WorldWideScience

Sample records for intracellular signal transduction

  1. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  2. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated...... a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to mediate GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH...... as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (i) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (ii...

  3. Roles of Intracellular Cyclic AMP Signal Transduction in the Capacitation and Subsequent Hyperactivation of Mouse and Boar Spermatozoa

    Science.gov (United States)

    HARAYAMA, Hiroshi

    2013-01-01

    It is not until accomplishment of a variety of molecular changes during the transit through the female reproductive tract that mammalian spermatozoa are capable of exhibiting highly activated motility with asymmetric whiplash beating of the flagella (hyperactivation) and undergoing acrosomal exocytosis in the head (acrosome reaction). These molecular changes of the spermatozoa are collectively termed capacitation and promoted by bicarbonate, calcium and cholesterol acceptors. Such capacitation-promoting factors can stimulate intracellular cyclic AMP (cAMP) signal transduction in the spermatozoa. Meanwhile, hyperactivation and the acrosome reaction are essential to sperm fertilization with oocytes and are apparently triggered by a sufficient increase of intracellular Ca2+ in the sperm flagellum and head, respectively. Thus, it is necessary to investigate the relationship between cAMP signal transduction and calcium signaling cascades in the spermatozoa for the purpose of understanding the molecular basis of capacitation. In this review, I cover updated insights regarding intracellular cAMP signal transduction, the acrosome reaction and flagellar motility in mammalian spermatozoa and then account for possible roles of intracellular cAMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. PMID:24162806

  4. Grouper (Epinephelus coioides) MyD88 and Tollip: intracellular localization and signal transduction function.

    Science.gov (United States)

    Li, Yan-Wei; Wang, Zheng; Mo, Ze-Quan; Li, Xia; Luo, Xiao-Chun; Dan, Xue-Ming; Li, An-Xing

    2015-01-01

    Myeloid differentiation factor 88 (MyD88) and Toll-interacting protein (Tollip) are two important regulatory proteins of the Toll-like receptor (TLR) signaling pathways. In this paper, a Tollip sequence of grouper (Epinephelus coioides) was identified and the signal transduction functions of Tollip and MyD88 were studied. The full length of E. coioides Tollip (EcTollip) cDNA with an open reading frame (ORF) of 1734 nucleotides encoded a putative protein of 274 amino acid residues. The EcTollip protein had conservative domains with mammalian homologous proteins, and high identity (78%-95%) with other vertebrates. MyD88 and Tollip were distributed in the HeLa cytoplasm in a highly condensed form. Over-expression of MyD88 could activate nuclear factor-κB (NF-κB) and its function was dependent on the death domain and ID domain on the N-terminal. Some important functional sites of mammalian MyD88 also affected fish MyD88 signal transduction. Tollip impaired NF-κB signals activated by MyD88, and its activity was dependent on the coupling of ubiquitin to the endoplasmic reticulum degradation (CUE) domain on the C-terminal. These results suggest that MyD88 and Tollip of fish and mammals are conservative on function during evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  6. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    Science.gov (United States)

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes

  7. Measurement of intracellular Ca2+mobilization to study GPCR signal transduction.

    Science.gov (United States)

    Ashokan, Anisha; Aradhyam, Gopala K

    2017-01-01

    Understanding G protein-coupled receptor (GPCR) structure-function relationship and its activation mechanism has been broadly explored using mutational strategy due to problems in GPCR crystallization. Probing into GPCR: effector (G protein/β-arrestin) interactions and downstream signaling are important aspects of GPCR research. Among the G proteins, though there are some approaches to investigate G q -mediated signaling, they involve the use of radioactivity and are qualitative in nature. Our method described here makes use of the cell permeable nature of fluorescent Ca 2+ indicator dye, fura2AM, that binds with the Ca 2+ released in response to GPCR: G q interaction on ligand treatment. Using this spectrophotometric method, EC 50 values of the GPCR: ligand binding can be calculated and the binding affinity can be analyzed. © 2017 Elsevier Inc. All rights reserved.

  8. Participation of intercellular communication and intracellular signal transduction in the radio-adaptive response of human fibroblastic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami

    1997-01-01

    To investigate the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells with low-dose X-rays and examined the changes in sensitivity to subsequent high-dose X-irradiation. When the cells were irradiated by 200 cGy, the growth ratio of the viable cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a conditioning irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the growth ratio increased significantly to 45-53%, and a peak was reached at a conditioning dose of 13 cGy. Cells blocked off intercellular communication either in Ca 2+ ion-free medium or in TPA added medium during the conditioning irradiation of 13 cGy did not show the improvement of growth ratio. Addition of H-7, as an inhibitor of PKC, to the medium during the conditioning irradiation inhibited the induction of the radio-adaptive response. However, addition of either inhibitor of A kinase, H-89, or inhibitor of G kinase, H-8, failed to inhibit the induction of the radio-adaptive response. These results suggest that: (1) normal cells show an adaptive response to low-dose radiation, (2) intercellular communication may play a role in radio-adaptive responses, (3) the transduction of the signal induced in cells by low-dose X-irradiation via protein kinase C was involved in radio-adaptive responses, not via A kinase nor G kinase. (author)

  9. Controlling Signal Transduction with Synthetic Ligands

    Science.gov (United States)

    Spencer, David M.; Wandless, Thomas J.; Schreiber, Stuart L.; Crabtree, Gerald R.

    1993-11-01

    Dimerization and oligomerization are general biological control mechanisms contributing to the activation of cell membrane receptors, transcription factors, vesicle fusion proteins, and other classes of intra- and extracellular proteins. Cell permeable, synthetic ligands were devised that can be used to control the intracellular oligomerization of specific proteins. To demonstrate their utility, these ligands were used to reduce intracellular oligomerization of cell surface receptors that lacked their transmembrane and extracellular regions but contained intracellular signaling domains. Addition of these ligands to cells in culture resulted in signal transmission and specific target gene activation. Monomeric forms of the ligands blocked the pathway. This method of ligandregulated activation and termination of signaling pathways has the potential to be applied wherever precise control of a signal transduction pathway is desired.

  10. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    (s)" in signal transduction; i.e.: how specificity is determined, how ubiquitous signals or messengers convey specific information, how undesired cross-talk is avoided, how redundancy integrates the system. This chapter proposes a basic conceptual toolbox for interpreting empirical data that deals...

  11. [Progress on Hedgehog signaling transduction].

    Science.gov (United States)

    Tang, Ying; Cheng, Steven

    2014-08-25

    Hedgehog (Hh) signaling pathway plays an important role during embryonic development and pattern formation. Disruption of Hh pathway results in various developmental disorders and increasing cancer incidence. Here we provide a comprehensive review of the pathway members, focusing on how mammalian Hh regulates the Gli family of transcription factors through its downstream members, the so-called "canonical signaling pathway". Hh signaling pathway is highly conserved among species, and primary cilia plays an important role as a "signaling center" during vertebrate signal transduction. Further, in the past few years, numerous studies have shown that Hh signal can also be transduced through Gli-independent ways collectively referred to as "non-canonical signaling pathways", which can be subdivided into two modules: (i) those not requiring Smo and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, we review the rapid progress on canonical and non-canonical Hh pathways.

  12. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  13. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5

    OpenAIRE

    Liu, Dan; Liman, Emily R.

    2003-01-01

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C β2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion c...

  14. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation.

    Science.gov (United States)

    Roehrich, A Dorothea; Guillossou, Enora; Blocker, Ariel J; Martinez-Argudo, Isabel

    2013-02-01

    Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation. © 2013 Blackwell Publishing Ltd.

  15. Cancer, signal transduction and nanotechnology.

    Science.gov (United States)

    Sengupta, Poulomi; Basu, Sudipta; Sengupta, Shiladitya

    2011-05-01

    Understanding the mechanisms underlying different cellular signaling pathways implicated in the pathogenesis of cancer are leading to the identification of novel drug targets as well as novel drug candidates. Multiple targeted therapeutics that modulate aberrant molecular pathways have already reached the clinic. However, targeted therapeutics can exert mechanism-driven side effects as a result of the implication of the molecular target in normal physiological functions besides tumorigenesis. We hypothesize that targeted therapeutics can be optimized by merging them with nanotechnology, which offers the potential for preferential targeting to the tumor, resulting in increased intratumoral concentrations of the active agent with reduced distribution to other parts of the body. This review will address some of the emerging concepts that integrate these two disciplines to engineer novel nanovectors that target different signaling pathways.

  16. Quantitative insight into models of Hedgehog signal transduction.

    Science.gov (United States)

    Farzan, Shohreh F; Ogden, Stacey K; Robbins, David J

    2010-01-01

    The Hedgehog (Hh) signaling pathway is an essential regulator of embryonic development and a key factor in carcinogenesis.(1,2) Hh, a secreted morphogen, activates intracellular signaling events via downstream effector proteins, which translate the signal to regulate target gene transcription.(3,4) In a recent publication, we quantitatively compared two commonly accepted models of Hh signal transduction.(5) Each model requires a different ratio of signaling components to be feasible. Thus, we hypothesized that knowing the steady-state ratio of core signaling components might allow us to distinguish between models. We reported vast differences in the molar concentrations of endogenous effectors of Hh signaling, with Smo present in limiting concentrations.(5) This extra view summarizes the implications of this endogenous ratio in relation to current models of Hh signaling and places our results in the context of recent work describing the involvement of guanine nucleotide binding protein Galphai and Cos2 motility.

  17. Simulated evolution of signal transduction networks.

    Directory of Open Access Journals (Sweden)

    Mohammad Mobashir

    Full Text Available Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals, activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon changes in the rate of reactions and the topology of the network.

  18. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  19. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  20. The transduction channel TRPM5 is gated by intracellular calcium in taste cells.

    Science.gov (United States)

    Zhang, Zheng; Zhao, Zhen; Margolskee, Robert; Liman, Emily

    2007-05-23

    Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.

  1. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  2. Single-cell analysis of G-protein signal transduction.

    Science.gov (United States)

    Clister, Terri; Mehta, Sohum; Zhang, Jin

    2015-03-13

    The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5.

    Science.gov (United States)

    Liu, Dan; Liman, Emily R

    2003-12-09

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C beta2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion channel, TRPM5, is an essential component of this cascade; however, the mechanism by which it is activated is not known. Here we show that heterologously expressed TRPM5 forms a cation channel that is directly activated by micromolar concentrations of intracellular Ca2+ (K1/2 = 21 microM). Sustained exposure to Ca2+ desensitizes TRPM5 channels, but PIP2 reverses desensitization, partially restoring channel activity. Whole-cell TRPM5 currents can be activated by intracellular Ca2+ and show strong outward rectification because of voltage-sensitive gating of the channels. TRPM5 channels are nonselective among monovalent cations and not detectably permeable to divalent cations. We propose that the regulation of TRPM5 by Ca2+ mediates sensory activation in the taste system.

  4. Self-organization of signal transduction.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We propose a model of parameter learning for signal transduction, where the objective function is defined by signal transmission efficiency. We apply this to learn kinetic rates as a form of evolutionary learning, and look for parameters which satisfy the objective. This is a novel approach compared to the usual technique of adjusting parameters only on the basis of experimental data. The resulting model is self-organizing, i.e. perturbations in protein concentrations or changes in extracellular signaling will automatically lead to adaptation. We systematically perturb protein concentrations and observe the response of the system. We find compensatory or co-regulation of protein expression levels. In a novel experiment, we alter the distribution of extracellular signaling, and observe adaptation based on optimizing signal transmission. We also discuss the relationship between signaling with and without transients. Signaling by transients may involve maximization of signal transmission efficiency for the peak response, but a minimization in steady-state responses. With an appropriate objective function, this can also be achieved by concentration adjustment. Self-organizing systems may be predictive of unwanted drug interference effects, since they aim to mimic complex cellular adaptation in a unified way.

  5. Glycosphingolipid–Protein Interaction in Signal Transduction

    Directory of Open Access Journals (Sweden)

    Domenico Russo

    2016-10-01

    Full Text Available Glycosphingolipids (GSLs are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.

  6. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  7. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  8. Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Diks, SH; Kok, K; O'Toole, T; Hommes, DW; van Dijken, P; Joore, J; Peppelenbosch, MP

    2004-01-01

    The DNA array technique allows comprehensive analysis of the genome and transcriptome, but the high throughput array-based assessment of intracellular signal transduction remains troublesome. The goal of this study was to test a new peptide array technology for studying the activity of all kinases

  9. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds......Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...... of stimulation. This new technique opens the perspectives for accurate analysis of rapid cellular processes and will help to establish models describing signal initiation at the plasma membrane....

  10. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  11. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  12. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Signal Transduction in Histidine Kinases: Insights from New Structures

    Science.gov (United States)

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  14. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  15. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.

    Science.gov (United States)

    Sommer, Natascha; Strielkov, Ievgen; Pak, Oleg; Weissmann, Norbert

    2016-01-01

    Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV. Copyright ©ERS 2016.

  16. Regulation of TGF-β Signal Transduction.

    Science.gov (United States)

    Zhao, Bing; Chen, Ye-Guang

    2014-01-01

    Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.

  17. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  18. Diffusion wave and signal transduction in biological live cells

    OpenAIRE

    Fan, Tian You; Fan, Lei

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  19. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  20. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  1. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  2. Signal Transduction in Histidine Kinases: Insights from New Structures

    OpenAIRE

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how...

  3. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  4. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  5. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  6. NF1 Signal Transduction and Vascular Dysfunction

    Science.gov (United States)

    2014-05-01

    the effects of losing a second allele of NF1 in the vascular endothelium of the adult mouse. This will be the first model of NF1 loss in the... adult endothelium and can serve as a model system for investigation of both cardiovascular effects and the tumor microenvironment. Body: Aim 1...would be to try and determine if there were defects in TGF-b signaling (Smad activation/EndMT) prior to doing a wholesale catalog of all the

  7. Organizing signal transduction through A-kinase anchoring proteins (AKAPs).

    Science.gov (United States)

    Logue, Jeremy S; Scott, John D

    2010-11-01

    A fundamental role for protein-protein interactions in the organization of signal transduction pathways is evident. Anchoring, scaffolding and adapter proteins function to enhance the precision and directionality of these signaling events by bringing enzymes together. The cAMP signaling pathway is organized by A-kinase anchoring proteins. This family of proteins assembles enzyme complexes containing the cAMP-dependent protein kinase, phosphoprotein phosphatases, phosphodiesterases and other signaling effectors to optimize cellular responses to cAMP and other second messengers. Selected A-kinase anchoring protein signaling complexes are highlighted in this minireview. © 2010 The Authors Journal compilation © 2010 FEBS.

  8. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Ganguli P, Chowdhury S, Bhowmick R and Sarkar RR 2015 Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A ... cells and tissues by studying different signalling pathways, such as Hedgehog ...... Murray JD 2003 On the mechanochemical theory of biological.

  9. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  10. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species.

    Science.gov (United States)

    Sumbayev, V V; Yasinska, I M

    2007-05-01

    Recent reports devoted to the field of oxygen sensing outline that signalling molecules such as nitric oxide/nitric oxide derived species as well as cytokines and other inflammatory mediators participate in hypoxic signal transduction. In the present review, we summarize the current knowledge about the role of nitric oxide and reactive nitrogen species (RNS) derived from it in hypoxic signal transduction and particularly in accumulation/de-accumulation of hypoxia inducible factor 1 alpha (HIF-1alpha) protein, which is critical not only for cellular adaptation to low oxygen availability but also for generation of inflammatory and innate immune responses. After brief description of nitric oxide and other RNS as multifunctional messengers we analyse and discuss the RNS-dependent accumulation of HIF-1alpha protein under normoxia followed by discussion of the mechanisms of nitric oxide (NO)-dependent enzyme-regulated degradation of HIF-1alpha protein under low oxygen availability.

  11. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  12. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  13. Molecular methods for the study of signal transduction in plants.

    Science.gov (United States)

    Irving, Helen R; Gehring, Chris

    2013-01-01

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively.

  14. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  15. Displacement and hybridization reactions in aptamer-functionalized hydrogels for biomimetic protein release and signal transduction.

    Science.gov (United States)

    Lai, Jinping; Li, Shihui; Shi, Xuechen; Coyne, James; Zhao, Nan; Dong, Fengping; Mao, Yingwei; Wang, Yong

    2017-11-01

    A variety of hydrogels have been synthesized for controlling the release of signaling molecules in applications such as drug delivery and regenerative medicine. However, it remains challenging to synthesize hydrogels with the ability to control the release of signaling molecules sequentially or periodically under physiological conditions as living cells do in response to the variation of metabolism. The purpose of this work was to study a novel biomimetic hydrogel system with the ability of recapitulating the procedure of cellular signal transduction and controlling the sequential release of signaling molecules under physiological conditions. In the presence of a small chemical, the signaling molecule is regulated to change from a DNA-bound state to a free state and the freed signaling molecule is able to regulate intracellular signal transduction and cell migration. Moreover, periodic exposure of the hydrogel system to the small chemical leads to sequential protein release. Since signaling molecules are important for every activity of the cell, this hydrogel system holds potential as a metabolism-responsive platform for controlled release of signaling molecules and cell regulation in various applications.

  16. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  17. DMPD: Toll-like receptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17934330 Toll-like receptor signal transduction. Krishnan J, Selvarajoo K, Tsuchiya... M, Lee G, Choi S. Exp Mol Med. 2007 Aug 31;39(4):421-38. (.png) (.svg) (.html) (.csml) Show Toll-like receptor sign...al transduction. PubmedID 17934330 Title Toll-like receptor signal transduction. Authors Krishnan J,

  18. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    Science.gov (United States)

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments. © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  20. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles ...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  1. Modeling evolution of crosstalk in noisy signal transduction networks

    Science.gov (United States)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  2. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, N.

    2013-01-01

    Roč. 158, č. 3 (2013), s. 142-149 ISSN 1532-0456 R&D Projects: GA ČR GAP501/10/1215 Grant - others:Mississippi State Univeristy(US) 062/2011/P; NSF, EPSCOR(US) MSU No. 269110-151250 Institutional support: RVO:60077344 Keywords : adipokinetic hormone * calcium channel * cell signaling Subject RIV: ED - Physiology Impact factor: 2.829, year: 2013

  3. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    to the identification of transporter binding partners such as protein kinases and phosphatases, cytoskeletal elements and lipids. Considerable progress has also been made recently in understanding the upstream elements in volume sensing and volume-sensitive signal transduction, and salient features of these systems...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  4. Signal transduction and activation of the NADPH oxidase in eosinophils

    Directory of Open Access Journals (Sweden)

    Mark A Lindsay

    1997-12-01

    Full Text Available Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.

  5. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  6. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  7. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    Science.gov (United States)

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  8. Signal transduction by interferon-α through arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Hannigan, G.E.; Williams, B.R.G.

    1991-01-01

    Molecular mechanisms that mediate signal transduction by growth inhibitory cytokines are poorly understood. Type 1 (α and β) interferons (IFNs) are potent growth inhibitory cytokines whose biological activities depend on induced changes in gene expression. IFN-α induced the transient activation of phospholipase A 2 in 3T3 fibroblasts and rapid hydrolysis of [ 3 H]arachidonic acid (AA) from prelabeled phospholipid pools. The phospholipase inhibitor, bromophenacyl bromide (BPB), specifically blocked IFN-induced binding of nuclear factors to a conserved, IFN-regulated enhancer element, the interferon-stimulated response element (ISRE). BPB also caused a dose-dependent inhibition of IFN-α-induced ISRE-dependent transcription in transient transfection assays. Specific inhibition of AA oxygenation by eicosatetraynoic acid prevented IFN-α induction of factor binding to the ISRE. Treatment of intact cells with inhibitors of fatty acid cyclooxygenase or lipoxygenase enzymes resulted in amplification of IFN-α-induced ISRE binding and gene expression. Thus, IFN-α receptor-coupled AA hydrolysis may function in activation of latent transcription factors by IFN-α and provides a system for studying the role of AA metabolism in transduction of growth inhibitory signals

  9. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  10. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  11. Analysis of diverse signal transduction pathways using the genetic model system Caenorhabditis elegans

    NARCIS (Netherlands)

    Moorman, Celine

    2003-01-01

    Signal transduction allows cells to respond to signals from their environment and is therefore important for most biological processes. The binding of an extracellular signalling molecule to a cell-surface receptor is the first step in most signal transduction pathways. Cell-surface receptors

  12. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  13. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  14. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  15. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  16. Elementary signaling modes predict the essentiality of signal transduction network components.

    Science.gov (United States)

    Wang, Rui-Sheng; Albert, Réka

    2011-03-22

    Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms

  17. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  18. Phosphoinositide signal transduction pathway in rat liver mitochondria

    International Nuclear Information System (INIS)

    Pasupathy, K.; Krishna, M.; Bhattacharya, R.K.

    1997-01-01

    Phosphorylation of endogenous phospholipids of rat liver mitochondrial fractions with γ[ 32 P]ATP revealed formation of all the known inositol phospholipids, such as phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Additionally, a new inositol phospholipid was detected. Incorporation of [ 3 H]-labelled inositol followed a similar profile. Enzymatic experiments indicated that the new lipid could possibly be phosphatidylinositoltrisphosphate. The presence of phosphoinositides-generated second messengers such as diacylglycerol and inositol trisphosphate was also confirmed. Protein kinase C, which acts as mediator between second messengers and nuclear factors, was also found to be present in mitochondria in significant amount. These results suggest that phosphoinositide signal transduction pathway is operative in rat liver mitochondria. (author)

  19. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.

    Science.gov (United States)

    Manninen, Tiina; Linne, Marja-Leena; Ruohonen, Keijo

    2006-08-01

    Mathematical modeling and simulation of dynamic biochemical systems are receiving considerable attention due to the increasing availability of experimental knowledge of complex intracellular functions. In addition to deterministic approaches, several stochastic approaches have been developed for simulating the time-series behavior of biochemical systems. The problem with stochastic approaches, however, is the larger computational time compared to deterministic approaches. It is therefore necessary to study alternative ways to incorporate stochasticity and to seek approaches that reduce the computational time needed for simulations, yet preserve the characteristic behavior of the system in question. In this work, we develop a computational framework based on the Itô stochastic differential equations for neuronal signal transduction networks. There are several different ways to incorporate stochasticity into deterministic differential equation models and to obtain Itô stochastic differential equations. Two of the developed models are found most suitable for stochastic modeling of neuronal signal transduction. The best models give stable responses which means that the variances of the responses with time are not increasing and negative concentrations are avoided. We also make a comparative analysis of different kinds of stochastic approaches, that is the Itô stochastic differential equations, the chemical Langevin equation, and the Gillespie stochastic simulation algorithm. Different kinds of stochastic approaches can be used to produce similar responses for the neuronal protein kinase C signal transduction pathway. The fine details of the responses vary slightly, depending on the approach and the parameter values. However, when simulating great numbers of chemical species, the Gillespie algorithm is computationally several orders of magnitude slower than the Itô stochastic differential equations and the chemical Langevin equation. Furthermore, the chemical

  20. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Directory of Open Access Journals (Sweden)

    William R. Critchley

    2018-03-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.

  1. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Science.gov (United States)

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  2. Glycation & the RAGE axis: targeting signal transduction through DIAPH1.

    Science.gov (United States)

    Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie

    2017-02-01

    The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.

  3. A microfluidic platform for regulating signal transduction in single cells

    Science.gov (United States)

    Wong, Pak Kin; Yu, Fuqu; Sun, Ren; Ho, Chih-Ming

    2004-11-01

    Recent progress in micro cell culture systems has lead to new approaches in cell biology studies. Using micro devices for cell culturing possesses distinctive advantages over traditional methods. Length scale matching facilitates manipulation and detection at the single cell level. Previously, we have demonstrated generation of various stimulations such as spatial chemical gradient, electric field, and shear stress to study the dynamic responses of individual cells. Dynamic stimulations and continuous monitoring in a microfluidic system can be useful in studying different aspects of cellular process. In this work, we present a microfluidic platform for regulating nuclear factor kappa B (NF-kB) signal transduction in human embryonic kidney 293T cells. Time-varying bio-chemical stimulants, such as interleukin 1 and tumor necrosis factor, are introduced into the microchannel to activate the NF-kB signaling pathway. The dynamic responses of individual cells are monitored with the expression of reporter gene, green fluorescent protein. Regulation of the NF-kB activity is successfully demonstrated. This work is supported by CMISE through NASA URETI program.

  4. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  5. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  6. Modulation of signal transduction by tea catechins and related phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Masahito [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States); Weinstein, I. Bernard [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States)]. E-mail: ibw1@columbia.edu

    2005-12-11

    Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-{kappa}B, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities.

  7. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  8. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events.

    Science.gov (United States)

    Bhattacharyya, S; Ghosh, S; Jhonson, P L; Bhattacharya, S K; Majumdar, S

    2001-03-01

    Leishmania donovani, an intracellular protozoan parasite, challenges host defense mechanisms by impairing the signal transduction of macrophages. In this study we investigated whether interleukin-10 (IL-10)-mediated alteration of signaling events in a murine model of visceral leishmaniasis is associated with macrophage deactivation. Primary in vitro cultures of macrophages infected with leishmanial parasites markedly elevated the endogenous release of IL-10. Treatment with either L. donovani or recombinant IL-10 (rIL-10) inhibited both the activity and expression of the Ca2+-dependent protein kinase C (PKC) isoform. However, preincubation with neutralizing anti-IL-10 monoclonal antibody (MAb) restored the PKC activity in the parasitized macrophage. Furthermore, we observed that coincubation of macrophages with rIL-10 and L. donovani increased the intracellular parasite burden, which was abrogated by anti-IL-10 MAb. Consistent with these observations, generation of superoxide (O2-) and nitric oxide and the release of murine tumor necrosis factor-alpha were attenuated in response to L. donovani or rIL-10 treatment. On the other hand, preincubation of the infected macrophages with neutralizing anti-IL-10 MAb significantly blocked the inhibition of nitric oxide and murine tumor necrosis factor-alpha release by the infected macrophages. These findings imply that infection with L. donovani induces endogenous secretion of murine IL-10, which in turn facilitates the intracellular survival of the protozoan and orchestrates several immunomodulatory roles via selective impairment of PKC-mediated signal transduction.

  9. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  10. Finite-State Channel Models for Signal Transduction in Neural Systems

    OpenAIRE

    Eckford, Andrew W.; Loparo, Kenneth A.; Thomas, Peter J.

    2016-01-01

    Information theory provides powerful tools for understanding communication systems. This analysis can be applied to intercellular signal transduction, which is a means of chemical communication among cells and microbes. We discuss how to apply information-theoretic analysis to ligand-receptor systems, which form the signal carrier and receiver in intercellular signal transduction channels. We also discuss the applications of these results to neuroscience.

  11. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor... Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signa...l transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Authors

  12. Oxidative Stress, Signal Transduction, Cell-Cell Communication

    National Research Council Canada - National Science Library

    Trosko, James

    1999-01-01

    .... The integration of intercellular communication through gap junctions and intracellular pathways plays a role in maintaining the homeostasis by controlling the expression of genes that control cell...

  13. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  14. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  15. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea.

    Science.gov (United States)

    Makarova, Kira S; Galperin, Michael Y; Koonin, Eugene V

    2017-12-05

    All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. IMPORTANCE Little is currently known about signal transduction pathways in Archaea Recent studies indicate that KaiC-like ATPases, known as key components of the circadian clock apparatus in cyanobacteria, are involved in the regulation of archaellum assembly and

  16. Molecular insights into the mechanism of sensing and signal transduction of the thermosensor DesK

    NARCIS (Netherlands)

    Ballering, J.

    2016-01-01

    The ability to sense and respond to environmental signals is essential for cell survival. Unraveling the molecular mechanisms underlying signaling processes remains a challenge, however. This thesis provides molecular insights into the mechanism of sensing and signal transduction of the thermosensor

  17. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  18. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    2015-09-28

    searched using PUBMED and. Google Scholar). The protein-protein interaction data obtain- ed were knitted together to reconstruct the entire signalling cascade. The diagram of the reconstructed pathway was drawn using ...

  19. Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Makiko Okada

    2010-10-01

    Full Text Available Our previous study indicated that both 17β-estradiol (E2, known to be an endogenous estrogen, and bisphenol A (BPA, known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs. The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2, which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1 the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2 the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane‑associated ERs.

  20. Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells

    Directory of Open Access Journals (Sweden)

    N. Yoshida

    2000-03-01

    Full Text Available Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175, and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.

  1. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  2. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  3. G-protein-coupled receptors mediate 14-3-3 signal transduction.

    Science.gov (United States)

    Li, Hua; Eishingdrelo, Alex; Kongsamut, Sathapana; Eishingdrelo, Haifeng

    2016-01-01

    G-protein-coupled receptor (GPCR)-interacting proteins likely participate in regulating GPCR signaling by eliciting specific signal transduction cascades, inducing cross-talk with other pathways, and fine tuning the signal. However, except for G-proteins and β-arrestins, other GPCR-interacting proteins are poorly characterized. 14-3-3 proteins are signal adaptors, and their participation in GPCR signaling is not well understood or recognized. Here we demonstrate that GPCR-mediated 14-3-3 signaling is ligand-regulated and is likely to be a more general phenomenon than suggested by the previous reports of 14-3-3 involvement with a few GPCRs. For the first time, we can pharmacologically characterize GPCR/14-3-3 signaling. We have shown that GPCR-mediated 14-3-3 signaling is phosphorylation-dependent, and that the GPCR/14-3-3 interaction likely occurs later than receptor desensitization and internalization. GPCR-mediated 14-3-3 signaling can be β-arrestin-independent, and individual agonists can have different potencies on 14-3-3 and β-arrestin signaling. GPCRs can also mediate the interaction between 14-3-3 and Raf-1. Our work opens up a new broad realm of previously unappreciated GPCR signal transduction. Linking GPCRs to 14-3-3 signal transduction creates the potential for the development of new research directions and provides a new signaling pathway for drug discovery.

  4. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  5. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain

    International Nuclear Information System (INIS)

    Lee, Kyun Oh; Luu, Nga; Kaneski, Christine R.; Schiffmann, Raphael; Brady, Roscoe O.; Murray, Gary J.

    2005-01-01

    Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease

  6. Homologous desensitization of histamine-mediated signal transduction system in C6 glioma cells.

    Science.gov (United States)

    Tseng, Chin-Lu; Wei, Jiann-Wu

    2013-04-30

    Molecular events involved in the homologous desensitization of histamine-mediated signal transduction system in glioma cells are not well understood. The aim of this study was designed to gain further insight into possible events in the process using the C6 glioma cells. Incubation of histamine caused increases in inositol phosphate (IP1) formation and intracellular free-calcium concentration [Ca2+]i in C6 glioma cells via the activation of a G-protein-coupled phospholipase C (PI-PLC). Histamine also caused an increase in extracellular release of arachidonic acid (AA) and formation of glycerophosphoinositol (GPI). These effects are likely to be mediated through the activation of receptor-coupled phospholipase A2 (PLA2). Pretreatment of C6 cells with histamine, from 0.1 microM to 1 mM concentrations, for 10 to 60 min significantly reduced the histamine-induced IP1 production, [Ca2+]i accumulation, AA release and GPI formation, despite repeated wash of the cells with buffer solution. Staurosporine (10 nM), a protein kinase C (PKC) inhibitor, reversed almost completely IP1 production, or partially for [Ca2+]i, GPI formation and AA release of this homologous desensitization effect of histamine. Pretreatment of C6 cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, at 0.1 nM to 0.1 microM for 2 to 15 min caused a reduction of histamine-induced IP1 formation and [Ca2+] accumulation, but enhanced histamine-induced AA release and GPI formation. Ten nM staurosporine completely reversed the effect of PMA on histamine-induced IP1 formation and partially on [Ca2+]i accumulation. However, staurosporine potentiated the effect of PMA on histamine-induced AA release and GPI formation, but the effect could be blocked by H7, a calcium-dependent PKC inhibitor. Our results indicate that activation of PKC by histamine in the signal transduction system is involved in the histamine-induced homologous desensitization event. Since PMA pretreatment could not mimic histamine

  7. Calcium, channels, intracellular signaling and autoimmunity.

    Science.gov (United States)

    Izquierdo, Jorge-Hernán; Bonilla-Abadía, Fabio; Cañas, Carlos A; Tobón, Gabriel J

    2014-01-01

    Calcium (Ca²⁺) is an important cation able to function as a second messenger in different cells of the immune system, particularly in B and T lymphocytes, macrophages and mastocytes, among others. Recent discoveries related to the entry of Ca²⁺ through the store-operated calcium entry (SOCE) has opened a new investigation area about the cell destiny regulated by Ca²⁺ especially in B and T lymphocytes. SOCE acts through calcium-release-activated calcium (CRAC) channels. The function of CRAC depends of two recently discovered regulators: the Ca²⁺ sensor in the endoplasmic reticulum or stromal interaction molecule (STIM-1) and one subunit of CRAC channels called Orai1. This review focuses on the role of Ca²⁺ signals in B and T lymphocytes functions, the signalling pathways leading to Ca²⁺ influx, and the relationship between Ca²⁺ signals and autoimmune diseases. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  8. PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction : [Langfassung

    OpenAIRE

    Stürmer, Claudia; Langhorst, Matthias F.; Wiechers, Marianne F.; Legler, Daniel F.; Hannbeck von Hanwehr, Sylvia; Guse, Andreas H.; Plattner, Helmut

    2004-01-01

    The cellular prion protein (PrPc) resides in lipid rafts, yet the type of raft and the physiological function of PrPc are unclear. We show here that cross-linking of PrPc with specific antibodies leads to 1) PrPc capping in Jurkat and human peripheral blood T cells; 2) to cocapping with the intracellular lipid raft proteins reggie-1 and reggie-2; 3) to signal transduction as seen by MAP kinase phosphorylation and an elevation of the intracellular Ca2+ concentration; 4) to the recruitment of T...

  9. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells

    International Nuclear Information System (INIS)

    Hayashi, Yoko; Kondo, Takashi; Zhao Qingli; Ogawa Ryohei; Cui Zhengguo; Feril, Loreto B.; Teranishi, Hidetoyo; Kasuya, Minoru

    2004-01-01

    It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca 2+ -calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 μM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca 2+ chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O 2 - ), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-L-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O 2 - formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca 2+ -calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are

  10. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  11. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  12. Modelling and simulation of signal transductions in an apoptosis ...

    Indian Academy of Sciences (India)

    2006-12-12

    Dec 12, 2006 ... This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, ...

  13. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  14. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    Science.gov (United States)

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  15. Signal transduction during mating and meiosis in S. pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Nielsen, Olaf

    1993-01-01

    When starved, the fission yeast Schizosaccharomyces pombe responds by producing mating factors or pheromones that signal to cells of the opposite sex to initiate mating. Like its distant relative Saccharomyces cerevisiae, cells of the two mating types of S. pombe each produce a distinct pheromone...... that binds to receptors on the opposite cell type to induce the morphological changes required for mating. While the pathways are basically very similar in the two yeasts, pheromone signalling in S. pombe differs in several important ways from that of the more familiar budding yeast. In this article, Olaf...... Nielsen describes the pheromones and their effects in S. pombe, and compares the signalling pathways of the two yeasts....

  16. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  17. Molecular mechanisms of novel regulators in cytokine signal transduction

    NARCIS (Netherlands)

    Xiaofei, Zhang

    2013-01-01

    By identifying and studying novel regulators, the studies described in this thesis give substantive insights into the molecular mechanisms and different levels of control of TGF-β/BMP, IL-1β and Wnt signaling pathways. Crucially, our work for the first time demonstrated the monoubiquitination of an

  18. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  19. Model-based control of the temporal patterns of intracellular signaling in silico

    Science.gov (United States)

    Murakami, Yohei; Koyama, Masanori; Oba, Shigeyuki; Kuroda, Shinya; Ishii, Shin

    2017-01-01

    The functions of intracellular signal transduction systems are determined by the temporal behavior of intracellular molecules and their interactions. Of the many dynamical properties of the system, the relationship between the dynamics of upstream molecules and downstream molecules is particularly important. A useful tool in understanding this relationship is a methodology to control the dynamics of intracellular molecules with an extracellular stimulus. However, this is a difficult task because the relationship between the levels of upstream molecules and those of downstream molecules is often not only stochastic, but also time-inhomogeneous, nonlinear, and not one-to-one. In this paper, we present an easy-to-implement model-based control method that makes the target downstream molecule to trace a desired time course by changing the concentration of a controllable upstream molecule. Our method uses predictions from Monte Carlo simulations of the model to decide the strength of the stimulus, while using a particle-based approach to make inferences regarding unobservable states. We applied our method to in silico control problems of insulin-dependent AKT pathway model and EGF-dependent Akt pathway model with system noise. We show that our method can robustly control the dynamics of the intracellular molecules against unknown system noise of various strengths, even in the absence of complete knowledge of the true model of the target system. PMID:28275530

  20. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  1. Expression of the cholinergic signal-transduction pathway components during embryonic rat heart development

    NARCIS (Netherlands)

    Franco, D.; Moorman, A. F.; Lamers, W. H.

    1997-01-01

    BACKGROUND: Previous studies showed that acetylcholinesterase (AChE) activity is present in the downstream (arterial) part of the embryonic chick and rat heart, but its functional significance was unclear. To establish whether other components of a cholinergic signal-transduction pathway are present

  2. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  3. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  4. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  5. Effects of matrine on JAK-STAT signaling transduction pathways in ...

    African Journals Online (AJOL)

    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were ...

  6. Combinations of SNPs Related to Signal Transduction in Bipolar Disorder

    DEFF Research Database (Denmark)

    Koefoed, Pernille; Andreassen, Ole A; Bennike, Bente

    2011-01-01

    of complex diseases, it may be useful to look at combinations of genotypes. Genes related to signal transmission, e.g., ion channel genes, may be of interest in this respect in the context of bipolar disorder. In the present study, we analysed 803 SNPs in 55 genes related to aspects of signal transmission...... and calculated all combinations of three genotypes from the 3×803 SNP genotypes for 1355 controls and 607 patients with bipolar disorder. Four clusters of patient-specific combinations were identified. Permutation tests indicated that some of these combinations might be related to bipolar disorder. The WTCCC...... in the clusters in the two datasets. The present analyses of the combinations of SNP genotypes support a role for both genetic heterogeneity and interactions in the genetic architecture of bipolar disorder....

  7. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  8. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway.

    Science.gov (United States)

    Krantz, Marcus; Ahmadpour, Doryaneh; Ottosson, Lars-Göran; Warringer, Jonas; Waltermann, Christian; Nordlander, Bodil; Klipp, Edda; Blomberg, Anders; Hohmann, Stefan; Kitano, Hiroaki

    2009-01-01

    Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal-transduction pathway with systematic perturbations in components' expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal-transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.

  9. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  10. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  11. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  12. Imatinib effect on growth and signal transduction in polycythemia vera.

    Science.gov (United States)

    Gaikwad, Amos; Verstovsek, Srdan; Yoon, Donghoon; Chang, Ko-Tung; Manshouri, Taghi; Nussenzveig, Roberto; Cortes, Jorge; Vainchenker, William; Prchal, Josef T

    2007-06-01

    An activating mutation of Janus kinase 2 (JAK2) in majority of polycythemia vera (PV) and other myeloproliferative disorders was reported. As imatinib inhibits several tyrosine kinases, we studied its effect in PV. We employed FDCP reporter cells expressing wild-type JAK2 and mutant JAK2(V617F) to study the efficacy of imatinib by cell proliferation assay and its effect on several cell-signaling events. Imatinib's efficacy was also examined on in vitro expanded native human erythroid progenitors. In addition, analysis of the percent JAK2 T-allele and phospho-signal transducer and activator of transcription-5 (STAT5) in granulocytes of PV patients following imatinib therapy was assessed. Imatinib showed a specific time- and dose-dependent growth inhibitory effect on FDCP cells expressing JAK2(V617F), wherein we observed imatinib's inactivation of JAK2, STAT5 and cKIT proteins. In vitro expanded human PV erythroid progenitors were more sensitive to imatinib than normal erythroid progenitors and FDCP cells expressing JAK2(V617F), with growth inhibition at concentrations attainable in vivo. In an ongoing clinical study, a PV patient showed strong correlation between the percent JAK2 T-allele and his responsiveness to imatinib therapy. Our data elucidate the therapeutic benefit of imatinib seen in some PV patients. Our data suggest that JAK2/STAT5 and cKIT activation may be integrated. To our knowledge, this is the first report demonstrating imatinib's effect on PV erythroid progenitors. These studies underscore the limitation of experiments using cell lines expressing the gene of interest.

  13. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC...

  14. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  15. Discovery of GPCR ligands for probing signal transduction pathways.

    Science.gov (United States)

    Brogi, Simone; Tafi, Andrea; Désaubry, Laurent; Nebigil, Canan G

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure-selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity.

  16. Discovery of GPCR ligands for probing signal transduction pathways

    Science.gov (United States)

    Brogi, Simone; Tafi, Andrea; Désaubry, Laurent; Nebigil, Canan G.

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity. PMID:25506327

  17. Signal transduction in a covalent post-assembly modification cascade

    Science.gov (United States)

    Pilgrim, Ben S.; Roberts, Derrick A.; Lohr, Thorsten G.; Ronson, Tanya K.; Nitschke, Jonathan R.

    2017-12-01

    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels-Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.

  18. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  19. Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.

    Science.gov (United States)

    Volkov, Alexander G; O'Neal, Lawrence; Volkova, Maia I; Markin, Vladislav S

    2013-10-15

    Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Human β-Cell Proliferation and Intracellular Signaling: Part 3

    Science.gov (United States)

    Hussain, Mehboob A.; García-Ocaña, Adolfo; Vasavada, Rupangi C.; Bhushan, Anil; Bernal-Mizrachi, Ernesto

    2015-01-01

    This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin–nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal–related kinase, cadherins and integrins, G-protein–coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes. PMID:25999530

  1. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants.

    Science.gov (United States)

    Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu

    2017-10-01

    Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.

  2. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    OpenAIRE

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Usi...

  3. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  4. Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks.

    Science.gov (United States)

    He, Ying; Yu, Zhonghao; Ge, Dongya; Wang-Sattler, Rui; Thiesen, Hans-Jürgen; Xie, Lu; Li, Yixue

    2012-09-01

    Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.

  5. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer

  6. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  7. Controlled membrane translocation provides a mechanism for signal transduction and amplification

    Science.gov (United States)

    Langton, Matthew J.; Keymeulen, Flore; Ciaccia, Maria; Williams, Nicholas H.; Hunter, Christopher A.

    2017-05-01

    Transmission and amplification of chemical signals across lipid bilayer membranes is of profound significance in many biological processes, from the development of multicellular organisms to information processing in the nervous system. In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, and signal transduction is often associated with an amplified signalling cascade. The ability to reproduce such processes in artificial systems has potential applications in sensing, controlled drug delivery and communication between compartments in tissue-like constructs of synthetic vesicles. Here we describe a mechanism for transmitting a chemical signal across a membrane based on the controlled translocation of a synthetic molecular transducer from one side of a lipid bilayer membrane to the other. The controlled molecular motion has been coupled to the activation of a catalyst on the inside of a vesicle, which leads to a signal-amplification process analogous to the biological counterpart.

  8. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    Science.gov (United States)

    Wyatt, Sarah

    is involved in gravitropic signal transduction. (Partially support by NSF: 0618506 to SEW)

  9. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways

  10. New Signal Transduction Principles for Amperometric Enzyme and Antibody based Sensors

    Science.gov (United States)

    Warsinke, Axel

    2008-10-01

    The way of how the signal transfer from the analyte recognizing biocomponent to the sensor surface is performed influences strongly the characteristics of a biosensor e.g. response time, sensitivity and specificity. Most of the described amperometric enzyme sensors are using oxidases. The signal transduction is carried out simply by electrochemical indication of the produced hydrogen peroxide or via a sensor-immobilized redox polymer. However, due to the limited number of appropriate oxidases the range of detectable analytes is restricted. Hence, we have developed a new general principle for the sensitive transduction of the more than 400 different NAD(P) dependent dehydrogenase reactions. The transduction is based on a hydroxylase reaction which produces an electrochemically active substance under the consumption of NAD(P)H. The principle should be applicable to miniaturized sensor configuration and could be the basis for a new generation of point-of-care devices. For other analytes where no oxidases and dehydrogenases are available antibodies can be used as specific recognition element. We have developed a new principle of redox-labeled immunoassays called size exclusion redox-labeled immunoassay (SERI), where after the antigen antibody binding reaction the indication is carried out amperometrically without a washing step in between. The principle was proved for measurement of creatinine. At the moment the assay needs a relatively high amount of antibodies. However, in future it should be possible to reduce the amount of antibodies by using miniaturized microfluidic chips.

  11. Uncovering signal transduction networks from high-throughput data by integer linear programming.

    Science.gov (United States)

    Zhao, Xing-Ming; Wang, Rui-Sheng; Chen, Luonan; Aihara, Kazuyuki

    2008-05-01

    Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.

  12. Sensing and Transmitting Intracellular Amino Acid Signals through Reversible Lysine Aminoacylations.

    Science.gov (United States)

    He, Xia-Di; Gong, Wei; Zhang, Jia-Nong; Nie, Ji; Yao, Cui-Fang; Guo, Fu-Shen; Lin, Yan; Wu, Xiao-Hui; Li, Feng; Li, Jie; Sun, Wei-Cheng; Wang, En-Duo; An, Yan-Peng; Tang, Hui-Ru; Yan, Guo-Quan; Yang, Peng-Yuan; Wei, Yun; Mao, Yun-Zi; Lin, Peng-Cheng; Zhao, Jian-Yuan; Xu, Yanhui; Xu, Wei; Zhao, Shi-Min

    2018-01-09

    Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction.

    Science.gov (United States)

    Stuermer, Claudia A O; Langhorst, Matthias F; Wiechers, Marianne F; Legler, Daniel F; Von Hanwehr, Sylvia Hannbeck; Guse, Andreas H; Plattner, Helmut

    2004-11-01

    The cellular prion protein (PrPc) resides in lipid rafts, yet the type of raft and the physiological function of PrPc are unclear. We show here that cross-linking of PrPc with specific antibodies leads to 1) PrPc capping in Jurkat and human peripheral blood T cells; 2) to cocapping with the intracellular lipid raft proteins reggie-1 and reggie-2; 3) to signal transduction as seen by MAP kinase phosphorylation and an elevation of the intracellular Ca2+ concentration; 4) to the recruitment of Thy-1, TCR/CD3, fyn, lck and LAT into the cap along with local tyrosine phosphorylation and F-actin polymerization, and later, internalization of PrPc together with the reggies into limp-2 positive lysosomes. Thus, PrPc association with reggie rafts triggers distinct transmembrane signal transduction events in T cells that promote the focal concentration of PrPc itself by guiding activated PrPc into preformed reggie caps and then to the recruitment of important interacting signaling molecules.

  14. A bead-based western for high-throughput cellular signal transduction analyses

    Science.gov (United States)

    Treindl, Fridolin; Ruprecht, Benjamin; Beiter, Yvonne; Schultz, Silke; Döttinger, Anette; Staebler, Annette; Joos, Thomas O.; Kling, Simon; Poetz, Oliver; Fehm, Tanja; Neubauer, Hans; Kuster, Bernhard; Templin, Markus F.

    2016-01-01

    Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. PMID:27659302

  15. The ubiquitin–proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer

    Directory of Open Access Journals (Sweden)

    Voutsadakis Ioannis A

    2012-07-01

    Full Text Available Abstract Epithelial to Mesenchymal transition (EMT in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS. Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.

  16. Oxidative Stress in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose Degradation

    Directory of Open Access Journals (Sweden)

    Michael Breitenbach

    2015-04-01

    Full Text Available In this review article, we want to present an overview of oxidative stress in fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and lignocellulose degradation. We will discuss external oxidative stress which may occur through the interaction with other microorganisms or plant hosts as well as internally generated oxidative stress, which can for instance originate from NADPH oxidases or “leaky” mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with the tools of molecular genetics is presently only in its beginning. However, it is already clear that redox signaling in fungal cells often is linked to cell differentiation (like the formation of perithecia, virulence (in plant pathogens, hyphal growth and the successful passage through the stationary phase.

  17. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    Science.gov (United States)

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  18. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors.

    Science.gov (United States)

    Culhane, Kelly J; Liu, Yuting; Cai, Yingying; Yan, Elsa C Y

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  19. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  20. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  1. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  2. Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordoma.

    Science.gov (United States)

    Fasig, J H; Dupont, W D; LaFleur, B J; Olson, S J; Cates, J M M

    2008-02-01

    Currently, there are no effective chemotherapeutic protocols for chordoma. Reports of receptor tyrosine kinase (RTK) expression in chordoma suggest that these tumours may respond to kinase inhibitor therapy. However, RTK signalling activity has not been extensively investigated in chordoma. A tissue microarray containing 21 cases of chordoma was analysed for expression of a number of proteins involved in signal transduction from RTKs by immunohistochemistry. Platelet-derived growth factor receptor-beta, epidermal growth factor receptor (EGFR), KIT and HER2 were detected in 100%, 67%, 33% and 0% of cases, respectively. Platelet-derived growth factor receptor-beta staining was of moderate-to-strong intensity in 20 of 21 cases. In contrast, KIT immunoreactivity was weak and focal in each of the seven positive cases. Total EGFR staining was variable; weak staining for phosphorylated EGFR was detected in nine cases. Phosphorylated isoforms of p44/42 mitogen-activated protein kinase, Akt and STAT3, indicative of tyrosine kinase activity, were detected in 86%, 76% and 67% of cases, respectively. Chordomas commonly express RTKs and activated signal transduction molecules. Although there were no statistically significant correlations between the expression of any of the markers studied and disease-free survival or tumour location, the results nonetheless indicate that chordomas may respond to RTK inhibitors or modulators of other downstream signalling molecules.

  3. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  4. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction.

    Science.gov (United States)

    Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M

    2005-06-01

    The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.

  5. EFFECTS OF LOW-INTENSITY MICROWAVE IRRADIATION UPON INTRACELLULAR SIGNALING OF MONONUCLEAR CELLS IN PNEUMONIA PATIENTS

    Directory of Open Access Journals (Sweden)

    I. V. Terekhov

    2012-01-01

    Full Text Available Abstract. Some molecular biomarkers of peripheral blood mononuclear cells (PBMC were studied in patients 18 to 30 years old with community-acquired pneumonia (n = 30 and healthy persons (n = 15, along with testing appropriate biological effects of low-intensity microwave irradiation (1000 MHz, at a dose rate of 100 pW/cm2. Concentrations of cytokines and some molecules providing intracellular signal transduction in PBMC were measured by ELISA tests. Biological action of microwave radiation was studied after 1-hour irradiation of whole blood, followed by incubation for 24 hours. A single round of irradiation was shown to cause an increase in NFκB content by 12.5% (р = 0.001; IκB by 21.1% (р = 0.0007; phosphorylated JNK1/2, by 18.2% (р = 0.052; p21 protein amounts, by 56.2% (р = 0.031; IL-2, by 8.5% (р = 0.08; IL-4, by 17.6% (р = 0.031. Antioxidant potential of PBMC supernatewas augmented by 65.2% (р < 0,001. Hence, a single 1000-MHz microwave irradiation modulates activity of intracellular events in PBMCs from pneumonia patients.

  6. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    Science.gov (United States)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  7. Equivalence of Lauric Acid and Glycerol Monolaurate as Inhibitors of Signal Transduction in Staphylococcus aureus

    Science.gov (United States)

    Ruzin, Alexey; Novick, Richard P.

    2000-01-01

    Glycerol monolaurate (GML) inhibits the expression of virulence factors in Staphylococus aureus and the induction of vancomycin resistance in Enterococcus faecalis, presumably by blocking signal transduction. Although GML is rapidly hydrolyzed by bacteria, one of the products, lauric acid, has identical inhibitory activity and is metabolized much more slowly. At least four distinct GML-hydrolyzing activities are identified in S. aureus: the secreted Geh lipase, residual supernatant activity in a geh-null mutant strain, a novel membrane-bound esterase, and a cytoplasmic activity. PMID:10762277

  8. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    Sandeep Tiwari

    2017-10-01

    Full Text Available The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS, which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.

  9. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.

    Science.gov (United States)

    Albert, Réka; Chiu, Yu-Wen; Othmer, Hans G

    2004-05-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.

  10. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction.

    Science.gov (United States)

    Green, Jennifer; Nusse, Roel; van Amerongen, Renée

    2014-02-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their signaling mechanisms still remain to be resolved in detail, both Ryk and Ror control important developmental processes in different tissues. However, whereas many other Wnt-signaling responses affect cell proliferation and differentiation, Ryk and Ror are mostly associated with controlling processes that rely on the polarized migration of cells. Here we discuss what is currently known about the involvement of this exciting class of receptors in development and disease.

  11. Hijacking PrPC-dependent signal transduction: when prions impair Αβ clearance

    Directory of Open Access Journals (Sweden)

    Julia eHernandez-Rapp

    2014-02-01

    Full Text Available The cellular prion protein PrPC is the normal counterpart of the scrapie prion protein PrPSc, the main component of the infectious agent of Transmissible Spongiform Encephalopathies. The recent discovery that PrPC can serve as a receptor for the amyloid Αβ peptide and relay its neurotoxicity is sparking renewed interest on this protein and its involvement in signal transduction processes. Disease-associated PrPSc shares with Αβ the ability to hijack PrPC-dependent signalling cascades, and thereby instigate pathogenic events. Among these is an impairment of Αβ clearance, uncovered in prion-infected neuronal cells. These findings add another facet to the intricate interplay between PrPC and Αβ. Here, we summarize the connection between PrP-mediated signalling and Αβ clearance and discuss its pathological implications.

  12. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    Science.gov (United States)

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  13. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping.

    Science.gov (United States)

    Glazebrook, Jane; Chen, Wenqiong; Estes, Bram; Chang, Hur-Song; Nawrath, Christiane; Métraux, Jean-Pierre; Zhu, Tong; Katagiri, Fumiaki

    2003-04-01

    The signal transduction network controlling plant responses to pathogens includes pathways requiring the signal molecules salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The network topology was explored using global expression phenotyping of wild-type and signaling-defective mutant plants, including eds3, eds4, eds5, eds8, pad1, pad2, pad4, NahG, npr1, sid2, ein2, and coi1. Hierarchical clustering was used to define groups of mutations with similar effects on gene expression and groups of similarly regulated genes. Mutations affecting SA signaling formed two groups: one comprised of eds4, eds5, sid2, and npr1-3 affecting only SA signaling; and the other comprised of pad2, eds3, npr1-1, pad4, and NahG affecting SA signaling as well as another unknown process. Major differences between the expression patterns in NahG and the SA biosynthetic mutant sid2 suggest that NahG has pleiotropic effects beyond elimination of SA. A third group of mutants comprised of eds8, pad1, ein2, and coi1 affected ethylene and jasmonate signaling. Expression patterns of some genes revealed mutual inhibition between SA- and JA-dependent signaling, while other genes required JA and ET signaling as well as the unknown signaling process for full expression. Global expression phenotype similarities among mutants suggested, and experiments confirmed, that EDS3 affects SA signaling while EDS8 and PAD1 affect JA signaling. This work allowed modeling of network topology, definition of co-regulated genes, and placement of previously uncharacterized regulatory genes in the network.

  14. Identification of signal transduction pathways used by orphan g protein-coupled receptors.

    Science.gov (United States)

    Bresnick, Janine N; Skynner, Heather A; Chapman, Kerry L; Jack, Andrew D; Zamiara, Elize; Negulescu, Paul; Beaumont, Kevin; Patel, Smita; McAllister, George

    2003-04-01

    The superfamily of GPCRs have diverse biological roles, transducing signals from a range of stimuli, from photon recognition by opsins to neurotransmitter regulation of neuronal function. Of the many identified genes encoding GPCRs, >130 are orphan receptors ( i.e., their endogenous ligands are unknown), and this subset represents putative novel therapeutic targets for pharmaceutical intervention in a variety of diseases. As an initial step toward drug discovery, determining a biological function for these newly identified receptors is of vital importance, and thus identification of a natural ligand(s) is a primary aim. There are several established methods for doing this, but many have drawbacks and usually require some in-depth knowledge about how the receptor functions. The technique described here utilizes a transcription-based reporter assay in live cells. This allows the determination of the signal transduction pathway any given oGPCR uses, without any prior knowledge of the endogenous ligand. This can therefore reduce the redundancy of effort involved in screening ligands at a given receptor in multiple formats (i.e., Galpha(s), Galpha(i/0), and Galpha(q) assays), as well as ensuring that the receptor targeted is capable of signaling if appropriately activated. Such knowledge is often laboriously obtained, and for almost all oGPCRs, this kind of information is not yet available. This technology can also be used to develop inverse agonist as well as agonist sensitive high throughput assays for oGPCRs. The veracity of this approach is demonstrated, using a number of known GPCRs. The likely signaling pathways of the GPR3, GPR12, GPR19, GPR21, and HG55 oGPCRs are shown, and a high throughput assay for GPR26 receptors developed. The methods outlined here for elucidation of the signal transduction pathways for oGPCRs and development of functional assays should speed up the process of identification of ligands for this potentially therapeutically useful group of

  15. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention

    International Nuclear Information System (INIS)

    Neergheen, Vidushi S.; Bahorun, Theeshan; Taylor, Ethan Will; Jen, Ling-Sun; Aruoma, Okezie I.

    2010-01-01

    Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.

  16. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  17. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  18. Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2013-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to phenomenological models of nano- and microscopic events in a corrector scheme of regulated mechanisms when the vessel lumen caliber varies markedly. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volume 4 is devoted to major sets of intracellular mediators that transmit signals upon stimulation of cell-surface receptors.  Activation of...

  19. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  20. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    Science.gov (United States)

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  1. Intracellular angiotensin II elicits Ca2+ increases in A7r5 vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Kok, JW; Henning, RH; De Zeeuw, D; Nelemans, SA

    2001-01-01

    Recent studies show that angiotensin II can act within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane angiotensin II receptors. The signal transduction of intracellular angiotensin LI is unclear. Therefore. we investigated the effects of

  2. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data

    Directory of Open Access Journals (Sweden)

    Zhao Hongyu

    2004-10-01

    Full Text Available Abstract Background Signal transduction is one of the most important biological processes by which cells convert an external signal into a response. Novel computational approaches to mapping proteins onto signaling pathways are needed to fully take advantage of the rapid accumulation of genomic and proteomics information. However, despite their importance, research on signaling pathways reconstruction utilizing large-scale genomics and proteomics information has been limited. Results We have developed an approach for predicting the order of signaling pathway components, assuming all the components on the pathways are known. Our method is built on a score function that integrates protein-protein interaction data and microarray gene expression data. Compared to the individual datasets, either protein interactions or gene transcript abundance measurements, the integrated approach leads to better identification of the order of the pathway components. Conclusions As demonstrated in our study on the yeast MAPK signaling pathways, the integration analysis of high-throughput genomics and proteomics data can be a powerful means to infer the order of pathway components, enabling the transformation from molecular data into knowledge of cellular mechanisms.

  3. Studies of the mechanism of mIg-mediated signal transduction

    International Nuclear Information System (INIS)

    Coggeshall, K.M.

    1985-01-01

    B lymphocytes express surface immunoglobulins (Ig) which act as antigen receptors. Antigen binding by these receptors appears to lead to B cell receptivity to the regulatory signals. Transduction of the surface Ig-derived signal is manifest by B cell depolarization and increased expression of surface I-A antigen. This dissertation describes studies of the biochemical mechanism by which surface Ig occupancy induces these cell biologic changes in B cells. Using [32P]Pi as label to monitor phospholipid metabolism, the authors have observed that crosslinking of B cell surface Ig results in the activation of a common signal transduction pathway called the phosphatidylinositol (PtdIns) cycle. The PtdIns cycle, through the generation of the PtdIns metabolite diacyglycerol (DG), has been proposed to be a regulatory mechanism for the enzyme protein kinase C (PK-C). The observation that the PtdIns cycle is activated upon receptor occupancy in B cells suggest that this cycle and subsequent PK-C activation regulates B cell depolarization and increased I-A expression. Although studies indicate that extracellular Ca ++ does not appear to be required for anti-immunoglobulin induced events, they demonstrate that the Ca ++ ionophore is able to induce depolarization and increased I-A antigen. Studies on the role of protein kinase C in surface Ig-mediated signalling indicated that this ability of Ca ++ ionophore as well as that of LPS and PMA is due to cation of PK-C. These results support the notion that occupancy of antigen receptors on B cells is linked to subsequent biologic responses by the PtdIns cycle and protein kinase C activation

  4. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.

    Science.gov (United States)

    Weidinger, Adelheid; Kozlov, Andrey V

    2015-04-15

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.

  5. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-11-01

    Plant natriuretic peptides (PNPs) comprise a novel class of hormones that share some sequence similarity in the active site with their animal analogues that function as regulators of salt and water balance. A PNP present in Arabidopsis thaliana (AtPNP-A) has been assigned a role in abiotic and biotic stress responses, and the recombinant protein has been demonstrated to elicit cyclic guanosine monophosphate (cGMP)-dependent stomatal guard cell opening, regulate ion movements, and induce osmoticum-dependent water uptake. Although the importance of the hormone in maintaining ion and fluid homeostasis has been established, key components of the AtPNP-A-dependent signal transduction pathway remain unknown. Since identification of the binding partners of AtPNP-A, including its receptor(s), is fundamental to understanding the mode of its action at the molecular level, comprehensive protein-protein interaction studies, involving yeast two-hybrid screening, affinity-based assays, protein cross-linking and co-immunoprecipitation followed by mass spectrometric (MS) analyses have been performed. Several candidate binding partners of AtPNP-A identified with at least two independent methods were subsequently expressed as recombinant proteins, purified, and the specificity of their interactions with the recombinant AtPNP-A was verified using surface plasmon resonance. Several specific binary interactants of AtPNP-A were subjected to functional assays aimed at unraveling the consequences of the interactions in planta. These experiments have revealed that reactive oxygen species (ROS) are novel secondary messengers involved in the transduction of AtPNP-A signal in suspension-cultured cells of A. thaliana (Col-0). Further insight into the AtPNP-A dependent signalling events occurring in suspension-cultured cells in ROS-dependent or ROS-independent manner have been obtained from the large-scale proteomics study employing tandem mass tag (TMT) labelling followed by MS analysis to

  6. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  7. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Alexander Mitsos

    Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  8. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    Science.gov (United States)

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  9. Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah Auburn

    2010-04-01

    Full Text Available With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A and 2B (ADORA2B, beta-adrenergic receptor kinase 1 (ADRBK1, adenylyl cyclase 9 (ADCY9, G protein beta subunit 3 (GNB3, and regulator of G protein signalling 2 (RGS2. Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37; P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s. Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies.

  10. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.

    Science.gov (United States)

    Sato, Yukuto; Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2009-02-20

    Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17) 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8-9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT) pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our analyses imply that an increase in gene product sometimes

  11. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2009-02-01

    Full Text Available Abstract Background Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization. Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. Results We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8–9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. Conclusion The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our

  12. Molecular Analysis of the Graviperception Signal Transduction in the Flagellate Euglena

    Science.gov (United States)

    Häder, Donat; Daiker, Viktor; Richter, Peter; Lebert, Michael

    The unicellular flagellate Euglena gracilis perceives and reacts to the gravitational vector of the Earth. Recent results of experiments on parabolic rocket flights have revealed that the orientation can be explained by passive orientation only to a small extend while the remainder relies on an active physiological sensor and an internal sensory transduction chain. Our current working hypothesis is based on the fact that the cellular contents is heavier than the surrounding medium and consequently exerts pressure onto the lower membrane where it activates mechano-sensitive ion channels located at the front end under the trailing flagellum. We recently succeeded in identifying these channels as gene products of the TRP family. RNAi of the corresponding gene abolished graviperception. These channels allow a gated influx of calcium which depolarizes the internal electrical potential and eventually causes a course correction by the flagellar beating. The inwardly gated calcium binds to a specific calmodulin which is likewise an intrinsic element of the signal transduction chain. RNAi of the related mRNA also stopped graviperception. This calmodulin is thought to activate an adenylyl cyclase which generates cyclic AMP which in turn modulates the beating pattern of the flagellum.

  13. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Girish J. Kotwal

    2012-01-01

    Full Text Available The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  14. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Science.gov (United States)

    Kotwal, Girish J.; Hatch, Steven; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals. PMID:22997518

  15. Cysteines in the neuropilin-2 MAM domain modulate receptor homooligomerization and signal transduction.

    Science.gov (United States)

    Barton, Rachael; Driscoll, Alyssa; Flores, Samuel; Mudbhari, Durlav; Collins, Theresa; Iovine, M Kathryn; Berger, Bryan W

    2015-07-01

    Neuropilins (NRPs) are transmembrane receptors involved in angiogenesis, lymphangiogenesis, and neuronal development as well as in cancer metastasis. Previous studies suggest that NRPs exist in heteromeric complexes with vascular endothelial growth factors (VEGFs) and VEGF receptors as well as plexins and semaphorins. We determined via site-directed mutagenesis and bioluminescent resonance energy transfer assays that a conserved cysteine (C711) in the Danio rerio NRP2a MAM (meprin, A-5 protein, and protein tyrosine phosphatase μ) domain modulates NRP2a homomeric interactions. Mutation of this residue also disrupts semaphorin-3F binding in NRP2a-transfected COS-7 cells and prevents the NRP2a overexpression effects in a zebrafish vascular model. Collectively, our results indicate the MAM domain plays an important role in defining the NRP2 homodimer structure, which is important for semaphorin-dependent signal transduction via NRP2. © 2015 Wiley Periodicals, Inc.

  16. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1999-01-01

    ), which were among the first substrates of ERK to be discovered and which has proven to be a ubiquitous and versatile mediator of ERK signal transduction. RSK is composed of two functional kinase domains that are activated in a sequential manner by a series of phosphorylations. Recently, a family of RSK......-related kinases that are activated by ERK as well as p38 MAPK were discovered and named mitogen- and stress-activated protein kinases (MSK). A number of cellular functions of RSK have been proposed. (1) Regulation of gene expression via association and phosphorylation of transcriptional regulators including c......-Fos, estrogen receptor, NFkappaB/IkappaB alpha, cAMP-response element-binding protein (CREB) and CREB-binding protein; (2) RSK is implicated in cell cycle regulation in Xenopus laevis oocytes by inactivation of the Myt1 protein kinase leading to activation of the cyclin-dependent kinase p34cdc2; (3) RSK may...

  17. The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina

    Directory of Open Access Journals (Sweden)

    Schmoll Monika

    2008-09-01

    Full Text Available Abstract Background The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei is one of the most prolific producers of biomass-degrading enzymes and frequently termed an industrial workhorse. To compete for nutrients in its habitat despite its shortcoming in certain degradative enzymes, efficient perception and interpretation of environmental signals is indispensable. A better understanding of these signals as well as their transmission machinery can provide sources for improvement of biotechnological processes. Results The genome of H. jecorina was analysed for the presence and composition of common signal transduction pathways including heterotrimeric G-protein cascades, cAMP signaling, mitogen activated protein kinases, two component phosphorelay systems, proteins involved in circadian rhythmicity and light response, calcium signaling and the superfamily of Ras small GTPases. The results of this survey are discussed in the context of current knowledge in order to assess putative functions as well as potential impact of alterations of the respective pathways. Conclusion Important findings include an additional, bacterial type phospholipase C protein and an additional 6-4 photolyase. Moreover the presence of 4 RGS-(Regulator of G-protein Signaling proteins and 3 GprK-type G-protein coupled receptors comprising an RGS-domain suggest a more complex posttranslational regulation of G-protein signaling than in other ascomycetes. Also the finding, that H. jecorina, unlike yeast possesses class I phosducins which are involved in phototransduction in mammals warrants further investigation. An alteration in the regulation of circadian rhythmicity may be deduced from the extension of both the class I and II of casein kinases, homologues of which are implicated in phosphorylation of FRQ in Neurospora crassa. On the other hand, a shortage in the number of the pathogenicity related PTH11-type G-protein coupled receptors (GPCRs as well as a lack of

  18. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-hua Peng

    2012-01-01

    Full Text Available The matrix metalloprotease-1 (MMP-1/protease-activated receptor-1 (PAR-1 signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC, we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9% and 58 (68.2% tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS than those with negative ESCC (P = 0.002 and 0.003, respectively. Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR = 2.836, 95% confidence interval (CI = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068, MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127, and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883 and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681, MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279, and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881 as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  19. Transduction of pressure signal to electrical signal upon sudden increase in turgor pressure in Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Ogata, Koreaki

    2013-05-01

    By taking advantage of large cell size of Chara corallina, we analyzed the membrane depolarization induced by decreased turgor pressure (Shimmen in J Plant Res 124:639-644, 2011). In the present study, the response to increased turgor pressure was analyzed. When internodes were incubated in media containing 200 mM dimethyl sulfoxide, their intracellular osmolality gradually increased and reached a steady level after about 3 h. Upon removal of dimethyl sulfoxide, turgor pressure quickly increased. In response to the increase in turgor pressure, the internodes generated a transient membrane depolarization at its nodal end. The refractory period was very long and it took about 2 h for full recovery after the depolarizing response. Involvement of protein synthesis in recovery from refractoriness was suggested, based on experiments using inhibitors.

  20. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli

    Science.gov (United States)

    Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.

  1. Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f.sp. hordei).

    Science.gov (United States)

    Wheeler, Ian E; Hollomon, Derek W; Gustafson, Gary; Mitchell, Jon C; Longhurst, Chris; Zhang, Ziguo; Gurr, Sarah J

    2003-05-01

    SUMMARY Quinoxyfen is a protectant fungicide which controls powdery mildew diseases by interfering with germination and/or appressorium formation. Mutants of barley powdery mildew, Blumeria graminis f.sp. hordei, which are resistant to quinoxyfen produce fewer conidia, which germinate and form appressoria more promiscuously than do the prolific numbers of wild-type spores. This suggests that resistance bypasses host recognition signals. RT-PCR profiles of signal transduction genes, recorded during wild-type germling morphogenesis, reveals that quinoxyfen alters the accumulation of Protein Kinase C (pkc), pkc-like and catalytic subunit of Protein Kinase A (cpka) transcripts. Differential display-reverse transcription PCR identified a gene transcript in wild-type conidia that was absent, or much less abundant, in conidia from quinoxyfen-resistant mutants. This mRNA was not detectable 24 h after wild-type conidia were inoculated on to barley. It encodes a GTPase activating protein (GAP), which may interact with a small molecular weight Ras-type GTP binding protein. In the presence of quinoxyfen, the gap mRNA remains throughout germling morphogenesis. The involvement of GAP in resistance suggests that quinoxyfen inhibits mildew infection by disrupting early cell signalling events.

  2. Epidermal growth factor receptor (EGFR) involvement in successful growth hormone (GH) signaling in GH transduction defect.

    Science.gov (United States)

    Kostopoulou, Eirini; Rojas-Gil, Andrea Paola; Karvela, Alexia; Spiliotis, Bessie E

    2017-02-01

    Growth hormone (GH) transduction defect (GHTD) is a growth disorder with impaired signal transducer and activator of transcription 3 (STAT3) phosphorylation mediated by overexpression of cytokine-inducible SH2-containing protein (CIS), which causes increased growth hormone receptor (GHR) degradation. This study investigated the role of epidermal growth factor (EGF) in the restoration of normal GH signaling in GHTD. Protein expression, cellular localization and physical contact of proteins of the GH and EGF signaling pathways were studied by Western immunoblotting, immunofluorescence and co-immunoprecipitation, respectively. These were performed in fibroblasts of one GHTD patient (P) and one control child (C) at the basal state and after induction with human GH (hGH) 200 μg/L (GH200), either with or without silencing of CIS mRNA, and after induction with hGH 1000 μg/L (GH1000) or 50 ng/mL EGF. The membrane availability of the EGF receptor (EGFR) and the activated EGFR (pEGFR) was increased in P only after simultaneous GH200 and silencing of CIS mRNA or with GH1000, whereas this occurred in C after GH200 alone. After EGF induction, the membrane localization of GHR, STAT3 and that of EGFR were increased in P more than in C. In conclusion, in GHTD, the EGFR seems to participate in successful GH signaling, but induction of GHTD fibroblasts with a higher dose of hGH is needed. The EGF/EGFR pathway, in contrast to the GH/GHR pathway, seems to function normally in P and is more primed compared to C. The involvement of the EGFR in successful GH signaling may explain the catch-up growth seen in the Ps when exogenous hGH is administered.

  3. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear.

    Science.gov (United States)

    Tao, Ruiyan; Bai, Songling; Ni, Junbei; Yang, Qinsong; Zhao, Yuan; Teng, Yuanwen

    2018-03-15

    A conserved blue light sensing and transduction pathway contributes to blue light-induced anthocyanin accumulation in the peel of red pear. Peel color is an economically important characteristic that influences the appearance quality of red pear, whose red color is due to anthocyanin accumulation. The process of coloration in the fruit peel is strongly influenced by light. However, how light quality influences color development remains unclear. In this study, we analyzed the effects of different light qualities on color development in the red pear 'Red Zaosu', a mutant of the hybrid cultivar 'Zaosu' of Pyrus pyrifolia and P. communis. The results showed that blue light increased anthocyanin accumulation after 72 h of light treatment, while red light had almost no effect. The expression of anthocyanin biosynthesis-related genes showed a similar trend to the anthocyanin accumulation. To clarify the mechanism of blue-light induced coloration, PpCRYs, PpCOP1 and PpHY5 genes were cloned. Gene expression analysis showed that their transcript abundance did not correlate with the expression of anthocyanin-related genes or anthocyanin content, but the yeast two-hybrid system revealed conserved physical interactions among these proteins. In addition, PpHY5 directly bound to the promoters of the anthocyanin biosynthesis genes PpCHS, PpDFR, PpANS and PpMYB10, and activated the transcription of PpCHS in a Nicotiana benthamiana-based dual-luciferase assay. In summary, our results preliminarily revealed that the conserved blue light signal transduction module CRY-COP1-HY5 contributed to the anthocyanin biosynthesis induced by blue light in red pear. However, our results did not provide evidence for why red light had no effect on anthocyanin accumulation, which needs further study.

  4. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  5. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  6. Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys

    Science.gov (United States)

    Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José

    2013-01-01

    Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to

  7. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY ana...

  8. Jasmonates differentially affect interconnected signal-transduction pathways of Pieris rapae-induced defenses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Broekgaarden, C.; Dicke, M.

    2011-01-01

    The jasmonic acid (JA) pathway is the main signal-transduction pathway induced by insect folivory. Mutant plants affected in the jasmonate pathway (18:0 and/or 16:0-oxylipin routes) were studied to assess the effects of JA and its oxylipin intermediates 12-oxophytodienoic acid (OPDA) and dinor-OPDA

  9. Differences in two-component signal transduction proteins among the genus Brucella: implications for host preference and pathogenesis

    DEFF Research Database (Denmark)

    Binnewies, Tim Terence; Ussery, David; Lavín, JL

    2010-01-01

    Two-component systems (TCSs) are the predominant bacterial signal transduction mechanisms. Species of the genus Brucella are genetically highly related and differ mainly in mammalian host adaptation and pathogenesis. In this study, TCS proteins encoded in the available genome sequences of Brucell...

  10. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with pr...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  11. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  12. The Drosophila secreted protein Argos regulates signal transduction in the Ras/MAPK pathway.

    Science.gov (United States)

    Sawamoto, K; Okabe, M; Tanimura, T; Mikoshiba, K; Nishida, Y; Okano, H

    1996-08-25

    The Drosophila argos gene encodes a secreted protein with an EGF motif which acts as an inhibitor of cellular differentiation in multiple developmental processes. To investigate the cellular pathways regulated by Argos, we screened for mutations which could modify the phenotype caused by overexpression of argos. We show that the effects of argos overexpression on the eye and wing vein development are suppressed by gain-of-function mutations of the MAPKK/D-MEK gene (Dsor1/D-mek) and the MAPK/ERK-A gene (rolled) and were enhanced by loss-of-function mutations of Star. Loss-of-function mutations in components of the Ras/MAPK signaling cascade act as dominant suppressors of the phenotype caused by the argos null mutations. A loss-of-function argos mutation enhanced the overproduction of R7 neurons caused by gain-of-function alleles of Son of sevenless and Dsor1. Conversely, overexpression of argos inhibited formation of the extra R7 cells that was caused by high-level MAPK/ERK-A activity. A phenotype of the sev; argos double mutants revealed that sev is epistatic to argos. These results provide evidence that Argos negatively regulates signal transduction events in the Ras/MAPK cascade.

  13. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Some changes of receptor and postreceptor signal transduction regulated by somatostatin in pituitary hGH-secreting adenomas.

    Science.gov (United States)

    Deng, J; Shi, Y; Yin, J

    1997-09-01

    To investigate the disturbance in the function of SRIF receptor, Gi protein and Ca2+ channel in hGH adenoma cells and to evaluate their significance in the pathogenesis of pituitary hGH adenomas. All 25 patients with pituitary hGH adenoma who were involved in this study had typical acromegalic manifestation and high fasting serum hGH levels of > 5.0 micrograms/L which were not suppressed to hGH adenoma tissue obtained from transphenoidal operation was digested by collagenase and the dispersed adenoma cells were cultured in the monolayer. The effects of octreotide (SMS), a long-acting agonist of somatostatin, on hGH secretion and intracellular cAMP level were observed and the influences of pertussis toxin (PT), an inhibitor of Gi protein, and Ca2+ ionophore A23187 or KCl on the inhibitory action of octreotide on hGH secretion were also investigated in the cultured pituitary hGH adenoma cells. A total of 16.0% (4/25) of cultured pituitary hGH adenomas did not respond to octreotide (100 nmol). The inhibitory effect of octreotide on hGH secretion was not blocked by PT (50 ng/ml) and A23187 (10 mumol) or KCl (22.5 nmol) in 31.6% (6/19) and 35% (7/20) of hGH adenomas, respectively. The effects of octreotide on hGH secretion and intracellular cAMP levels were studied in 10 cultured hGH adenomas. Octreotide suppressed both hGH secretion and cAMP levels in 5 cases; inhibited only hGH secretion or the cAMP level in 3 cases and 1 case respectively; and affected neither hGH secretion nor cAMP level in the last case. There were abnormalities in the SRIF receptor and/or postreceptor signal transduction in 16.0% of hGH adenomas which did not respond to octreotide. The defects in Gi and/or Ca2+ channels were found in 52.4% (11/21) of hGH adenomas which had responded to octreotide. These defects might induce diminution of the inhibitory action of SRIF on hGH secretion and might be the causes of hypersecretion in some pituitary hGH adenomas.

  15. Signal transduction mechanisms and nitric oxide in hypoxic and ischemic human cardiac ventricular cell.

    Science.gov (United States)

    Corbucci, G C; Ricchi, A; Lettieri, B; Mastronardi, P

    2001-11-01

    Nitric oxide (NO) plays a well-known role in regulating endocellular adaptive changes to acute hypoxia and ischemia. The reversible inhibition of complex IV of the mitochondrial respiratory chain fulfils a cytoprotective function, whereas the progressive inhibition of complex I and II reveals the onset of irreversible oxidative damage due to persistent NO production in response to prolonged hypoxia and/or ischemia. In hypoxic or ischemic human myocardial cells, death may be caused by apoptosis or necrosis following the activation of the biomolecular signal transduction mechanisms. The activation of MAPK (mitogen-activated protein kinase) followed by ERK (extracellular regulated kinase) and p21waf is necessary in this respect. The myocardial cell is well known for its postmitotic nature and through their activation these kinases aim to repair DNA damaged by oxidative stress in order to guarantee the survival of the cell itself. A direct correlation has been found between the activation of these kinases and NO production. It was decided to carry out this study in hypoxic and ischemic human heart ventricular tissue in order to confirm this connection. In 10 patients undergoing cardiac valvular replacement, ventricular samples were collected before aortic clamping, after 15 min of ischemia and after 60 minutes during which the patients received doses of hematic cardioplegic solution at regular intervals. The results show a rapid increase in NO production in response to ischemia followed by a tendency for levels of this element to fall. MAPK, ERK and p21waf activation was parallel to No production, irrespective of the repeated administration of hematic cardioplegic solution. The heart tissue examined 60 minutes after aortic clamping came from a ventricular area subject to preconditioning mechanisms. In view of this, the data obtained must be seen in terms of the close correlation between the mitochondrial action played by NO and the contemporary and consequent

  16. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  17. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2018-03-01

    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  18. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  19. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  20. Antidepressant-like effect of chronic taurine administration and its hippocampal signal transduction in rats.

    Science.gov (United States)

    Toyoda, Atsushi; Iio, Wataru

    2013-01-01

    Taurine is one of the most abundant amino acids in the central nervous system, and it has various important functions as a neuromodulator and antioxidant. Taurine is expected to be involved in the mental disorders such as depression; however, knowledge of its function in relation to depression is limited. In this research, we tried to elucidate the effects of taurine supplementation on antidepressant-like behaviors in rats and depression-related signal transduction in the hippocampus. In behavioral tests, rats fed a high taurine (HT: 45 mmol/kg taurine) diet for 4 weeks (HT4w) showed decreased immobility in the forced swim test (FS) compared to controls. On the other hand, rats fed a low taurine (LT: 22.5 mmol/kg taurine) diet for 4 weeks or an HT diet for 2 weeks (HT2w) did not show a significant difference in FS compared to controls. In western blot analyses, the expression of glutamic acid decarboxylase (GAD) 65 and GAD67 in the hippocampus was not affected by taurine supplementation. However, the phosphorylation levels of extracellular signal-regulated kinase1/2 (ERK1/2), protein kinase B (Akt), glycogen synthase kinase3 beta (GSK3β), and cAMP response element-binding protein (CREB) were increased in the hippocampus of HT4w and HT2w rats. Phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) was increased in the hippocampus of HT4w rats only. Moreover, no significant changes in these molecules were observed in the hippocampus of rats fed an HT diet for 1 day. In conclusion, our discoveries suggest that taurine supplementation has an antidepressant-like effect and an ability to change depression-related signaling cascades in the hippocampus.

  1. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    Directory of Open Access Journals (Sweden)

    Joanne L Dunster

    2015-11-01

    Full Text Available We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2, provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in

  2. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  3. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  4. MODULATING LPS SIGNAL TRANSDUCTION AT THE LPS RECEPTOR COMPLEX WITH SYNTHETIC LIPID A ANALOGUES

    Science.gov (United States)

    White, Aileen F. B.; Demchenko, Alexei V.

    2015-01-01

    Sepsis, defined as a clinical syndrome brought about by an amplified and dysregulated inflammatory response to infections, is one of the leading causes of death worldwide. Despite persistent attempts to develop treatment strategies to manage sepsis in the clinical setting, the basic elements of treatment have not changed since the 1960s. As such, the development of effective therapies for reducing inflammatory reactions and end-organ dysfunction in critically ill patients with sepsis remains a global priority. Advances in understanding of the immune response to sepsis provide the opportunity to develop more effective pharmaceuticals. This article details current information on the modulation of the lipopolysaccharide (LPS) receptor complex with synthetic Lipid A mimetics. As the initial and most critical event in sepsis pathophysiology, the LPS receptor provides an attractive target for antisepsis agents. One of the well-studied approaches to sepsis therapy involves the use of derivatives of Lipid A, the membrane-anchor portion of an LPS, which is largely responsible for its endotoxic activity. This article describes the structural and conformational requirements influencing the ability of Lipid A analogues to compete with LPS for binding to the LPS receptor complex and to inhibit the induction of the signal transduction pathway by impairing LPS-initiated receptor dimerization. PMID:25480508

  5. Oscillation and noise determine signal transduction in shark multimodal sensory cells.

    Science.gov (United States)

    Braun, H A; Wissing, H; Schäfer, K; Hirsch, M C

    1994-01-20

    Oscillating membrane potentials that generate rhythmic impulse patterns are considered to be of particular significance for neuronal information processing. In contrast, noise is usually seen as a disturbance which limits the accuracy of information transfer. We show here, however, that noise in combination with intrinsic oscillations can provide neurons with particular encoding properties, a discovery we made when recording from single electro-sensory afferents of a fish. The temporal sequence of the impulse trains indicates oscillations that operate near the spike-triggering threshold. The oscillation frequency determines the basic rhythm of impulse generation, but whether or not an impulse is actually triggered essentially depends on superimposed noise. The probability of impulse generation can be altered considerably by minor modifications of oscillation baseline and amplitude, which may underlie the exquisite sensitivity of these receptors to thermal and electrical stimuli. Additionally, thermal, but not electrical, stimuli alter the oscillation frequency, allowing dual sensory messages to be conveyed in a single spike train. These findings demonstrate novel properties of sensory transduction which may be relevant for neuronal signalling in general.

  6. Involvement of SGT1 in COR-mediated signal transduction pathway leading to disease symptom development.

    Science.gov (United States)

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Ishiga, Takako; Mysore, Kirankumar S

    2011-07-01

    Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), that causes bacterial speck disease on tomato, produces a non-host-specific virulence effector, coronatine (COR). COR functions as a jasmonic acid (JA)-isoleucine mimic in planta and has multiple roles in the pathogenicity of Pst DC3000. One of the hallmarks of bacterial speck disease on tomato is the formation of necrotic lesions surrounded by chlorosis and COR is required for disease development. However, the molecular basis of COR-mediated disease symptom development including chlorosis and necrosis is still largely unknown. In our recent publication in New Phytologist, using virus-induced gene silencing (VIGS) based reverse genetics screen, we demonstrated that SGT1 (suppressor of G2 allele of skp1) is required for COR-induced chlorosis in Nicotiana benthamiana. SGT1-silenced tomato leaves showed a complete loss of COR-induced chlorosis and reduced disease symptom development after the inoculation with Pst DC3000. Furthermore, Arabidopsis sgt1b mutant was less sensitive to COR-induced root growth inhibition and showed delayed Pst DC3000 disease symptoms. In this addendum, we discuss the possible contribution of SGT1 to COR-mediated signal transduction pathway leading to disease symptom development during Pst DC3000 pathogenesis in tomato and Arabidopsis.

  7. Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Hien J Tran-Winkler

    2011-10-01

    Full Text Available The CsrRS (or CovRS two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS. While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg(2+ as specific signals. We now report that Mg(2+ and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg(2+ and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that Csr

  8. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  9. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  10. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis.

    Science.gov (United States)

    Kim, J-E; Roh, E; Lee, M H; Yu, D H; Kim, D J; Lim, T-G; Jung, S K; Peng, C; Cho, Y-Y; Dickinson, S; Alberts, D; Bowden, G T; Einspahr, J; Stratton, S P; Curiel-Lewandrowski, C; Bode, A M; Lee, K W; Dong, Z

    2016-08-04

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure and Fyn-knockout mice formed larger and more tumors compared with Fyn wild-type mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn and cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis.

  11. Target of rapamycin is a key player for auxin signaling transduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kexuan eDeng

    2016-03-01

    significantly inhibit TOR and auxin signaling in DR5/BP12 plants. These studies demonstrate that TOR is essential for auxin signaling transduction in Arabidopsis.

  12. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling

    Directory of Open Access Journals (Sweden)

    Tanja ePetnicki-Ocwieja

    2014-12-01

    Full Text Available Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs. However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs. Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.

  13. Experimental strategies for studying G protein-coupled receptor homo- and heteromerization with radioligand binding and signal transduction methods.

    Science.gov (United States)

    Maggio, Roberto; Rocchi, Cristina; Scarselli, Marco

    2013-01-01

    Before the molecular biology era, functional experiments on isolated organs and radioligand binding and biochemical experiments on animal tissues were widely used to characterize G protein-coupled receptors (GPCRs). The introduction of recombinant cell lines expressing a single GPCR type has been a big step forward for studying both drug-receptor interactions and signal transduction. Before the introduction of the concept of receptor oligomerization, all data generated were attributed to the interaction of drugs with receptor monomers. Now, considerable data must be reinterpreted in light of receptor homo- and heteromerization. In this chapter, we will review some of the methods used to study radioligand binding and signal transduction modifications induced by GPCR homo- and heteromerization. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Correlation of radiation induced cellular signal transduction events with LET-selective thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Fuerweger, C.; Hajek, M.; Vana, N.; Kodym, R.; Okayasu, Ryuichi

    2006-01-01

    In order to obtain a deeper insight into the molecular mechanism controlling the cellular response to high-linear energy transfer (LET) radiation we observed early signal transduction events after low dose exposure to charged particles. Normal human fibroblasts were irradiated with ions of varying energy and LET (Helium, Carbon, Neon, Silicon and Iron, from 2, 2 up to 300 keV/μm) at the National Institute of Radiological Sciences (NIRS)-Heavy Ion Medical Accelerator in Chiba (HIMAC)-facility. For exposure, a low particle fluence of approx. 7, 3 * 10 4 particles/cm 2 (corresponding to 1 hit nucleus in 7 cells) was chosen. Doses and LET were verified with thermoluminescence detectors (LiF: Mg, Ti) evaluated according to the high-temperature-ratio (HTR)-method. In FY 2005, we focused on investigating the activation of ataxia telangiectasia mutated (ATM) and several of its substrates 2-3 hours after irradiation using immunofluorescence and immunohistochemical staining techniques. So far, we found that the number of pATM (S1981)-foci per nucleus was higher in cells irradiated with higher-LET beams. Especially Fe-ions (500 MeV/u) yielded twice the number of foci than mock or He (150 MeV/u) irradiated cells. Furthermore, for Fe-ions the number of cells with radiation induced γH2aX-foci exceeded the number of cells with nucleus hits, indicating a bystander effect. These data show that the early cellular response to high-LET radiation is modulated by the energy deposition of the particle. (author)

  15. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates

    Directory of Open Access Journals (Sweden)

    Yusuke eNakane

    2014-05-01

    Full Text Available Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2 and thyroid hormone-inactivating enzymes (DIO3. Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH in the pars tuberalis (PT of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV. The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction.

  16. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression

    Science.gov (United States)

    Slavich, George M.; Irwin, Michael R.

    2014-01-01

    Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation. PMID:24417575

  17. The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation.

    Science.gov (United States)

    Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H

    2017-09-15

    Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying Δ vxrA and Δ vxrB mutations are deficient in biofilm formation, while the Δ vxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers

  18. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae.

    Science.gov (United States)

    Moreno, Fernando; Herrero, Pilar

    2002-03-01

    Sugars, predominantly glucose, evoke a variety of responses in Saccharomyces cerevisiae. These responses are elicited through a complex network of regulatory mechanisms that transduce the signal of presence of external glucose to their final intracellular targets. The HXK2 gene, encoding hexokinase 2 (Hxk2), the enzyme that initiates glucose metabolism, is highly expressed during growth in glucose and plays a pivotal role in the control of the expression of numerous genes, including itself. The mechanism of this autocontrol of expression is not completely understood. Hxk2 is found both in the nucleus and in the cytoplasm of S. cerevisiae; the nuclear localization is dependent on the presence of a stretch of amino acids located from lysine-6 to methionine-15. Although serine-14, within this stretch, can be phosphorylated in the absence of glucose, it is still unsettled whether this phosphorylation plays a role in the cellular localization of Hxk2. The elucidation of the mechanism of transport of Hxk2 to and from the nucleus, the influence of the oligomeric state of the protein on the nuclear transport and the fine mechanism of regulation of transcription of HXK2 are among the important unanswered questions in relation with the regulatory role of Hxk2.

  19. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene...... in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  20. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice.

    Science.gov (United States)

    Yi, Xuejie; Gao, Haining; Chen, Dequan; Tang, Donghui; Huang, Wanting; Li, Tao; Ma, Tie; Chang, Bo

    2017-04-01

    To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P -450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P -450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function. Copyright © 2017 the American

  1. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    Science.gov (United States)

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  2. Genomic Targets and Features of BarA-UvrY (-SirA Signal Transduction Systems.

    Directory of Open Access Journals (Sweden)

    Tesfalem R Zere

    Full Text Available The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.

  3. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  4. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  5. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy.

    Science.gov (United States)

    Eells, Janis T; Wong-Riley, Margaret T T; VerHoeve, James; Henry, Michele; Buchman, Ellen V; Kane, Mary P; Gould, Lisa J; Das, Rina; Jett, Marti; Hodgson, Brian D; Margolis, David; Whelan, Harry T

    2004-09-01

    Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result, in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor molecule cytochrome c oxidase. We have demonstrated that NIR-LED photo-irradiation increases the production of cytochrome oxidase in cultured primary neurons and reverses the reduction of cytochrome oxidase activity produced by metabolic inhibitors. We have also shown that NIR-LED treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. Photobiomodulation improves wound healing in genetically diabetic mice by upregulating genes important in the promotion of wound healing. More recent studies have provided evidence for the therapeutic benefit of NIR-LED treatment in the survival and functional recovery of the retina and optic nerve in vivo after acute injury by the mitochondrial toxin, formic acid generated in the course of methanol intoxication. Gene discovery studies conducted using microarray technology documented a significant upregulation of gene expression in pathways involved in mitochondrial energy production and antioxidant cellular protection. These findings provide a link between the actions of red to near infrared light on mitochondrial oxidative metabolism in vitro and cell injury in vivo. Based on these findings and the strong evidence that mitochondrial dysfunction is involved in the pathogenesis of numerous diseases processes, we propose that NIR-LED photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and disease processes in which mitochondrial

  6. Nanopore Event-Transduction Signal Stabilization for Wide pH Range under Extreme Chaotrope Conditions.

    Science.gov (United States)

    Winters-Hilt, Stephen; Stoyanov, Alexander

    2016-03-14

    Operation of an α-hemolysin nanopore transduction detector is found to be surprisingly robust over a critical range of pH (6-9), including physiological pH = 7.4 and polymerase chain reaction (PCR) pH = 8.4, and extreme chaotrope concentration, including 5 M urea. The engineered transducer molecule that is captured in the standard α-hemolysin nanopore detector, to transform it into a transduction detector, appears to play a central role in this stabilization process by stabilizing the channel against gating during its capture. This enables the nanopore transduction detector to operate as a single molecule "nanoscope" in a wide range of conditions, where tracking on molecular state is possible in a variety of different environmental conditions. In the case of streptavidin biosensing, results are shown for detector operation when in the presence of extreme (5 M) urea concentration. Complications involving degenerate states are encountered at higher chaotrope concentrations, but since the degeneracy is only of order two, this is easily absorbed into the classification task as in prior work. This allows useful detector operation over a wide range of conditions relevant to biochemistry, biomedical engineering, and biotechnology.

  7. Nanopore Event-Transduction Signal Stabilization for Wide pH Range under Extreme Chaotrope Conditions

    Directory of Open Access Journals (Sweden)

    Stephen Winters-Hilt

    2016-03-01

    Full Text Available Operation of an α-hemolysin nanopore transduction detector is found to be surprisingly robust over a critical range of pH (6–9, including physiological pH = 7.4 and polymerase chain reaction (PCR pH = 8.4, and extreme chaotrope concentration, including 5 M urea. The engineered transducer molecule that is captured in the standard α-hemolysin nanopore detector, to transform it into a transduction detector, appears to play a central role in this stabilization process by stabilizing the channel against gating during its capture. This enables the nanopore transduction detector to operate as a single molecule “nanoscope” in a wide range of conditions, where tracking on molecular state is possible in a variety of different environmental conditions. In the case of streptavidin biosensing, results are shown for detector operation when in the presence of extreme (5 M urea concentration. Complications involving degenerate states are encountered at higher chaotrope concentrations, but since the degeneracy is only of order two, this is easily absorbed into the classification task as in prior work. This allows useful detector operation over a wide range of conditions relevant to biochemistry, biomedical engineering, and biotechnology.

  8. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  9. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    lymphocytes. Our experiments on preB lymphocytes supported by stromal cells suggest that apoptosis is one of the mechanisms for PAH immunosuppression. It could be either due to direct effect of the PAH on the B cells, via stromal cell signaling. Ubiquitous PAH-like toxin, fluoranthene, was tested for it......’s ability to initiate apoptosis in T cell hybridomas. Our data demonstrate that PAH may induce apoptosis and innnunotoxicity in T cell branch of immune system. The mechanism of this process seems to be the AhR independent, and mediated by Ca...

  10. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... phosphorylation in control subjects and IGT relatives, with a tendency for reduced phosphorylation in IGT relatives (P = 0.12). In conclusion, aberrant phosphorylation/activity of IRS-1, PI 3-kinase, and Akt is observed in skeletal muscle from relatives of patients with type 2 diabetes with IGT. However...... resistance in skeletal muscle from relatives of patients with type 2 diabetes....

  11. Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.

    Directory of Open Access Journals (Sweden)

    Gregor Moenke

    Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.

  12. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants1

    Science.gov (United States)

    Gibbs, Daniel J.; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M.; Holdsworth, Michael J.

    2015-01-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling. PMID:25944828

  13. Self-organization of signal transduction [v1; ref status: indexed, http://f1000r.es/zg

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2013-04-01

    Full Text Available We propose a model of parameter learning for signal transduction, where the objective function is defined by signal transmission efficiency. We apply this to learn kinetic rates as a form of evolutionary learning, and look for parameters which satisfy the objective. This is a novel approach compared to the usual technique of adjusting parameters only on the basis of experimental data. The resulting model is self-organizing, i.e. perturbations in protein concentrations or changes in extracellular signaling will automatically lead to adaptation. We systematically perturb protein concentrations and observe the response of the system. We find compensatory or co-regulation of protein expression levels. In a novel experiment, we alter the distribution of extracellular signaling, and observe adaptation based on optimizing signal transmission. We also discuss the relationship between signaling with and without transients. Signaling by transients may involve maximization of signal transmission efficiency for the peak response, but a minimization in steady-state responses. With an appropriate objective function, this can also be achieved by concentration adjustment. Self-organizing systems may be predictive of unwanted drug interference effects, since they aim to mimic complex cellular adaptation in a unified way.

  14. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Joydeb Kumar [National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Surh, Young-Joon [National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of)]. E-mail: surh@plaza.snu.ac.kr

    2005-12-11

    Center to the cancer biology is disrupted intracellular signaling network, which transmits improper signals resulting in abnormal cellular functioning. Therefore, modulation of inappropriate cell signaling cascades might be a rational approach in achieving chemoprevention. Inflammation has long been suspected to contribute to carcinogenesis. A new horizon in chemoprevention research is the recent discovery of molecular links between inflammation and cancer. Components of the cell signaling network, especially those converge on redox-sensitive transcription factor nuclear factor-{kappa}B involved in mediating inflammatory response, have been implicated in carcinogenesis. Intracellular signaling through another redox-sensitive transcription factor AP-1 and that transmitted via a more recently identified oncoprotein {beta}-catenin are also considered to be crucial for inflammation-associated cancer. Epidemiological and experimental studies have revealed that a wide variety of phytochemicals present in our daily diet are potential chemopreventive agents that can alter or correct undesired cellular functions caused by abnormal pro-inflammatory signal transmission. Modulation of cellular signaling involved in chronic inflammatory response by anti-inflammatory phytochemicals may comprise a rational and pragmatic strategy in molecular target-based chemoprevention.

  15. Lung cancer, intracellular signaling pathways, and preclinical models

    International Nuclear Information System (INIS)

    Mordant, P.

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  16. Human conjunctival epithelial cell responses to platelet-activating factor (PAF): signal transduction and release of proinflammatory cytokines.

    Science.gov (United States)

    Sharif, Najam A; Xu, Shouxi; Hellberg, Peggy E; Pang, Iok-Hou; Gamache, Daniel A; Yanni, John M

    2009-06-06

    The aims of the study were to characterize the signal transduction responses to platelet-activating factor (PAF) and to monitor the downstream effects of PAF on the production of proinflammatory cytokines in human conjunctival epithelial cells (HCECs). The generation of inositol phosphates ([(3)H]IPs) from [(3)H]phosphoinositide (PI) hydrolysis and the mobilization of intracellular calcium ([Ca(2+)](i)) were evaluated using ion exchange chromatography and Fura-2 fluorescence techniques, respectively. The production of the cytokines (interleukin-6 [IL-6], interleukin-8 [IL-8], and granulocyte macrophage colony-stimulating factor [GM-CSF]) from PAF-stimulated HCECs was quantified using specific ELISA assays. Specific PAF antagonists were used to study the pharmacological aspects of PAF actions in HCECs. PAF (100 nM) maximally stimulated PI turnover in HCECs by 2.3+/-0.02 fold (n=21) above basal levels and with a potency (EC(50)) of 5.9+/-1.7 nM (n=4). PAF or its stabilized analog, methyl carbamyl (mc)PAF (EC(50)=0.8 nM), rapidly mobilized [Ca(2+)](i), which peaked within 30-60 s and remained elevated for 3 min. PAF (10 nM-1 microM) stimulated the release of the proinflammatory cytokines, IL-6, IL-8, and GM-CSF, 1.4-3.5 fold above basal levels. The effects of PAF (100 nM) on PI turnover and [Ca(2+)](i) were potently antagonized by the PAF antagonists, 1-o-hexadecyl-2-o-acetyl-sn-glycero-3-phospho (N,N,N-trimethyl) hexanolamine (IC(50)=0.69 microM; K(i)=38 nM), methyl 2-(phenylthio)ethyl-1,4-dihydro-2,4,6-trimethyl-pyridine-3,5-dicsrboxylate (PCA-42481; IC(50)=0.89 microM; K(i)=50 nM), rac-3-(N-octadecylcarbomoyl)-2-methoxy) propyl-(2-thiazolioethyl) phosphate (CV-3988; IC(50)=13 microM; K(i)=771 nM), and (+/-)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one HCl (SM-10661; IC(50)=14 microM; K(i)=789 nM [n=3 for each antagonist]). PAF-induced production of IL-6, IL-8, and GM-CSF from HCECs was also blocked by these PAF antagonists (IC(50)=4.6- 8.6 microM). HCECs respond

  17. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections

    Directory of Open Access Journals (Sweden)

    Erin J. Breland

    2017-05-01

    Full Text Available Extra-intestinal pathogenic E. coli (ExPEC infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC, neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC, and uropathogenic E. coli (UPEC. Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.

  18. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  19. A flow cytometry technique to study intracellular signals NF-κB and STAT3 in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Chavarin Patricia

    2007-07-01

    Full Text Available Abstract Background Cytokines have essential roles on intercellular communications and are effective in using a variety of intracellular pathways. Among this multitude of signalling pathways, the NF-κB (nuclear factor kappaB and STAT (signal transducer and activator of transcription families are among the most frequently investigated because of their importance. Indeed, they have important role in innate and adaptive immunity. Current techniques to study NF-κB and STAT rely on specific ELISAs, Western Blots and – most recently described – flow cytometry; so far, investigation of such signalling pathways are most commonly performed on homogeneous cells after purification. Results The present investigation aimed at developing a flow cytometry technique to study transcription factors in various cellular types such as mixtures of B-cells, T-lymphocytes and monocytes/macrophages stimulated in steady state conditions (in other words, as peripheral blood mononuclear cells. To achieve this goal, a two step procedure was carried out; the first one consisted of stimulating PBMCs with IL1β, sCD40L and/or IL10 in such a manner that optimal stimulus was found for each cell subset (and subsequent signal transduction, therefore screened by specific ELISA; the second step consisted of assessing confirmation and fine delineation of technical conditions by specific Western-Blotting for either NF-κB or STAT products. We then went on to sensitize the detection technique for mixed cells using 4 color flow cytometry. Conclusion In response to IL1β, or IL10, the levels of phosphorylated NF-κB and STAT3 – respectively – increased significantly for all the studied cell types. In contrast, B-cells and monocytes/macrophages – but, interestingly, not T-lymphocytes (in the context of PBMCs – responded significantly to sCD40L by increasing phosphorylated NF-κB.

  20. Effect of the opioid methionine enkephalinamide on signal transduction in human T-lymphocytes

    DEFF Research Database (Denmark)

    Sørensen, A N; Claesson, Mogens Helweg

    1998-01-01

    T cell receptor (TCR/CD3) induced fluctuations in intracellular free ionizied calcium, [Ca2+]i, was analysed in the human T leukemia cell clone, Jurkat, cultured in the presence of the opioid methionine enkephalinamide (Met-Enk) in titrated concentrations (10[-7] to 10[-15] M) or saline (PBS...

  1. Transforming growth factor beta signal transduction: a potential target for maintenance/restoration of transparency of the cornea.

    Science.gov (United States)

    Saika, Shizuya; Yamanaka, Osamu; Sumioka, Takayoshi; Okada, Yuka; Miyamoto, Takeshi; Shirai, Kumi; Kitano, Ai; Tanaka, Sai-ichi

    2010-09-01

    Maintenance of the transparency and regular shape of the cornea are essential to the normal vision, whereas opacification of the tissue impairs vision. Fibrogenic reaction leading to scarring in an injured cornea is characterized by appearance of myofibroblasts, the key player of the fibrogenic reaction, and excess accumulation of fibrous extracellular matrix. Inflammatory/fibrogenic growth factors/cytokines produced by inflammatory cells play a pivotal role in fibrogenic response. Signaling systems involved in myofibroblast formation and fibrogenesis are activated by various growth factors, i.e., transforming growth factor beta or others. Modulation of transforming growth factor beta signal transduction molecules, e.g., Smad and mitogen-activated protein kinases, by gene transfer and other technology provides a new concept of prevention/treatment of unfavorable fibrogenesis in the cornea.

  2. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish

    Directory of Open Access Journals (Sweden)

    van Eeden Freek

    2010-04-01

    Full Text Available Abstract Background In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish. Results Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation. Conclusion Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling.

  3. Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis.

    Science.gov (United States)

    Zhou, Xin; Zhong, Jian-Jiang

    2011-05-01

    It was previously reported that low initial ammonium (2 mM) in medium had significant stimulating effects on the biosynthesis of taxuyunnanine C (Tc) by Taxus chinensis cells. However, the secondary metabolism induction mechanism of the low initial ammonium is yet unknown in plant cells. To provide an insight into the defense signals response to the low initial ammonium, oxidative burst and intracellular salicylic acid (SA) were detected, and their influences on the expression of important genes in taxoid biosynthetic pathway were examined in the cell cultures of T. chinensis. Induced H(2)O(2) production, elevated phenylalanine ammonia-lyase (PAL) activity, and enhanced SA biosynthesis were observed. Interestingly, inhibition of SA biosynthesis by paclobutrazol and (BOC-aminooxy) acetic acid significantly depressed the Tc stimulation and up-regulation of Tc biosynthetic genes of geranylgeranyl diphosphate synthase and taxadiene synthase. The role of intracellular SA in regulating Tc biosynthesis was further confirmed by applying exogenous SA in normal ammonium (20 mM) medium. The results indicated that SA acted as a signal in low initial ammonium-induced Tc biosynthesis. A signal transduction cascade from defense signal response to activated transcription of taxoid biosynthetic genes and enhanced Tc production is proposed.

  4. A new type of intracellular retention signal identified in a pestivirus structural glycoprotein.

    Science.gov (United States)

    Burrack, Sandra; Aberle, Daniel; Bürck, Jochen; Ulrich, Anne S; Meyers, Gregor

    2012-08-01

    Sorting of membrane proteins into intracellular organelles is crucial for cell function. Viruses exploit intracellular transport and retention systems to concentrate envelope proteins at the site of virus budding. In pestiviruses, a group of important pathogens of pigs and ruminants closely related to human hepatitis C virus, the E(rns) protein translated from the viral RNA is secreted from the infected cells and found in the serum of infected animals. Secretion of the protein is regarded as crucial for its function as a viral virulence factor associated with its RNase activity. However, ∼95% of the E(rns) molecules are retained within the infected cell. Fusion of different E(rns) fragments to the C terminus of CD72 allowed identification of a retention signal within the C-terminal 65 aa of the viral protein. This C-terminal sequence represents its membrane anchor and folds into an amphipathic helix binding in-plane to the membrane surface. Residues L183, I190, and L208 are important for intracellular location of E(rns). Presentation of the retention signal on the cytoplasmic instead of the luminal face of the ER membrane in CD8α fusion proteins still led to retention. Thus, E(rns) contains in its C-terminal amphipathic helix an intracellular retention signal that is active on both faces of the membrane.

  5. Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation.

    Science.gov (United States)

    Prall, Wolf Christian; Haasters, Florian; Heggebö, Jostein; Polzer, Hans; Schwarz, Christina; Gassner, Christoph; Grote, Stefan; Anz, David; Jäger, Marcus; Mutschler, Wolf; Schieker, Matthias

    2013-11-01

    Osteoporotic fractures show reduced callus formation and delayed bone healing. Cellular sources of fracture healing are mesenchymal stem cells (MSC) that differentiate into osteoblasts by stimulation with osteoinductive cytokines, such as BMP-2. We hypothesized that impaired signal transduction and reduced osteogenic differentiation capacity in response to BMP-2 may underlie the delayed fracture healing. Therefore, MSC were isolated from femoral heads of healthy and osteoporotic patients. Grouping was carried out by bone mineral densitometry in an age-matched manner. MSC were stimulated with BMP-2. Signal transduction was assessed by western blotting of pSMAD1/5/8 and pERK1/2 as well as by quantitative RT-PCR of Runx-2, Dlx5, and Osteocalcin. Osteogenic differentiation was assessed by quantifying Alizarin Red staining. Osteoporotic MSC featured an accurate phosphorylation pattern of SMAD1/5/8 but a significantly reduced activation of ERK1/2 by BMP-2 stimulation. Furthermore, osteoporotic MSC showed significantly reduced basal expression levels of Runx-2 and Dlx5. However, Runx-2, Dlx5, and Osteocalcin expression showed adequate up-regulation due to BMP-2 stimulation. The global osteogenic differentiation in standard osteogenic differentiation media was reduced in osteoporotic MSC. Nevertheless, osteoporotic MSC were shown to feature an adequate induction of osteogenic differentiation due to BMP-2 stimulation. Taken together, we here demonstrate osteoporosis associated alterations in BMP-2 signaling but sustained specific osteogenic differentiation capacity in response to BMP-2. Therefore, BMP-2 may represent a promising therapeutic agent for the treatment of fractures in osteoporotic patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Correlation of body mass index with Th1/Th2 balance, adhesion molecules and insulin signal transduction in infertile patients

    Directory of Open Access Journals (Sweden)

    Hui-Juan Zhang

    2017-11-01

    Full Text Available Objective: To study the correlation of body mass index with Th1/Th2 balance, adhesion molecules and insulin signal transduction in infertile patients. Methods: A total of 132 patients who received diagnostic curettage due to infertility in Tangshan Maternal and Child Health Hospital between June 2015 and March 2016 were selected as the research subjects and divided into the normal group with BMI 30 kg/m 2 according to BMI, and the levels of Th1/ Th2 cytokines in serum as well as the expression of Th1/Th2 transcription factors, adhesion molecules and insulin signal pathway molecules in endometrial tissue were detected. Results: IFN-γ and TNF-α levels in serum of obesity group and overweight group were significantly higher than those of control group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of control group; IFN-γ and TNF-α levels in serum of obesity group were significantly higher than those of overweight group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of overweight group. Conclusion: Weight gain can aggravate the Th1/Th2 disorder, reduce the adhesion molecule expression and hinder the insulin signal transduction in infertile patients.

  7. Structural Reconstruction of Protein-Protein Complexes Involved in Intracellular Signaling.

    Science.gov (United States)

    Kirsch, Klára; Sok, Péter; Reményi, Attila

    2016-01-01

    Signaling complexes within the cell convert extracellular cues into physiological outcomes. Their assembly involves signaling enzymes, allosteric regulators and scaffold proteins that often contain long stretches of disordered protein regions, display multi-domain architectures, and binding affinity between individual components is low. These features are indispensable for their central roles as dynamic information processing hubs, on the other hand they also make reconstruction of structurally homogeneous complex samples highly challenging. In this present chapter we discuss protein machinery which influences extracellular signal reception, intracellular pathway activity, and cytoskeletal or transcriptional activity.

  8. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Science.gov (United States)

    Jiang, Lingyan; Feng, Lu; Yang, Bin; Zhang, Wenwen; Wang, Peisheng; Jiang, Xiaohan; Wang, Lei

    2017-06-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  9. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Directory of Open Access Journals (Sweden)

    Lingyan Jiang

    2017-06-01

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2 limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008, named LoiA (low oxygen induced factor A, directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1. Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  10. Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach

    NARCIS (Netherlands)

    Zivanovic, Branka D.; Shabala, Lana I.; Elzenga, Theo J. M.; Shabala, Sergey N.

    2015-01-01

    Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of

  11. The vasorelaxant mechanisms of methanol on isolated rat aortic rings: Involvement of ion channels and signal transduction pathways.

    Science.gov (United States)

    Bai, Y; Zhang, Q; Yang, Z; Meng, Z; Zhao, Q

    2017-10-01

    It is reported that methanol is generally used as an industrial solvent, antifreeze, windshield washer fluid, cooking fuel and perfume. Methanol ingestion can lead to severe metabolic disturbances, blindness, or even death. So far, few studies about its negative effects on cardiovascular system have been reported. The purpose of this study was to determine the vasoactive effect of methanol and roles of ion channels and signal transduction pathways on isolated rat aorta. The results suggested that the mechanism of methanol-induced vasorelaxation at low concentrations (600 mM) was related to K ATP , voltage-dependent K + , big-conductance Ca 2+ -activated K + , L-type Ca 2+ channels as well as prostacyclin, protein kinase C, β-adrenoceptors pathways. In addition, methanol induced a dose-dependent inhibition of vasoconstrictions caused by calcium chloride, potassium chloride, or norepinephrine. Further work is needed to investigate the relative contribution of each channel and pathway in methanol-induced vasoactive effect.

  12. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Gromov, P

    1995-01-01

    )vaccinia virus expression of full length cDNAs, and (vi) in vitro transcription/translation of full-length cDNAs. This year, special emphasis has been given to the identification of signal transduction components by using 2-D gel immunoblotting of crude keratinocyte lysates in combination with enhanced...... chemoluminescence (ECL) detection. Identified proteins are listed both in alphabetical order and with increasing SSP number, together with their M(r), pI, cellular localization and credit to the investigator(s) that aided in the identification. Ultimately, the aim of the comprehensive database is to gather--through......The master two-dimensional (2-D) gel database of human keratinocytes currently lists 3154 cellular proteins (2224 isoelectric focusing, IEF; and 930 nonequilibrium pH gradient electrophoresis, NEPHGE), many of which correspond to post-translational modifications. 1082 polypeptides have been...

  13. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  14. Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction.

    Science.gov (United States)

    Lai, Fangfang; Madan, Namrata; Ye, Qiqi; Duan, Qiming; Li, Zhichuan; Wang, Shaomeng; Si, Shuyi; Xie, Zijian

    2013-05-10

    It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. A420P mutant has normal pumping but not signaling function. Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.

  15. Proteomic Analysis of Estrogen-Mediated Signal Transduction in Osteoclasts Formation

    Directory of Open Access Journals (Sweden)

    Qi Xiong

    2015-01-01

    Full Text Available Estrogen plays an important role in inhibiting osteoclast differentiation and protecting against bone loss from osteoporosis, especially in postmenopausal women. However, the precise mechanisms underlying the effect of estrogen on osteoclasts are not well known. In the present study, we performed proteomics analysis and bioinformatics analysis to comprehensively compare the differential expression of proteins in receptor activator of nuclear factor-κB ligand RANKL-induced osteoclasts in the presence and absence of estrogen. We identified 6403 proteins, of which 124 were upregulated and 231 were downregulated by estrogen. Bioinformatics analysis showed that estrogen treatment interfered with 77 intracellular pathways, including both confirmed canonical and unconfirmed pathways of osteoclast formation. Our findings validate the inhibitory effect of estrogen on osteoclasts via the promotion of apoptosis and suppression of differentiation and polarization and suggest that estrogen might inhibit osteoclast formation via other pathways, which requires further investigation and verification.

  16. Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Airola, Michael V.; Watts, Kylie J.; Bilwes, Alexandrine M.; Crane, Brian R. (Cornell); (Lorma Linda U)

    2010-08-23

    HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.

  17. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid.

    Science.gov (United States)

    Krause, Kerstin; Boisnard, Alexandra; Ihling, Christian; Ludgate, Marian; Eszlinger, Markus; Krohn, Knut; Sinz, Andrea; Fuhrer, Dagmar

    2012-02-01

    In the thyroid, cAMP controls both thyroid growth and function. Gain-of-function mutations in the thyroid-stimulating hormone receptor (TSHR) lead to constitutive cAMP formation and are a major cause of autonomous thyroid adenomas. The impact of activating TSHR mutations on the signal transduction network of the thyrocyte is not fully understood. To gain more insights into constitutive TSHR signaling, rat thyrocytes (FRTL-5 cells) with stable expression of three activating TSHR mutants (mutTSHR: A623I, L629F and Del613-621), which differ in their functional characteristics in vitro, were analyzed by a quantitative proteomic approach and compared to the wild-type TSHR (WT-TSHR). This study revealed (1) differences in the expression of Rab proteins suggesting an increased TSHR internalization in mutTSHR but not in the WT-TSHR; (2) differential stimulation of PI3K/Akt signaling in mutTSHR vs. WT-TSHR cells, (3) activation of Epac, impairing short-time Akt phosphorylation in both, mutTSHR and WT-TSHR cells. Based on the analysis of global changes in protein expression patterns, our findings underline the complexity of gain-of-function TSHR signaling in thyrocytes, which extends beyond pure cAMP and/or IP formation. Moreover, evidence for augmented endocytosis in the mutTSHR, adds to a new concept of TSHR signaling in thyroid autonomy. Further studies are required to clarify whether the observed differences in Rab, PI3K and Epac signaling may contribute to differences in the phenotypic presentation, i.e. stimulation of function and growth of thyroid autonomy in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins

    OpenAIRE

    Brito, Paula M.; Antunes, Fernando

    2014-01-01

    The lack of kinetic data concerning the biological effects of reactive oxygen species is slowing down the development of the field of redox signaling. Herein, we deduced and applied equations to estimate kinetic parameters from typical redox signaling experiments. H2O2-sensing mediated by the oxidation of a protein target and the switch-off of this sensor, by being converted back to its reduced form, are the two processes for which kinetic parameters are determined. The experimental data requ...

  19. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  20. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    Science.gov (United States)

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants.

    Science.gov (United States)

    Gibbs, Daniel J; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M; Holdsworth, Michael J

    2015-09-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Activation of CNTF/CNTFRα signaling pathway by hRheb(S16H transduction of dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Kyoung Hoon Jeong

    Full Text Available Ciliary neurotrophic factor (CNTF is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα. It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc, suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb, with an S16H mutation [hRheb(S16H], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H may have therapeutic potential in the treatment of PD.

  3. Activation of CNTF/CNTFRα Signaling Pathway by hRheb(S16H) Transduction of Dopaminergic Neurons In Vivo

    Science.gov (United States)

    Jeong, Kyoung Hoon; Nam, Jin Han; Jin, Byung Kwan; Kim, Sang Ryong

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson’s disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD. PMID:25799580

  4. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...... with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation....

  5. Comprehensive logic based analyses of Toll-like receptor 4 signal transduction pathway.

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar Padwal

    Full Text Available Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88 and Toll/Interleukin-1 receptor (TIR-domain-containing adapter interferon-β-inducing Factor (TRIF adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements' interdependency (positive or negative dependencies in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for

  6. Insulin sensitivity predictions in individuals with obesity and type II diabetes mellitus using mathematical model of the insulin signal transduction pathway.

    Science.gov (United States)

    Ho, Clark K; Sriram, Ganesh; Dipple, Katrina M

    2016-11-01

    Mathematical modeling approaches have been commonly used in complex signaling pathway studies such as the insulin signal transduction pathway. Our expanded mathematical model of the insulin signal transduction pathway was previously shown to effectively predict glucose clearance rates using mRNA levels of key components of the pathway in a mouse model. In this study, we re-optimized and applied our expanded model to study insulin sensitivity in other species and tissues (human skeletal muscle) with altered protein activities of insulin signal transduction pathway components. The model has now been optimized to predict the effect of short term exercise on insulin sensitivity for human test subjects with obesity or type II diabetes mellitus. A comparison between our extended model and the original model showed that our model better simulates the GLUT4 translocation events of the insulin signal transduction pathway and glucose uptake as a clinically relevant model output. Results from our extended model correlate with O'Gorman's published in-vivo results. This study demonstrates the ability to adapt this model to study insulin sensitivity to many biological systems (human skeletal muscle and mouse liver) with minimal changes in the model parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  8. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  9. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  10. Signal transduction in cerebral arteries after subarachnoid hemorrhage-a phosphoproteomic approach

    DEFF Research Database (Denmark)

    Parker, Benjamin; Larsen, Martin Røssel; Povlsen, Gro Klitgaard

    2013-01-01

    quantitative analysis of early SAH-induced phosphorylations in cerebral arteries and evaluated identified signaling components as targets for prevention of delayed vasculopathy and ischemia. Labeled phosphopeptides from rat cerebral arteries were quantified by high-resolution tandem mass spectrometry. Selected....... STAT3 inhibition partially mimicked these effects. The study shows that quantitative mass spectrometry is a strong approach to study in vivo vascular signaling. Moreover, it shows that targeting of ERK1/2 prevents delayed pathologic changes in cerebral arteries and improves outcome, and identifies SAH......-induced signaling components downstream and upstream of ERK1/2.Journal of Cerebral Blood Flow & Metabolism advance online publication, 29 May 2013; doi:10.1038/jcbfm.2013.78....

  11. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  12. Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.

    Science.gov (United States)

    Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian

    2018-02-01

    Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.

  13. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...... that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader...

  14. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    International Nuclear Information System (INIS)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-01

    Effects of γ-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following γ-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by γ-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by γ -irradiation in all cell lines. The role of IGF-1 and p38 signaling in γ-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by γ-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in γ-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by γ -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of γ-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In γ-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of γ-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The patterns of altered expressions showed significant

  15. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    NARCIS (Netherlands)

    Corrochano, Luis M; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M; Grimwood, Jane; Álvarez, M Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P; Benoit, Isabelle; Burger, Gertraud; Camino, Lola P; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A; Lang, B Franz; Lavín, José L; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M; Marcos, Ana T; Martin, Joel; McCluskey, Kevin; Medina, Humberto R; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A; Ohm, Robin A; Olmedo, María; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G; Talbot, Nicholas J; Thon, Michael R; Tice, Hope; de Vries, Ronald P; Wiebenga, Ad; Yadav, Jagjit S; Braun, Edward L; Baker, Scott E; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V

    2016-01-01

    Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor

  16. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors

    Science.gov (United States)

    Ferrada, Carla; Moreno, Estefanía; Casadó, Vicent; Bongers, Gerold; Cortés, Antoni; Mallol, Josefa; Canela, Enric I; Leurs, Rob; Ferré, Sergi; Lluís, Carme; Franco, Rafael

    2009-01-01

    Background and purpose: Functional interactions between the G protein-coupled dopamine D1 and histamine H3 receptors have been described in the brain. In the present study we investigated the existence of D1–H3 receptor heteromers and their biochemical characteristics. Experimental approach: D1–H3 receptor heteromerization was studied in mammalian transfected cells with Bioluminescence Resonance Energy Transfer and binding assays. Furthermore, signalling through mitogen-activated protein kinase (MAPK) and adenylyl cyclase pathways was studied in co-transfected cells and compared with cells transfected with either D1 or H3 receptors. Key results: Bioluminescence Resonance Energy Transfer and binding assays confirmed that D1 and H3 receptors can heteromerize. Activation of histamine H3 receptors did not lead to signalling towards the MAPK pathway unless dopamine D1 receptors were co-expressed. Also, dopamine D1 receptors, usually coupled to Gs proteins and leading to increases in cAMP, did not couple to Gs but to Gi in co-transfected cells. Furthermore, signalling via each receptor was blocked not only by a selective antagonist but also by an antagonist of the partner receptor. Conclusions and implications: D1–H3 receptor heteromers constitute unique devices that can direct dopaminergic and histaminergic signalling towards the MAPK pathway in a Gs-independent and Gi-dependent manner. An antagonist of one of the receptor units in the D1–H3 receptor heteromer can induce conformational changes in the other receptor unit and block specific signals originating in the heteromer. This gives rise to unsuspected therapeutic potentials for G protein-coupled receptor antagonists. PMID:19413572

  17. Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion.

    Science.gov (United States)

    Mol, Milsee; Patole, Milind S; Singh, Shailza

    2014-01-01

    Modulated immune signal (CD14-TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis. Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14-TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score. Network has five crosstalk points: NIK, IκB-NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction. EGFR can be linked to CD14-TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell-cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway. The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell-cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis. © 2013 Elsevier B.V. All rights reserved.

  18. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  19. Signal transduction growth factors: the effective governance of transcription and cellular adhesion in cancer invasion.

    Science.gov (United States)

    Di Domenico, Marina; Giordano, Antonio

    2017-05-30

    Giulio Bizzozero classified the tissues concerning their capacity to self-renew during the adult life in labile, stable and permanent tissues. In 1940 Viktor Hamburger and Rita Levi Montalcini exposed the possibility to induce the growth of permanent cells thanks to a specific ligand Nerve Growth Factor (NGF). Stanley Cohen purified a protein the Epidermal Growth Factor (EGF), able to induce epidermis proliferation and to elicit precocious eye disclosure and teeth eruption, establishing the "inverse" relationships between the proliferation and differentiation. These two biological effects induced by EGF were according to EGFR signaling is involved in a large array of cellular functions such as proliferation, survival, adhesion, migration and differentiation. This review is focused on the key role of growth factors signaling and their downstream effectors in physiological and in pathological phenomena, the authors highlight the governance of Growth factors during the EMT in cancer invasion.

  20. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

    Science.gov (United States)

    2015-12-01

    MP, Wang C, Pestell RG. Acetylation of the cell-fate factor dachshund determines p53 binding and signaling modules in breast cancer . Oncotarget...cell proliferation in vivo using Ki67 immunostaining • Expression of Dach1 was shown to block prostate cancer cell proliferation in tissue culture...studies demonstrated that these interactions between Dach1 and associated proteins (with YB1 and p53) contribute to growth of other cancer ( breast

  1. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  2. Failure of signal transduction pathway of DNA damage in hereditary microcephaly

    International Nuclear Information System (INIS)

    Miyamoto, Tatsuo; Matsuura, Shinya

    2009-01-01

    Mechanisms underlying the brain size determination are considered from an aspect of DNA-damage signaling recently revealed by studies on hereditary microcephaly (M), in relation to the radiation-induced M. International Commission of Radiological Protection (ICRP) assesses the risk of M by in utero exposure as 40%/Sv, the threshold dose is about 0.2 Gy (deterministic effect), A-bomb M is conceived to be due to the exposure at 8-5 weeks of gestation, and M is induced by radiation at 10 days after fertilization in the mouse. Recent studies on causing genes of M have revealed its particular connection with signaling pathways: in ataxia-telangiectasia (AT), genes of ATM; in Seckel syndrome, of ATR (AT and Rad3-related) and pericentrin (PCNT); Nijmegen syndrome (NBS), of NBS1; NBS-like disease, of Rad50 and Mre11; AT-like disease, of Mre11; Lig4 syndrome, of Lig4; immunodeficiency combined with M, of XLF; primary M, of MCPH1, ASPM, CdkRap2, CENP-J and STIL. Single and double strand breaks of DNA respectively activate the signaling pathway of ATR where PCNT and MCPH1 participate, and pathway of ATM where NBS1, Mre11 and Rad50 do. PCNT is a major protein, pericentrin, composing the centrosome, of which defect results in the Seckel disease with spindle dysfunction. At present, M can be thus said to be of the cellular common features of failure of ATM/ATR signaling and of dysfunction of centrosome. As well, ASPM gene expression is recently reported to be suppressed by radiation. Thus future studies on M will spread to wider biological field of cell and development as well as radiation and inheritance. (K.T.)

  3. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    Science.gov (United States)

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  4. Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, N; González-Abuín, N; Ardévol, A; Pinent, M; Petretto, E; Behmoaras, J; Blay, M

    2016-01-01

    Although the effect of genetic background on obesity-related phenotypes is well established, the main objective of this study is to determine the phenotypic responses to cafeteria diet (CAF) of two genetically distinct inbred rat strains and give insight into the molecular mechanisms that might be underlying. Lewis (LEW) and Wistar-Kyoto (WKY) rats were fed with either a standard or a CAF diet. The effects of the diet and the strain in the body weight gain, food intake, respiratory quotient, biochemical parameters in plasma as well as in the expression of genes that regulate leptin signalling were determined. Whereas CAF diet promoted weight gain in LEW and WKY rats, as consequence of increased energy intake, metabolic management of this energy surplus was significantly affected by genetic background. LEW and WKY showed a different metabolic profile, LEW rats showed hyperglycaemia, hypertriglyceridemia and high FFA levels, ketogenesis, high adiposity index and inflammation, but WKY did not. Leptin signalling, and specifically the LepRb-mediated regulation of STAT3 activation and Socs3 gene expression in the hypothalamus were inversely modulated by the CAF diet in LEW (upregulated) and WKY rats (downregulated). In the present study, we show evidence of gene-environment interactions in obesity exerted by differential phenotypic responses to CAF diet between LEW and WKY rats. Specifically, we found the leptin-signalling pathway as a divergent point between the strain-specific adaptations to diet. © 2016 Society for Endocrinology.

  5. A comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    Full Text Available The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1 have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF. Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis.

  6. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves

    Directory of Open Access Journals (Sweden)

    Cui-cui Wang

    2018-04-01

    Full Text Available Steroidal glycoalkaloids (SGAs are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5 and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3, by virus-induced gene silencing (VIGS, altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA and Chromatin immunoprecipitation (ChIP analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17, affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.

  7. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae.

    Science.gov (United States)

    Mitchell, Stephanie L; Ismail, Ayman M; Kenrick, Sophia A; Camilli, Andrew

    2015-03-04

    Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.

  8. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  9. Phage Transduction.

    Science.gov (United States)

    Goh, Shan

    2016-01-01

    Bacteriophages mediate horizontal gene transfer through a mechanism known as transduction. Phage transduction carried out in the laboratory involves a bacterial donor and a recipient, both of which are susceptible to infection by the phage of interest. Phage is propagated in the donor, concentrated, and exposed transiently to recipient at different multiplicity of infection ratios. Transductants are selected for the desired phenotype by culture on selective medium. Here we describe transduction of ermB conferring resistance to erythromycin by the C. difficile phage ϕC2.

  10. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  11. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Moscatiello, Roberto; Sello, Simone; Novero, Mara; Negro, Alessandro; Bonfante, Paola; Navazio, Lorella

    2014-08-01

    Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro.

    Science.gov (United States)

    You, Min; Varona-Santos, Javier; Singh, Samer; Robbins, David J; Savaraj, Niramol; Nguyen, Dao M

    2014-01-01

    The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.

  13. Signal transduction events induced by extracellular guanosine 5?triphosphate in excitable cells

    OpenAIRE

    Pietrangelo, T.; Guarnieri, S.; Fulle, S.; Fan?, G.; Mariggi?, M. A.

    2006-01-01

    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5?triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50?00 ng ml?1 of nerve growt...

  14. Prostate-Specific Membrane Antigen Regulation of Prostate Tumor Growth, Angiogenesis,and Integrin Signal Transduction

    Science.gov (United States)

    2012-07-01

    Cruz sc-1506 1:300, rabbit anti-Cleaved Caspase 3 Cell Signal 9661 1:200). Slides were washed 3 times in TBS/0.1%Tween- 20 (Ki67, CA9) or PBS (CD31...8217. Prostate, 2009. 69(5): p. 471-9. 52. Rojas , C., et al., Kinetics and inhibition of glutamate carboxypeptidase II using a microplate assay. Anal Biochem...Guzman- Rojas L, Ozawa MG, Sun J, et al. (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci U S A 104: 4588–4593. 35. Stupack

  15. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction.

    Science.gov (United States)

    Hameed, Dharjath S; Sapmaz, Aysegul; Ovaa, Huib

    2017-03-15

    Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.

  16. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules.

    NARCIS (Netherlands)

    F. Weerkamp (Floor); M.R.M. Baert (Miranda); B.A. Naber (Brigitta); E.E. Koster (Esther); E.F. de Haas (Edwin); K.R. Atkuri (Kondala); J.J.M. van Dongen (Jacques); L.A. Herzenberg (Leonard); F.J.T. Staal (Frank)

    2006-01-01

    textabstractWnt signaling is essential for T cell development in the thymus, but the stages in which it occurs and the molecular mechanisms underlying Wnt responsiveness have remained elusive. Here we examined Wnt signaling activity in both human and murine thymocyte populations by determining

  17. Does GRK-β arrestin machinery work as a "switch on" for GPR17-mediated activation of intracellular signaling pathways?

    Science.gov (United States)

    Daniele, Simona; Trincavelli, Maria Letizia; Fumagalli, Marta; Zappelli, Elisa; Lecca, Davide; Bonfanti, Elisabetta; Campiglia, Pietro; Abbracchio, Maria P; Martini, Claudia

    2014-06-01

    During oligodendrocyte-precursor cell (OPC) differentiation program, an impairment in the regulatory mechanisms controlling GPR17 spatio-temporal expression and functional activity has been suggested to contribute to defective OPC maturation, a crucial event in the pathogenesis of multiple sclerosis. GRK-β arrestin machinery is the primary actor in the control of G-protein coupled receptor (GPCR) functional responses and changes in these regulatory protein activities have been demonstrated in several immune/inflammatory diseases. Herein, in order to shed light on the molecular mechanisms controlling GPR17 regulatory events during cell differentiation, the role of GRK/β-arrestin machinery in receptor desensitization and signal transduction was investigated, in transfected cells and primary OPC. Following cell treatment with the two classes of purinergic and cysteinyl-leukotriene (cysLT) ligands, different GRK isoforms were recruited to regulate GPR17 functional responses. CysLT-mediated receptor desensitization mainly involved GRK2; this kinase, via a G protein-dependent mechanism, promoted a transient binding of the receptor to β-arrestins, rapid ERK phosphorylation and sustained nuclear CREB activation. Furthermore, GRK2, whose expression parallels that of the receptor during differentiation process, appeared to be crucial to induce cysLT-mediated maturation of OPCs. On the other hand, purinergic ligand exclusively recruited the GRK5 subtype, and induced, via a G protein-independent/β-arrestin-dependent mechanism, a receptor/β-arrestin stable association, slower and sustained ERK stimulation and marginal CREB activation. These results show that purinergic and cysLT ligands, through the recruitment of specific GRK isoforms, address distinct intracellular pathways, most likely reinforcing the same final response. The identification of these mechanisms and players controlling GPR17 responses during OPC differentiation could be useful to identify new targets in

  18. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    Science.gov (United States)

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  19. Distinct signal transductions in fast- and slow- twitch muscles upon denervation.

    Science.gov (United States)

    Gao, Hongbo; Li, Yi-Fan

    2018-02-01

    Denervation induces skeletal muscle atrophy, which primarily impairs oxidative slow twitch fibers. The underlying mechanism of this phenomenon, however, remains to be addressed. We hypothesize that denervation-induced fiber-specific atrophy may result from the distinct activities of different signaling pathways that are involved in protein synthesis and degradation in fast- and slow-twitch fibers. In this study, 1-month-old male mice were subjected to unilateral sciatic denervation for 4 days. Fast-twitch muscle extensor digitorum longus (EDL) and slow-twitch muscle soleus were collected from the denervated side and the control side of hind limbs. Total and phosphorylated protein levels of key factors of major signaling pathways in these tissues were determined using western blot assay. Our data showed that total AKT and FoxO3 protein levels were upregulated in denervated muscles as compared with control sides. Phosphorylation of AKT and FoxO3 were proportionally enhanced in denervated EDL but not soleus, indicating AKT activation drives phosphorylation of FoxO3 in EDL but not in soleus upon denervation. As a result, FoxO3-targeted atrogenes MurF1 and Atrogin1 protein abundances were reduced in denervated EDL but not altered in soleus. In consistent with this change, polyubiquitination were significantly increased in denervated soleus, but only a slight increase in ubiquitination was found in denervated EDL. Autophagy marker LC3 protein level was significantly increased in both muscle types, but in greater extent in EDL after denervation. IRS1 protein level and active ERK were reduced in both muscles upon denervation, which might contribute to the upregulation of total AKT protein level and FoxO3 abundance in EDL and soleus. Total and phosphorylated AMPK protein levels were increased in denervated soleus but not in EDL. Overall, these data reveal that the key signaling pathways that regulate protein synthesis and degradation are more sensitive in soleus than EDL

  20. Activation of Apoptotic Signal in Endothelial Cells through Intracellular Signaling Molecules Blockade in Tumor-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Hossein Bazmara

    2015-01-01

    Full Text Available Tumor-induced angiogenesis is the bridge between avascular and vascular tumor growth phases. In tumor-induced angiogenesis, endothelial cells start to migrate and proliferate toward the tumor and build new capillaries toward the tumor. There are two stages for sprout extension during angiogenesis. The first stage is prior to anastomosis, when single sprouts extend. The second stage is after anastomosis when closed flow pathways or loops are formed and blood flows in the closed loops. Prior to anastomosis, biochemical and biomechanical signals from extracellular matrix regulate endothelial cell phenotype; however, after anastomosis, blood flow is the main regulator of endothelial cell phenotype. In this study, the critical signaling pathways of each stage are introduced. A Boolean network model is used to map environmental and flow induced signals to endothelial cell phenotype (proliferation, migration, apoptosis, and lumen formation. Using the Boolean network model, blockade of intracellular signaling molecules of endothelial cell is investigated prior to and after anastomosis and the cell fate is obtained in each case. Activation of apoptotic signal in endothelial cell can prevent the extension of new vessels and may inhibit angiogenesis. It is shown that blockade of a few signaling molecules in endothelial cell activates apoptotic signal that are proposed as antiangiogenic strategies.

  1. Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction

    DEFF Research Database (Denmark)

    Popescu, Bogdan O; Cedazo-Minguez, Angel; Benedikz, Eirikur

    2004-01-01

    causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling...... by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated...... or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent....

  2. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis.

    Science.gov (United States)

    Tendler, D S; Bao, C; Wang, T; Huang, E L; Ratovitski, E A; Pardoll, D A; Lowenstein, C J

    2001-05-01

    Activated macrophages play a central role in antitumor immunity. However, the stimuli that activate macrophages to kill tumor cells are not completely understood. Because the center of solid tumors can be hypoxic, we hypothesized that hypoxia may be an important signal in activating macrophages to kill tumor cells. Hypoxia stimulates IFN-primed macrophages to express the inducible nitric oxide synthase (NOS2) and to synthesize nitric oxide (NO). We show that this synergy between IFN and hypoxia is mediated by the direct interaction of the hypoxia inducible factor-1 (HIF-1) and IFN regulatory factor-1 (IRF-1), which are both required for the hypoxic transcription of NOS2. This interaction between HIF-1 and IRF-1 may explain the mechanism by which macrophages infiltrating into tumors are activated to express NOS2 and to produce NO, a mediator of tumor apoptosis.

  3. Pheromone transduction in moths

    Directory of Open Access Journals (Sweden)

    Monika Stengl

    2010-12-01

    Full Text Available Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth´s physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors.

  4. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  5. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation.

    Science.gov (United States)

    Kaminska, Bozena; Mota, Mariana; Pizzi, Marina

    2016-03-01

    Activation of microglia is a common denominator and a pathophysiological hallmark of the central nervous system (CNS) disorders. Damage or CNS disorders can trigger inflammatory responses in resident microglia and initiate a systemic immune system response. Although a repertoire of inflammatory responses differs in those diseases, there is a spectrum of transcriptionally activated genes that encode various mediators such as growth factors, inflammatory cytokines, chemokines, matrix metalloproteinases, enzymes producing lipid mediators, toxic molocules, all of which contribute to neuroinflammation. The initiation, progression and termination of inflammation requires global activation of gene expression, postranscriptional regulation, epigenetic modifications, changes in chromatin structure and these processes are tightly regulated by specific signaling pathways. This review focuses on the function of "master regulators" and epigenetic mechanisms in microglia activation during neuroinflammation. We review studies showing impact of epigenetic enzyme inhibitors on microglia activation in vitro and in vivo, and critically discuss potential of such molecules to prevent/moderate pathological events mediated by microglia under brain pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis

    Science.gov (United States)

    Paul, A. L.; Daugherty, C. J.; Bihn, E. A.; Chapman, D. K.; Norwood, K. L.; Ferl, R. J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the beta-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia.

  7. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  8. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Li, Xinfeng; Wang, Xun; Li, Zhou; He, Jin

    2016-10-01

    YvcPQ is one of the two-component signal transduction systems that respond to specific stimuli and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvcQ and a response regulator YvcP. In this study, through searching the consensus sequence recognized by YvcP, we found four YvcP-binding motifs in the promoter regions of genes yvcR (BMB171_C4100), BMB171_C4385, kapD (BMB171_C4525) and BMB171_C4835 in Bacillus thuringiensis BMB171 which is a representative of Bacillus cereus group, and confirmed that these genes are regulated by YvcP. We compared the sequence of yvcPQ and its downstream genes in genus Bacillus, and found two different kinds of yvc locus, one was the yvcPQ-RS in B. subtilis species and the other was the yvcPQ-R-S1S2 in B. cereus group. Furthermore, we found that YvcP activates the transcription of yvcS1S2 (downstream of yvcR) to promote bacterial resistance to bacitracin and deletion of either yvcPQ operon or yvcS1S2 operon renders the bacterial cells more sensitive to bacitracin. This study enriched our understanding of both the YvcPQ's function and the mechanism of bacterial resistance to bacitracin.

  9. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    Science.gov (United States)

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  11. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations.

    Science.gov (United States)

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-09-07

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  12. Differences in radiosensitivity of the respiratory burst generated in HL-60 cells via different signal transduction pathways

    International Nuclear Information System (INIS)

    Kaffenberger, W.; Beuningen, D. van

    1994-01-01

    Induced differentiation of the promyelocytic leukaemia cell line, HL-60, is associated with the acquisition of functional properties, like the expression of specific receptors and the competence to exert the respiratory burst (RB). In this system we evaluated the effects of ionizing radiation on the signal transduction processes involved in the activation of the respiratory burst/NADPH oxidase. HL-60 cells were X-irradiated with up to 1 Gy and induced towards granulocytic differentiation by treatment with 1.25% DMSO on day 0. The expression of the formyl peptide receptor (FPR), the development of responsiveness of the cells to its ligand (f-MLP) and to 4 β-phorbol 12-myristate 13-acetate (PMA) were measured up to day 7 postinduction/irradiation. Using flow cytometry, fluorescinated formyl-hexapeptide or unlabelled f-MLP as ligands and dihydrorhodamine 123 (DHR 123) as an indicator of RB activity, respectively, the acquisition of functional responsiveness to both stimuli was determined. (author)

  13. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  14. Global warming, plant paraquat resistance, and light signal transduction through nucleoside diphosphate kinase as a paradigm for increasing food supply.

    Science.gov (United States)

    Hasunuma, Kohji; Yoshida, Yusuke; Haque, Mohamed Emdadul; Wang, Ni-yan; Fukamatsu, Yosuke; Miyoshi, Osamu; Lee, Bumkyu

    2011-10-01

    Light signal transduction was studied in extracts of mycelia of the fungus Neurospora crassa, and the third internodes of dark-grown Pisum sativum cv Alaska. Both processes increased the phosphorylation of nucleoside diphosphate kinase (NDPK). NDPK may function as a carrier of reduction equivalents, as it binds NADH, thereby providing electrons to transform singlet oxygen to superoxide by catalases (CAT). As the C-termini of NDPK interact with CAT which receive singlet oxygen, emitted from photoreceptors post light perception (which is transmitted to ambient triplet oxygen), we hypothesize that this may increase phospho-NDPK. Singlet oxygen, emitted from the photoreceptor, also reacts with unsaturated fatty acids in membranes thereby forming malonedialdehyde, which in turn could release ions from, e.g., the thylacoid membrane thereby reducing the rate of photosynthesis. A mutant of Alaska pea, which exhibited two mutations in chloroplast NDPK-2 and one mutation in mitochondrial localized NDPK-3, was resistant to reactive oxygen species including singlet oxygen and showed an increase in the production of carotenoids, anthocyanine, and thereby could reduce the concentration of singlet oxygen. The reduction of the concentration of singlet oxygen is predicted to increase the yield of crop plants, such as Alaska pea, soybean, rice, wheat, barley, and sugarcane. This approach to increase the yield of crop plants may contribute not only to enhance food supply, but also to reduce the concentration of CO(2) in the atmosphere.

  15. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Alexander S Rose

    Full Text Available GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R* to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP. To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty, however with the α5 C-terminus (GαCT forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.

  16. [Role of G protein-mediated signal transduction in molecular pharmacodynamics].

    Science.gov (United States)

    Schütz, W; Freissmuth, M; Nanoff, C; Selzer, E; Tuisl, E

    1990-10-26

    Hormones, neurotransmitter and autacoid receptors, localized on the plasma membrane, do not interact directly with their respective downstream effector (i.e., an ion channel and/or an enzyme that synthesizes a second messenger), but control their target systems via activation of an intermediary guanine nucleotide binding protein on G protein, which serves as signal transducer. Traffic of these pathways is regulated via a GTP (on)-GDP (off) switch, which is triggered by the receptor. The combination of classical biochemistry and recombinant DNA technology has resulted in the discovery of many members of the G protein family. Receptor desensitization is a main criterion of G protein-coupled receptors with important pharmacological implications. Multiple mechanisms are responsible for the loss of sensitivity that follows against exposure. The process is initiated by uncoupling the receptor from its G protein, which is due to receptor phosphorylation by specific kinases. In the case of the beta-adrenergic receptor, two particular kinases - beta-adrenergic receptor kinase (beta ARK) and protein kinase A--are involved. Further steps of desensitization are receptor sequestration or internalization, an event as rapid and transient as receptor uncoupling, and receptor downregulation, which requires more prolonged agonist exposure. Finally, antagonists are able to induce a receptor-G protein interaction in a reverse manner to agonists. Whereas agonists stimulate both, the GDP dissociation from the G protein and the association of GTP, antagonists markedly decrease GTP association. Moreover, in the turkey erythrocyte adenylyl cyclase system antagonists decrease the GTP-stimulated adenylyl cyclase activity almost at basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis.

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    Full Text Available The type 2 diabetes has increased rapidly in recent years throughout the world. The insulin signal transduction mechanism gets disrupted sometimes and it's known as insulin-resistance. It is one of the primary causes associated with type-2 diabetes. The signaling mechanisms involved several proteins that include 7 major functional proteins such as INS, INSR, IRS1, IRS2, PIK3CA, Akt2, and GLUT4. Using these 7 principal proteins, multiple sequences alignment has been created. The scores between sequences also have been developed. We have constructed a phylogenetic tree and modified it with node and distance. Besides, we have generated sequence logos and ultimately developed the protein-protein interaction network. The small insulin signal transduction protein arrangement shows complex network between the functional proteins.

  18. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  19. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation.

    Science.gov (United States)

    Amor, Besma Ben; Shaw, Sidney L; Oldroyd, Giles E D; Maillet, Fabienne; Penmetsa, R Varma; Cook, Douglas; Long, Sharon R; Dénarié, Jean; Gough, Clare

    2003-05-01

    Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.

  20. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  2. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Science.gov (United States)

    Nie, W.; Deters, A. M.

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  3. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  4. Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings

    Science.gov (United States)

    Pető, Andrea; Lehotai, Nóra; Lozano-Juste, Jorge; León, José; Tari, Irma; Erdei, László; Kolbert, Zsuzsanna

    2011-01-01

    Background and Aims Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu2+), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu2+-induced morphological responses. Methods Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used. Key Results Cu2+ at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu2+ concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu2+-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu2+ caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu2+, but NO-deficient plants showed diverse growth responses. Conclusions In plant organs, Cu2+ excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each other's level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu2+ exposure. PMID:21856638

  5. The kinetics of root gravitropism in PIN mutants suggest redundancy in the signal transduction pathway

    Science.gov (United States)

    Wolverton, Chris

    plays a role in efflux to the columella. Pin4 mutants showed no deficiencies in gravitropism, in fact responding at a greater rate than wild-type roots over the first hour (22 deg h-1 ). PIN7 has been localized to the vascular tissue of the elongation zone and to the central columella. Like pin4 mutants, pin7 mutants did not show a significantly reduced gravitropic response relative to wild-type roots. Interestingly, roots of pin3pin7 double mutants showed curvature and growth rates similar to pin7 single mutants and wild-type roots, suggesting a genetic interaction between PIN3 and PIN7 in this pathway. These results suggest a significant degree of redundancy in the regulation of directional auxin transport and perhaps in the gravity signaling pathway in roots in general.

  6. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales.

    Directory of Open Access Journals (Sweden)

    Lucía eLopez

    2012-09-01

    Full Text Available Many natural phenomena display "self-organized criticality'' (SOC. This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium Ca2+ signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local or propagate throughout the cell (global. Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of self-organized criticality. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals ("puffs'' observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not.

  7. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2004-09-01

    Full Text Available Abstract Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2, a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH. 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.

  8. Association of reactive oxygen species-mediated signal transduction with in vitro apoptosis sensitivity in chronic lymphocytic leukemia B cells.

    Directory of Open Access Journals (Sweden)

    Adam L Palazzo

    Full Text Available BACKGROUND: Chronic lymphocytic leukemia (CLL is a B cell malignancy with a variable clinical course and unpredictable response to therapeutic agents. Single cell network profiling (SCNP utilizing flow cytometry measures alterations in signaling biology in the context of molecular changes occurring in malignancies. In this study SCNP was used to identify proteomic profiles associated with in vitro apoptotic responsiveness of CLL B cells to fludarabine, as a basis for ultimately linking these with clinical outcome. METHODOLOGY/PRINCIPAL FINDING: SCNP was used to quantify modulated-signaling of B cell receptor (BCR network proteins and in vitro F-ara-A mediated apoptosis in 23 CLL samples. Of the modulators studied the reactive oxygen species, hydrogen peroxide (H₂O₂, a known intracellular second messenger and a general tyrosine phosphatase inhibitor stratified CLL samples into two sub-groups based on the percentage of B cells in a CLL sample with increased phosphorylation of BCR network proteins. Separately, in the same patient samples, in vitro exposure to F-ara-A also identified two sub-groups with B cells showing competence or refractoriness to apoptotic induction. Statistical analysis showed that in vitro F-ara-A apoptotic proficiency was highly associated with the proficiency of CLL B cells to undergo H₂O₂-augmented signaling. CONCLUSIONS/SIGNIFICANCE: This linkage in CLL B cells among the mechanisms governing chemotherapy-induced apoptosis increased signaling of BCR network proteins and a likely role of phosphatase activity suggests a means of stratifying patients for their response to F-ara-A based regimens. Future studies will examine the clinical applicability of these findings and also the utility of this approach in relating mechanism to function of therapeutic agents.

  9. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...

  10. Are Molecular Vibration Patterns of Cell Structural Elements Used for Intracellular Signalling?

    Science.gov (United States)

    Jaross, Werner

    2016-01-01

    To date the manner in which information reaches the nucleus on that part within the three-dimensional structure where specific restorative processes of structural components of the cell are required is unknown. The soluble signalling molecules generated in the course of destructive and restorative processes communicate only as needed. All molecules show temperature-dependent molecular vibration creating a radiation in the infrared region. Each molecule species has in its turn a specific frequency pattern under given specific conditions. Changes in their structural composition result in modified frequency patterns of the molecules in question. The main structural elements of the cell membrane, of the endoplasmic reticulum, of the Golgi apparatus, and of the different microsomes representing the great variety of polar lipids show characteristic frequency patterns with peaks in the region characterised by low water absorption. These structural elements are very dynamic, mainly caused by the creation of signal molecules and transport containers. By means of the characteristic radiation, the area where repair or substitution services are needed could be identified; this spatial information complements the signalling of the soluble signal molecules. Based on their resonance properties receptors located on the outer leaflet of the nuclear envelope should be able to read typical frequencies and pass them into the nucleus. Clearly this physical signalling must be blocked by the cell membrane to obviate the flow of information into adjacent cells. If the hypothesis can be proved experimentally, it should be possible to identify and verify characteristic infrared frequency patterns. The application of these signal frequencies onto cells would open entirely new possibilities in medicine and all biological disciplines specifically to influence cell growth and metabolism. Similar to this intracellular system, an extracellular signalling system with many new therapeutic options

  11. Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells.

    Science.gov (United States)

    Liang, Guodong; Fang, Xuedong; Yang, Yubo; Song, Yan

    2018-01-01

    Cell migration inducing hyaluronan binding protein (CEMIP) is a hyaluronic acid binding protein, the abnormal elevation of which is suggested as a contributor in the carcinogenesis of colorectal cancer (CRC). Cancer cells lose their adhesive properties and acquire an enhanced mobility by undergoing epithelial-mesenchymal transition (EMT). This study is performed to investigate whether and how CEMIP orchestrates the EMT process of CRC cells. To avoid the unexpected off-target effects possibly caused by one single shRNA, two shRNAs targeting different mRNA regions of CEMIP gene were used to knock down the mRNA and protein expression of CEMIP. Our data showed that the proliferation, migration and invasion of two CRC cell lines, HCT116 and SW480 cells, were inhibited by CEMIP shRNA. We here defined EMT as the complete or partial loss of E-cadherin and zona occludens protein 1 (ZO-1) (epithelial markers) and the gain of Vimentin and N-cadherin (mesenchymal markers), and found that the EMT process was attenuated in CEMIP-silenced SW480 cells. Snail, a direct target of β-catenin/T cell factor complex, is known to activate the EMT program during cancer metastasis. CEMIP shRNA was further found to suppress the Wnt/β-catenin/Snail signaling transduction in CRC cells as manifested by the decreased nuclear β-catenin and Snail. Collectively, our work demonstrates that CEMIP contributes to metastatic phenotype of CRC cells in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Signal transduction of MCP-1 expression induced by pancreatitis-associated ascitic fluid in pancreatic acinar cells

    Science.gov (United States)

    Ramudo, Laura; Yubero, Sara; Manso, Manuel A; Vicente, Secundino; De Dios, Isabel

    2009-01-01

    Pancreatitis-associated ascitic fluid (PAAF) is known to contribute to the progression of acute pancreatitis (AP). We have investigated the capability of PAAF to activate the expression of MCP-1 in pancreatic acinar cells and the involvement of MAPK, NF-κB and STAT3 as downstream signalling transduction pathways. The actions of dexamethasone (Dx) and N-acetylcysteine (NAC) on the PAAF’s acinar effects have also been evaluated. Acinar cells were incubated for 1 hr with PAAF collected from rats with severe AP induced by sodium taurocholate in the absence or presence of Dx (10−7 M) or NAC (30 mM). MCP-1 mRNA expression, phospho-p38-MAPK, IκBα, nuclear p65 levels and nuclear translocation of STAT3 were analysed. In response to PAAF, overexpression of MCP-1, phosphorylation of p38-MAPK, degradation of IκBα and increases in p65 nuclear levels and STAT3 activity were found in acinar cells. PAAF-mediated MCP-1 up-regulation was completely suppressed by Dx and NAC. MAPK activation was only inhibited by NAC, NF-κB activation was repressed by Dx and NAC, and STAT3 pathway was strongly blocked by Dx and significantly reduced by NAC. In conclusion, acinar cells were activated by PAAF to produce MCP-1, mainly via NF-κB and STAT3 pathways. Both downstream pathways were targeted by Dx and NAC to repress the PAAF-mediated acinar MCP-1 up-regulation. PMID:19604316

  13. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  14. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms.

    Science.gov (United States)

    Kanoski, S E; Ong, Z Y; Fortin, S M; Schlessinger, E S; Grill, H J

    2015-03-01

    To investigate the behavioural and intracellular mechanisms by which the glucagon like peptide-1 (GLP-1) receptor agonist, liraglutide, and leptin in combination enhance the food intake inhibitory and weight loss effects of either treatment alone. We examined the effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (s.c.) or to the third ventricle, respectively, on cumulative intake, meal patterns and hypothalamic expression of intracellular signalling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] in lean rats. A low-dose combination of liraglutide (25 µg/kg) and leptin (0.75 µg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75 µg/kg) and leptin (4 µg), examined separately, each reduced meal frequency, cumulative food intake and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot analysis showed elevated pSTAT3 in the hypothalamic tissue after liraglutide-leptin co-treatment, an effect which was greater than that of leptin treatment alone. In addition, s.c. liraglutide reduced the expression of PTP1B (a negative regulator of leptin receptor signalling), revealing a potential mechanism for the enhanced pSTAT3 response after liraglutide-leptin co-administration. Collectively, these results show novel behavioural and molecular mechanisms underlying the additive reduction in food intake and body weight after liraglutide-leptin combination treatment. © 2014 John Wiley & Sons Ltd.

  15. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  16. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  17. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C.

    Directory of Open Access Journals (Sweden)

    Eveliina Palonen

    Full Text Available Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05 higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05 lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.

  18. Mitochondrial hyperoxidation signals residual intracellular dysfunction after global ischemia in rat neocortex.

    Science.gov (United States)

    Rosenthal, M; Feng, Z C; Raffin, C N; Harrison, M; Sick, T J

    1995-07-01

    Reperfusion after global ischemia (10-60 min in duration) in rat neocortex most commonly provoked transient hyperoxidation of mitochondrial electron carriers, tissue hyperoxygenation, and CBF hyperemia. These responses were normally accompanied by recovery of K+ homeostasis and EEG spike activity. Goals of this research were to understand putative relationships among these postreperfusion events with special emphasis on determining whether mitochondrial hyperoxidation results from intracellular changes that may modulate residual damage. The amplitude of postischemic mitochondrial hyperoxidation (PIMHo) did not increase when CBF increased above an apparent threshold during reperfusion, and tissue hyperoxygenation was not required for PIMHo to occur or to continue. These findings suggest that PIMHo is not merely a response to increased CBF and tissue hyperoxygenation; rather, PIMHo is modulated, at least in part, by residual intracellular derangements that limit mitochondrial electron transport. This suggestion was supported by observations that NAD became hyperoxidized after reoxygenation in anoxic hippocampal slices. Also, PIMHo occurred and subsequently resolved in many animals, but K+o never was cleared fully to baseline and/or EEG spike activity never was evident. One suggestion is that PIMHo signals or initiates residual intracellular derangements that in turn impair electrical and metabolic recovery of cerebral neurons after ischemia; an alternative suggestion is that PIMHo and tissue hyperoxygenation are not the sole factors modulating the immediate restoration of electrical activity after ischemia. Present data also support the following: Decreased oxygen consumption, despite adequate oxygen delivery, likely contributes to tissue hyperoxygenation after ischemia; and mitochondrial hyperoxidation is modulated by a limitation in the supply of electrons to the mitochondrial respiratory chain.

  19. [Effect of total glucosides of paeony on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats].

    Science.gov (United States)

    Chang, Bao-Chao; Chen, Wei-Dong; Zhang, Yan; Yang, Ping; Liu, Lei; Wang, Jing

    2014-10-01

    The study is to explore the effect of total glucosides of paeony (TGP)on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats, and discuss the protection of TGP in diabetic nephropathy and possible mechanism. Ninety male SD rats of 8 weeks age were randomly divided into normal control group (n = 10) and model group (n = 80). Rats of the normal control group were fed with regular diet, while rats of the model group were fed with high-fat high-sugar diet and 4 weeks later were given an intraperitoneal injection of 35 mg x kg(-1) streptozotocin (STZ). The successfully induced type 2 diabetic rat models were then randomly divided into DM group, three TGP (50, 100, 200 mg x kg(-1) x d(-1)) treatment group and tripterygium wilfordii glycosides (8 mg x kg(-1) x d(-1)) control group. Rats of DM group and each treatment group were given high-fat high-sugar diet. At week 14, the levels of blood sugar, 24 hour urine protein, serum creatinine and blood urea nitrogen were tested. The rats were then sacrificed. Renal pathological changes were examined. Renal tissue Wnt-1 and β-catenin expressions were detected by immunohistochemical assay. Wnt-1 mRNA and β-catenin mRNA expression was semi-quantified by RT-PCR. Wnt-1 protein and β-catenin protein expression was semi-quantified by Western blot. The Result show that Wnt-1 and β-catenin expression increased in kidney of high-fat high-sugar induced type 2 diabetic rats. Compared with diabetic group, the level of serum creatinine, blood urea nitrogen, 24 h urine protein, mean glomerular area and mean glomerular volume were decreased, renal histopathology were improved, expression of Wnt-1 and β-catenin mRNA and protein was reduced in TGP group. Tripterygium wilfordii glycosides had the similar effect. In conclusion, these results showed that Wnt/β-catenin abnormal activation in kidney of type 2 diabetic rats, TGP can improve kidney damage in diabetic rats and delay the development of diabetic

  20. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Cyril Eleftheriou

    2017-04-01

    Full Text Available Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.

  1. The Yeast Retrograde Response as a Model of Intracellular Signaling of Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    S. Michal eJazwinski

    2012-05-01

    Full Text Available Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFkB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFkB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFkB can regulate Myc-Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc-Max is homologous to the yeast retrograde response transcription factor Rtg1-Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFkB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.

  2. MHC class I cross-talk with CD2 and CD28 induces specific intracellular signalling and leads to growth retardation and apoptosis via a p56(lck)-dependent mechanism

    DEFF Research Database (Denmark)

    Ruhwald, M; Pedersen, Anders Elm; Claesson, M H

    1999-01-01

    Ligation of the major histocompatibility complex class I molecules (MHC-I) on human T lymphoma cells (Jurkat) initiates p56(lck)-dependent intracellular signalling events (phosphotyrosine kinase activity; [Ca(2+)](i)) and leads to augmented growth inhibition and apoptosis. MHC-I ligation in concert...... of apoptosis. In parallel experiments with the p56(lck)-negative Jurkat mutant cell, JCaM1.6, cross-linking neither influenced cell signalling nor cellular growth functions, indicating a cardinal role of the src kinases in signal transduction via MHC-I, CD2 and CD28 molecules. The results presented here...... with ligation of CD2 or CD28 augments, changes or modifies the pattern of activation. Ligation of MHC-I and CD2 alone resulted in growth inhibition, whereas CD28 ligation alone had no effect on cell proliferation. Ligation of MHC-I together with CD2 augmented growth inhibition and enhanced the level...

  3. A novel link between the proteasome pathway and the signal transduction pathway of the Bone Morphogenetic Proteins (BMPs

    Directory of Open Access Journals (Sweden)

    Kim Richard H

    2002-06-01

    Full Text Available Abstract Background The intracellular signaling events of the Bone Morphogenetic Proteins (BMPs involve the R-Smad family members Smad1, Smad5, Smad8 and the Co-Smad, Smad4. Smads are currently considered to be DNA-binding transcriptional modulators and shown to recruit the master transcriptional co-activator CBP/p300 for transcriptional activation. SNIP1 is a recently discovered novel repressor of CBP/p300. Currently, the detailed molecular mechanisms that allow R-Smads and Co-Smad to co-operatively modulate transcription events are not fully understood. Results Here we report a novel physical and functional link between Smad1 and the 26S proteasome that contributes to Smad1- and Smad4-mediated transcriptional regulation. Smad1 forms a complex with a proteasome β subunit HsN3 and the ornithine decarboxylase antizyme (Az. The interaction is enhanced upon BMP type I receptor activation and occur prior to the incorporation of HsN3 into the mature 20S proteasome. Furthermore, BMPs trigger the translocation of Smad1, HsN3 and Az into the nucleus, where the novel CBP/p300 repressor protein SNIP1 is further recruited to Smad1/HsN3/Az complex and degraded in a Smad1-, Smad4- and Az-dependent fashion. The degradation of the CBP/p300 repressor SNIP1 is likely an essential step for Smad1-, Smad4-mediated transcriptional activation, since increased SNIP1 expression inhibits BMP-induced gene responses. Conclusions Our studies thus add two additional important functional partners of Smad1 into the signaling web of BMPs and also suggest a novel mechanism for Smad1 and Smad4 to co-modulate transcription via regulating proteasomal degradation of CBP/p300 repressor SNIP1.

  4. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    Science.gov (United States)

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-04-12

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  5. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  6. Intracellular Signaling Pathway Regulation of Myelination and Remyelination in the CNS

    Science.gov (United States)

    Gaesser, Jenna M.; Fyffe-Maricich, Sharyl L.

    2016-01-01

    The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed. PMID:26957369

  7. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  8. Intracellular signaling entropy can be a biomarker for predicting the development of cervical intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Masakazu Sato

    Full Text Available While the mortality rates for cervical cancer have been drastically reduced after the introduction of the Pap smear test, it still is one of the leading causes of death in women worldwide. Additionally, studies that appropriately evaluate the risk of developing cervical lesions are needed. Therefore, we investigated whether intracellular signaling entropy, which is measured with microarray data, could be useful for predicting the risks of developing cervical lesions. We used three datasets, GSE63514 (histology, GSE27678 (cytology and GSE75132 (cytology, a prospective study. From the data in GSE63514, the entropy rate was significantly increased with disease progression (normal < cervical intraepithelial neoplasia, CIN < cancer (Kruskal-Wallis test, p < 0.0001. From the data in GSE27678, similar results (normal < low-grade squamous intraepithelial lesions, LSILs < high-grade squamous intraepithelial lesions, HSILs ≤ cancer were obtained (Kruskal-Wallis test, p < 0.001. From the data in GSE75132, the entropy rate tended to be higher in the HPV-persistent groups than the HPV-negative group. The group that was destined to progress to CIN 3 or higher had a tendency to have a higher entropy rate than the HPV16-positive without progression group. In conclusion, signaling entropy was suggested to be different for different lesion statuses and could be a useful biomarker for predicting the development of cervical intraepithelial neoplasia.

  9. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways.

    Science.gov (United States)

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.

  10. Astragalus mongholicus regulate the Toll-like-receptor 4 meditated signal transduction of dendritic cells to restrain stomach cancer cells.

    Science.gov (United States)

    Tian, Ye; Li, Xueliang; Li, Hongxia; Lu, Qing; Sun, Guoping; Chen, Hongjing

    2014-01-01

    -preritoneal injection with MKN45 have been divided into two groups: the treatment group challenged with AMs injection and the control group with saline injection. We took the average of the diameter of each group as the y axis and the days after administered with AMs as x axis. After 40 days, all animals were killed by detruncation, and the tumor were removed and measured. We compare the diameter (40 days) of the tumor as well as the survival days between different groups to investigate the effect of inhibition of cancer. All results show that AMs is effective in treating human stomach cancer and the mechanism might be regulated by TLR4 mediated signal transduction of DCs. The results are briefly introduced as follows: First, we succeed in culturing the DCs induced by IL-4 and GM-CSF and find the positive rate of CD11c expression, the mark of DCs, is beyond 90% (Fig-1). We detect AMs can precipitate DCs maturation by upregulating TLR4 in SYBR-Green I Real-time PCR (Fig-2) and suppressing I.B-aby Western-Blot (Fig-3). Second, after the MKN45 co-cultured with DCs, T cells and AMs injection, the result show that AMs can great reduce the amount of cell lines by MTT assay (Fig-4) and induce apoptosis with Immunofluorescence (Fig-5). Finally, we have conducted animal studies beside the experiment in vitro, and the result in vivo show that AMs can delay tumor development from the diameter and weight of the tumor (Fig-6, Fig-7), prolong life-span and improve life-quality. Figure 1the morphology and phenotypic identification of DCs.The form of DCs observed by microscope with field 20*.The isotype antibody control using FCM.The positive rate of CD11c expression.Figure 2the melting curve and the chart of TLR4 expressiona) the melting curve of beta-actin; b)the melting curve of TLR4;c)the TLR4 expression of DCs stimulated with AM at different dose. There is significant statistic difference between the 60ng/mL and 80ng/mL group and other group (Pstomach cancers as a good Chinese herbal medicine by

  11. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy.

    Directory of Open Access Journals (Sweden)

    Jennifer L Chinnici

    Full Text Available Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1 Genes encoding components of the PACC signal transduction pathway, 2 Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3 Transcriptional factor genes, 4 Autophagy genes, and 5 Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.

  12. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    International Nuclear Information System (INIS)

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-01

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  13. The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species.

    Science.gov (United States)

    Singh, Dharmendra K; Calviño, Mauricio; Brauer, Elizabeth K; Fernandez-Pozo, Noe; Strickler, Susan; Yalamanchili, Roopa; Suzuki, Hideyuki; Aoki, Koh; Shibata, Daisuke; Stratmann, Johannes W; Popescu, George V; Mueller, Lukas A; Popescu, Sorina C

    2014-01-01

    Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.

  14. TRPM5 and taste transduction.

    Science.gov (United States)

    Liman, E R

    2007-01-01

    TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.

  15. Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Nesfatin-1 is a novel anorexic peptide that reduces the food intake of rodents when administered either intraventricularly or intraperitoneally. However, the molecular mechanism of intracellular signaling via Nesfatin-1 is yet to be resolved. In the current study, we investigated the ability of different neuronal cell lines to respond to Nesfatin-1 and further elucidated the signal transduction pathway of Nesfatin-1. To achieve this, we transfected several cell lines with various combinations of reporter vectors containing different kinds of response elements and performed reporter assays with Nesfatin-1, its active midsegment encoding 30 amino acid residues (M30 and M30-derived mutants. Notably, we found that both Nesfatin-1 as well as M30, significantly increased cAMP response element (CRE reporter activity in a mouse neuroblastoma cell line, NB41A3. An antagonist of Melanocortin 3/4 receptor, SHU9119, aborted the promoter activity, and a mutant M30, which exerts no anorexic effect in vivo did not induce the CRE reporter activity in NB41A3 cells. Western blotting analyses revealed that Nesfatin-1 and M30 significantly increased the phosphorylation levels of CRE-binding protein (CREB, without altering the intracellular cAMP levels. Further, our study showed that a mitogen-activated protein kinase (MAPK kinase inhibitor and an L-type Calcium (Ca(2+ channel blocker abolished the M30-induced CREB phosphorylation. Furthermore, the radio-receptor assay revealed that (125I-Nesfatin-1 binds in a saturable fashion to the membrane fractions of the mouse hypothalamus and NB41A3 cells, with Kd values of 0.79 nM and 0.17 nM, respectively. Collectively, our findings indicate the presence of a Nesfatin-1-specific receptor on the cell surface of NB41A3 cells and mouse hypothalamus. Our study highlights that Nesfatin-1, via its receptor, induces the phosphorylation of CREB, thus activating the intracellular signaling cascade in neurons.

  16. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  17. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells

    OpenAIRE

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N.; Dietzgen, Ralf G.; Roberts-Thomson, Sarah J.; Gidley, Michael J.; Monteith, Gregory R.

    2015-01-01

    The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW), Nam Doc Mai (NDM), and Kensington Pride (KP), differentially affect proliferation, extracellular signal-regulated kinase (ERK) activity, and intracellular calcium ([Ca2+]I) signalling in MCF-7 human breast cancer cells. Man...

  18. A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals

    OpenAIRE

    Bedard, Claude; Gomes, Jean-Marie; Bal, Thierry; Destexhe, Alain

    2016-01-01

    In this viewpoint article, we discuss the electric properties of the medium around neurons, which are important to correctly interpret extracellular potentials or electric field effects in neural tissue. We focus on how these electric properties shape the frequency scaling of brain signals at different scales, such as intracellular recordings, the local field potential (LFP), the electroencephalogram (EEG) or the magnetoencephalogram (MEG). These signals display frequency-scaling properties w...

  19. Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.

    Science.gov (United States)

    Kim, Mi-Yeon; Mo, Jung-Soon; Ann, Eun-Jung; Yoon, Ji-Hye; Jung, Jane; Choi, Yun-Hee; Kim, Su-Man; Kim, Hwa-Young; Ahn, Ji-Seon; Kim, Hangun; Kim, Kwonseop; Hoe, Hyang-Sook; Park, Hee-Sae

    2011-06-01

    The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.

  20. Predictive and prognostic factors in non small cell lung cancer: identification of new genes and signal transduction pathways in the study of genomic and oncoproteomic

    International Nuclear Information System (INIS)

    Crino, L.; Martelli, M.

    2009-01-01

    The aim of the project is the comprehension of resistance and survival mechanisms of the neoplastic cell in Non-Small Cell Lung Cancer (NSCLC) in both patients subjected to surgery or with advanced disease. In order to identify new genes, proteins and signal transduction pathways, involved in the establishment of the treatment resistance of neoplastic cells, cellular cohort derived from lung cancers will be compared, by gene expression profiling, to normal cells and cells derived from cancer relapse. Twenty patients with NSCLC surgically resected and one patient with advanced NSCLC have been enrolled in this study

  1. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  2. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.

    Science.gov (United States)

    Clemente, M G; De Virgiliis, S; Kang, J S; Macatagney, R; Musu, M P; Di Pierro, M R; Drago, S; Congia, M; Fasano, A

    2003-02-01

    Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.

  3. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  4. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination.

    Science.gov (United States)

    Miyamoto, Yuki; Torii, Tomohiro; Takada, Shuji; Ohno, Nobuhiko; Saitoh, Yurika; Nakamura, Kazuaki; Ito, Akihito; Ogata, Toru; Terada, Nobuo; Tanoue, Akito; Yamauchi, Junji

    2015-10-01

    During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination. © 2015 Miyamoto et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts.

    Science.gov (United States)

    Jong, Yuh-Jiin I; Kumar, Vikas; O'Malley, Karen L

    2009-12-18

    G-protein-coupled receptors are thought to transmit extracellular signals to the cytoplasm from their position on the cell surface. Some receptors, including the metabotropic glutamate receptor 5 (mGluR5), are also highly expressed on intracellular membranes where they serve unknown functions. Here, we show that activation of cell surface versus intracellular mGluR5 results in unique Ca(2+) signatures leading to unique cellular responses. Specifically, activation of either cell surface or intracellular mGluR5 leads to JNK, Ca(2+)/calmodulin-dependent protein kinase (CaMK), and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas activation of only intracellular mGluR5 leads to ERK1/2 and Elk-1 phosphorylation. Using pharmacological and genetic approaches, the present findings support a role for CaMK kinase in mediating mGluR5-dependent cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas CaMKII is upstream of intracellular mGluR5-mediated Elk-1 phosphorylation. Consistent with models showing Elk-1 regulating cascades of gene expression, the known Elk-1 targets c-fos and egr1 were up-regulated following intracellular mGluR5 activation, whereas a representative non-Elk-1 target, c-jun, was not. These findings emphasize that glutamate not only serves as a neurotransmitter for cell surface receptors but, when transported into the cell, can also activate intracellular receptors such as mGluR5. Glutamate activation of intracellular mGluR5 serves an important role in the regulation of nuclear Ca(2+), transcriptional activation, and gene expression necessary for physiological processes such as synaptic plasticity.

  6. Effect of Chaiqin Chengqi Decoction on cholecystokinin receptor 1-mediated signal transduction of pancreatic acinar cells in acute necrotizing pancreatitis rats.

    Science.gov (United States)

    Guo, Jia; Jin, Tao; Lin, Zi-Qi; Wang, Xiao-Xiang; Yang, Xiao-Nan; Xia, Qing; Xue, Ping

    2015-01-01

    To investigate the effect of Chaiqin Chengqi Decoction (,CQCQD) on cholecystokinin receptor 1 (CCKR1)-mediated signal transduction of pancreatic acinar cell in rats with acute necrotic pancreatitis (ANP). Twenty-seven Sprague-Dawley rats were randomized into three groups: the control group, the ANP group, and the CQCQD group (9 in each group). ANP rats were induced by two intraperitoneal injections of 8% L-arginine (pH=7.0, 4.4 g/kg) over a 2-h period. Rats were treated with 1.5 mL/100 g body weight of CQCQD (CQCQD group) or physiological saline (control and ANP groups) at 2 h interval. And 6 h after induction, pancreatic tissues were collected for histopathological examination. Pancreatic acinar cells were isolated for determination of CCKR1 mRNA and protein expression, phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3), and determination of fluorescence intensity (FI) as a measure of intracellular calcium ion concentration [Ca(2+)]i. The pancreatic histopathological score (6.2 ± 1.1) and the levels of PLC (1,187.2 ± 228.2 μg/mL) and IP3 (872.2 ± 88.4 μg/mL) of acinar cells in the ANP group were higher than those in the control (2.8 ± 0.4, 682.5 ± 121.8 μg/mL, 518.4 ± 115.8 μg/mL) and the CQCQD (3.8 ± 0.8, 905.3 ± 78.5 μg/mL, 611.0 ± 42.5 μg/mL) groups (Ppancreatic acinar cell CCKR1 mRNA in the ANP group was up-regulated (expression ratio=1.761; P=0.024) compared with the control group. The expression of pancreatic acinar cell CCKR1 mRNA in the CQCQD group was down-regulated (expression ratio=0.311; P=0.035) compared with the ANP group. The ratio of gray values of the CCKR1 and β-actin in the ANP group (1.43 ± 0.17) was higher than those in the control (0.70 ± 0.15) and CQCQD (0.79 ± 0.11) groups (PPancreatic acinar cell calcium overload of ANP induced by L-arginine was related to the up-regulated expressions of pancreatic acinar cell CCKR1 mRNA and protein. CQCQD can down-regulate expressions of pancreatic acinar cell CCKR1 mRNA and

  7. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    International Nuclear Information System (INIS)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-01-01

    Purpose: Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  8. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions.

    Science.gov (United States)

    Elia, Leonardo; Contu, Riccardo; Quintavalle, Manuela; Varrone, Francesca; Chimenti, Cristina; Russo, Matteo Antonio; Cimino, Vincenzo; De Marinis, Laura; Frustaci, Andrea; Catalucci, Daniele; Condorelli, Gianluigi

    2009-12-08

    MicroRNAs (miRNAs/miRs) are small conserved RNA molecules of 22 nucleotides that negatively modulate gene expression primarily through base paring to the 3' untranslated region of target messenger RNAs. The muscle-specific miR-1 has been implicated in cardiac hypertrophy, heart development, cardiac stem cell differentiation, and arrhythmias through targeting of regulatory proteins. In this study, we investigated the molecular mechanisms through which miR-1 intervenes in regulation of muscle cell growth and differentiation. On the basis of bioinformatics tools, biochemical assays, and in vivo models, we demonstrate that (1) insulin-like growth factor-1 (IGF-1) and IGF-1 receptor are targets of miR-1; (2) miR-1 and IGF-1 protein levels are correlated inversely in models of cardiac hypertrophy and failure as well as in the C2C12 skeletal muscle cell model of differentiation; (3) the activation state of the IGF-1 signal transduction cascade reciprocally regulates miR-1 expression through the Foxo3a transcription factor; and (4) miR-1 expression correlates inversely with cardiac mass and thickness in myocardial biopsies of acromegalic patients, in which IGF-1 is overproduced after aberrant synthesis of growth hormone. Our results reveal a critical role of miR-1 in mediating the effects of the IGF-1 pathway and demonstrate a feedback loop between miR-1 expression and the IGF-1 signal transduction cascade.

  9. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  10. Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction

    Directory of Open Access Journals (Sweden)

    Li LI

    2012-12-01

    Full Text Available The expression patterns of OsPIL11, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum. The expression of OsPIL11 was organ-specific and was regulated by leaf development, abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. To further explore the role of OsPIL11 in plant light signal transduction, a plant expression vector of OsPIL11 was constructed and introduced into tobacco. When grown under continuous red light, OsPIL11-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPIL11 is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.

  11. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    International Nuclear Information System (INIS)

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal-2486 revealed a two-domain structure that adopts a novel fold. Analysis of the interdomain cleft suggests a nucleotide-based ligand with a genome context indicating signaling as a possible role for this family. The crystal structures of SPO0140 and Sbal-2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress

  12. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  13. Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map

    Science.gov (United States)

    Bernal-Mizrachi, Ernesto; Kulkarni, Rohit N.; Scott, Donald K.; Mauvais-Jarvis, Franck; Stewart, Andrew F.; Garcia-Ocaña, Adolfo

    2014-01-01

    Enhancing β-cell proliferation is a major goal for type 1 and type 2 diabetes research. Unraveling the network of β-cell intracellular signaling pathways that promote β-cell replication can provide the tools to address this important task. In a previous Perspectives in Diabetes article, we discussed what was known regarding several important intracellular signaling pathways in rodent β-cells, including the insulin receptor substrate/phosphatidylinositol-3 kinase/Akt (IRS-PI3K-Akt) pathways, glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR) S6 kinase pathways, protein kinase Cζ (PKCζ) pathways, and their downstream cell-cycle molecular targets, and contrasted that ample knowledge to the small amount of complementary data on human β-cell intracellular signaling pathways. In this Perspectives, we summarize additional important information on signaling pathways activated by nutrients, such as glucose; growth factors, such as epidermal growth factor, platelet-derived growth factor, and Wnt; and hormones, such as leptin, estrogen, and progesterone, that are linked to rodent and human β-cell proliferation. With these two Perspectives, we attempt to construct a brief summary of knowledge for β-cell researchers on mitogenic signaling pathways and to emphasize how little is known regarding intracellular events linked to human β-cell replication. This is a critical aspect in the long-term goal of expanding human β-cells for the prevention and/or cure of type 1 and type 2 diabetes. PMID:24556859

  14. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress.

    Science.gov (United States)

    Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara

    2016-02-15

    Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca 2+ ) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca 2+ ) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca 2+ concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca 2+ concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca 2+ could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  16. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    Science.gov (United States)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  17. Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways.

    Science.gov (United States)

    Verhaegh, Wim; van Ooijen, Henk; Inda, Márcia A; Hatzis, Pantelis; Versteeg, Rogier; Smid, Marcel; Martens, John; Foekens, John; van de Wiel, Paul; Clevers, Hans; van de Stolpe, Anja

    2014-06-01

    Increasing knowledge about signal transduction pathways as drivers of cancer growth has elicited the development of "targeted drugs," which inhibit aberrant signaling pathways. They require a companion diagnostic test that identifies the tumor-driving pathway; however, currently available tests like estrogen receptor (ER) protein expression for hormonal treatment of breast cancer do not reliably predict therapy response, at least in part because they do not adequately assess functional pathway activity. We describe a novel approach to predict signaling pathway activity based on knowledge-based Bayesian computational models, which interpret quantitative transcriptome data as the functional output of an active signaling pathway, by using expression levels of transcriptional target genes. Following calibration on only a small number of cell lines or cohorts of patient data, they provide a reliable assessment of signaling pathway activity in tumors of different tissue origin. As proof of principle, models for the canonical Wnt and ER pathways are presented, including initial clinical validation on independent datasets from various cancer types. ©2014 American Association for Cancer Research.

  18. Quantitative imaging of intracellular signaling for personalized pancreatic cancer therapy in an in vivo avatar (Conference Presentation)

    Science.gov (United States)

    Samkoe, Kimberley S.; Schultz, Emily; Park, Yeonjae; Fischer, Dawn; Pogue, Brian W.; Smith, Kerrington; Tichauer, Kenneth M.; Gibbs, Summer L.

    2017-02-01

    Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.

  19. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  20. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  1. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  2. Reciprocal regulation of microRNA-1 and IGF-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions

    Science.gov (United States)

    Elia, Leonardo; Contu, Riccardo; Quintavalle, Manuela; Varrone, Francesca; Chimenti, Cristina; Russo, Matteo Antonio; Cimino, Vincenzo; De Marinis, Laura; Frustaci, Andrea; Catalucci, Daniele; Condorelli, Gianluigi

    2010-01-01

    Background MicroRNAs (miRNAs/miRs) are small conserved RNA molecules of 22 nucleotides, which negatively modulate gene expression primarily through base paring to the 3′ untranslated region (UTR) of target mRNAs. The muscle-specific miR-1 has been implicated in cardiac hypertrophy, heart development, cardiac stem cell differentiation, and arrhythmias through targeting of regulatory proteins. In this study, we investigated the molecular mechanisms through which miR-1 intervenes in regulation of muscle cell growth and differentiation. Methods and Results Based on bioinformatics tools, biochemical assays and in vivo models, we demonstrate that 1) IGF-I and insulin growth factor 1 receptor (IGF-1R) are targets of miR-1; 2) miR-1 and IGF-1 protein levels are inversely correlated in models of cardiac hypertrophy and failure as well as in the C2C12 skeletal muscle cell model of differentiation; 3) the activation state of the IGF-1 signal transduction cascade reciprocally regulates miR-1 expression through the Foxo3a transcription factor; and 4) miR-1 expression inversely correlates with cardiac mass and thickness in myocardial biopsies of acromegalic patients, in which IGF-1 is overproduced following aberrant synthesis of growth hormone. Conclusions Our results reveal a critical role of miR-1 in mediating the effects of the IGF-1 pathway and demonstrate a feedback loop between miR-1 expression and the IGF-1 signal transduction cascade. PMID:19933931

  3. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  4. Effect of Lipoglycans from Mycobacterium Chelonae on the expression of inflammatory factors IL-8 and IL-6 in human corneal epithelial cells and its possible signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Chun-Zhou Tang

    2015-06-01

    Full Text Available AIM: To study the influence of Lipoglycans from Mycobacterium Chelonae(Cheon the expression of IL-6 and IL-8 in human corneal epithelia cells and its possible signal transduction pathway.METHODS: Lipoglycans was extracted by the Triton X-114 phase partitioning. Lipoglycans from Che were purified, by successive detergent and phenol extractions. Lipoglycans were separated by gel filtration on a Sephacryl 200 column and Sephacryl 100 column in series, followed by extensive dialisis. Purified Lipoglycans(50μg/mLwere added into culture medium to stimulate primary human corneal epithelial(HCEcells. Cells and supernatant were collected at 0, 6, 12, 24h after the stimulation. The IL-6 and IL-8 expression at mRNA level was assayed by using real time RT-PCR and the secreted IL-6 and IL-8 in the supernatants was measured by ELISA. Immunochemistry was used to detect the expression and location of NF-κB in HCE cells.RESULTS: After the treatment of Lipoglycans, the expression of IL-8 and IL-6 at mRNA level obviouly increased within 12h, and reached peak level at 6h(IL-8 was 36.8 times that of the blank control, and IL-6 was 32.7 times. Compared with the blank control group, the expression of IL-8 at protein level in the supernatant increased 2.8 folds at 6h(P>0.05, 13.4 folds at 12h(PPPPPCONCLUSION: Lipoglycans from Che can induce HCE cells to produce inflammatory factors(IL-6 and IL-8, and its signal transduction pathway probably is mediated by NF-κB.

  5. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: Involvement of a transient receptor potential-like channel and a calmodulin

    Science.gov (United States)

    Häder, Donat-Peter; Richter, Peter R.; Schuster, Martin; Daiker, Viktor; Lebert, Michael

    2009-04-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.

  6. Logical network of genotoxic stress-induced NF-kappaB signal transduction predicts putative target structures for therapeutic intervention strategies

    Directory of Open Access Journals (Sweden)

    Rainer Poltz

    2009-12-01

    Full Text Available Rainer Poltz1, Raimo Franke1,#, Katrin Schweitzer1, Steffen Klamt2, Ernst-Dieter Gilles2, Michael Naumann11Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany; 2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; #Present address: Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, GermanyAbstract: Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB. Here, we present a Boolean network model of the NF-κB signal transduction induced by genotoxic stress in epithelial cells. For the representation and analysis of the model, we used the formalism of logical interaction hypergraphs. Model reconstruction was based on a careful meta-analysis of published data. By calculating minimal intervention sets, we identified p53-induced protein with a death domain (PIDD, receptor-interacting protein 1 (RIP1, and protein inhibitor of activated STAT y (PIASy as putative therapeutic targets to abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically may potentiate the effectiveness of radio- and chemotherapy. Thus, the presented model allows a better understanding of the signal transduction in tumor cells and provides candidates as new therapeutic target structures.Keywords: apoptosis, Boolean network, cancer therapy, DNA-damage response, NF-κB

  7. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    Science.gov (United States)

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  8. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  9. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE - and amyloid beta 1-42-induced signal transduction in glial cells

    Directory of Open Access Journals (Sweden)

    Slowik Alexander

    2012-11-01

    Full Text Available Abstract Background Recent studies suggest that the chemotactic G-protein-coupled-receptor (GPCR formyl-peptide-receptor-like-1 (FPRL1 and the receptor-for-advanced-glycation-end-products (RAGE play an important role in the inflammatory response involved in neurodegenerative disorders such as Alzheimer’s disease (AD. Therefore, the expression and co-localisation of mouse formyl peptide receptor (mFPR 1 and 2 as well as RAGE in an APP/PS1 transgenic mouse model using immunofluorescence and real-time RT-PCR were analysed. The involvement of rat or human FPR1/FPRL1 (corresponds to mFPR1/2 and RAGE in amyloid-β 1–42 (Aβ1-42-induced signalling were investigated by extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation. Furthermore, the cAMP level in primary rat glial cells (microglia and astrocytes and transfected HEK 293 cells was measured. Formyl peptide receptors and RAGE were inhibited by a small synthetic antagonist WRW4 and an inactive receptor variant delta-RAGE, lacking the intracytoplasmatic domains. Results We demonstrated a strong increase of mFPR1/2 and RAGE expression in the cortex and hippocampus of APP/PS1 transgenic mice co-localised to the glial cells. In addition, the Aβ1-42-induced signal transduction is dependant on FPRL1, but also on FPR1. For the first time, we have shown a functional interaction between FPRL1/FPR1 and RAGE in RAGE ligands S100B- or AGE-mediated signalling by ERK1/2 phosphorylation and cAMP level measurement. In addition a possible physical interaction between FPRL1 as well as FPR1 and RAGE was shown with co-immunoprecipitation and fluorescence microscopy. Conclusions The results suggest that both formyl peptide receptors play an essential role in Aβ1-42-induced signal transduction in glial cells. The interaction with RAGE could explain the broad ligand spectrum of formyl peptide receptors and their important role for inflammation and the host defence against infections.

  10. TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β.

    Science.gov (United States)

    Ikushima, Hiroaki; Miyazono, Kohei

    2012-01-01

    Transforming growth factor (TGF)-β signaling is involved in almost all major cell behaviors under physiological and pathological conditions, and its regulatory system has therefore been vigorously investigated. The fundamental elements in TGF-β signaling are TGF-β ligands, their receptors, and intracellular Smad effectors. The TGF-β ligand induces the receptors directly to phosphorylate and activate Smad proteins, which then form transcriptional complexes to control target genes. One of the classical questions in the field of research on TGF-β signaling is how this cytokine induces multiple cell responses depending on cell type and cellular context. Possible answers to this question include cross-interaction with other signaling pathways, different repertoires of Smad-binding transcription factors, and genetic alterations, especially in cancer cells. In addition to these genetic paradigms, recent work has extended TGF-β research into new fields, including epigenetic regulation and non-coding RNAs. In this review, we first describe the basic machinery of TGF-β signaling and discuss several factors that comprise TGF-β signaling networks. We then address mechanisms by which TGF-β induces several responses in a cell-context-dependent fashion. In addition to classical frames, the interaction of TGF-β signaling with epigenetics and microRNA is discussed.

  11. Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting.

    Science.gov (United States)

    Zhu, Wen-Hui; MacIntyre, Angela; Nicosia, Roberto Francesco

    2002-09-01

    Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) promote the spontaneous angiogenic response of freshly cut rat aortic rings. When VEGF and Ang-1 were tested in cultures of 14-day-old rings, which are quiescent and unable to spontaneously produce neovessels, only VEGF was capable of inducing an angiogenic response. Ang-1 failed to initiate angiogenesis in this system, but significantly potentiated VEGF-induced neovessel sprouting. Potential differences in cell signaling triggered by VEGF and Ang-1 were evaluated in cultures of quiescent rings. VEGF induced biphasic and prolonged (15 minutes and 4 to 24 hours) phosphorylation of p44/42 MAPK and Akt, while the effect of Ang-1 was transient and monophasic (15 minutes). Both VEGF and Ang-1 induced rapid, monophasic (15 minutes) phosphorylation of p38 MAPK. When VEGF and Ang-1 were administered together, the second peak of VEGF-induced p44/42 MAPK phosphorylation was markedly reduced. The effect of the VEGF/Ang-1 combination on AKT phosphorylation was, instead, additive over time, and sustained over a 24-hour period. The VEGF/Ang-1 combination caused an additive effect also on p38 MAPK phosphorylation at 1 hour. Confocal microscopy of VEGF-, Ang-1, or VEGF/Ang-1-stimulated aortic rings double stained at time points of maximal phosphorylation for cell markers and signal transduction proteins demonstrated phosphorylated p44/42 MAPK, p38 MAPK, and Akt predominantly in endothelial cells. Experiments with specific inhibitors demonstrated that p44/42 MAPK and Akt, but not p38 MAPK, are necessary for neovessel sprouting. These results identify p44/42 MAPK and Akt as critical intracellular mediators of angiogenesis, whose transient phosphorylation is, however, not sufficient for the initiation of this process. The observation that sustained phosphorylation of these signaling pathways, particularly of Akt, correlates with induction of angiogenesis suggests that the duration of phosphorylation signals

  12. Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model

    Directory of Open Access Journals (Sweden)

    Günther F. E. Scherer

    2012-04-01

    Full Text Available Phospholipase D (PLD, secreted phospholipase A2 (sPLA2 and patatin-related phospholipase A (pPLA are important elements in auxin signal transduction. PLDζ2 has a function in auxin transport. PLD's potential link to upstream receptors ABP1 or TIR1, and to cytosolic calcium as an activator of PLDζ2, is outlined. A link from PLDζ2 to activation of PINOID, a kinase activating PIN proteins, is suggested. The activation mechanism of sPLA2, also involved in auxin transport-related functions, is unknown. New experiments show that not only ABP1 but also pPLA isoforms are tied to rapid activation of early auxin-induced genes, the functional domain of the other auxin receptor TIR1. Post-translational activation mechanisms for pPLAs are suggested to be tied to ABP1. We propose pPLAs and PLDζ2 are mediators in auxin signaling. The downstream targets of regulation by ABP1 as the receptor we propose to be primarily PIN proteins. This coordinates gene expression regulation by TIR1 in the nucleus. A clear separation of cytosolic mechanisms of auxin signalling is suggested with ABP1 as receptor, and phospholipases A and D and PIN proteins as downstream targets on the on hand, and TIR1 and regulation of early auxin-induced genes on the other. At the same time, this separation is coordinated by auxin transport creating the auxin concentration in the nucleus suitable for gene regulation.

  13. Model of the initiation of signal transduction by ligands in a cell culture: Simulation of molecules near a plane membrane comprising receptors

    International Nuclear Information System (INIS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Cell communication is a key mechanism in tissue responses to radiation. Several molecules are implicated in radiation-induced signaling between cells, but their contributions to radiation risk are poorly understood. Meanwhile, Green's functions for diffusion-influenced reactions have appeared in the literature, which are applied to describe the diffusion of molecules near a plane membrane comprising bound receptors with the possibility of reversible binding of a ligand and activation of signal transduction proteins by the ligand-receptor complex. We have developed Brownian dynamics algorithms to simulate particle histories in this system which can accurately reproduce the theoretical distribution of distances of a ligand from the membrane, the number of reversibly bound particles, and the number of receptor complexes activating signaling proteins as a function of time, regardless of the number of time steps used for the simulation. These simulations will be of great importance to model interactions at low doses where stochastic effects induced by a small number of molecules or interactions come into play.

  14. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  15. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent...... hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types....

  16. Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress.

    Science.gov (United States)

    Lattanzio, Vincenzo; Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni

    2018-03-16

    Stimulated production of secondary phenolic metabolites and proline was studied by using cell cultures of artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] submitted to nutritional stress. Artichoke cell cultures accumulated phenolic secondary metabolites in a pattern similar to that seen in artichoke leaves and heads (capitula). This paper shows that both callus and cell suspension cultures under nutritional stress accumulated phenolic compounds and proline, at the same time their biomass production was negatively affected by nutrient deficiency. The results obtained strongly suggest that plant tissues respond to nutrient deprivation by a defensive costly mechanism, which determines the establishment of a mechanism of trade-off between growth and adaptive response. Furthermore, the results of this research suggest that perception of abiotic stress and increased phenolic metabolites are linked by a sequence of biochemical processes that also involves the intracellular free proline and the oxidative pentose phosphate pathway. The main conclusion of this paper is that, once calli and cell suspension cultures respond to nutrient deficiency, in acclimated cells the establishment of a negative correlation between primary metabolism (growth) and secondary metabolism (defence compounds) is observed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction

    Directory of Open Access Journals (Sweden)

    Maurizio Ventre

    2016-03-01

    Full Text Available In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.

  18. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gen...

  19. Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors.

    Science.gov (United States)

    Wang, Pei; Du, Hui; Zhou, Can-Can; Song, Jie; Liu, Xingguang; Cao, Xuetao; Mehta, Jawahar L; Shi, Yi; Su, Ding-Feng; Miao, Chao-Yu

    2014-12-01

    Intracellular nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis. This study investigated the role of NAMPT-mediated NAD(+) signalling in post-ischaemic vascular repair. Mouse hind-limb ischaemia up-regulated NAMPT expression and NAD(+) level in bone marrow (BM). Pharmacological inhibition of NAMPT by a chemical inhibitor FK866 impaired the mobilization of endothelial progenitor cells (EPCs) from BM upon ischaemic stress. Transgenic mice overexpressing NAMPT (Tg mice), but not H247A-mutant dominant-negative NAMPT (DN-Tg mice), exhibited enhanced capillary density, increased number of proliferating endothelial cells, improved blood flow recovery, and augmented collateral arterioles in the ischaemic limb. In cultured BM-derived EPCs, inhibition of NAMPT suppressed proliferation, migration, and tube formation, whereas overexpression of NAMPT induced opposite effects. The promoting effects of NAMPT on EPCs were abolished by silencing of sirtuin 1 (SIRT1), rather than silencing of SIRT2-7. Overexpression of NAMPT led to a SIRT1-depedent enhancement of Notch-1 intracellular domain deacetylation, which inhibited Delta-like ligand-4 (DLL4)-Notch signalling and thereby up-regulated of VEGFR-2 and VEGFR-3. Injection of recombinant VEGF induced a more pronounced EPC mobilization in Tg, but not in DN-Tg, mice. Furthermore, overexpression of NAMPT down-regulated Fringe family glycosyltransferases in a SIRT1-dependent manner, which rendered Notch more sensitive to the pro-angiogenic ligand Jagged1 rather than the anti-angiogenic ligand DLL4. These results demonstrate that intracellular NAMPT-NAD(+)-SIRT1 cascade improves post-ischaemic neovascularization. The modulation of Notch signalling may contribute to the enhanced post-ischaemic neovascularization. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  20. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells.

    Science.gov (United States)

    Lai, Chung-Fang; Cheng, Su-Li

    2002-05-03

    Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.

  1. Control of intracellular heme levels: Heme transporters and heme oxygenases

    OpenAIRE

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number...

  2. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects beta-lactam resistance

    DEFF Research Database (Denmark)

    Kallipolitis, Birgitte H; Ingmer, Hanne; Gahan, Cormac G

    2003-01-01

    of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability...

  3. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2016-02-01

    Brucellosis is one of the major zoonoses worldwide that inflicts important health problems in animal and human. Here, we demonstrated that dextran sulfate sodium (DSS) significantly increased adhesion of Brucella (B.) abortus in murine macrophages compared to untreated cells. Even without infection, Brucella uptake into macrophages increased and F-actin reorganization was induced compared with untreated cells. Furthermore, DSS increased the phosphorylation of MAPKs (ERK1/2 and p38α) in Brucella-infected, DSS-treated cells compared with the control cells. Lastly, DSS markedly increased the intracellular survival of Brucella abortus in macrophages by up to 48 h. These results suggest that DSS enhanced the adhesion and phagocytosis of B. abortus into murine macrophages by stimulating the MAPK signaling proteins phospho-ERK1/2 and p38α and that DSS increased the intracellular survival of B. abortus by inhibiting colocalization of Brucella-containing vacuoles (BCVs) with the late endosome marker LAMP-1. This study emphasizes the enhancement of the phagocytic and intracellular modulatory effects of DSS, which may suppress the innate immune system and contribute to prolonged Brucella survival and chronic infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Deficiency of patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice.

    Science.gov (United States)

    He, Ping; Staufenbiel, Matthias; Li, Rena; Shen, Yong

    2014-12-15

    Normally, sonic hedgehog (Shh) signaling induces high levels of Patched 1 (Ptc1) and its associated transcription factor Gli1 with genesis of specific neuronal progeny. But their roles in the neural stem cells (NSCs), including glial precursor cells (GPCs), of Alzheimer's disease (AD) are unclear. Here, we show that Ptc1 and Gli1 are significantly deficits in the hippocampus of an aged AD transgenic mouse mode, whereas these two molecules are highly elevated at young ages. Our similar findings in autopsied AD brains validate the discovery in AD mouse models. To examine whether Aβ peptides, which are a main component of the amyloid plaques in AD brains, affected Ptc1-Gli1 signaling, we treated GPCs with Aβ peptides, we found that high dose of Aβ1-42 but not Aβ1-40 significantly decreased Ptc1-Gli1, while Shh itself was elevated in hippocampal NSCs/GPCs. Furthermore, we found that deficits of Ptc1-Gli1 signaling induced NSCs/GPCs into asymmetric division, which results in an increase in the number of dividing cells including transit-amplifying cells and neuroblasts. These precursor cells commit to apoptosis-like death under the toxic conditions. By this way, adult neural precursor cell pool is exhausted and defective neurogenesis happens in AD brains. Our findings suggest that Ptc1-Gli1 signaling deregulation resulting abnormal loss of GPCs may contribute to a cognition decline in AD brains. The novel findings elucidate a new molecular mechanism of adult NSCs/GPCs on neurogenesis and demonstrate a regulatory role for Ptc1-Gli1 in adult neural circuit integrity of the brain. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways.

    Science.gov (United States)

    Uzdensky, Anatoly; Berezhnaya, Elena; Khaitin, Andrej; Kovaleva, Vera; Komandirov, Maxim; Neginskaya, Maria; Rudkovskii, Mikhail; Sharifulina, Svetlana

    2015-10-01

    Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.

  6. [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway

    Directory of Open Access Journals (Sweden)

    Sung Ok Kim

    2013-01-01

    Full Text Available To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP activities; transepithelial electrical resistance (TER and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO- 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells.

  7. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii.

    Science.gov (United States)

    Denkers, Eric Y; Bzik, David J; Fox, Barbara A; Butcher, Barbara A

    2012-02-01

    The intracellular protozoan Toxoplasma gondii is well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.

  8. [Inhibitory effect of taurine in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation and signal transduction mechanism].

    Science.gov (United States)

    Zhang, Xiao-Dan; Sun, Peng; Zhu, Da-Ling; Xie, Nan

    2014-05-01

    To discuss the effect of taurine (Tau) on the proliferation of hypoxia-induced pulmonary artery smooth muscle cells (PASMCs), and study whether the extracellular signal-regulated kinase 1/2 (ERK1/2) signal pathway participated in the Tau-inhibited PASMC proliferation process and the possible molecular mechanism. The primary culture was performed for PASMCs in rats. The second to fifth generations were adopted for the experiment. The Tau concentration was 80 mmol x L(-1). The concentration of ERK1/2 blocker (PD98059) was 50 micromol x L(-1). The drug administration time was 24 h. The effect of Tau on the PASMC proliferation was detected by MTT assay, immunofluorescence staining method and western blot under different conditions. The PASMCs were growing were divided into four groups: the normoxia group, the normoxia + Tau group, the hypoxia group and the hypoxia + Tau group. The Western blot was adopted to detect whether the ERK1/2 signal pathway participated in the Tau-inhibited PASMC proliferation process. Subsequently, the PASMCs were divided into five groups: the normoxia group, the hypoxia group, the hypoxia + Tau group, the hypoxia + Tau + PD98059 group and the hypoxia + PD98059 group. Hypoxia could induce the PASMC proliferation. Under the conditions of normoxia, Tau had no effect on the PASMC proliferation. Under the conditions of normoxia and hypoxia, Tau had no effect on the expression of the tumor necrosis factor-alpha (TNF-alpha) among PASMCs. Tau could reverse the expression up-regulation of hypoxia-induced proliferative cell nuclear antigen (PCNA) (P effect on the expression of phosphoryl extracellular signal-regulated kinase 1/2 (p-ERK1/2). Hypoxia could up-regulate the p-ERK1/2 expression (P < 0.01). Tau could reverse the up-regulation of the hypoxia-induced p-ERK1/2 expression(P < 0.01). Both PD98059 and Tau could inhibit the up-regulated expressions of PCNA, Cyclin A and p-ERK1/2. According to the comparison between the single addition of Tau and PD

  9. Similarities and differences in signal transduction by interleukin 4 and interleukin 13: analysis of Janus kinase activation.

    Science.gov (United States)

    Keegan, A D; Johnston, J A; Tortolani, P J; McReynolds, L J; Kinzer, C; O'Shea, J J; Paul, W E

    1995-08-15

    The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

  10. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  11. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar typhimurium.

    Directory of Open Access Journals (Sweden)

    María de Las Mercedes Pescaretti

    Full Text Available The RcsCDB system of Salmonella enterica serovar Typhimurium is implicated in the control of capsule and flagella synthesis. The hybrid sensor RcsC, the phosphotransferase RcsD and the RcsB regulator, constitute the main components of the RcsCDB system. The proposed Rcs signaling cascade involves the autophosphorylation of RcsC and the transfer of the phosphate group to RcsB, mediated by RcsD. We previously reported that the overexpression of rcsB repress the transcription of rcsD by an autoregulation mechanism. Moreover, we demonstrated that during the rcsD repression, the RcsB-dependent flagellar modulation remained active. These results suggest that the Rcs phosphorelay mechanism occurs even in the absence of RcsD. In this work, we established the existence of two alternative phosphorelay pathways driving activation of this system. We demonstrated that RcsC and RcsD can act as histidine kinase proteins which, after autophosphorylated, are able to independently transfer the phosphate to RcsB. Our results suggest that these pathways could be activated by different environmental signals, leading different levels of RcsB-phosphorylated to produce a differential gene modulation. These findings contribute to a better understanding of the complexity and importance of the Rcs system activation, where more than one phosphate flow pathway increases the possibilities to exert gene regulation for a quick environmental changes response.

  12. In vivo features of signal transduction by the essential response regulator RpaB from Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Moronta-Barrios, Félix; Espinosa, Javier; Contreras, Asunción

    2012-05-01

    The NblS-RpaB signalling pathway, the most conserved two-component system in cyanobacteria, regulates photosynthesis and acclimatization to a variety of environmental conditions and is involved in negative regulation of high-light-induced genes. However, relevant regulatory details of the NblS-RpaB signalling pathway remain to be elucidated. We recently showed that the response regulator RpaB is regulated by specific (de)phosphorylation from the histidine kinase NblS and that RpaB and its phosphorylatable residue Asp56 are both required for viability of Synechococcus elongatus PCC 7942. We show here that the phosphorylated form of RpaB is present in cells growing under standard laboratory conditions and that high light stress affected the ratio of phosphorylated to non-phosphorylated RpaB. It also decreased the amount of rpaB transcripts without appreciably changing the total levels of RpaB. Quantitative Western blotting and confocal microscopy analyses were consistent with RpaB being a very abundant regulator, with nucleoid localization. A genetically engineered RpaB-GFP (green fluorescent protein) fusion protein rescued lethality of the rpaB null mutant, indicating that it was functional. This is, to our knowledge, the first study demonstrating in a cyanobacterium, and for a two-component response regulator, that the in vivo ratio of phosphorylated to non-phosphorylated protein changes in response to environmental conditions.

  13. Regulation of ERK-mediated signal transduction by p38 MAP kinase in human monocytic THP-1 cells.

    Science.gov (United States)

    Numazawa, Satoshi; Watabe, Masahiko; Nishimura, Satoshi; Kurosawa, Masahiro; Izuno, Makoto; Yoshida, Takemi

    2003-05-01

    SB 203580 has been widely used to specifically shut down the p38 MAP kinase-dependent pathway, although it is capable of inducing c-Raf kinase activity in cells. The present study demonstrates that SB 203580 activates members of the ERK cascade, c-Raf, MEK, and ERK, in human monocytic THP-1 cells. The activation of these kinases was sustained for at least 24 h after SB 203580 treatment and was also observed in U937 cells, suggesting that c-Raf efficiently transduces the signal even in the presence of the inhibitor in these cells. However, the expression of ERK cascade-dependent genes, such as c-fos and IL-1beta, was extremely limited. Analysis of the cellular distribution of ERK in SB 203580-treated cells indicated that nuclear translocation of phosphorylated ERK was impaired. Also, nuclear translocation of ERK induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) was inhibited by SB 239063, which does not associate with c-Raf and is highly selective for p38 MAP kinase. In addition, the forced expression of the dominant negative mutant of p38 MAP kinase suppressed serum responsive element-dependent transactivation induced by TPA. These results suggest that the steady-state level of p38 MAP kinase activity modulates ERK signaling.

  14. Insights into signal transduction by a hybrid FixL: Denaturation study of on and off states of a multi-domain oxygen sensor.

    Science.gov (United States)

    Guimarães, Wellinson G; Gondim, Ana C S; Costa, Pedro Mikael da Silva; Gilles-Gonzalez, Marie-Alda; Lopes, Luiz G F; Carepo, Marta S P; Sousa, Eduardo H S

    2017-07-01

    FixL from Rhizobium etli (ReFixL) is a hybrid oxygen sensor protein. Signal transduction in ReFixL is effected by a switch off of the kinase activity on binding of an oxygen molecule to ferrous heme iron in another domain. Cyanide can also inhibit the kinase activity upon binding to the heme iron in the ferric state. The unfolding by urea of the purified full-length ReFixL in both active pentacoordinate form, met-FixL(Fe III ) and inactive cyanomet-FixL (Fe III -CN - ) form was monitored by UV-visible absorption spectroscopy, circular dichroism (CD) and fluorescence spectroscopy. The CD and UV-visible absorption spectroscopy revealed two states during unfolding, whereas fluorescence spectroscopy identified a three-state unfolding mechanism. The unfolding mechanism was not altered for the active compared to the inactive state; however, differences in the ΔG H2O were observed. According to the CD results, compared to cyanomet-FixL, met-FixL was more stable towards chemical denaturation by urea (7.2 vs 4.8kJmol -1 ). By contrast, electronic spectroscopy monitoring of the Soret band showed cyanomet-FixL to be more stable than met-FixL (18.5 versus 36.2kJmol -1 ). For the three-state mechanism exhibited by fluorescence, the ΔG H2O for both denaturation steps were higher for the active-state met-FixL than for cyanomet-FixL. The overall stability of met-FixL is higher in comparison to cyanomet-FixL suggesting a more compact protein in the active form. Nonetheless, hydrogen bonding by bound cyanide in the inactive state promotes the stability of the heme domain. This work supports a model of signal transduction by FixL that is likely shared by other heme-based sensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The signal transduction pathway of PKC/NF-κB/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats

    Directory of Open Access Journals (Sweden)

    Hui Zhu

    2009-02-01

    Full Text Available Abstract Background High glucose could induce structure and function change in cardiomyocytes, PKC plays a core effect in the onset and progression of diabetic cardiomyopathy, but its underlying downstream signal transduction pathway is still not completely understood. Objectives To study the influence of high glucose on the structure, function and signal transduction pathway of PKC (Protein Kinase C/NF-κB(Nuclear factor-κB/c-fos in cultured cardiomyocytes. Methods Using cultured cardiomyocytes of neonatal Sprague-Dawley rats as a model, groups were divided into: control group (glucose: 5 mmol/L; high glucose group (glucose: 10 mmol/L, 15 mmol/L, 20 mmol/L, 25.5 mmol/L; equimolar mannital group (5 mmol/L glucose + 20.5 mmol/L maninital; high glucose(25.5 mmol/L add PKC inhibitor (Ro-31-8220, 50 nmol/L; high glucose (25.5 mmol/L add NF-κB inhibitor (BAY11-7082, 5 μmol/L. The cellular contracting frequency and volumes were measured and the expression of PKC-α, PKC-β2, p-PKC-α, p-PKC-β2, NF-κB, p-NF-κB, TNF-α (tumor necrosis factor-α and c-fos were measured by western blot or RT-PCR. Results Cardiomyocytes cultured in high glucose level, but not iso-osmotic mannital, showed an increased pulsatile frequency and higher cellular volumes consistent with the increased glucose levels, and also higher expression of PKC-α, PKC-β2, p-PKC-α, p-PKC-β2, NF-κB, p-NF-κB, TNF-α and c-fos. The addition of Ro-31-8220 and BAY11-7082 could partly reverse these changes induced by high glucose level. Conclusion High glucose significantly increased the pulsatile frequency and cellular volumes of cultured cardiomyocytes via PKC/NF-κB/c-fos pathway, which might lead to diabetic cardiomyopathy.

  16. Overexpression of extracellular superoxide dismutase reduces severity of radiation-induced lung toxicity through downregulation of the TGF-β signal transduction pathway

    International Nuclear Information System (INIS)

    Rabbani, Z.N.; Anscher, M.S.; Archer, E.; Chen, L.; Samulski, T.V.; Folz, R.J.; Dewhirst, M.W.; Vujaskovic, Z.

    2003-01-01

    The objective of this study is to determine whether overexpression of ECSOD, ameliorates acute radiation induced lung injury by inhibiting activation of TGF-β and down regulating phosphorylation of (p)Smad 3 signal transduction protein. Transgenic (TG) B6C3 mice that overexpress human EC-SOD (hEC-SOD) and wild-type (WT) littermates received single dose of 15 Gy to the whole thorax and sacrificed at 1day, 1wk, 2wk, 3wk, 6wk, 10 and 14 weeks. Different endpoints were assessed to look for lung damage. Starting at 3rd week after radiation, there was significant increase in breathing rates, right lung wet weights and lung tissue damage score of XRT-WT vs. XRT-TG (p<0.05). In BALF, total cell counts per ml were significantly increased in XRT-WT whereas XRT-TG animals did not show any significant increase except at 14 weeks after irradiation (p<0.05). Macrophages and lymphocytes were the predominant inflammatory cells in BALF of XRT-WT compared to XRT-TG (p<0.05). XRT-WT group had a significantly higher percentage of activated TGF-β1 than the XRT-TG (p=0.04) at 14 weeks. There was a mild immunoreactivity of pSmad3 in bronchial epithelium and type II pneumocytes of control animals. In XRT-WT pSmad3 immunostaining was moderate at 1 week and moderate to strong at 3, 6 and 10 weeks whereas in XRT-TG mice immmunostaining was mild to moderate. This study shows that, the overexpression of ECSOD in transgenic animals is radioprotective in acute phase of radiation induced lung injury. Fewer inflammatory cells in XRT-TG group confirms the deprivation of important source for free radicals and TGF-β cytokine. Significant reduction in TGF-β activation in ECSOD overexpressing animals, followed by downregulation of pSmad3 indicates important role of reactive oxygen species in activation of TGF-β signal transduction pathway

  17. A gene in the region of the autosomal dominant torsion dystonia locus on 9q34 contains SH3 signal transduction and binding motifs

    Energy Technology Data Exchange (ETDEWEB)

    Cox, G.F.; Kunkel, L.M.; Khurana, T. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    In a search to identify cytoskeletal proteins which might be involved in neuromuscular diseases, we identified an expressed tag (EST) that exhibited distant sequence homology to dystrophia and which mapped to 9q24-ter in somatic cell hybrids. A dinucleotide repeat polymorphism from a genomic clone of the EST showed complete co-segregation without recombination to the DYT1 locus on the 9q34 in families with autosomal dominant torsion dystonia. cDNAs were obtained from the brain cDNA libraries and these contained parts of trapped exons from the 9q34 region. Northern blotting reveals two distinct transcripts, 6-7 kb and 3 kb, which differ primarily in their 3{prime} untranslated regions. The transcripts are co-expressed at highest levels in brain and thymus, but are found in most other tissues as well. A comparison of cDNA sequences derived from this gene reveals a high degree of alternate processing in both the coding and 3{prime} untranslated regions. Antibodies raised against synthetic peptides from the ORF recognize a doublet of bands at approximately 50-55 kd in brain by Western blotting. In contrast to the Northern tissue distribution, the protein is detected only in small amounts in peripheral nerve and muscle and not at all in several other tissues, with the amount in thymus yet to be determined. A Genbank search of amino acid sequence homologies has revealed several interesting features, including: aN src homology 3 (SH3) domain that is a common feature of proteins involved in the tyrosine kinase signal transduction pathway and is found in some cytoskeletal proteins; a proline-rich region that may function as an intra- or intermolecular SH3 binding site; and weak homologies to the rod domains of dystrophin, myosin, and spectrin. These findings raise the possibility of a defect in signal transduction or the cytoskeleton as a cause of torsion dystonia. Mutation analysis of the gene and biochemical characterization of the protein are in progress.

  18. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction.

    Science.gov (United States)

    Ogawa, Haruo; Qiu, Yue; Ogata, Craig M; Misono, Kunio S

    2004-07-02

    A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracellular hormone-binding domain in complex with ANP. The structural comparison with the unliganded receptor reveals that hormone binding causes the two receptor monomers to undergo an intermolecular twist with little intramolecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains in the dimer with essentially no change in the interdomain distance. This movement alters the relative orientation of the two domains by a shift equivalent to counterclockwise rotation of each by 24 degrees. These results suggest that transmembrane signaling by the ANP receptor is initiated via a hormone-induced rotation mechanism.

  19. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig

    2006-01-01

    and acidification, include hypoxia and mechanical stimuli, such as cell stretch. It has recently become apparent that NHE1-mediated modulation of, e.g., cell migration, morphology, proliferation, and death results not only from NHE1-mediated changes in pHi, cell volume, and/or [Na+]i, but also from direct protein...... signaling event activated by stress conditions and modulating cell proliferation and death. The pathophysiological importance of NHE1 in modulating the balance between cell proliferation and cell death in cancer and in ischemia/severe hypoxia will also be briefly addressed.......The ubiquitous plasma membrane Na+/H+ exchanger NHE1 is highly conserved across vertebrate species and is extensively characterized as a major membrane transport mechanism in the regulation of cellular pH and volume. In recent years, the understanding of the role of NHE1 in regulating cell function...

  20. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Ducommun, Pascal [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland); Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich (Switzerland); Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno [Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich (Switzerland)

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  1. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction.

    Science.gov (United States)

    Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L; Haines, Diana C; Butcher, Donna; Roy, Krishnendu; Doroshow, James H

    2017-05-12

    Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O 2 ̇̄ , is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80-90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G 1 /S block that translated into a 2-3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G 1 /S checkpoint was associated with a significant decrease in cyclin D 1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    Full Text Available The hormone thyrotropin (TSH and its receptor (TSHR are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR and lutropin/choriogonadotropin (LHR and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD with the transmembrane helix (TMH 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin, super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  3. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Science.gov (United States)

    Krause, Gerd; Kreuchwig, Annika; Kleinau, Gunnar

    2012-01-01

    The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD) with the transmembrane helix (TMH) 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin), super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  4. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  5. Deciphering complex dynamics of water counteraction around secondary structural elements of allosteric protein complex: Case study of SAP-SLAM system in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2018-01-01

    The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.

  6. Deciphering complex dynamics of water counteraction around secondary structural elements of allosteric protein complex: Case study of SAP-SLAM system in signal transduction cascade.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2018-01-28

    The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.

  7. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    Science.gov (United States)

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  8. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite

    KAUST Repository

    Zhang, Y.

    2012-08-01

    The barnacle Balanus amphitrite is among the most dominant fouling species on intertidal rocky shores in tropical and subtropical areas and is thus a target organism in antifouling research. After being released from adults, the swimming nauplius undertakes six molting cycles and then transforms into a cyprid. Using paired antennules, a competent cyprid actively explores and selects a suitable substratum for attachment and metamorphosis (collectively known as settlement). This selection process involves the reception of exogenous signals and subsequent endogenous signal transduction. To investigate the involvement of nitric oxide (NO) and cyclic GMP (cGMP) during larval settlement of B. amphitrite, we examined the effects of an NO donor and an NO scavenger, two nitric oxide synthase (NOS) inhibitors and a soluble guanylyl cyclase (sGC) inhibitor on settling cyprids. We found that the NO donor sodium nitroprusside (SNP) inhibited larval settlement in a dose-dependent manner. In contrast, both the NO scavenger carboxy-PTIO and the NOS inhibitors aminoguanidine hemisulfate (AGH) and S-methylisothiourea sulfate (SMIS) significantly accelerated larval settlement. Suppression of the downstream guanylyl cyclase (GC) activity using a GC-selective inhibitor ODQ could also significantly accelerate larval settlement. Interestingly, the settlement inhibition effects of SNP could be attenuated by ODQ at all concentrations tested. In the developmental expression profiling of NOS and sGC, the lowest expression of both genes was detected in the cyprid stage, a crucial stage for the larval decision to attach and metamorphose. In summary, we concluded that NO regulates larval settlement via mediating downstream cGMP signaling.

  9. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profilin...

  10. Signal transduction and HIV transcriptional activation after exposure to ultraviolet light and other DNA-damaging agents

    International Nuclear Information System (INIS)

    Valerie, K.; Laster, W.S.; Luhua Cheng; Kirkham, J.C.; Reavey, Peter; Kuemmerle, N.B.

    1996-01-01

    Short wavelength (254 nm) ultraviolet light (UVC) radiation was much more potent in activating transcription of human immunodeficiency virus 1 (HIV) reporter genes stably integrated into the genomes of human and monkey cells than ionizing radiation (IR) from a 137 Cs source at similarly cytotoxic doses. A similar differential was also observed when c-jun transcription levels were examined. However, these transcription levels do not correlate with activation of nuclear factor (NF)-kB and AP-1 measured by band-shift assays, i.e. both types of radiation produce similar increases in NF-kB and AP-1 activity, suggesting existence of additional levels of regulation during these responses. Because of the well-established involvement of cytoplasmic signaling pathways in the cellular response to tumor necrosis factor-α (TNF-α), UVC, and IR using other types of assays, the role of TNF-α in the UVC response of HIV and c-jun was investigated in our cell system. We demonstrate that UVC and TNF-α activate HIV gene expression in a synergistic fashion, suggesting that it is unlikely that TNF-α is involved in UVC activation of HIV transcription in stably transfected HeLa cells. Moreover, maximum TNF-α stimulation resulted in one order of magnitude lower levels of HIV expression than that observed after UVC exposure. We also observed an additive effect of UVC and TNF-α on c-jun steady-state mRNA levels, suggestive of a partial overlap in activation mechanism of c-jun by UVC and TNF-α; yet these responses are distinct to some extent. Our results indicate that the HIV, and to some extent also the c-jun, transcriptional responses to UVC are not the result of TNF-α stimulation and subsequent downstream cytoplasmic signaling events in HeLa cells. In addition to the new data, this report also summarizes our current views regarding UVC-induced activations of HIV gene expression in stably transfected cells. (Author)

  11. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  12. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis.

    Science.gov (United States)

    Jiao, Kai; Niu, Li-Na; Li, Qi-hong; Ren, Gao-tong; Zhao, Chang-ming; Liu, Yun-dong; Tay, Franklin R; Wang, Mei-qing

    2015-07-29

    The present study tested whether activation of the sympathetic tone by aberrant joint loading elicits abnormal subchondral bone remodeling in temporomandibular joint (TMJ) osteoarthritis. Abnormal dental occlusion was created in experimental rats, which were then intraperitoneally injected by saline, propranolol or isoproterenol. The norepinephrine contents, distribution of sympathetic nerve fibers, expression of β-adrenergic receptors (β-ARs) and remodeling parameters in the condylar subchondral bone were investigated. Mesenchymal stem cells (MSCs) from condylar subchondral bones were harvested for comparison of their β-ARs, pro-osteoclastic gene expressions and pro-osteoclastic function. Increases in norepinephrine level, sympathetic nerve fiber distribution and β2-AR expression were observed in the condylar subchondral bone of experimental rats, together with subchondral bone loss and increased osteoclast activity. β-antagonist (propranolol) suppressed subchondral bone loss and osteoclast hyperfunction while β-agonist (isoproterenol) exacerbated those responses. MSCs from experimental condylar subchondral bone expressed higher levels of β2-AR and RANKL; norepinephrine stimulation further increased their RANKL expression and pro-osteoclastic function. These effects were blocked by inhibition of β2-AR or the PKA pathway. RANKL expression by MSCs decreased after propranolol administration and increased after isoproterenol administration. It is concluded that β2-AR signal-mediated subchondral bone loss in TMJ osteoarthritisis associated with increased RANKL secretion by MSCs.

  13. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    -human hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...... hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types.......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...

  14. Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway

    International Nuclear Information System (INIS)

    Esquivel-Senties, M.S.; Barrera, I.; Ortega, A.; Vega, L.

    2010-01-01

    Diethyldithiophosphate (DEDTP) is a metabolite formed by biotransformation of organophosphorous (OP) compounds that has a longer half-life than its parental compound. Here we evaluate the effects of DEDTP on human CD4+ T lymphocytes. In vitro exposure to DEDTP (1-50 μM) decreased [ 3 H]thymidine incorporation in resting cells and increased CD25 surface expression without altering cell viability. DEDTP treatment inhibited anti-CD3/anti-CD28 stimulation-induced CD4+ and CD8+ T cell proliferation determined by CFSE dilution. Decreased CD25 expression and intracellular IL-2 levels were correlated with this defect in cell proliferation. IL-2, IFN-γ and IL-10 secretion were also reduced while IL-4 secretion was not altered. Increased phosphorylation of SOCS3 and dephosphorylation of STAT5 were induced by DEDTP after as little as 5 min of exposure. In addition, DEDTP induced phosphorylation of ERK, JNK and p38 and NFAT nuclear translocation. These results suggest that DEDTP can modulate phosphorylation of intracellular proteins such as SOCS3, which functions as a negative regulator of cytokine signalling, and that DEDTP exposure may thus cause T cells to fail to respond to further antigen challenges.

  15. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  16. The pre-clinical absorption, distribution, metabolism and excretion properties of IPI-926, an orally bioavailable antagonist of the hedgehog signal transduction pathway.

    Science.gov (United States)

    Smith, Sherri; Hoyt, Jennifer; Whitebread, Nigel; Manna, Joseph; Peluso, Marisa; Faia, Kerrie; Campbell, Veronica; Tremblay, Martin; Nair, Somarajan; Grogan, Michael; Castro, Alfredo; Campbell, Matthew; Ferguson, Jeanne; Arsenault, Brendan; Nevejans, Jylle; Carter, Bennett; Lee, John; Dunbar, Joi; McGovern, Karen; Read, Margaret; Adams, Julian; Constan, Alexander; Loewen, Gordon; Sydor, Jens; Palombella, Vito; Soglia, John

    2013-10-01

    1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties.

  17. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M

    1998-01-01

    beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...... and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in beta2 integrin (CD18)-positive but not in beta2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation...... experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in beta2-integrin-positive but not in beta2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fak...

  18. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  19. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  20. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Zhang, Zhen; Korkeala, Hannu; Dahlsten, Elias; Sahala, Elina; Heap, John T; Minton, Nigel P; Lindström, Miia

    2013-03-01

    Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved -10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.

  1. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on signal transduction pathway-related protein expression in liver and cerebrum of rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Mari; Akema, Satoshi; Tsuzuki, Masami; Kubota, Shunichiro [Tokyo Univ. (Japan); Korenaga, Tatsumi; Fukusato, Toshio [Teikyo Univ. of School of Medicine, Tokyo (Japan); Asaoka, Kazuo [Kyoto Univ. (Japan); Murata, Nobuo [Teikyo Univ. of School of Medicine, Kawasaki (Japan); Nomizu, Motoyoshi [Hokkaido Univ., Sapporo (Japan); Arima, Akihiro [Shin Nippon Biomedical Laboratories, Ltd., Kagoshima (Japan)

    2004-09-15

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to produce a wide range of toxic and biochemical effects in experimental animals, including immunological dysfunctions, chloracne, tetragenecity and carcinogenesis. Recently, the potential impact of dioxins on neurological disorders with particular focus on attention deficit hyperactivity disorder (ADHD) are concerned. Although a lot of information is available from studies in rodents, not much is known of the low dose effects of TCDD in non-human primates. In higher animals, dioxins are metabolized slowly, as evidenced by the estimated TCDD half-life of 5.8 to 14.1 years. Therefore, it is necessary to investigate the long-term effects of TCDD on human health. Considering the pronounced species differences observed in some studies of TCDD, the studies using primates are needed for assessment of TCDD exposure on human health. We have been studying the metabolism and the effects of single administration of TCDD on pregnant monkey (F0) and F1 rhesus monkey. The focus of the present study is to study the effects of TCDD on signal transduction pathway-related protein levels in various organs, especially in liver and brain of F0 monkeys.

  2. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals.

    Science.gov (United States)

    Zhao, Xiao-Li; Chen, Lin-Feng; Wang, Zhen

    2017-06-17

    Aesculin (AES), a coumarin compound derived from Aesculus hippocasanum L, is reported to exert protective role against inflammatory diseases, gastric disease and cancer. However, direct effect of AES in bone metabolism is deficient. In this study, we examined the effects of AES on osteoclast (OC) differentiation in receptor activator of NF-κB ligand (RANKL)-induced RAW264.7 cells. AES inhibits the OC differentiation in both dose- and time-dependent manner within non-toxic concentrations, as analyzed by Tartrate Resistant Acid Phosphatase (TRAP) staining. The actin ring formation manifesting OC function is also decreased by AES. Moreover, expressions of osteoclastogenesis related genes Trap, Atp6v0d2, Cathepsin K and Mmp-9 are decreased upon AES treatment. Mechanistically, AES attenuates the activation of MAPKs and NF-κB activity upon RANKL induction, thus leading to the reduction of Nfatc1 mRNA expression. Moreover, AES inhibits Rank expression, and RANK overexpression markedly decreases AES's effect on OC differentiation and NF-κB activity. Consistently, AES protects against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Taken together, our data demonstrate that AES can modulate bone metabolism by suppressing osteoclastogenesis and related transduction signals. AES therefore could be a promising agent for the treatment of osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone.

    Science.gov (United States)

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung; Yang, Shih-Ping

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH(2)-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. © 2014 by the Society for Experimental Biology and Medicine.

  4. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus.

    Science.gov (United States)

    Kim, Hye-Ryun; Cho, Kil-Sang; Kim, Eunhye; Lee, Ok-Hee; Yoon, Hyemin; Lee, Sangho; Moon, Sohyeon; Park, Miseon; Hong, Kwonho; Na, Younghwa; Shin, Ji-Eun; Kwon, Hwang; Song, Haengseok; Choi, Dong Hee; Choi, Youngsok

    2017-05-05

    Dexamethasone-induced RAS-related protein 1 (RASD1) is a signaling protein that is involved in various cellular processes. In a previous study, we found that RASD1 expression was down-regulated in the uterine endometrium of repeated implantation failure patients. The study aim was to determine whether RASD1 is expressed in the endometrium of mouse uterus and how it is regulated by steroid hormones during the estrous cycle. In this study, we investigated RASD1 expression and regulation in an ovariectomized female mouse model. Rasd1 mRNA was highly expressed in mouse reproductive tissues, including the uterus. Rasd1 expression was detected exclusively in the endometrial epithelium at the proestrus stage of the estrous cycle. Rasd1 expression in uteri increased with administration of estradiol, but not progesterone. Its expression was rapidly induced within 2 h after E 2 treatment. Pretreatment with ICI 182,780, an estrogen receptor antagonist, reduced RASD1 protein expression. In addition, we identified that rapid expression of Rasd1 was mediated by the estrogen intracellular signaling including both p38-mitogen-activated protein kinase and the extracellular signal-regulated kinase. These findings suggest that RASD1 acts as a novel signaling molecule and plays an important role in regulating dynamic uterine remodeling during the estrous cycle in the uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. HDAC6 controls innate immune and autophagy responses to TLR-mediated signalling by the intracellular bacteria Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Olga Moreno-Gonzalo

    2017-12-01

    Full Text Available Recent evidence on HDAC6 function underlines its role as a key protein in the innate immune response to viral infection. However, whether HDAC6 regulates innate immunity during bacterial infection remains unexplored. To assess the role of HDAC6 in the regulation of defence mechanisms against intracellular bacteria, we used the Listeria monocytogenes (Lm infection model. Our data show that Hdac6-/- bone marrow-derived dendritic cells (BMDCs have a higher bacterial load than Hdac6+/+ cells, correlating with weaker induction of IFN-related genes, pro-inflammatory cytokines and nitrite production after bacterial infection. Hdac6-/- BMDCs have a weakened phosphorylation of MAPK signalling in response to Lm infection, suggesting altered Toll-like receptor signalling (TLR. Compared with Hdac6+/+ counterparts, Hdac6-/- GM-CSF-derived and FLT3L-derived dendritic cells show weaker pro-inflammatory cytokine secretion in response to various TLR agonists. Moreover, HDAC6 associates with the TLR-adaptor molecule Myeloid differentiation primary response gene 88 (MyD88, and the absence of HDAC6 seems to diminish the NF-κB induction after TLR stimuli. Hdac6-/- mice display low serum levels of inflammatory cytokine IL-6 and correspondingly an increased survival to a systemic infection with Lm. The impaired bacterial clearance in the absence of HDAC6 appears to be caused by a defect in autophagy. Hence, Hdac6-/- BMDCs accumulate higher levels of the autophagy marker p62 and show defective phagosome-lysosome fusion. These data underline the important function of HDAC6 in dendritic cells not only in bacterial autophagy, but also in the proper activation of TLR signalling. These results thus demonstrate an important regulatory role for HDAC6 in the innate immune response to intracellular bacterial infection.

  6. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggeste