidase increased 10-fold after IgG immune complex deposition and was both beta(1) and beta(2) integrin dependent. These data suggest that sepsis causes enhanced neutrophil trafficking into the lung via mechanisms that are not engaged in the nonseptic state.

  8. Sex work and sex trafficking.

    Science.gov (United States)

    Ditmore, M; Saunders, P

    1998-01-01

    Preventing HIV infection and other sexually transmitted diseases (STDs), as well as sexual and physical violence, are major occupational health and safety concerns for prostitutes. Considerable evidence shows that anti-prostitution laws facilitate violence and abuse against prostitutes and may increase their risk of contracting HIV/STDs. For example, police often take advantage of existing laws against prostitution to demand money or sex. In general, the strict enforcement of anti-prostitution laws marginalizes prostitutes from services which could help them avoid abuse and promotes an environment in which prostitutes must take risks to avoid detection and arrest. One strategy to improve prostitutes' lives would therefore be to remove laws which prevent them from working safely and from travelling abroad to work legally. Projects in which prostitutes are actively involved have helped break down stereotypes against prostitutes, while police-sex worker liaison projects in Scotland and Australia have led to higher levels of reporting of crimes against prostitutes. The Network of Sex Work Projects (NSWP), an organization which links sex worker health programs around the world, has found that the incidence of HIV/STDs among prostitutes is lowest when they have control over their work conditions; access to condoms, lubricants, and other safe sex materials; and respect of their basic human and legal rights. People need to understand that consensual involvement in sex work is different from forced sex trafficking.

  9. Visualization and quantification of GPCR trafficking in mammalian cells by confocal microscopy.

    Science.gov (United States)

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    G protein-coupled receptors (GPCRs) are recognized as one of the most fruitful group of therapeutic targets, accounting for more than 40% of all approved pharmaceuticals on the market. Therefore, the search for selective agents that affect GPCR function is of major interest to the pharmaceutical industry. This chapter describes methods for measuring agonist-promoted GPCR trafficking, which involves the internalization of the GPCR and its subsequent recycling back to the plasma membrane or retention and eventual degradation. These pathways will be analyzed by confocal cellular imaging, using the β 1 -adrenergic receptor (β 1 -AR) as a primary model. A major problem encountered in studying GPCR trafficking is the unavailability of antibodies that would recognize the native receptor in cells or tissues. Therefore, wild-type, point mutants, and β 1 -AR chimeras are generated as epitope-tagged proteins, which are stably- or transiently expressed in mammalian cells. GPCR are labeled with a fluorophore-conjugated antibody directed against the N-terminal epitope tag. The trafficking of the fluorophore-tagged GPCR between divergent trafficking pathways that result in retention and eventual degradation or recycling and reinsertion into the plasma membrane can be followed by confocal immunofluorescence microscopy techniques outlined in this review. © 2017 Elsevier Inc. All rights reserved.

  10. Estradiol-induced estrogen receptor-alpha trafficking.

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2009-12-02

    Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.

  11. Estradiol-induced estrogen receptor-α trafficking

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2010-01-01

    Estradiol has rapid actions in the central nervous system, which are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca2+]i) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERα has an extracellular portion. In addition to the full length ERα (apparent M.W. 66 kDa), surface biotinylation labeled an ERα-immunoreactive protein (M.W. ~ 52 kDa) identified by both COOH- and NH2-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 kDa and 52 kDa ERα. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24–48 hr reduced ERα levels, suggesting receptor down-regulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERα-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERα trafficking to and from the membrane. Estradiol-induced [Ca2+]i flux was also significantly increased at the time of peak ERα activation/internalization. These results demonstrate that ERα is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERα are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERα to augment and then terminate membrane-initiated signaling. PMID:19955385

  12. Polarized Trafficking of AQP2 Revealed in Three Dimensional Epithelial Culture.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available In renal collecting duct (CD principal cells (PCs, vasopressin (VP acts through its receptor, V2R, to increase intracellular cAMP leading to phosphorylation and apical membrane accumulation of the water channel aquaporin 2 (AQP2. The trafficking and function of basolaterally located AQP2 is, however, poorly understood. Here we report the successful application of a 3-dimensional Madin-Darby canine kidney (MDCK epithelial model to study polarized AQP2 trafficking. This model recapitulates the luminal architecture of the CD and bi-polarized distribution of AQP2 as seen in kidney. Without stimulation, AQP2 is located in the subapical and basolateral regions. Treatment with VP, forskolin (FK, or 8-(4-Chlorophenylthio-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate (CPT-cAMP leads to translocation of cytosolic AQP2 to the apical membrane, but not to the basolateral membrane. Treating cells with methyl-β-cyclodextrin (mβCD to acutely block endocytosis causes accumulation of AQP2 on the basolateral membrane, but not on the apical membrane. Our data suggest that AQP2 may traffic differently at the apical and basolateral domains in this 3D epithelial model. In addition, application of a panel of phosphorylation specific AQP2 antibodies reveals the polarized, subcellular localization of differentially phosphorylated AQP2 at S256, S261, S264 and S269 in the 3D culture model, which is consistent with observations made in the CDs of VP treated animals, suggesting the preservation of phosphorylation dependent regulatory mechanism of AQP2 trafficking in this model. Therefore we have established a 3D culture model for the study of trafficking and regulation of both the apical and basolaterally targeted AQP2. The new model will enable further characterization of the complex mechanism regulating bi-polarized trafficking of AQP2 in vitro.

  13. Complex lipid trafficking in Niemann-Pick disease type C.

    Science.gov (United States)

    Vanier, Marie T

    2015-01-01

    Niemann-Pick disease type C (NPC) is an atypical lysosomal storage disease resulting from mutations in one of two genes, either NPC1 or NPC2. Although a neurovisceral disorder, it is above all a neurodegenerative disease in the vast majority of patients. Not an enzyme deficiency, it is currently conceived as a lipid trafficking disorder. Impaired egress of cholesterol from the late endosomal/lysosomal (LE/L) compartment is a specific and key element of the pathogenesis, but other lipids, more specially sphingolipids, are also involved, and there are indications for further abnormalities. The full function of the NPC1 and NPC2 proteins is still unclear. This review provides a reappraisal of lipid storage and lysosomal enzymes activities in tissues/cells from NPC patients and animal models. It summarizes the current knowledge on the NPC1 and NPC2 proteins and their function in transport of cholesterol within the late endosomal-lysosomal compartment, with emphasis on differences between systemic organs and the brain; it also discusses regulation by membrane lipids of the NPC2-mediated cholesterol trafficking, interplay between cholesterol and sphingomyelin, the metabolic origin of glycosphingolipids stored in brain, and the putative role of free sphingoid bases in pathogenesis. Brief mention is finally made of diseases affecting other genes that were very recently shown to impact the "NPC pathway".

  14. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation

    Science.gov (United States)

    Checkley, Mary Ann; Luttge, Benjamin G.; Freed, Eric O.

    2011-01-01

    The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor, gp160, that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and co-receptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation, and the role of specific membrane microdomains in this process. Here we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions. PMID:21762802

  15. Comprehensive Care Model for Sex Trafficking Survivors.

    Science.gov (United States)

    Twigg, Naomi M

    2017-05-01

    The purpose of this study was to identify aftercare services for domestic minor of sex trafficking (DMST) survivors provided by U.S. residential treatment centers. A qualitative research study was conducted with aftercare program personnel from five U.S. residential treatment centers for DMST survivors. Interviews were conducted with staff from five different residential treatment centers providing services exclusively to domestic minor sex trafficking survivors. Participants described the range of services offered to address survivors' posttrafficking needs. Participants' responses assisted in expanding an existing care model to include education re-entry, family reunification, family reconciliation, and emergency substance use services. This study led to the refinement of an aftercare service delivery model and laid the foundation to develop best practice guidelines for providing aftercare services to DMST survivors. Sex trafficking is a global health problem affecting our youth today. Nurses have a vital role in combatting sex trafficking by raising awareness about the problem and restoring the lives of sex trafficking victims by implementing innovative care programs. © 2017 Sigma Theta Tau International.

  16. Characterising the online weapons trafficking on cryptomarkets.

    Science.gov (United States)

    Rhumorbarbe, Damien; Werner, Denis; Gilliéron, Quentin; Staehli, Ludovic; Broséus, Julian; Rossy, Quentin

    2018-02-01

    Weapons related webpages from nine cryptomarkets were manually duplicated in February 2016. Information about the listings (i.e. sales proposals) and vendors' profiles were extracted to draw an overview of the actual online trafficking of weapons. Relationships between vendors were also inferred through the analysis of online digital traces and content similarities. Weapons trafficking is mainly concentrated on two major cryptomarkets. Besides, it accounts for a very small proportion of the illicit trafficking on cryptomarkets compared to the illicit drugs trafficking. Among all weapon related listings (n=386), firearms only account for approximately 25% of sales proposal since the proportion of non-lethal and melee weapons is important (around 46%). Based on the recorded pseudonyms, a total of 96 vendor profiles were highlighted. Some pseudonyms were encountered on several cryptomarkets, suggesting that some vendors may manage accounts on different markets. This hypothesis was strengthened by comparing pseudonyms to online traces such as PGP keys, images and profiles descriptions. Such a method allowed to estimate more accurately the number of vendors offering weapons across cryptomarkets. Finally, according to the gathered data, the extent of the weapons trafficking on the cryptomarkets appear to be limited compared to other illicit goods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Debate: Strategically Working in Parallel to Traffickers

    Directory of Open Access Journals (Sweden)

    Vincent Tournecuillert

    2014-09-01

    Full Text Available Let’s be realistic, counter-trafficking teams will never be as effective as the proactive and flexible networks of outlaws that violate the rights of millions of people each year. The ‘bad guys’ operate without the same financial limitations such as bureaucratic red tape and donor criteria, and take advantage of patchy and often uncoordinated border surveillance that is chronically untrained in detecting trafficking in persons.  Non-governmental organisations (NGOs involved in the fight against human trafficking—and in direct contact with presumed victims (their status is not assessed until at a stage later than this initial contact—are in a diametrically opposite situation. They must carefully abide by the national and international legal frameworks that their criminal antagonists ignore. Donors and national authorities operate within the constraints of geographic target areas and funding cycles. Since counter-trafficking actors neither create the markets nor devise the routes for trafficking, their strategic cross-border (or long distance partnerships are always a few steps behind the traffickers, if not many steps behind, and rarely efficient.

  18. Medical education and human trafficking: using simulation.

    Science.gov (United States)

    Stoklosa, Hanni; Lyman, Michelle; Bohnert, Carrie; Mittel, Olivia

    2017-01-01

    Healthcare providers have the potential to play a crucial role in human trafficking prevention, identification, and intervention. However, trafficked patients are often unidentified due to lack of education and preparation available to healthcare professionals at all levels of training and practice. To increase victim identification in healthcare settings, providers need to be educated about the issue of trafficking and its clinical presentations in an interactive format that maximizes learning and ultimately patient-centered outcomes. In 2014, University of Louisville School of Medicine created a simulation-based medical education (SBME) curriculum to prepare students to recognize victims and intervene on their behalf. The authors share the factors that influenced the session's development and incorporation into an already full third year medical curriculum and outline the development process. The process included a needs assessment for the education intervention, development of objectives and corresponding assessment, implementation of the curriculum, and finally the next steps of the module as it develops further. Additional alternatives are provided for other medical educators seeking to implement similar modules at their home institution. It is our hope that the description of this process will help others to create similar interactive educational programs and ultimately help trafficking survivors receive the care they need. HCP: Healthcare professional; M-SIGHT: Medical student instruction in global human trafficking; SBME: Simulation-based medical education; SP: Standardized patient; TIC: Trauma-informed care.

  19. Human Trafficking in Indonesia: Law Enforcement Problems

    Directory of Open Access Journals (Sweden)

    Nathalina Naibaho

    2011-01-01

    Full Text Available Human trafficking is considered as a crime against humanity. To conduct the due process of law towards cases related with human trafficking, the law enforcement officers cannot work by themselves. They really need assistance from many parties – such as active report from the society – as a valuable information to disclose such cases. Law enforcement conducted towards woman and child trafficking is still ineffective. It is proven by many existing cases, that low number of processed cases before the court and minimum sanction convicted to the perpetrators is clearly evident. Factors which are deemed to have correlation with low attempt of law enforcement towards legal case on this case, among others are: Lack of the Government’s commitment to fight against the crime of human trafficking, in the event that the ineffectiveness in utilization of prevailing laws and regulation; Lack of capacity of professionalism of law enforcement agency (and relevant parties in handling women and child trafficking at the field. This may be caused by lack of knowledge on infringed regulation. For that matter, those law enforcement agency shall be given socialization and an SOP (standardized operational procedure, so that there will be no inconsistency in handling the existing cases.

  20. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    International Nuclear Information System (INIS)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-01-01

    Research highlights: → ARF1 activation is involved in the EGFR transport to the ER and the nucleus. → Assembly of γ-COP coatomer mediates EGFR transport to the ER and the nucleus. → Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH 2 -terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  1. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); Lee, Hong-Jen; Lee, Heng-Huan [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States); Hung, Mien-Chie, E-mail: mhung@mdanderson.org [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States); Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan (China); Asia University, Taichung 413, Taiwan (China)

    2010-09-03

    Research highlights: {yields} ARF1 activation is involved in the EGFR transport to the ER and the nucleus. {yields} Assembly of {gamma}-COP coatomer mediates EGFR transport to the ER and the nucleus. {yields} Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH{sub 2}-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with {gamma}-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  2. Differential Rates of Protein Folding and Cellular Trafficking for the Hendra Virus F and G Proteins: Implications for F-G Complex Formation ▿

    OpenAIRE

    Whitman, Shannon D.; Smith, Everett Clinton; Dutch, Rebecca Ellis

    2009-01-01

    Hendra virus F protein-promoted membrane fusion requires the presence of the viral attachment protein, G. However, events leading to the association of these glycoproteins remain unclear. Results presented here demonstrate that Hendra virus G undergoes slower secretory pathway trafficking than is observed for Hendra virus F. This slowed trafficking is not dependent on the G protein cytoplasmic tail, the presence of the G receptor ephrin B2, or interaction with other viral proteins. Instead, H...

  3. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...

  4. Role of Occupational Therapy in Combating Human Trafficking.

    Science.gov (United States)

    Gorman, Kathleen W; Hatkevich, Beth Ann

    Human trafficking is a modern-day form of slavery that includes sex trafficking, labor trafficking, and trafficking of children. It is estimated that 35.8 million people are enslaved around the world. Because of the traumatic experiences that victims of human trafficking encounter, the needs of victims are extensive and require the services of several providers, including health care providers, for victims to transform into survivors and thrivers. Currently, the role of occupational therapy is minimal and unexplored. The profession of occupational therapy has the capacity of having a profound role in both providing client-centered care services to victims and survivors of human trafficking and partaking in preventive advocacy efforts to combat human trafficking. Further advocacy efforts are required to promote the profession of occupational therapy in combating human trafficking. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  5. Public Perceptions of Human Trafficking in Moldova

    Directory of Open Access Journals (Sweden)

    Jill Robinson

    2011-11-01

    Full Text Available Human trafficking is a widely studied phenomenon. Comparing public perceptions of trafficking to institutional (i.e. the academy, governmental and non-governmental organizations perceptions gives a richer understanding of the problem. The data for this study were collected in and around Chisinau, Moldova in the summer of 2004. Public discourse provides a more intimate "portraiture" of the issue, but the public also demonstrated a complex level of understanding of this social problem in this study. Its view is juxtaposed against an institutional view of human trafficking as explored through a literature review. Combining institutional and public perceptions and knowledge of a social problem is helpful in not only establishing a more thorough understanding of the social problem and guiding policy decisions, but in exploring the experiences victims may face at the community level.

  6. 17beta-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC-PKA-Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3.

    LENUS (Irish Health Repository)

    Muchekehu, Ruth W

    2008-09-01

    We describe a novel rapid non-genomic effect of 17beta-estradiol (E2) on intracellular Ca2+ ([Ca2+]i) signalling in the eccrine sweat gland epithelial cell line NCL-SG3. E2 had no observable effect on basal [Ca2+]i, however exposure of cells to E2 in the presence of the microsomal Ca2+ ATPase pump inhibitor, thapsigargin, produced a secondary, sustained increase in [Ca2+]i compared to thapsigargin treatment alone, where cells responded with a transient single spike-like increase in [Ca2+]i. The E2-induced increase in [Ca2+]i was not dependent on the presence of extracellular calcium and was completely abolished by ryanodine (100 microM). The estrogen receptor antagonist ICI 182,780 (1 microM) prevented the E2-induced effects suggesting a role for the estrogen receptor in the release of [Ca2+]i from ryanodine-receptor-gated stores. The E2-induced effect on [Ca2+]i could also be prevented by the protein kinase C delta (PKCdelta)-specific inhibitor rottlerin (10 microM), the protein kinase A (PKA) inhibitor Rp-adenosine 3\\

  7. Involvement of a Rac1-Dependent Macropinocytosis Pathway in Plasmid DNA Delivery by Electrotransfection.

    Science.gov (United States)

    Mao, Mao; Wang, Liangli; Chang, Chun-Chi; Rothenberg, Katheryn E; Huang, Jianyong; Wang, Yingxiao; Hoffman, Brenton D; Liton, Paloma B; Yuan, Fan

    2017-03-01

    Electrotransfection is a widely used method for delivering genes into cells with electric pulses. Although different hypotheses have been proposed, the mechanism of electrotransfection remains controversial. Previous studies have indicated that uptake and intracellular trafficking of plasmid DNA (pDNA) are mediated by endocytic pathways, but it is still unclear which pathways are directly involved in the delivery. To this end, the present study investigated the dependence of electrotransfection on macropinocytosis. Data from the study demonstrated that electric pulses induced cell membrane ruffling and actin cytoskeleton remodeling. Using fluorescently labeled pDNA and a macropinocytosis marker (i.e., dextran), the study showed that electrotransfected pDNA co-localized with dextran in intracellular vesicles. Furthermore, electrotransfection efficiency could be decreased significantly by reducing temperature or treatment of cells with a pharmacological inhibitor of Rac1 and could be altered by changing Rac1 activity. Taken together, the findings suggested that electrotransfection of pDNA involved Rac1-dependent macropinocytosis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response.

    Science.gov (United States)

    Pizarro, Lorena; Leibman-Markus, Meirav; Schuster, Silvia; Bar, Maya; Meltz, Tal; Avni, Adi

    2018-01-01

    Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation.

  9. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  10. Human Trafficking: The Role of the Health Care Provider

    OpenAIRE

    Dovydaitis, Tiffany

    2010-01-01

    Human trafficking is a major public health problem, both domestically and internationally. Health care providers are often the only professionals to interact with trafficking victims who are still in captivity. The expert assessment and interview skills of providers contribute to their readiness to identify victims of trafficking. The purpose of this article is to provide clinicians with knowledge on trafficking and give specific tools that they may use to assist victims in the clinical setti...

  11. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Beatriz Vásquez-Soto

    2015-01-01

    Full Text Available BACKGROUND: A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY, triggering its secretion in Saccharomyces cerevisiae. RESULTS: A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS: Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.

  12. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine

    Directory of Open Access Journals (Sweden)

    David B. Finlay

    2016-03-01

    Full Text Available The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly. Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP and phosphorylation of extracellular signal-regulated kinase (ERK, in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R, were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine. This A108N mutant

  13. Human Trafficking as Lever for Feminist Voices?

    DEFF Research Database (Denmark)

    Spanger, Marlene

    2011-01-01

    In Denmark, human trafficking has emerged as a central issue within the policy field of prostitution during the last decade. Taking a Foucauldian approach from a historical perspective, understanding the policy field of prostitution as a discursive terrain, the article analyses the thinking...... that lies behind policies on prostitution by identifying ruptures and discursive struggles which lead to transformations of the policy field. In particular, this article investigates how the problematisation of human trafficking has created space for a feminist discourse breakthrough within the policy field...

  14. The role of actin and microtubule networks in plasmid DNA intracellular trafficking

    Czech Academy of Sciences Publication Activity Database

    Ondřej, Vladan; Lukášová, Emilie; Falk, Martin; Kozubek, Stanislav

    2007-01-01

    Roč. 54, č. 3 (2007), s. 657-663 ISSN 0001-527X R&D Projects: GA ČR(CZ) GA202/02/0804; GA ČR(CZ) GA202/04/0907; GA AV ČR(CZ) 1QS500040508; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : plasmid DNA * actin filaments * microtubules Subject RIV: BO - Biophysics Impact factor: 1.261, year: 2007

  15. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    NARCIS (Netherlands)

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  16. In Vitro Intracellular Trafficking of Virulence Antigen during Infection by Yersinia pestis

    Science.gov (United States)

    2009-07-17

    type III secretion system ( T3SS )- dependent mechanism; be secreted extracellularly; and enter the host cell by a T3SS -independent mechanism, where its...component type III secretion system ( T3SS ) [12,18–21]. These effector proteins function to (1) disrupt cellular processes such as phagocytosis via actin...expression, secretion, and entry of the cytotoxic Yops into host cells by the T3SS [19,31,32]. In addition, V is the only pLcr- encoded protein known

  17. Trafficking and intracellular regulation of Kv7.1 potassium channels in the heart

    DEFF Research Database (Denmark)

    Nielsen, Nathalie Hélix

    The electrical activity of the heart, measured by application of surface body electrodes and recorded as an electrocardiogram, is the result of a finely tuned balance of ion movement (K+, Na+, Ca2+). The ionic currents collectively constitute the cardiac action potential created in the cell....... The mutation is located in the C-terminus of the Kv7.1 channel protein in a calmodulin binding domain, where the methionine (M) at position 520 is replaced by an arginine (R). Our results show that although Kv7.1/calmodulin interaction is not impaired by the M520R mutation, the mutated channels are retained...

  18. The subapical compartment and its role in intracellular trafficking and cell polarity

    NARCIS (Netherlands)

    Van Ijzendoorn, Sven C. D.; Maier, Olaf; Van Der Wouden, Johanna M.; Hoekstra, Dick

    In polarized epithelial cells and hepatocytes, apical and basolateral plasma membrane surfaces are maintained, each displaying a distinct molecular composition. In recent years, it has become apparent that a subapical compartment, referred to as SAC, plays a prominent if not crucial role in the

  19. Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking.

    NARCIS (Netherlands)

    Jong, A.S. de; Mattia, F.P. de; Dommelen, M.M.T.; Lanke, K.H.W.; Melchers, W.J.G.; Willems, P.H.G.M.; Kuppeveld, F.J.M. van

    2008-01-01

    The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different

  20. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    DEFF Research Database (Denmark)

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A

    2007-01-01

    and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7....... Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal....... In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity...

  1. The Retromer Supports AMPA Receptor Trafficking During LTP.

    Science.gov (United States)

    Temkin, Paul; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin; Chen, Lu; Malenka, Robert

    2017-04-05

    Alterations in the function of the retromer, a multisubunit protein complex that plays a specialized role in endosomal sorting, have been linked to Alzheimer's and Parkinson's diseases, yet little is known about the retromer's role in the mature brain. Using in vivo knockdown of the critical retromer component VPS35, we demonstrate a specific role for this endosomal sorting complex in the trafficking of AMPA receptors during NMDA-receptor-dependent LTP at mature hippocampal synapses. The impairment of LTP due to VPS35 knockdown was mechanistically independent of any role of the retromer in the production of Aβ from APP. Finally, we find surprising differences between Alzheimer's- and Parkinson's-disease-linked VPS35 mutations in supporting this pathway. These findings demonstrate a key role for the retromer in LTP and provide insights into how retromer malfunction in the mature brain may contribute to symptoms of common neurodegenerative diseases. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  3. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    International Nuclear Information System (INIS)

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-01-01

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-ΔE) has been engineered. This deletion mutant only grows in cells expressing E protein (E + cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-ΔE infected BHK-pAPN-E - cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E - cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-ΔE virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-ΔE subcellular localization by confocal and immunoelectron microscopy in infected E - cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation

  4. Trafficking of Children in Albania: Patterns of Recruitment and Reintegration

    Science.gov (United States)

    Gjermeni, Eglantina; Van Hook, Mary P.; Gjipali, Saemira; Xhillari, Lindita; Lungu, Fatjon; Hazizi, Anila

    2008-01-01

    Problem: Many children in Albania and other countries of Eastern Europe are being trafficked as part of the global business of human trafficking. Objectives: The study sought to identify the patterns of child trafficking involving Albanian children, and especially children's views of the role of family issues and the nature of the trafficking…

  5. 48 CFR 52.222-50 - Combating Trafficking in Persons.

    Science.gov (United States)

    2010-10-01

    ...: Combating Trafficking in Persons (FEB 2009) (a) Definitions. As used in this clause— Coercion means— (1.... Commercial sex act means any sex act on account of which anything of value is given to or received by any... trafficking in persons means— (1) Sex trafficking in which a commercial sex act is induced by force, fraud, or...

  6. Understanding the link between trafficking in persons and HIV and ...

    African Journals Online (AJOL)

    It is concluded that the reported occupational hazards in industries where trafficked persons are forced into are not specific to trafficked persons as they affect all labourers. However, the underground nature of the trafficking in persons process increases health problems and risks, including the vulnerability to HIV infection.

  7. Human Trafficking: A Review for Mental Health Professionals

    Science.gov (United States)

    Yakushko, Oksana

    2009-01-01

    This article provides a review of current research on human trafficking for mental health practitioners and scholars. In addition to an overview of definitions, causes and processes of trafficking, the article highlights mental health consequences of trafficking along with suggestions for treatment of survivors. Directions for counseling services,…

  8. Human trafficking and exploitation: A global health concern.

    Directory of Open Access Journals (Sweden)

    Cathy Zimmerman

    2017-11-01

    Full Text Available In this collection review, Cathy Zimmerman and colleague introduce the PLOS Medicine Collection on Human Trafficking, Exploitation and Health, laying out the magnitude of the global trafficking problem and offering a public health policy framework to guide responses to trafficking.

  9. 78 FR 59317 - Federal Acquisition Regulation; Ending Trafficking in Persons

    Science.gov (United States)

    2013-09-26

    ... addressed a wide range of human trafficking-related issues. Commonly raised themes included the following...-AM55 Federal Acquisition Regulation; Ending Trafficking in Persons AGENCY: Department of Defense (DoD...) to strengthen protections against trafficking in persons in Federal contracts. These changes are...

  10. a Study of Akachi Adimora-Ezeigbo's Trafficked

    African Journals Online (AJOL)

    Trafficking is frowned at in Nigeria, yet people are perpetually trafficked. In this research work, the researcher examines the novel in line with sociological approach so that the ills of human trafficking as it is a case in the contemporary society would be seen. The researcher believes that when the ills are exposed, there ...

  11. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-01-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  12. South Africa - safe haven for human traffickers? Employing the arsenal of existing law to combat human trafficking

    OpenAIRE

    Kruger, H B; Oosthuizen, H

    2012-01-01

    aving ratified the Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children, South Africa is obliged to adopt legislative measures that criminalise human trafficking and comply with other standards laid down in this international instrument. However, by mid-2011, South Africa had not enacted the required comprehensive counter-trafficking legislation. The question that now arises is if the absence of such anti-trafficking legislation poses an insurmountabl...

  13. Trafficking in Persons for Ransom and the Need to Expand the Interpretation of Article 3 of the UN Trafficking Protocol

    OpenAIRE

    Mogos O Brhane

    2015-01-01

    As the nature of trafficking in persons continues to manifest itself in myriad ways all over the world, interpretation of the UN Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children (Trafficking Protocol), should be broadened to include newly emerging practices that are similar in nature to those it has already embraced under its definition. The Protocol appears to encompass other forms of trafficking which are unnamed or unforeseen by the definition ...

  14. Aberrant dynamin 2-dependent Na(+) /H(+) exchanger-1 trafficking contributes to cardiomyocyte apoptosis.

    Science.gov (United States)

    Li, Jun; Xu, Liang; Ye, Jiangchuan; Li, Xiang; Zhang, Dasheng; Liang, Dandan; Xu, Xinran; Qi, Man; Li, Changming; Zhang, Hong; Wang, Jing; Liu, Yi; Zhang, Yuzhen; Zhou, Zhaonian; Liang, Xingqun; Li, Jue; Peng, Luying; Zhu, Weidong; Chen, Yi-Han

    2013-09-01

    Sarcolemmal Na(+) /H(+) exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi ) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  15. Aberrant dynamin 2-dependent Na+/H+ exchanger-1 trafficking contributes to cardiomyocyte apoptosis

    Science.gov (United States)

    Li, Jun; Xu, Liang; Ye, Jiangchuan; Li, Xiang; Zhang, Dasheng; Liang, Dandan; Xu, Xinran; Qi, Man; Li, Changming; Zhang, Hong; Wang, Jing; Liu, Yi; Zhang, Yuzhen; Zhou, Zhaonian; Liang, Xingqun; Li, Jue; Peng, Luying; Zhu, Weidong; Chen, Yi-Han

    2013-01-01

    Sarcolemmal Na+/H+ exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase–mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis. PMID:23837875

  16. Subcellular trafficking in rhabdovirus infection and immune evasion: a novel target for therapeutics.

    Science.gov (United States)

    Oksayan, Sibil; Ito, Naoto; Moseley, Greg; Blondel, Danielle

    2012-02-01

    Vesicular stomatitis virus (VSV) and Rabies Virus (RABV) are the prototypic members of the rhabdovirus family. These viruses have a particularly broad host range, and despite the availability of vaccines, RABV still causes more than 50,000 human deaths a year. Trafficking of the virion or viral particles is important at several stages of the replicative life cycle, including cellular entry, localization into the cytoplasmic inclusion bodies which primarily house the transcription and replication of the viral genome, and migration to the plasma membrane from whence the virus is released by budding. Intriguingly, specific viral proteins, VSV M and RABV P have also been shown to undergo intracellular trafficking independent of the other viral apparatus. These proteins are multifunctional, and play roles in antagonism of host processes, namely the IFN system, and as such enable viral evasion of the innate cellular antiviral response. A body of recent research has been aimed at characterizing the mechanisms by which these proteins are able to shuttle between and localize to various subcellular sites, including the nucleus, which is not required during the cytoplasmic replicative life cycle of the virus. This work has indicated that trafficking of these proteins plays a significant role in determining the ability of the viruses to replicate and cause infection, and as such, represents a viable target for development of a new generation of vaccines and prophylactic therapeutics which are required to battle these pathogens of human and agricultural significance.

  17. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  19. Trafficking as a Human Rights Violation: Is South Africa's Curriculum Stuck in a Traffick Jam?

    Science.gov (United States)

    du Preez, Petro; Simmonds, Shan

    2013-01-01

    Human trafficking is a form of modern day slavery and is often collectively referred to as a human rights violation. However, human trafficking is more complex than this suggests as this article attempts to demonstrate. It begins by describing the landscape of international trends in human trafficking, with particular attention to child…

  20. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sinai Trafficking: Origin and Definition of a New Form of Human Trafficking

    Directory of Open Access Journals (Sweden)

    Mirjam van Reisen

    2015-02-01

    Full Text Available The phenomenon that is coined “Sinai Trafficking” started in 2009 in the Sinai desert. It involves the abduction, extortion, sale, torture, sexual violation and killing of men, women and children. Migrants, of whom the vast majority are from Eritrean descent, are abducted and brought to the Sinai desert, where they are sold and resold, extorted for very high ransoms collected by mobile phone, while being brutally and “functionally” tortured to support the extortion. Many of them die in Sinai. Over the last five years broadcasting stations, human rights organisations and academics have reported on the practices in the Sinai and some of these reports have resulted in some confusion on the modus operandi. Based on empirical research by the authors and the analysis of data gathered in more than 200 recorded interviews with Sinai hostages and survivors on the practices, this article provides a definition of Sinai Trafficking. It argues that the term Sinai Trafficking can be used to differentiate a particular new set of criminal practices that have first been reported in the Sinai Peninsula. The article further examines how the new phenomenon of Sinai Trafficking can be framed into the legal human trafficking definition. The interconnectedness of Sinai Trafficking with slavery, torture, ransom collection, extortion, sexual violence and other severe crimes is presented to substantiate the use of the trafficking framework. The plight of Sinai survivors in Israel and Egypt is explained to illustrate the cyclical process of the trafficking practices especially endured by Eritreans, introduced as the Human Trafficking Cycle. The article concludes by setting out areas for further research.

  2. Trafficking in persons : A victim's perspective

    NARCIS (Netherlands)

    Rijken, Conny; Rijken, Conny; Piotrowicz, Ryszard; Uhl, Baerbel Heide

    2017-01-01

    Historically, protection and assistance to victims of human trafficking in many countries is anchored in migration law and dependent on whether or not a residence permit is granted to the victim. Apart from some limited exceptions, cooperation with law enforcement authorities in criminal

  3. Neuronal trafficking: basic mechanisms and ALS pathology

    NARCIS (Netherlands)

    Kuijpers, M.

    2014-01-01

    A cell is divided into different compartments and organelles, which enables the cell to create specialized environments for specific functions. To perform these functions, organelles need a unique composition of proteins and lipids. By actively controlling the trafficking of proteins and membrane

  4. Psychological characteristics of victims of trafficking

    Directory of Open Access Journals (Sweden)

    Larin A.N.

    2015-11-01

    Full Text Available The article describes the main causes of falling into slavery, forms of slave labour, as well as moral-psychological properties and characteristics of potential victims of trafficking. Noted risk factors leading to victimization of the person and increase the possibility of becoming an object for criminal groups specializing in this kind of crime. The number of victims of international trafficking ranges from 600 to 800 thousand people a year, and when you consider human trafficking within the individual countries, the total number of victims ranges from 2 to 4 million people. 80% of trafficked people are women and children, of which 70% are sold to other countries for sexual exploitation. According to the International organization for migration (International Organization of Migration annually only in the European markets of prostitution sold is not less than 500 thousand women. Among the personal factors that affect the increase in the number of such crimes, it is necessary to indicate family trouble, which manifests itself, primarily, to neglect, loss of relationships with family and parents, or in the absence of moral and material support from existing family and friends.

  5. Linking Poverty, Irregular Migration and Human Trafficking ...

    African Journals Online (AJOL)

    Migration literature suggests that poverty, irregular migration and human trafficking are causally linked. However, empirical studies linking these aspects of migration are scarce. This is because, as clandestine activities, data collection on these aspects of migration presents serious challenges. As a result of these ...

  6. Human Trafficking, Globalisation and Transnational Feminist Responses

    NARCIS (Netherlands)

    T-D. Truong (Thanh-Dam)

    2014-01-01

    textabstractThis paper presents a historical overview of feminist frameworks for analysis and advocacy on human trafficking. It traces the major differences and similarities in the forms of knowledge produced since the Anti-White Slavery campaigns nearly two centuries ago. It highlights how

  7. Advocacy of Trafficking Campaigns: A Controversy Story

    Science.gov (United States)

    Saiz-Echezarreta, Vanesa; Alvarado, María-Cruz; Gómez-Lorenzini, Paulina

    2018-01-01

    The construction, visualization and stabilization of public problems require the mobilization of civil society groups concerned about these issues to actively engage in the demand for actions and policies. This paper explores the institutional campaigns against human trafficking and sexual exploitation in Spain between 2008 and 2017 and their role…

  8. Global Human Trafficking and Child Victimization.

    Science.gov (United States)

    Greenbaum, Jordan; Bodrick, Nia

    2017-12-01

    Trafficking of children for labor and sexual exploitation violates basic human rights and constitutes a major global public health problem. Pediatricians and other health care professionals may encounter victims who present with infections, injuries, posttraumatic stress disorder, suicidality, or a variety of other physical or behavioral health conditions. Preventing child trafficking, recognizing victimization, and intervening appropriately require a public health approach that incorporates rigorous research on the risk factors, health impact, and effective treatment options for child exploitation as well as implementation and evaluation of primary prevention programs. Health care professionals need training to recognize possible signs of exploitation and to intervene appropriately. They need to adopt a multidisciplinary, outward-focused approach to service provision, working with nonmedical professionals in the community to assist victims. Pediatricians also need to advocate for legislation and policies that promote child rights and victim services as well as those that address the social determinants of health, which influence the vulnerability to human trafficking. This policy statement outlines major issues regarding public policy, medical education, research, and collaboration in the area of child labor and sex trafficking and provides recommendations for future work. Copyright © 2017 by the American Academy of Pediatrics.

  9. Ovarian Cystadenoma in a Trafficked Patient.

    Science.gov (United States)

    Titchen, Kanani E; Katz, Douglas; Martinez, Kidian; White, Krishna

    2016-05-01

    The topic of child sex trafficking is receiving increased attention both in the lay press and in research articles. Recently, a number of physician organizations have issued policy statements calling for the education and involvement of physicians in combating this form of "modern-day slavery." Primary care and emergency medicine physicians have led these efforts, but a number of these victims may present to surgeons. Surgeons are in a unique position to identify trafficked patients; during the process of undraping, intubation, and surgical preparation, signs of trafficking such as tattoos, scars, dental injuries, and bruising may be evident. In addition, these patients may have specific needs in terms of anesthesia and postoperative care due to substance abuse. Here, we report the case of an 18-year-old girl with a history of sexual exploitation who presents for cystadenoma excision. To our knowledge, this is the first report of a sex-trafficked pediatric patient presenting for surgery. Copyright © 2016 by the American Academy of Pediatrics.

  10. Global recycling - waste trafficking in disguise?

    DEFF Research Database (Denmark)

    Kamuk, Bettina; Hansen, Jens Aage

    2007-01-01

    Recycling is used as cover for illegal exporting of hazardous wastes (waste trafficking). This happens in spite of international conventions and codes of good conduct. Additional rules and recommendations are suggested to initiatiate local and national action and compliance with international...

  11. Counter Trafficking System Development "Analysis Training Program"

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dennis C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-12-01

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  12. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells.

    Science.gov (United States)

    Geoghegan, Vincent; Stainton, Kirsty; Rainey, Stephanie M; Ant, Thomas H; Dowle, Adam A; Larson, Tony; Hester, Svenja; Charles, Philip D; Thomas, Benjamin; Sinkins, Steven P

    2017-09-13

    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.

  13. Trafficking and contract migrant workers in the Middle East.

    Science.gov (United States)

    Jureidini, Ray

    2010-01-01

    The paper addresses a number of issues regarding the extent to which trafficking may be applied to migrant domestic workers who enter under the kafala system of sponsorship in the Middle East. Migrant domestic workers are the most numerous of those mentioned in reports on trafficking for labour exploitation in the region. The discussion seeks to determine whether "trafficking" can be ex post facto, rather than ex ante? In other words, can the label of trafficking be attributed only after the worker has arrived in the receiving country and is victimized according to the principles of trafficking protocols? In addition, must there be a proven intent to traffic by agents, or can employers who harm and/or exploit them be considered as traffickers alone? Should the harm done to workers on arrival at their place of work be classified (and assisted) as victims of trafficking, or as exploited workers?

  14. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.

    Science.gov (United States)

    Yano, Takanori; Funamizu, Yuhei; Yoshida, Nobuyuki

    2016-01-01

    An extreme oligotroph, Rhodococcus erythropolis N9T-4, showed intracellular accumulation of trehalose and glycogen under oligotrophic conditions. No trehalose accumulation was observed in cells grown on the rich medium. Deletion of the polyphosphate kinase genes enhanced the trehalose accumulation and decreases the intracellular glycogen contents, suggesting an oligotrophic relationship between among the metabolic pathways of trehalose, glycogen, and inorganic polyphosphate biosyntheses.

  15. The intracellular pharmacokinetics of terminally capped peptides.

    NARCIS (Netherlands)

    Ruttekolk, I.R.R.; Witsenburg, J.J.; Glauner, H.B.; Bovee-Geurts, P.H.M.; Ferro, E.S.; Verdurmen, W.P.R.; Brock, R.E.

    2012-01-01

    With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular

  16. In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAT pathway is activated by PRL in the mammary gland but not in the liver.

    Science.gov (United States)

    Jahn, G A; Daniel, N; Jolivet, G; Belair, L; Bole-Feysot, C; Kelly, P A; Djiane, J

    1997-10-01

    The rat prolactin receptor (PRL-R) exists in two forms, which differ in the length of the cytoplasmic domains, tissue distribution, and biological activity. The short form predominates in liver while the long form is prevalent in mammary gland. We have compared activation by PRL of the JAK2-STAT pathway (protein tyrosine phosphorylation and STAT5 activation) in mammary gland and liver in an in vivo rat model of induction of lactogenesis by PRL injections, and we have studied the relative proportion of both forms of the receptor in these tissues by reverse transcription-polymerase chain reaction. Rats were ovario-hysterectomized on Day 19 of pregnancy, treated with bromocriptine, subsequently injected with 250 micrograms ovine PRL i.p. on Day 20, and killed 0-12 h after. Western blots of solubilized mammary gland and liver membranes immunoprecipitated with anti-PRL-R or anti-JAK2 antibodies showed that the PRL-R is constitutively associated with JAK2 and that the long form of the PRL-R is present in both tissues, while the short form was detected only in liver. Phosphorylated proteins corresponding to the long form of PRL-R and JAK2 appeared 15-60 min after ovine PRL injection in mammary extracts but not in liver. At these same times, an electrophoretic mobility shift assay, using a rat beta-casein probe specific for STAT5 binding, showed activated STAT5 in mammary gland cytosol and nuclear extracts. In the liver, low levels of activated STAT5 were detected in non-treated animals, which were not modified by PRL. Quantitative RT-PCR of liver and mammary PRL-R mRNA showed that the amount of the long form of PRL-R mRNA is roughly comparable in both tissues, while the short form is predominant in liver and in a minority in mammary tissue. Both forms were down-regulated by PRL only in mammary glands. Thus, during lactogenesis, mammary tissue responds to PRL by activation of JAK2 and STAT5, while the liver does not respond to PRL in spite of the presence of PRL

  17. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  18. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  19. Effects of hydrogen peroxide and apolipoprotein E isoforms on apolipoprotein E trafficking in HepG2 cells.

    Science.gov (United States)

    Sabaretnam, Tharani; Harris, Matthew J; Kockx, Maaike; Witting, Paul K; Le Couteur, David G; Kritharides, Leonard

    2009-12-01

    1. The major source of apolipoprotein E (apoE) is the liver. In the present study, the effects of oxidative stress and apoE isoforms on apoE distribution and trafficking were established using the HepG2 liver tumour cell line. 2. Hydrogen peroxide (0, 25, 250 and 1000 micromol/L) was associated with rapid and concentration-dependent redistribution of apoE into the early endosomal compartment. This redistribution was achieved with a much lower concentration (25 micromol/L) than that needed to induce changes in intracellular apoE mRNA expression, apoE protein levels and markers of oxidative stress (250-1000 micromol/L). 3. Live cell imaging of apoE3-green fluorescent protein revealed a significant decrease in traffic velocity in response to oxidative stress. 4. The E4 isoform was associated with reduced trafficking velocity compared with the E3 isoform under basal conditions. 5. The results indicate that oxidative stress and apoE isoforms influence apoE trafficking and distribution within HepG2 cells. Altered apoE hepatocyte trafficking may provide a mechanistic link between oxidative stress, ageing and some diseases in older people.

  20. Physical health symptoms reported by trafficked women receiving post-trafficking support in Moldova: prevalence, severity and associated factors.

    Science.gov (United States)

    Oram, Siân; Ostrovschi, Nicolae V; Gorceag, Viorel I; Hotineanu, Mihai A; Gorceag, Lilia; Trigub, Carolina; Abas, Melanie

    2012-07-26

    Many trafficked people suffer high levels of physical, sexual and psychological abuse. Yet, there has been limited research on the physical health problems associated with human trafficking or how the health needs of women in post-trafficking support settings vary according to socio-demographic or trafficking characteristics. We analysed the prevalence and severity of 15 health symptoms reported by 120 trafficked women who had returned to Moldova between December 2007 and December 2008 and were registered with the International Organisation for Migration Assistance and Protection Programme. Women had returned to Moldova an average of 5.9 months prior to interview (range 2-12 months). Headaches (61.7%), stomach pain (60.9%), memory problems (44.2%), back pain (42.5%), loss of appetite (35%), and tooth pain (35%) were amongst the most commonly reported symptoms amongst both women trafficked for sexual exploitation and women trafficked for labour exploitation. The prevalence of headache and memory problems was strongly associated with duration of exploitation. Trafficked women who register for post-trafficking support services after returning to their country of origin are likely to have long-term physical and dental health needs and should be provided with access to comprehensive medical services. Health problems among women who register for post-trafficking support services after returning to their country of origin are not limited to women trafficked for sexual exploitation but are also experienced by victims of labour exploitation.

  1. South Africa – Safe Haven for Human Traffickers? Employing the Arsenal of Existing Law to Combat Human Trafficking

    Directory of Open Access Journals (Sweden)

    H Oosthuizen

    2012-03-01

    Full Text Available aving ratified the Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children, South Africa is obliged to adopt legislative measures that criminalise human trafficking and comply with other standards laid down in this international instrument. However, by mid-2011, South Africa had not enacted the required comprehensive counter-trafficking legislation. The question that now arises is if the absence of such anti-trafficking legislation poses an insurmountable obstacle to the prosecution of traffickers for trafficking-related activities. In asking this question the article examines the utilisation of existing crimes in order to prosecute and punish criminal activities committed during the human trafficking process. Firstly, a selection of existing common law and statutory crimes that may often be applicable to trafficking related activities is mapped out. Secondly, transitional trafficking provisions in the Children's Act 38 of 2005 and the Criminal Law (Sexual Offences and Related Matters Amendment Act 32 of 2007 are discussed. Finally, since the Prevention and Combating of Trafficking in Persons Bill B7 of 2010 will in all probability be enacted in the near future, the use of other criminal law provisions in human trafficking prosecutions, even after the passing of this bill into law, is reflected upon.

  2. Physical health symptoms reported by trafficked women receiving post-trafficking support in Moldova: prevalence, severity and associated factors

    Directory of Open Access Journals (Sweden)

    Oram Siân

    2012-07-01

    Full Text Available Abstract Background Many trafficked people suffer high levels of physical, sexual and psychological abuse. Yet, there has been limited research on the physical health problems associated with human trafficking or how the health needs of women in post-trafficking support settings vary according to socio-demographic or trafficking characteristics. Methods We analysed the prevalence and severity of 15 health symptoms reported by 120 trafficked women who had returned to Moldova between December 2007 and December 2008 and were registered with the International Organisation for Migration Assistance and Protection Programme. Women had returned to Moldova an average of 5.9 months prior to interview (range 2-12 months. Results Headaches (61.7%, stomach pain (60.9%, memory problems (44.2%, back pain (42.5%, loss of appetite (35%, and tooth pain (35% were amongst the most commonly reported symptoms amongst both women trafficked for sexual exploitation and women trafficked for labour exploitation. The prevalence of headache and memory problems was strongly associated with duration of exploitation. Conclusions Trafficked women who register for post-trafficking support services after returning to their country of origin are likely to have long-term physical and dental health needs and should be provided with access to comprehensive medical services. Health problems among women who register for post-trafficking support services after returning to their country of origin are not limited to women trafficked for sexual exploitation but are also experienced by victims of labour exploitation.

  3. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Directory of Open Access Journals (Sweden)

    Elizabeth Muir

    Full Text Available There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location.To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate.Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed

  4. Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.

    Science.gov (United States)

    Kim, Suk; Kurokawa, Daisuke; Watanabe, Kenta; Makino, Sou-Ichi; Shirahata, Toshikazu; Watarai, Masahisa

    2004-05-15

    Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and showed a lower rate of intracellular replication than that of wild-type strain in macrophages. Addition of nicotinic acid, but not nicotinamide, into medium supported intracellular replication of pncA mutant in HeLa cells and macrophages. The pncA mutant was not co-localizing with either late endosomes or lysosomes. The B. abortus virB4 mutant was completely cleared from the spleens of mice after 4 weeks, while the pncA mutant showed a 1.5-log reduction of the number of bacteria isolated from spleens after 10 weeks. Although pncA mutant showed reduced virulence in mice and defective intracellular replication, its ability to confer protection against the virulent B. abortus strain 544 was fully retained. These results suggest that PncA does not contribute to intracellular trafficking of B. abortus, but contributes to utilization of nutrients required for intracellular growth. Our results indicate that detailed characterizations of the pncA mutant may help the improvement of currently available live vaccines. Copyright 2004 Federation of European Microbiological Societies

  5. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  6. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  7. Phospholipid synthesis participates in the regulation of diacylglycerol required for membrane trafficking at the Golgi complex.

    Science.gov (United States)

    Sarri, Elisabet; Sicart, Adrià; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2011-08-12

    The lipid metabolite diacylglycerol (DAG) is required for transport carrier biogenesis at the Golgi, although how cells regulate its levels is not well understood. Phospholipid synthesis involves highly regulated pathways that consume DAG and can contribute to its regulation. Here we altered phosphatidylcholine (PC) and phosphatidylinositol synthesis for a short period of time in CHO cells to evaluate the changes in DAG and its effects in membrane trafficking at the Golgi. We found that cellular DAG rapidly increased when PC synthesis was inhibited at the non-permissive temperature for the rate-limiting step of PC synthesis in CHO-MT58 cells. DAG also increased when choline and inositol were not supplied. The major phospholipid classes and triacylglycerol remained unaltered for both experimental approaches. The analysis of Golgi ultrastructure and membrane trafficking showed that 1) the accumulation of the budding vesicular profiles induced by propanolol was prevented by inhibition of PC synthesis, 2) the density of KDEL receptor-containing punctated structures at the endoplasmic reticulum-Golgi interface correlated with the amount of DAG, and 3) the post-Golgi transport of the yellow fluorescent temperature-sensitive G protein of stomatitis virus and the secretion of a secretory form of HRP were both reduced when DAG was lowered. We confirmed that DAG-consuming reactions of lipid synthesis were present in Golgi-enriched fractions. We conclude that phospholipid synthesis pathways play a significant role to regulate the DAG required in Golgi-dependent membrane trafficking.

  8. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  9. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. 'Trafficking' or 'personal use': do people who regularly inject drugs understand Australian drug trafficking laws?

    Science.gov (United States)

    Hughes, Caitlin E; Ritter, Alison; Cowdery, Nicholas; Sindicich, Natasha

    2014-11-01

    Legal thresholds for drug trafficking, over which possession of an illicit drug is deemed 'trafficking' as opposed to 'personal use', are employed in all Australian states and territories excepting Queensland. In this paper, we explore the extent to which people who regularly inject drugs understand such laws. Participants from the seven affected states/territories in the 2012 Illicit Drug Reporting System (n = 823) were asked about their legal knowledge of trafficking thresholds: whether, if arrested, quantity possessed would affect legal action taken; and the quantities of heroin, methamphetamine, cocaine and cannabis that would constitute an offence of supply. Data were compared against the actual laws to identify the accuracy of knowledge by drug type and state, and sociodemographics, use and purchasing patterns related to knowledge. Most Illicit Drug Reporting System participants (77%) correctly said that quantity possessed would affect charge received. However, only 55.8% nominated any specific quantity that would constitute an offence of supply, and of those 22.6% nominated a wrong quantity, namely a quantity that was larger than the actual quantity for supply (this varied by state and drug). People who regularly inject drugs have significant gaps in knowledge about Australian legal thresholds for drug trafficking, particularly regarding the actual threshold quantities. This suggests that there may be a need to improve education for this population. Necessity for accurate knowledge would also be lessened by better design of Australian drug trafficking laws. © 2014 Australasian Professional Society on Alcohol and other Drugs.

  11. The problem of international drug trafficking

    OpenAIRE

    KUZMINA V.M.

    2015-01-01

    The illegal drug trade is a global black market dedicated to the cultivation, manufacture, distribution and sale of drugs that are subjected to drug prohibition laws. Most jurisdictions prohibit trade, except under license of many types of drugs through the use of drug prohibition laws. Today, drug trafficking is a very profitable business and at the same time it requires great ingenuity during its transit.

  12. Downregulation of a GPCR by β-Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway.

    Science.gov (United States)

    Abdullah, Nazish; Beg, Muheeb; Soares, David; Dittman, Jeremy S; McGraw, Timothy E

    2016-12-13

    Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in nutrient homeostasis. GIP receptor (GIPR) is constitutively internalized and returned to the plasma membrane, atypical behavior for a G-protein-coupled receptor (GPCR). GIP promotes GIPR downregulation from the plasma membrane by inhibiting recycling without affecting internalization. This transient desensitization is achieved by altered intracellular trafficking of activated GIPR. GIP stimulation induces a switch in GIPR recycling from a rapid endosomal to a slow trans-Golgi network (TGN) pathway. GPCR kinases and β-arrestin2 are required for this switch in recycling. A coding sequence variant of GIPR, which has been associated with metabolic alterations, has altered post-activation trafficking characterized by enhanced downregulation and prolonged desensitization. Downregulation of the variant requires β-arrestin2 targeting to the TGN but is independent of GPCR kinases. The single amino acid substitution in the variant biases the receptor to promote GIP-stimulated β-arrestin2 recruitment without receptor phosphorylation, thereby enhancing downregulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Etiological Aspects of Human Trafficking in Kosovo

    Directory of Open Access Journals (Sweden)

    Emine Abdyli

    2017-08-01

    Full Text Available Human trafficking is considered one of the most serious criminal offences, which is presented as a contemporary form of slavery and which implies the most brutal violation of basic human rights, which are guaranteed by international and law and national law. The phenomenon of human trafficking is present in many countries in transition (such as Kosovo, namely in those countries which were affected by internal political, economic, social, educational, etc. changes, and in such situations the perpetrators of this offense are in a very favorable position to victimize society. Therefore, this paper will focus on external criminogenic factors that influence the growth of this negative phenomenon, including the difficult economic situation, poverty and unemployment, poor housing, migration of people, domestic violence, the impact of mass media in society, lack of border control and insufficient effectiveness of institutions to deal with law enforcement. The paper is based on literature review, statistical data and interviews by treating the subject theoretically, legislatively and practically. To successfully fight against human trafficking, relevant authorities should more closely approach the etiological treatment of this negative phenomenon.

  14. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran

    Science.gov (United States)

    Fisher, Katherine H.; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P.

    2016-01-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms. PMID:26658615

  15. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  16. Child human trafficking victims: challenges for the child welfare system.

    Science.gov (United States)

    Fong, Rowena; Berger Cardoso, Jodi

    2010-08-01

    Since the passing of the Victims of Trafficking and Violence Protection Act in 2000 and its reauthorization by President George Bush in 2008, federal, state and community efforts in identifying and providing services for victims of human trafficking have significantly improved. However, most of the research and resources for trafficking victims have been directed towards adults rather than children. Researchers agree that there is a growing number of sexually exploited and trafficked children in the United States yet few programs emphasize the unique experiences and special needs of this population. This article examines commercial sexual exploitation of children; differentiates the needs and problems between child prostitution and victims of human trafficking; reviews and critiques current treatment practices; and summarizes challenges and successes in working with child victims of human trafficking, offering practice and policy recommendations. Published by Elsevier Ltd.

  17. Health Care and Human Trafficking: We are Seeing the Unseen.

    Science.gov (United States)

    Chisolm-Straker, Makini; Baldwin, Susie; Gaïgbé-Togbé, Bertille; Ndukwe, Nneka; Johnson, Pauline N; Richardson, Lynne D

    2016-01-01

    This study aimed to build the evidence base around human trafficking (HT) and health in the U.S. by employing a quantitative approach to exploring the notion that health care providers encounter this population. Furthermore, this study sought to describe the health care settings most frequented by victims of human trafficking. This was an anonymous, retrospective study of survivors of U.S.-based human trafficking. One hundred and seventy-three participants who endured U.S.-based human trafficking were surveyed. The majority (68%, n=117) of participants were seen by a health care provider while being trafficked. Respondents most frequently reported visiting emergency/urgent care practitioners (56%), followed by primary care providers, dentists, and obstetricians/gynecologists (OB/GYNs). While health care providers are serving this patient population, they do not consistently identify them as victims of human trafficking.

  18. Human Trafficking, Mental Illness, and Addiction: Avoiding Diagnostic Overshadowing.

    Science.gov (United States)

    Stoklosa, Hanni; MacGibbon, Marti; Stoklosa, Joseph

    2017-01-01

    This article reviews an emergency department-based clinical vignette of a trafficked patient with co-occurring pregnancy-related, mental health, and substance use disorder issues. The authors, including a survivor of human trafficking, draw on their backgrounds in addiction care, human trafficking, emergency medicine, and psychiatry to review the literature on relevant general health and mental health consequences of trafficking and propose an approach to the clinical complexities this case presents. In their discussion, the authors explicate the deleterious role of implicit bias and diagnostic overshadowing in trafficked patients with co-occurring addiction and mental illness. Finally, the authors propose a trauma-informed, multidisciplinary response to potentially trafficked patients. © 2017 American Medical Association. All Rights Reserved.

  19. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  20. International regulation of the ban on trafficking in women

    OpenAIRE

    Suská, Veronika

    2010-01-01

    Resumé The theme of my diploma thesis is The International Regulations of Trafficking in Women. Trafficking in people, especially with women is very old and unfortunately still actual phenomenon. Nowadays it is a fastest-growing form of criminal industry in the world. People are in the position of commodity that is trafficked. Universal human rights of victims and fundamental principles of democratic societies are breached, particularly the principle of protection of life, human integrity and...

  1. Corruption and Wildlife Trafficking: Three Case Studies Involving Asia

    OpenAIRE

    Wyatt, Tanya; Johnson, Kelly; Hunter, Laura; George, Ryan; Gunter, Rachel

    2017-01-01

    As wildlife trafficking or the illegal wildlife trade has taken a more prominent place on the global agenda, discussions are taking place as to how wildlife trafficking happens. An increased understanding has revealed that corruption is a key facilitator of this profitable and pervasive global black market, but limited research has explored exactly what that corruption looks like and how corruption enables wildlife to be trafficked. Furthermore, research shows that Asia, particularly China an...

  2. ANTROPOLOGIS TENTANG TRAFFICKING TKW DI MALAYSIA: ANTARA ADA DAN TIADA

    Directory of Open Access Journals (Sweden)

    Tri Marhaeni Pudji Astuti

    2011-12-01

    Full Text Available Trafficking has existed since the period of kingdoms in Java, going on to the colonialism period, andto the present time. Its meaning is broadening beyond human trading into the matters related to violence,blackmailing, and forcing. Trafficking happens not only within one specific area, but has crossed theborder of countries, indicating the existence of an international net. The mushrooming of trafficking isdue to weak law and political commitment of the concerning countries. Moreover, the bilateral talk tobanish trafficking has not been maximally conducted. The actors of trafficking vary from man-powerbrokers, agents, taxi drivers, and even officers (of transmigration and police offices. Trafficking happens invarious places ranging from luxurious spots or starred-hotels to plantations and areas which accommodatea lot of migrants. The victims are usually in so unfavorable bargaining positions that they are muchdependent on those traffickers. This dependency is the impact of imbalanced gender relation. Based onsome existing cases, it is indicated that the women’s lack of power, strength, information, and educationare often misused by the traffickers to take them as their preys. That is why empowering migrant womenis very crucial. One of the ways is empowering them through their realization that this need comes fromtheir own selves, not from any force outside. Besides, there should be strong commitment from the stateto seriously implement the law against any traffickers. Cooperation between the concerning countriesare also needed, for instance by issuing common regulations to banish trafficking.Keywords: Trafficking, migrant women, receiving country, sending country, trafficker

  3. Human Trafficking in Southeast Asia: Causes and Policy Implications

    Science.gov (United States)

    2009-06-01

    Trafficking (Thailand, 2007), 1. 21 Sheila Jeffreys, “Globalizing Sexual Exploitation, Sex Tourism and the Traffic in Women,” Leisure Studies , vol...Jeffreys, Sheila. “Globalizing Sexual Exploitation, Sex Tourism and the Traffic in Women.” Leisure Studies 18 (1999): 179-196. Junsuwanaruk...Trafficking in the Global Economy,” Indiana Journal of Global Legal Studies , vol. 13, no. 1 (2006), 137. 17 Feingold, Human Trafficking, 30. 12 prevention

  4. Modern Day Slavery: What Drives Human Trafficking in Europe?

    OpenAIRE

    Hernandez, Diego; Rudolph, Alexandra

    2011-01-01

    At a time of increased attention on the international agenda for human trafficking, this paper examines the determinants of human trafficking inflows to 13 European countries based on official records. By employing a fixed effects zero-inflated, negative binomial gravity-type model, we address data characteristics appropriately. The econometric analysis suggests that human trafficking occurs in well established routes for migrants and refugees. Victims are more likely to be transported to, an...

  5. Shaping the Victim: Borders, security, and human trafficking in Albania

    OpenAIRE

    James Campbell

    2013-01-01

    Borders are productive sites where knowledge is gathered and migrant populations are formed. The knowledge gathered from victims of trafficking reinforces a victim narrative that represents a perceived threat to society by highlighting violence, criminality, coercion, and naivety. Using Albania as a case in point, the article looks at trafficked people and the narratives of victimhood that surround them. In the case of trafficked people, the border projected out towards other states produces ...

  6. The IAEA's Illicit Trafficking Database Programme

    International Nuclear Information System (INIS)

    Anzelon, G.; Hammond, W.; Nicholas, M.

    2001-01-01

    Full text: As part of its overall programme on nuclear material security, the IAEA has since 1995 maintained a database of incidents of trafficking in nuclear materials and other radioactive sources. The Illicit Trafficking Database Programme (ITDP) is intended to assist Member States by alerting them to current incidents, by facilitating exchange of reliable, detailed information about incidents, and by identifying any common threads or trends that might assist States in combating illicit trafficking. The ITDP also seeks to better inform the public by providing basic information to the media concerning illicit trafficking events. Approximately 70 States have joined this programme for collecting and sharing information on trafficking incidents. Reporting States have the opportunity to designate what information may be shared with other States and what may be shared with the public. In cases where the IAEA's first information about a possible incident comes from news media or other open sources rather than from a State notification, the information first is evaluated, and then, if warranted, the relevant State or States are contacted to request confirmation or clarification of an alleged incident. During 2000, as a result of experience gained working with information on illicit nuclear trafficking, the IAEA developed of a flexible and comprehensive new database system. The new system has an open architecture that accommodates structured information from States, in-house information, open-source articles, and other information sources, such as pictures, maps and web links. The graphical user interface allows data entry, maintenance and standard and ad-hoc reporting. The system also is linked to a Web-based query engine, which enables searching of both structured and open-source information. For the period 1 January 1993 through 31 March 2001, the database recorded more than 550 incidents, of which about two-thirds have been confirmed by States. (Some of these

  7. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia.

    Science.gov (United States)

    Alves, Daiane S; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael; Caplan, Michael J

    2015-11-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells. Copyright © 2015 by the American Society of Nephrology.

  8. Tackling Trafficking by Targeting Sex Buyers: Can It Work?

    Science.gov (United States)

    Niemi, Johanna; Aaltonen, Jussi

    2016-08-23

    The European legal instruments on human trafficking encourage states to tackle the demand for services of trafficked persons, for example, by making the use of services of a trafficked person a criminal offense. In Finland, buying sex from a trafficked person is a criminal offense. This article reports the results of an evaluation of the Finnish law and shows that the implementation has been inefficient. The authors argue that with an amendment of the law, the implementation could be improved but a truly efficient policy would require a total ban of sex purchase along the lines of the Swedish model. © The Author(s) 2016.

  9. Child Labor Trafficking in the United States: A Hidden Crime

    Directory of Open Access Journals (Sweden)

    Katherine Kaufka Walts

    2017-06-01

    Full Text Available Emerging research brings more attention to labor trafficking in the United States. However, very few efforts have been made to better understand or respond to labor trafficking of minors. Cases of children forced to work as domestic servants, in factories, restaurants, peddling candy or other goods, or on farms may not automatically elicit suspicion from an outside observer as compared to a child providing sexual services for money. In contrast to sex trafficking, labor trafficking is often tied to formal economies and industries, which often makes it more difficult to distinguish from "legitimate" work, including among adolescents. This article seeks to provide examples of documented cases of child labor trafficking in the United States, and to provide an overview of systemic gaps in law, policy, data collection, research, and practice. These areas are currently overwhelmingly focused on sex trafficking, which undermines the policy intentions of the Trafficking Victims Protection Act (2000, the seminal statute criminalizing sex and labor trafficking in the United States, its subsequent reauthorizations, and international laws and protocols addressing human trafficking.

  10. Trafficking in Human Beings in the European Union

    Directory of Open Access Journals (Sweden)

    Donna M. Hughes

    2014-10-01

    Full Text Available In this article, the intersection of gender, trafficking for sexual exploitation, and use of digital communication technologies are analyzed based on data from the European Union (EU. Over the past two decades, an increase in trafficking in human beings in the EU has been accompanied by an increase in the development and availability of digital communication technologies. The first statistical analysis of trafficking in human beings (2008-2010 carried out by the European Commission found 23,632 victims of human trafficking in the reporting member states. Eighty percent of victims were women and girls; 20% were men and boys. The majority of the victims (62% were trafficked for sexual exploitation. Digital communication technologies are widely used for trafficking for sexual exploitation, and more rarely for trafficking for forced labor. This article concludes that the combination of gender, trafficking for sexual exploitation, and use of digital communication technologies has created a nexus of victimization for women and girls. Based on this analysis and other sources of information, the European region is the world’s leading region for trafficking for sexual exploitation.

  11. Elided Populations: A Baseline Survey on Human Trafficking in Kenya

    DEFF Research Database (Denmark)

    Owiso, Michael

    2017-01-01

    Trafficking in persons is a crime. It is gaining momentum in the continent and particularly in Kenya and also attracting the attention of actors who are working to combat it. This focus shows the multiplicity of actors working together to prosecute, prevent and protect. Evidence of both intra......-regional, as well as inter-regional trafficking, is available. This study seeks to build synergy in the counter-trafficking efforts in Kenya. In so doing it aims to in the overall identify gaps in combating and responding to human trafficking and offer programmatic recommendations/suggestions particularly for IRC...

  12. Prevention of Human Trafficking in Ethiopia: Assessing The Legal Framework

    Directory of Open Access Journals (Sweden)

    Zelalem Shiferaw Woldemichael

    2017-12-01

    Full Text Available Recent findings have indicated that both in-country trafficking (trafficking of individuals from rural areas to relatively affluent towns and cities and external trafficking (trafficking of individuals from a given country to foreign countries are prevalent in Ethiopia. In 2012, the government acceded to the Protocol to Suppress and Punish Trafficking in Persons Especially Women and Children supplementing the United Nations Convention against Transnational Organized Crime (The UN Trafficking Protocol, here after. With a view to giving effect to the requirements of this instrument, the government passed in to law Proclamation No. 909/2015 (The Prevention and Suppression of Trafficking in Persons and Smuggling of Migrants Proclamation, which is the most comprehensive of all laws adopted in Ethiopia to deal with human trafficking. Taking in to account the fact that human trafficking is exacerbated by the absence of regulatory framework on the employment of Ethiopian nationals in foreign countries, the govern-ment has also brought in to practice Proclamation No. 923/2016 (Ethiopia’s Overseas Employment Proclamation. This article has examined whether the above-mentioned laws of Ethiopia comply with international standards in dealing with prevention strategies.

  13. Accountability and the Use of Raids to Fight Trafficking

    Directory of Open Access Journals (Sweden)

    Melissa Ditmore

    2012-06-01

    Full Text Available Accountability in anti-trafficking efforts is a crucial but often overlooked aspect of deciding whether such efforts are truly rooted in a human rights framework. In a rush to help, and inspired by sensationalised views of what human trafficking is, many campaigns actually harm the very people they are supposed to assist. Law enforcement raids are one such effort, as they do not take into account the very different power dynamics between the actor engaging in the raid, and the person who is subject to the raid. Data from the United States suggests that raids conducted by local law enforcement agencies are an ineffective means of locating and identifying trafficked persons. Research also reveals that raids are all too frequently accompanied by violations of the human rights of trafficked persons and sex workers alike, and can therefore be counterproductive to the underlying goals of anti-trafficking initiatives. Findings suggest that a rights-based and “survivor-centred” approach to trafficking in persons requires the development and promotion of alternative methods of identifying and protecting the rights of trafficked persons which prioritise the needs, agency, and self-determination of trafficking survivors. They also indicate that preventative approaches, which address the circumstances that facilitate trafficking in persons, should be pursued over law enforcement based responses.

  14. Human Trafficking and Commercialization of Surrogacy in India

    Directory of Open Access Journals (Sweden)

    Pyali Chatterjee

    2014-10-01

    Full Text Available The Supreme Court of India, In Baby Manji Yamada versus Union of India & Anr. [2008] INSC 1656, popularly known as Manji Case, declared that Commercial Surrogacy is legal in India. As we know that, India is a developing country and here, most of the peoples are very poor and illiterate. Recently, human trafficking was increase with an uncontrollable rate in the entire world. In addition, making Commercialization of Surrogacy legal had already give birth to a new form of trafficking. Where, illiterate women from poor section is trafficked to run the reproductive industry of the Surrogacy. As we know that the traffickers, they used to trafficked girls/women for prostitution but now after the legalization of Commercial Surrogacy, they will trafficked girl/women for the reproductive industry as a raw material. The Immoral Trafficking Prevention Act (ITPA, 1956 and Sections 366(A and 372 of the Indian Penal Code, 1860 are the existing laws of India, which deals with human trafficking. However, none of these provisions contains any solution, to deal with this new serious issue of trafficking of women/girls for the purpose of Commercial Surrogacy in reproductive industries. These existing laws as well as the pending draft bill of Assisted Reproductive Technologies (ART Regulation Bill, 2010 needs an amendment to check this crime against women once again to protect the rights and health of the women.

  15. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  16. Unconventional protein secretion (UPS) pathways in plants.

    Science.gov (United States)

    Ding, Yu; Robinson, David G; Jiang, Liwen

    2014-08-01

    As in yeast and mammalian cells, novel unconventional protein secretion (UPS) or unconventional membrane trafficking pathways are now known to operate in plants. UPS in plants is generally associated with stress conditions such as pathogen attack, but little is known about its underlying mechanism and function. Here, we present an update on the current knowledge of UPS in the plants in terms of its transport pathways, possible functions and its relationship to autophagy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 77 FR 74045 - Request for Information for the 2013 Trafficking in Persons Report

    Science.gov (United States)

    2012-12-12

    .... Freeing victims, preventing trafficking, and bringing traffickers to justice are the ultimate goals of the... address root causes of trafficking such as poverty; lack of access to education and economic opportunity...

  18. 76 FR 1660 - Request for Information for the 2011 Trafficking in Persons Report

    Science.gov (United States)

    2011-01-11

    ..., preventing trafficking, and bringing traffickers to justice are the ultimate goals of the report and of the U... trafficking such as poverty; lack of access to education and economic opportunity; and discrimination against...

  19. Trafficking in Persons for Ransom and the Need to Expand the Interpretation of Article 3 of the UN Trafficking Protocol

    Directory of Open Access Journals (Sweden)

    Mogos O Brhane

    2015-04-01

    Full Text Available As the nature of trafficking in persons continues to manifest itself in myriad ways all over the world, interpretation of the UN Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children (Trafficking Protocol, should be broadened to include newly emerging practices that are similar in nature to those it has already embraced under its definition. The Protocol appears to encompass other forms of trafficking which are unnamed or unforeseen by the definition provided under Article 3. It is time to expand its spectrum. Northeast Africa is plagued by a unique form of trafficking in persons—trafficking in persons for ransom. This involves a practice where people are smuggled, abducted, kidnapped and tortured to compel their relatives and families to pay ransom money. Victims are nationals of Eritrea, Ethiopia, Sudan and South Sudan. However, as Northeast Africa hosts particularly high numbers of Eritrean migrants and the largest Eritrean diaspora globally, Eritreans are very vulnerable to being targeted for trafficking for ransom. As trafficking for ransom is an emerging trend, legal ramifications have never been studied in full. Few reports try to address legal issues around the phenomenon, and those that do only give it a few paragraphs of attention. There is need for a closer look at this form of trafficking.

  20. Assisting victims of human trafficking: strategies to facilitate identification, exit from trafficking, and the restoration of wellness.

    Science.gov (United States)

    Hodge, David R

    2014-04-01

    Human trafficking is a pressing social justice concern. Social work is uniquely situated to address this problem. However, despite the profession's commitment to social justice, the scholarship to equip social workers to address this issue has been largely absent from professional discourse. To address this gap, this article helps social work practitioners to assist victims of human trafficking. After orienting readers to the scope and process of human trafficking, the topics of victim identification, exit from trafficking, and the restoration of psychological wellness are discussed. By equipping themselves in these three areas, practitioners can advance social justice on behalf of some of the most exploited people in the world.

  1. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    Science.gov (United States)

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Domestic Sex Trafficking of Minors: Medical Student and Physician Awareness.

    Science.gov (United States)

    Titchen, Kanani E; Loo, Dyani; Berdan, Elizabeth; Rysavy, Mary Becker; Ng, Jessica J; Sharif, Iman

    2017-02-01

    Our aim was to assess: (1) medical trainee and practicing physician awareness about domestic sex trafficking of minors; and (2) whether respondents believe that awareness of trafficking is important to their practice. We designed an anonymous electronic survey, and a convenience sample was collected from June through October 2013. Voluntary participants were 1648 medical students, residents, and practicing physicians throughout the United States. Data were analyzed for correlations between study cohort characteristics and: (1) agreement with the statement: "knowing about sex trafficking in my state is important to my profession"; (2) knowledge of national statistics regarding the sex trafficking of minors; and (3) knowledge of appropriate responses to encountering a trafficked victim. More practicing physicians than residents or medical students: (1) agreed or strongly agreed that knowledge about human trafficking was important to their practice (80.6%, 71.1%, and 69.2%, respectively; P = .0008); (2) correctly estimated the number of US trafficked youth according to the US Department of State data (16.1%, 11.7%, and 7.9%, respectively; P = .0011); and (3) were more likely to report an appropriate response to a trafficked victim (40.4%, 20.4%, and 8.9%, respectively; P = .0001). Although most medical trainees and physicians place importance on knowing about human trafficking, they lack knowledge about the scope of the problem, and most would not know where to turn if they encountered a trafficking victim. There exists a need for standardized trafficking education for physicians, residents, and medical students. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  3. Global Trafficking Prevalence Data Distorts Efforts to Stop Patterns of Human Trafficking

    OpenAIRE

    Mike Dottridge

    2017-01-01

    For everyone engaged in efforts to stop the exploitation and harm associated with human trafficking, it always sounds helpful to know how many people are being exploited in particular places and where they come from. Finding out should help us assess whether efforts to cut down these numbers are effective or not.

  4. Global Trafficking Prevalence Data Distorts Efforts to Stop Patterns of Human Trafficking

    Directory of Open Access Journals (Sweden)

    Mike Dottridge

    2017-04-01

    Full Text Available For everyone engaged in efforts to stop the exploitation and harm associated with human trafficking, it always sounds helpful to know how many people are being exploited in particular places and where they come from. Finding out should help us assess whether efforts to cut down these numbers are effective or not.

  5. Effects of PDT on the endocytic pathway

    Science.gov (United States)

    Kessel, David

    2010-02-01

    Two lines of evidence point to an early effect of photodamage on membrane trafficking. [1] Internalization of a fluorescent probe for hydrophobic membrane loci was impaired by prior photodamage. [2] Interference with the endocytic pathway by the PI-3 kinase antagonist wortmannin led to accumulation of cytoplasmic vacuoles suggesting a block in the recycling of plasma membrane components. Prior photodamage blocked this pathway so that no vacuoles were formed upon exposure of cells to wortmannin. In a murine hepatoma line, the endocytic pathway was preferentially sensitive to lysosomal photodamage. The role of photodamage to the endocytic pathway as a factor in PDT efficacy remains to be assessed.

  6. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex.

    Directory of Open Access Journals (Sweden)

    Diana P Wehrendt

    Full Text Available It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4 had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF, an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface.

  7. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro

    Directory of Open Access Journals (Sweden)

    Christelle Rosazza

    2016-01-01

    Full Text Available DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ≃50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics.

  8. Response to Illicit Trafficking of Radioactive Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Two response paths are discussed in the presentation. Reactive response follows when an alarm of a border monitor goes off or a notification is received about an incident involving or suspected to involve radioactive materials. The response can also be the result of the finding of a discrepancy between a customs declaration form and the corresponding actual shipment. Proactive response is undertaken upon receipt of intelligence information suggesting the illicit trafficking of radioactive materials, notification about the discovery of non-compliance with transport regulations or if discrepancies are found in an inventory of radioactive materials.

  9. Illicit trafficking of radiological and nuclear materials: Modeling and analysis of trafficking trends and risks

    International Nuclear Information System (INIS)

    York, D.; Rochau, G.; Cleary, V.

    2007-01-01

    Concerns over the illicit trafficking of radiological and nuclear materials were focused originally on the lack of security and accountability of such material throughout the former Soviet states. This is primarily attributed to the frequency of events that have occurred involving theft and trafficking of critical material components that could be used to construct a Radiological Dispersal Device (RDD) or a rudimentary, improvised nuclear device (IND). However, with the continued expansion of nuclear technology and the deployment of a global nuclear fuel cycle these materials will continue to become increasingly prevalent, affording a more diverse inventory of dangerous materials and dual-use items. To further complicate the matter, the list of nuclear consumers has grown to include: 1) Nation-states that have gone beyond the IAEA agreed framework and additional protocols concerning multiple nuclear fuel cycles and processes that reuse the fuel through reprocessing to exploit technologies previously confined to the more industrialized world. 2) Terrorist organizations seeking to acquire nuclear and radiological material due to the potential devastation and psychological effect of their use. 3) Organized crime, which has discovered a lucrative market in trafficking of illicit material to international actors and/or countries. 4) Amateur smugglers trying to feed their families in a post-Soviet era. An initial look at trafficking trends of this type seems scattered and erratic, localized primarily to a select group of countries. This is not necessarily the case. The success with which other contraband has been smuggled throughout the world suggests that nuclear trafficking may be carried out with relative ease along the same routes by the same criminals or criminal organizations. (author)

  10. Differences in the signaling pathways of α(1A- and α(1B-adrenoceptors are related to different endosomal targeting.

    Directory of Open Access Journals (Sweden)

    Vanessa Segura

    Full Text Available AIMS: To compare the constitutive and agonist-dependent endosomal trafficking of α(1A- and α(1B-adrenoceptors (ARs and to establish if the internalization pattern determines the signaling pathways of each subtype. METHODS: Using CypHer5 technology and VSV-G epitope tagged α(1A- and α(1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence, or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot. RESULTS AND CONCLUSIONS: Constitutive as well as agonist-induced trafficking of α(1A and α(1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α(1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α(1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin.

  11. Trafficking: Sebuah Masalah Pengiriman Tenaga Kerja Indonesia Ke Malaysia

    OpenAIRE

    Wahyuddin, S.S., M.Hum.

    2013-01-01

    Trafficking atau yang lazim dikenal dengan istilah perdagangan manusia merupakan sebuah fenomena internasional yang terjadi dari masa ke masa. Kalupun terdengar seperti baru, itu karena peristilahan saja. Istilah trafficking dewasa ini kita kenal juga dengan istilah modern slavery. Praktek serupa terjadi juga di masa lampau seperti eksploitasi baik fisik maupun seksual dalam bentuk kerja paksa dan perbudakan. -

  12. Curbing Human Trafficking And The Seed Dispersal Syndrome ...

    African Journals Online (AJOL)

    Trafficking in human beings is a “cancerous” problem that has negative impacts on every aspect of the human society globally. This cancer has assumed alarming dimensions and has been attributed to various factors.The result of trafficking in humans is that people are dislocated from their culture, which can be likened to ...

  13. Understanding the link between trafficking in persons and HIV and ...

    African Journals Online (AJOL)

    Abstract: The magnitude of trafficking in persons in Tanzania is unknown. Consequently, available information on health risks of persons trafficked for different forms of exploitation is extremely scanty. We conducted a baseline study in eight administrative regions of Tanzania using both qualitative and quantitative methods ...

  14. Aggression in Sexually Abused Trafficked Girls and Efficacy of Intervention

    Science.gov (United States)

    Deb, Sibnath; Mukherjee, Aparna; Mathews, Ben

    2011-01-01

    The broad objective of this study was to understand the incidence and severity of aggression among sexually abused girls who were trafficked and who were then further used for commercial sexual exploitation (referred to subsequently as sexually abused trafficked girls). In addition, the impact of counseling for minimizing aggression in these girls…

  15. Patterns and Processes of Recruitment and Trafficking into sex Work ...

    African Journals Online (AJOL)

    The recruitment patterns and trafficking processes were characterized with incidences of deception, extortion, violence and exploitation with severe consequences on the emotional, psychological and health condition of the victims. To contain the activities of the traffickers, the use of formal and informal channels of ...

  16. South Africa – Safe Haven for Human Traffickers? Employing the ...

    African Journals Online (AJOL)

    Having ratified the Protocol to Prevent, Suppress and Punish Trafficking in Persons, Especially Women and Children, South Africa is obliged to adopt legislative measures that criminalise human trafficking and comply with other standards laid down in this international instrument. However, by mid-2011, South Africa had not ...

  17. Domestic Minor Sex Trafficking in the United States

    Science.gov (United States)

    Kotrla, Kimberly

    2010-01-01

    By now, most social workers are familiar with the issue of human trafficking. However, many are likely unfamiliar with research indicating that youths constitute the most vulnerable group in the United States for becoming victims of sex trafficking and that most women in prostitution actually entered as minors. Some experts are now referring to…

  18. Human Sex Trafficking in America: What Counselors Need to Know

    Science.gov (United States)

    Litam, Stacey Diane A.

    2017-01-01

    The social justice issue of human sex trafficking is a global form of oppression that places men, women and children at risk for sexual exploitation. Although a body of research exists on the topics of human trafficking, literature specific to the mental health implications for counselors working with this population is limited. Counselors should…

  19. Child Trafficking: A Hindrance to the Girl-Child Education

    Science.gov (United States)

    Aibangbe, Mary O.

    2015-01-01

    Child trafficking continues to pose a major hindrance to the freedom and educational development of the girl-child in Nigeria. Most of the girls trafficked are forced into prostitution, forced labour and in some cases as human sacrifice. Some families support this trend because they see it as a means to break the yoke of economic hardship. The…

  20. Human Trafficking and Child Abuse: Their Effect on Our Nation's ...

    African Journals Online (AJOL)

    The paper examined what human trafficking and child abuse are all about the causes and consequences of these ugly activities. The paper discovered that human trafficking and child abuse are combined to taint Nigerian's image and they are perhaps the center of modern day slavery. There is an urgent need to put an end ...

  1. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  2. Adolescent Black Males' Drug Trafficking and Addiction: Three Theoretical Perspectives.

    Science.gov (United States)

    Moore, Sharon E.

    1995-01-01

    Explains the incidence and nature of drug trafficking and chemical dependency among adolescent black males. The paper also discusses the social science theories of Emile Durkheim, Karl Marx, and Molefi Asante to better understand the behaviors, and the consequences of those behaviors, of young black males who participate in drug trafficking. (GR)

  3. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules

    Science.gov (United States)

    Malecki, Marek; Malecki, Bianca

    2012-01-01

    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  4. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia

    2011-01-01

    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  5. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  6. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  7. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  8. The role of the nurse in combating human trafficking.

    Science.gov (United States)

    Sabella, Donna

    2011-02-01

    Human trafficking, also called modern slavery, happens worldwide--and the United States is no exception. Within our borders, thousands of foreign nationals and U.S. citizens, many of them children, are forced or coerced into sex work or various forms of labor every year. Nurses and other health care providers who encounter victims of trafficking often don't realize it, and opportunities to intervene are lost. Although no one sign can demonstrate with certainty when someone is being trafficked, there are several indicators that clinicians should know. This article provides an overview of human trafficking, describes how to recognize signs that a person is being trafficked and how to safely intervene, and offers an extensive resource list.

  9. Human Trafficking: Fighting the Illicit Economy with the Legitimate Economy

    Directory of Open Access Journals (Sweden)

    Louise Shelley

    2015-02-01

    Full Text Available Since the beginning of research on human trafficking, there has been attention paid to the challenges surrounding the illicit economy. In creating new strategies and initiatives on combatting human trafficking, there needs to be more discussion surrounding the legitimate economy and how the business sector can make an impact in the fight against trafficking. Currently, there is a growing movement of businesses that are looking to address human trafficking through training, education, and leadership initiatives; codes of conduct; supply chain management; and financial analysis. This paper will examine the latest in these strategies and approaches by businesses in the global war against human trafficking, in addition to a discussion of a new initiative engaging the private sector co-led by Dr. Louise Shelley and Christina Bain through the World Economic Forum’s Global Agenda Council Network.

  10. Shaping the Victim: Borders, security, and human trafficking in Albania

    Directory of Open Access Journals (Sweden)

    James Campbell

    2013-09-01

    Full Text Available Borders are productive sites where knowledge is gathered and migrant populations are formed. The knowledge gathered from victims of trafficking reinforces a victim narrative that represents a perceived threat to society by highlighting violence, criminality, coercion, and naivety. Using Albania as a case in point, the article looks at trafficked people and the narratives of victimhood that surround them. In the case of trafficked people, the border projected out towards other states produces a discursively defined victim of trafficking. When projected back within the national territory, the border essentially produces a criminalised sex worker. To argue this point, the article discusses the role victims of trafficking play in the EU and looks at how international norms espoused by the OSCE and IOM have prepped the Albanian border for EU ascension and created the means for governable populations within Albania.

  11. Providing services to trafficking survivors: Understanding practices across the globe.

    Science.gov (United States)

    Steiner, Jordan J; Kynn, Jamie; Stylianou, Amanda M; Postmus, Judy L

    2018-01-01

    Human trafficking is a global issue, with survivors representing all genders, ages, races, ethnicities, religions, and countries. However, little research exists that identifies effective practices in supporting survivors of human trafficking. The research that does exist is Western-centric. To fill this gap in the literature, the goal of this research was to understand practices used throughout the globe with adult human trafficking survivors. A qualitative approach was utilized. Providers from 26 countries, across six different continents, were interviewed to allow for a comprehensive and multi-faceted understanding of practices in working with survivors. Participants identified utilizing an empowerment-based, survivor, and human life-centered approach to working with survivors, emphasized the importance of engaging in community level interventions, and highlighted the importance of government recognition of human trafficking. Findings provide information from the perspective of advocates on best practices in the field that can be used by agencies to enhance human trafficking programming.

  12. Domestic minor sex trafficking: what the PNP needs to know.

    Science.gov (United States)

    Hornor, Gail

    2015-01-01

    Human trafficking is a major global public health problem and represents a substantial human rights violation. Human trafficking has been receiving attention in both the lay media and professional literature. Human trafficking can include commercial sex, forced labor, child soldiers, and stealing of human organs. One form of human trafficking represents a significant American pediatric health problem: domestic minor sex trafficking (DMST). DMST is the commercial sexual abuse of children by selling, buying, or trading their sexual service. This continuing education article will define DMST and discuss it in terms of prevalence, risk factors, and practice implications for the pediatric nurse practitioner. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  13. Modeling for Determinants of Human Trafficking: An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Seo-Young Cho

    2015-02-01

    Full Text Available This study aims to identify robust push and pull factors of human trafficking. I test for the robustness of 70 push and 63 pull factors suggested in the literature. In doing so, I employ an extreme bound analysis, running more than two million regressions with all possible combinations of variables for up to 153 countries during the period of 1995–2010. My results show that crime prevalence robustly explains human trafficking both in destination and origin countries. Income level also has a robust impact, suggesting that the cause of human trafficking shares that of economic migration. Law enforcement matters more in origin countries than destination countries. Interestingly, a very low level of gender equality may have constraining effects on human trafficking outflow, possibly because gender discrimination limits female mobility that is necessary for the occurrence of human trafficking.

  14. Human trafficking: the role of the health care provider.

    Science.gov (United States)

    Dovydaitis, Tiffany

    2010-01-01

    Human trafficking is a major public health problem, both domestically and internationally. Health care providers are often the only professionals to interact with trafficking victims who are still in captivity. The expert assessment and interview skills of providers contribute to their readiness to identify victims of trafficking. The purpose of this article is to provide clinicians with knowledge on trafficking and give specific tools that they may use to assist victims in the clinical setting. Definitions, statistics, and common health care problems of trafficking victims are reviewed. The role of the health care provider is outlined through a case study and clinical practice tools are provided. Suggestions for future research are also briefly addressed. (c) 2010 American College of Nurse-Midwives. Published by Elsevier Inc. All rights reserved.

  15. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  16. Epithelial trafficking of Sonic hedgehog by megalin.

    Science.gov (United States)

    Morales, Carlos R; Zeng, Jibin; El Alfy, Mohamed; Barth, Jeremy L; Chintalapudi, Mastan Rao; McCarthy, Robert A; Incardona, John P; Argraves, W Scott

    2006-10-01

    We present here evidence of in vivo epithelial endocytosis and trafficking of non-lipid-modified Sonic hedgehog (ShhN) when infused into rat efferent ducts via microinjection. Initially, exogenous ShhN is detected in endocytic vesicles and early endosomes located near the apical plasma membrane of non-ciliated cells. Within 30-60 min following infusion, ShhN can be detected in lysosomes and at basolateral regions of non-ciliated cells. Basolaterally, ShhN was observed along the extracellular surfaces of interdigitated plasma membranes of adjacent cells and in the extracellular compartment underlying the efferent duct epithelium. Uptake and subcellular trafficking of infused ShhN by non-ciliated cells could be blocked by either anti-megalin IgG or the megalin antagonist, RAP. Ciliated cells, which do not express megalin, displayed little if any apical internalization of ShhN even though they were found to express Patched-1. However, ShhN was found in coated pits of lateral plasma membranes of ciliated cells as well as in underlying endocytic vesicles. We conclude that megalin-mediated endocytosis of ShhN can occur in megalin-expressing epithelia in vivo, and that the internalized ShhN can be targeted to the lysosome or transcytosed in the plane of the epithelium or across the epithelium. These findings highlight the multiple mechanisms by which megalin may influence Shh morphogen gradients in vivo.

  17. Sex Trafficking, Law Enforcement and Perpetrator Accountability

    Directory of Open Access Journals (Sweden)

    Holly Burkhalter

    2012-06-01

    Full Text Available In theory, everyone – except for criminals involved in their exploitation - agrees that children must not be in the sex industry and further, that those who prey on them must be prosecuted and punished. Virtually every country in the world has adopted national laws prohibiting the commercial sexual exploitation of children. International law is clear on this point, as well. Yet, when governments – and NGOs working with them – take action to extract children from commercial sex venues, common ground on protecting children from abuse can quickly erode with concerns about the efficacy of police intervention, the possibility of collateral harm to consenting adult sex workers or a decrease in access to HIV-prevention and related health services. The author argues that healing this divide must come through the reform of local police – and that, without the participation of law enforcement, there can be no long-term protection for children vulnerable to trafficking and related exploitation. In this article, human rights practitioner Holly Burkhalter argues that healing this divide must be accomplished through the reform of local police – and that human rights advocates, local governments and others seeking to combat trafficking cannot achieve long-term, sustainable protection for children without the involvement of law enforcement.

  18. Two Cheers for the Trafficking Protocol

    Directory of Open Access Journals (Sweden)

    Anne T Gall