WorldWideScience

Sample records for intracellular reactive oxygen

  1. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    was inhibited by buffering of intracellular calcium with BAPTA, by the antioxidant N-acetylcysteine and by uncoupling of mitochondrial oxidative phosphorylation from respiration with CCCP. These results indicate that Cd generate a prompt initiation of ROS production from mitochondria due to an increase......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... dynamics in living cells in response to hormonal signal events in the A6 cell culture. A6 cells have a divalent cation-sensing receptor (the extracellular calcium receptor) that can be stimulated with cadmium (Cd) and thereby induce a fast and transient liberation of calcium from intracellular stores, due...

  2. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production...

  3. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    International Nuclear Information System (INIS)

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-01-01

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  4. Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3 activity and AKT phosphorylation in frozen thawed human sperm.

    Science.gov (United States)

    Najafi, Atefeh; Adutwum, Emmanuel; Yari, Abazar; Salehi, Ensieh; Mikaeili, Saideh; Dashtestani, Fariba; Abolhassani, Farid; Rashki, Leila; Shiasi, Setareh; Asadi, Ebrahim

    2018-04-01

    Cryopreservation is known to induce oxidative stress in spermatozoa. Although melatonin has powerful antioxidant properties, little is known about its effects on human sperm quality during cryopreservation. The present study was undertaken to investigate the effects of melatonin treatment on human sperm parameters essential for fertilization. We first evaluated the effects of various concentrations of melatonin (0-15 mM) on human sperm parameters such as motility, viability and levels of intracellular reactive oxygen species during cryopreservation in order to identify an optimal dose with the greatest effects for further studies. Liquefied semen samples were then divided into three aliquots: cryopreserved without melatonin (control), cryopreserved with 3 mM melatonin and fresh groups. After being thawed, samples were evaluated for motility, viability, membrane integrity, intracellular reactive oxygen species levels, caspase-3 activity and AKT phosphorylation. Treatment of spermatozoa with the various concentrations of melatonin significantly increased their motility and viability and decreased their intracellular reactive oxygen species levels compared with the control group. The optimal melatonin concentration (3 mM) significantly decreased the intracellular reactive oxygen species levels, caspase-3 activity and the percentage of both dead and apoptotic-like sperm cells and increased the vitality, progressive motility and total motility and AKT phosphorylation compared with the control group. Thus, melatonin exerts protective effects against cryodamage during human spermatozoa cryopreservation and may exert its effects via the PI3K/AKT signaling pathway.

  5. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production...... to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using...... and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes...

  6. The tripeptide feG regulates the production of intracellular reactive oxygen species by neutrophils

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2006-06-01

    Full Text Available Abstract Background The D-isomeric form of the tripeptide FEG (feG is a potent anti-inflammatory agent that suppresses type I hypersensitivity (IgE-mediated allergic reactions in several animal species. One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and migratory properties. Since activation of neutrophils is often associated with an increase in respiratory burst with the generation of reactive oxygen species (ROS, we examined the effect of feG on the respiratory burst in neutrophils of antigen-sensitized rats. A role for protein kinase C (PKC in the actions of feG was evaluated by using selective isoform inhibitors for PKC. Results At 18h after antigen (ovalbumin challenge of sensitized Sprague-Dawley rats a pronounced neutrophilia occurred; a response that was reduced in animals treated with feG (100 μg/kg. With antigen-challenged animals the protein kinase C (PKC activator, PMA, significantly increased intracellular ROS of circulating neutrophils, as determined by flow cytometry using the fluorescent probe dihydrorhodamine-123. This increase was prevented by treatment with feG at the time of antigen challenge. The inhibitor of PKCδ, rottlerin, which effectively prevented intracellular ROS production by circulating neutrophils of animals receiving a naïve antigen, failed to inhibit PMA-stimulated ROS production if the animals were challenged with antigen. feG treatment, however, re-established the inhibitory effects of the PKCδ inhibitor on intracellular ROS production. The extracellular release of superoxide anion, evaluated by measuring the oxidative reduction of cytochrome C, was neither modified by antigen challenge nor feG treatment. However, hispidin, an inhibitor of PKCβ, inhibited the release of superoxide anion from circulating leukocytes in all groups of animals. feG prevented the increased expression of the β1-integrin CD49d on the circulating neutrophils elicited by antigen

  7. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species.

    Science.gov (United States)

    Zhang, Huairong; Li, Binxiao; Sun, Zhaomei; Zhou, Hong; Zhang, Shusheng

    2017-12-01

    Cancer therapies based on reactive oxygen species (ROS) have emerged as promising clinical treatments. Electrochemiluminescence (ECL) technology has also attracted considerable attention in the field of clinical diagnosis. However, studies about the integration of ECL diagnosis and ROS cancer therapy are very rare. Here we introduce a novel strategy that employs ECL technology and ROS to fill the above vacancy. Briefly, an ITO electrode was electrodeposited with polyluminol-Pt NPs composite films and modified with aptamer DNA to capture HL-60 cancer cells with high specificity. After that, mesoporous silica nanoparticles (MSNs) filled with phorbol 12-myristate 13-acetate (PMA) were closed by the telomerase primer DNA (T-primer DNA) and aptamer. After aptamer on MSN@PMA recognized and combined with the HL-60 cancer cells with high specificity, T-primer DNA on MSN@PMA could be moved away from the MSN@PMA surface after extension by telomerase in the HL-60 cancer cells and PMA was released to induce the production of ROS by the HL-60 cancer cells. After that, the polyluminol-Pt NPs composite films could react with hydrogen peroxide (a major ROS) and generate an ECL signal. Thus the intracellular telomerase activity of the HL-60 cancer cells could be detected in situ . Besides, ROS could induce apoptosis in the HL-60 cancer cells with high efficacy by causing oxidative damage to the lipids, protein, and DNA. Above all, the designed platform could not only detect intracellular telomerase activity instead of that of extracted telomerase, but could also kill targeted tumors by ECL technology and ROS.

  8. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    Science.gov (United States)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier

  9. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2018-01-01

    Full Text Available The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  10. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics. PMID:29643978

  11. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols.

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin; Mu, Taihua

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  12. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  13. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    Science.gov (United States)

    Ma, R. N.; Feng, H. Q.; Liang, Y. D.; Zhang, Q.; Tian, Y.; Su, B.; Zhang, J.; Fang, J.

    2013-07-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca2+) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca2+ concentration, cell mitochondrial membrane potential (Δψm) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψm and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy.

  14. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  15. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo, E-mail: ksha@kangwon.ac.kr

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  16. Achillolide A Protects Astrocytes against Oxidative Stress by Reducing Intracellular Reactive Oxygen Species and Interfering with Cell Signaling.

    Science.gov (United States)

    Elmann, Anat; Telerman, Alona; Erlank, Hilla; Ofir, Rivka; Kashman, Yoel; Beit-Yannai, Elie

    2016-03-02

    Achillolide A is a natural sesquiterpene lactone that we have previously shown can inhibit microglial activation. In this study we present evidence for its beneficial effects on astrocytes under oxidative stress, a situation relevant to neurodegenerative diseases and brain injuries. Viability of brain astrocytes (primary cultures) was determined by lactate dehydrogenase (LDH) activity, intracellular ROS levels were detected using 2',7'-dichlorofluorescein diacetate, in vitro antioxidant activity was measured by differential pulse voltammetry, and protein phosphorylation was determined using specific ELISA kits. We have found that achillolide A prevented the H₂O₂-induced death of astrocytes, and attenuated the induced intracellular accumulation of reactive oxygen species (ROS). These activities could be attributed to the inhibition of the H₂O₂-induced phosphorylation of MAP/ERK kinase 1 (MEK1) and p44/42 mitogen-activated protein kinases (MAPK), and to the antioxidant activity of achillolide A, but not to H₂O₂ scavenging. This is the first study that demonstrates its protective effects on brain astrocytes, and its ability to interfere with MAPK activation. We propose that achillolide A deserves further evaluation for its potential to be developed as a drug for the prevention/treatment of neurodegenerative diseases and brain injuries where oxidative stress is part of the pathophysiology.

  17. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    Science.gov (United States)

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  18. Pyruvate: immunonutritional effects on neutrophil intracellular amino or alpha-keto acid profiles and reactive oxygen species production

    NARCIS (Netherlands)

    Mathioudakis, D.; Engel, J.; Welters, I.D.; Dehne, M.G.; Matejec, R.; Harbach, H.; Henrich, M.; Schwandner, T.; Fuchs, M.; Weismuller, K.; Scheffer, G.J.; Muhling, J.

    2011-01-01

    For the first time the immunonutritional role of pyruvate on neutrophils (PMN), free alpha-keto and amino acid profiles, important reactive oxygen species (ROS) produced [superoxide anion (O(2) (-)), hydrogen peroxide (H(2)O(2))] as well as released myeloperoxidase (MPO) acitivity has been

  19. High throughput phenotypic selection of Mycobacterium tuberculosis mutants with impaired resistance to reactive oxygen species identifies genes important for intracellular growth.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    Full Text Available Mycobacterium tuberculosis has the remarkable capacity to survive within the hostile environment of the macrophage, and to resist potent antibacterial molecules such as reactive oxygen species (ROS. Thus, understanding mycobacterial resistance mechanisms against ROS may contribute to the development of new anti-tuberculosis therapies. Here we identified genes involved in such mechanisms by screening a high-density transposon mutant library, and we show that several of them are involved in the intracellular lifestyle of the pathogen. Many of these genes were found to play a part in cell envelope functions, further strengthening the important role of the mycobacterial cell envelope in protection against aggressions such as the ones caused by ROS inside host cells.

  20. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action.

    Science.gov (United States)

    Khan, Husain Yar; Zubair, Haseeb; Faisal, Mohd; Ullah, Mohd Fahad; Farhan, Mohd; Sarkar, Fazlul H; Ahmad, Aamir; Hadi, Sheikh Mumtaz

    2014-03-01

    Anticancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as antioxidants, but can be prooxidants in the presence of copper ions. We earlier proposed a mechanism for such activity of polyphenols and now we provide data in multiple cancer cell lines in support of our hypothesis. Through multiple assays, we show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition. Since the concentration of copper is significantly elevated in cancer cells, our results strengthen the idea that an important anticancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this prooxidant chemopreventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MITOCHONDRIAL REACTIVE OXYGEN SPECIES (ROS AS SIGNALLING MOLECULES OF INTRACELLULAR PATHWAYS TRIGGERED BY THE CARDIAC RENIN-ANGIOTENSIN II-ALDOSTERONE SYSTEM (RAAS.

    Directory of Open Access Journals (Sweden)

    Verónica Celeste De Giusti

    2013-05-01

    Full Text Available Mitochondria represent major sources of basal reactive oxygen species (ROS production of the cardiomyocyte. The role of ROS as signalling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1 and sodium/bicarbonate cotransporter (NBC via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.

  2. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  3. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  5. Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells.

    Science.gov (United States)

    Nakanishi-Ueda, T; Majima, H J; Watanabe, K; Ueda, T; Indo, H P; Suenaga, S; Hisamitsu, T; Ozawa, T; Yasuhara, H; Koide, R

    2013-10-01

    The effects of blue light emitter diode (LED) light exposure on retinal pigment epithelial cells (RPE cells) were examined to detect cellular damage or change and to clarify its mechanisms. The RPE cells were cultured and exposed by blue (470 nm) LED at 4.8 mW/cm(2). The cellular viability was determined by XTT assay and cellular injury was determined by the lactate dehydrogenase activity in medium. Intracellular reactive oxygen species (ROS) generation was determined by confocal laser microscope image analysis using dihydrorhodamine 123 and lipid peroxidation was determined by 4-hydroxy-2-nonenal protein-adducts immunofluorescent staining (HNE). At 24 h after 50 J/cm(2) exposures, cellular viability was significantly decreased to 74% and cellular injury was significantly increased to 365% of control. Immediately after the light exposure, ROS generation was significantly increased to 154%, 177%, and 395% of control and HNE intensity was increased to 211%, 359%, and 746% of control by 1, 10, and 50 J/cm(2), respectively. These results suggest, at least in part, that oxidative stress is an early step leading to cellular damage by blue LED exposure and cellular oxidative damage would be caused by the blue light exposure at even lower dose (1, 10 J/cm(2)).

  6. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    Science.gov (United States)

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  7. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition

    Science.gov (United States)

    Tuet, Wing Y.; Fok, Shierly; Verma, Vishal; Tagle Rodriguez, Marlen S.; Grosberg, Anna; Champion, Julie A.; Ng, Nga L.

    2016-11-01

    Elevated particulate matter (PM) concentrations have been associated with cardiopulmonary risks. In this study, alveolar macrophages and ventricular myocytes were exposed to PM extracts from 104 ambient filters collected in multiple rural and urban sites in the greater Atlanta area. PM-induced reactive oxygen/nitrogen species (ROS/RNS) were measured to investigate the effect of chemical composition and determine whether chemical assays are representative of cellular responses. For summer samples, the area under the ROS/RNS dose-response curve per volume of air (AUCvolume) was significantly correlated with dithiothreitol (DTT) activity, water-soluble organic carbon (WSOC), brown carbon, titanium, and iron, while a relatively flat response was observed for winter samples. EC50 was also correlated with max response for all filters investigated, which suggests that certain PM constituents may be involved in cellular protective pathways. Although few metal correlations were observed, exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating that a lack of correlation does not necessarily translate to a lack of response. Collectively, these results suggest that complex interactions may occur between PM species. Furthermore, the strong correlation between organic species and ROS/RNS response highlights a need to understand the contribution of organic aerosols, especially photochemically driven secondary organic aerosols (SOA), to PM-induced health effects.

  8. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species.

    Science.gov (United States)

    Crow, J P

    1997-04-01

    2,7-Dichlorodihydrofluorescein (DCDHF), commonly known as dichlorofluorescin, and dihydrorhodamine 123 (DHR) are often used to detect the production of reactive nitrogen and oxygen species in cells via oxidation to their respective fluorescent products. To determine which biological oxidants might be involved, DCDHF and DHR were exposed to a number of oxidants in vitro to determine which are capable of oxidizing these compounds. Formation of dichlorofluorescein (DCF) and rhodamine is typically monitored by measuring their intrinsic fluorescence, however, absorbance can also be utilized (epsilon500 nm = 59,500 and 78,800 M(-1) cm(-1) for DCF and rhodamine, respectively). Peroxynitrite (ONOO-) readily oxidized both compounds with an efficiency equal to 38% of added ONOO- for DCDHF and 44% for DHR. Addition of nitric oxide (NO) to a superoxide-generating system resulted in DCDHF and DHR oxidation which was inhibitable by superoxide dismutase (SOD). SIN-1-mediated oxidation of DCDHF and DHR was also SOD-inhibitable, suggesting that peroxynitrite is the primary oxidant formed from SIN-1 decomposition. Aerobic addition of NO resulted in DCDHF oxidation in a manner consistent with nitrogen dioxide (.NO2) formation. NO did not oxidize DHR and actually inhibited UV-light-induced DHR oxidation. Simultaneous addition of NO and ONOO- resulted in an apparent inhibition of indicator oxidation; however, subsequent addition of ONOO- alone 20 s later produced a higher than average amount of oxidized indicator. Addition of indicator after NO + ONOO- followed by subsequent ONOO- addition gave similar results, suggesting the formation of a relatively stable, oxidant-activated NO/ONOO- adduct. At pH 7.4, hypochlorous acid was 66% efficient at oxidizing DHR but only 9% with DCDHF. Neither H2O2 (1 mM) nor superoxide flux alone produced significant indicator oxidation. Oxidation of DCDHF by horseradish peroxidase (HRP) plus H2O2 was considerably less efficient than oxidation of DHR. At 20

  9. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tomonori [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)]. E-mail: tomo@rerf.or.jp; Hayashi, Ikue [Central Research Laboratory, Hiroshima University Faculty of Dentistry, Hiroshima (Japan); Shinohara, Tomoko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Morishita, Yukari [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Nagamura, Hiroko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kusunoki, Yoichiro [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kyoizumi, Seishi [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Seyama, Toshio [Yasuda Women' s University, Hiroshima (Japan); Nakachi, Kei [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)

    2004-11-22

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34{sup +}/CD38{sup -}, CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34{sup +}/CD38{sup -} cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34{sup +}/CD38{sup -} cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34{sup +}/CD38{sup -} stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells and that its intracellular pH declines at an early phase in the apoptosis process.

  10. Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production.

    Science.gov (United States)

    Kim, Jae-Sung; Chang, Jong Wook; Yun, Hong Shik; Yang, Kyung Mi; Hong, Eun-Hee; Kim, Dong Hyun; Um, Hong-Duck; Lee, Kee-Ho; Lee, Su-Jae; Hwang, Sang-Gu

    2010-07-01

    The nature of the molecules underlying the radioresistance phenotype of laryngeal cancer cells remains to be established. We initially generated radioresistant laryngeal cancer cell lines from human HEp-2 cells with fractionated radiation. These RR-HEp-2 cells and isolated clones displayed more radioresistant and anti-apoptotic phenotypes than parental HEp-2 cells after radiation. Characteristics of RR-Hep-2 cell lines were confirmed by upregulation of radioresistance-related genes, such as epidermal growth factor receptor, Hsp90, and Bcl-xl. Subsequently, we examined proteome changes between HEp-2 and RR-HEp-2 cells and identified 16 proteins showing significantly altered expression levels. Interestingly, protein expression of chloride intracellular channel 1 (CLIC1) was markedly suppressed in RR-HEp-2 cells, compared with non-irradiated control cells. Suppression of CLIC1 with an indanyloxyacetic acid-94 or small interfering RNA led to radioresistance in HEp-2 cells by suppressing the radiation-induced cellular ROS level. However, ectopic overexpression of CLIC1 induced radiosensitivity in RR-HEp-2 cells via induction of ROS level after radiation, suggesting that the protein acts as a positive regulator of ROS production. Our results collectively indicate that suppression of CLIC1 contributes to acquisition of the radioresistance phenotype of laryngeal cancer cells via inhibition of ROS production, implying that this protein is an important candidate molecule for radiotherapy in radioresistant laryngeal cancer cells.

  11. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Tae Hwan Kim

    Full Text Available Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+ concentration ([Ca(2+](i and activating JNK to generate reactive oxygen species (ROS via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47(phox and p67(phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca(2+](i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47(phox and p67(phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca(2+](i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.

  12. Rapid lupus autoantigen relocalization and reactive oxygen species accumulation following ultraviolet irradiation of human keratinocytes.

    NARCIS (Netherlands)

    Lawley, W.; Doherty, A; Denniss, S; Chauhan, D; Pruijn, G.J.M.; Venrooij, W.J.W. van; Lunec, J; Herbert, K

    2000-01-01

    OBJECTIVE: In vitro treatment with ultraviolet B (UVB) induces relocalization of lupus autoantigens to the cell surface. We have addressed the relationship between autoantigen relocalization, accumulation of intracellular reactive oxygen species (ROS) and the induction of apoptosis following UVA and

  13. Reactive oxygen species in periodontitis

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2013-01-01

    Full Text Available Recent epidemiological studies reveal that more than two-third of the world′s population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN along with these cytokines, PMNs also produce reactive oxygen species (ROS superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction.

  14. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    OpenAIRE

    Jones, David A.

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro...

  15. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    Science.gov (United States)

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Rosacea, reactive oxygen species, and azelaic Acid.

    Science.gov (United States)

    Jones, David A

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

  17. Formation and Detoxification of Reactive Oxygen Species

    Science.gov (United States)

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  18. Reactive oxygen species and the cardiovascular system

    NARCIS (Netherlands)

    Y.J.H.J. Taverne (Yannick); A.J.J.C. Bogers (Ad); D.J.G.M. Duncker (Dirk); D. Merkus (Daphne)

    2013-01-01

    textabstractEver since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism

  19. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    Science.gov (United States)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  20. Reactive oxygen species enhance insulin sensitivity

    OpenAIRE

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.

    2009-01-01

    Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione ...

  1. Reactive oxygen species: toxic molecules or spark of life?

    Science.gov (United States)

    Magder, Sheldon

    2006-02-01

    Increases in reactive oxygen species (ROS) and tissue evidence of oxidative injury are common in patients with inflammatory processes or tissue injury. This has led to many clinical attempts to scavenge ROS and reduce oxidative injury. However, we live in an oxygen rich environment and ROS and their chemical reactions are part of the basic chemical processes of normal metabolism. Accordingly, organisms have evolved sophisticated mechanisms to control these reactive molecules. Recently, it has become increasingly evident that ROS also play a role in the regulation of many intracellular signaling pathways that are important for normal cell growth and inflammatory responses that are essential for host defense. Thus, simply trying to scavenge ROS is likely not possible and potentially harmful. The 'normal' level of ROS will also likely vary in different tissues and even in different parts of cells. In this paper, the terminology and basic chemistry of reactive species are reviewed. Examples and mechanisms of tissue injury by ROS as well as their positive role as signaling molecules are discussed. Hopefully, a better understanding of the nature of ROS will lead to better planned therapeutic attempts to manipulate the concentrations of these important molecules. We need to regulate ROS, not eradicate them.

  2. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function

    DEFF Research Database (Denmark)

    Indo, Hiroko P.; Hawkins, Clare L; Nakanishi, Ikuo

    2017-01-01

    Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) ...

  3. Reactive oxygen species in disease: Rebuttal of a conventional concept

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2015-09-01

    Full Text Available The production of intracellular reactive oxygen species and reactive nitrogen species has long been proposed as leading to the random deleterious modification of macromolecules (i.e., nucleic acids, proteins with an associated progressive development of the age associated systemic diseases (e.g., diabetes, Parkinson’s disease as well as contributing to the ageing process.   Superoxide anion (hydrogen peroxide and nitric oxide (peroxynitrite comprise regulated intracellular second messenger pro-oxidant systems, with specific sub-cellular locales of production and are essential for the normal function of the metabolome and cellular electro-physiology.  We have posited that the formation of superoxide anion and its metabolic product hydrogen peroxide, and nitric oxide, do not conditionally lead to random damage of macromolecular species such as nucleic acids or proteins.  Under normal physiological conditions their production is intrinsically regulated that is very much consistent with their second messenger purpose of function.   We further propose that the concept of an orally administered small molecule antioxidant as a therapy to abrogate free radical activity (to control oxidative stress is a chimera.  As such we consider that free radicals are not a major overwhelming player in the development of the chronic diseases or the ageing process.

  4. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  5. Senescence, Stress, and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ivan Jajic

    2015-07-01

    Full Text Available Generation of reactive oxygen species (ROS is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2 has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.

  6. Senescence, Stress, and Reactive Oxygen Species

    Science.gov (United States)

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz

    2015-01-01

    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  7. Production and Consumption of Reactive Oxygen Species by Fullerenes

    Science.gov (United States)

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  8. Influence of reactive oxygen species on the sterilization of microbes

    Science.gov (United States)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  9. Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion.

    Science.gov (United States)

    Tamura, Masato; Matsui, Hirofumi; Tomita, Tsutomu; Sadakata, Hisato; Indo, Hiroko P; Majima, Hideyuki J; Kaneko, Tsuyoshi; Hyodo, Ichinosuke

    2014-01-01

    Tumor invasion is the most important factor to decide patient's prognosis. The relation between reactive oxygen species and tumor invasion is mainly reported that nicotinamide adenine dinucleotide phosphate oxidase in the cell membrane is a reactive oxygen species producer for formulating an invadopodia. On the other hand, mitochondrion was known as one of the most important reactive oxygen species-producer in the cell via an energy transfer system. However, the relation between mitochondrial reactive oxygen species and the tumor invasion was not well clarified. In this study, we evaluated the relation between mitochondrial reactive oxygen species and tumor invasion using a normal gastric mucosal cell-line (RGM-1) and a cancerous mutant RGM-1 cell-line (RGK-1). Manganese superoxide dismutase-expressing RGK-1 cell-lines were used for a scavenging mitochondrial reactive oxygen species. The cells have been evaluated their movement ability as follows; cellular ruffling frequencies, wound healing assay to evaluate horizontal cellular migration, and invasion assay using matrigel to analyze vertical cellular migration. All cellular movement abilities were inhibited by scavenging mitochondrial reactive oxygen species with manganese superoxide dismutase. Therefore mitochondrial reactive oxygen species was one of factors enhancing the tumor invasion in gastric cancer.

  10. Differential reduction of reactive oxygen species by human tissue ...

    Indian Academy of Sciences (India)

    Swati Paliwal

    2017-06-24

    Jun 24, 2017 ... Keywords. Oxidative stress; reactive oxygen species; tissue-specific mesenchymal stem cells. Abbreviations: AD, adipose; AMA, Antimycin A; AU, arbitrary units; BM, bone marrow; DP, dental pulp; MFI, mean fluorescence intensity; MSC, mesenchymal stem cell; ROS, reactive oxygen species. 1. Introduction.

  11. Mitochondrial reactive oxygen species production and elimination.

    Science.gov (United States)

    Nickel, Alexander; Kohlhaas, Michael; Maack, Christoph

    2014-08-01

    Reactive oxygen species (ROS) play an important role in cardiovascular diseases, and one important source for ROS are mitochondria. Emission of ROS from mitochondria is the net result of ROS production at the electron transport chain (ETC) and their elimination by antioxidative enzymes. Both of these processes are highly dependent on the mitochondrial redox state, which is dynamically altered under different physiological and pathological conditions. The concept of "redox-optimized ROS balance" integrates these aspects and implies that oxidative stress occurs when the optimal equilibrium of an intermediate redox state is disturbed towards either strong oxidation or reduction. Furthermore, mitochondria integrate ROS signals from other cellular sources, presumably through a process termed "ROS-induced ROS release" that involves mitochondrial ion channels. Here, we attempt to integrate these recent advances in our understanding of the control of mitochondrial ROS emission and develop a concept of how in heart failure, defects in ion handling can lead to mitochondrial oxidative stress. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Chemiluminescence assay for the investigation of reactive oxygen species generator].

    Science.gov (United States)

    Kishikawa, Naoya; Kuroda, Naotaka

    2015-01-01

    Quinones play critical roles in biological systems, but are also regarded as a class of toxins that can cause oxidative stress in living cells, and the involvement of quinone-based reactive oxygen species in oxidative stress has been reported. In biological systems, quinones are reduced to semiquinone radicals by the enzyme NADPH:quinone reductase. Next, semiquinone radicals react with dissolved oxygen to form superoxide anion, which reacts with biological molecules to cause oxidative stress. On the other hand, chemiluminescence reagents such as luminol can emit chemiluminescence after oxidation by reactive oxygen species. Therefore, chemiluminescence reagents have been used widely to investigate reactive oxygen species. We have developed a sensitive and selective assay for quantifying quinones using luminol chemiluminescence. This chemiluminescence assay is based on the generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol, a reductant, followed by detection of the generated reactive oxygen by luminol. Additionally, this assay can be used to quantify the toxic herbicide, paraquat, which produces reactive oxygen species in the same manner as quinones. This review describes the development of a sensitive and selective chemiluminescence assay for investigating quinones and paraquat by utilizing their ability to generate reactive oxygen species.

  13. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?

    Science.gov (United States)

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Arif, Maaz; Arora, Nitin; Divietro, Alexander; Patel, Shivali; Olson, Kenneth R

    2016-04-01

    Stepwise one-electron reduction of oxygen to water produces reactive oxygen species (ROS) that are chemically and biochemically similar to reactive sulfide species (RSS) derived from one-electron oxidations of hydrogen sulfide to elemental sulfur. Both ROS and RSS are endogenously generated and signal via protein thiols. Given the similarities between ROS and RSS, we wondered whether extant methods for measuring the former would also detect the latter. Here, we compared ROS to RSS sensitivity of five common ROS methods: redox-sensitive green fluorescent protein (roGFP), 2', 7'-dihydrodichlorofluorescein, MitoSox Red, Amplex Red, and amperometric electrodes. All methods detected RSS and were as, or more, sensitive to RSS than to ROS. roGFP, arguably the "gold standard" for ROS measurement, was more than 200-fold more sensitive to the mixed polysulfide H2Sn(n = 1-8) than to H2O2 These findings suggest that RSS may be far more prevalent in intracellular signaling than previously appreciated and that the contribution of ROS may be overestimated. This conclusion is further supported by the observation that estimated daily sulfur metabolism and ROS production are approximately equal and the fact that both RSS and antioxidant mechanisms have been present since the origin of life, nearly 4 billion years ago, long before the rise in environmental oxygen 600 million years ago. Although ROS are assumed to be the most biologically relevant oxidants, our results question this paradigm. We also anticipate our findings will direct attention toward development of novel and clinically relevant anti-(RSS)-oxidants. Copyright © 2016 the American Physiological Society.

  14. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

    OpenAIRE

    Kowol, Christian R.; Heffeter, Petra; Miklos, Walter; Gille, Lars; Trondl, Robert; Cappellacci, Loredana; Berger, Walter; Keppler, Bernhard K.

    2011-01-01

    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-amino-pyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone a...

  15. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  16. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  17. REACTIVE OXYGEN SPECIES AT THE CROSSROADS OF INFLAMMASOME AND INFLAMMATION

    Directory of Open Access Journals (Sweden)

    Anantha eHarijith

    2014-09-01

    Full Text Available Inflammasomes form a crucial part of the innate immune system. These are multi-protein oligomer platforms that are composed of intracellular sensors which are coupled with caspase and interleukin activating systems. Nod-like receptor protein (NLRP 3, and 6 and NLRC4 and AIM2 are the prominent members of the inflammasome family. Inflammasome activation leads to pyroptosis, a process of programmed cell death distinct from apoptosis through activation of Caspase and further downstream targets such as IL-1β and IL-18 leading to activation of inflammatory cascade. Reactive oxygen species (ROS serve as important inflammasome activating signals. ROS activate inflammasome through mitogen-activated protein kinases (MAPK and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. Dysregulation of inflammasome is plays a significant role in various pathological process. Viral infections such as Dengue and Respiratory syncytial virus activate inflammasomes. Crystal compounds in silicosis and gout also activate ROS. In diabetes, inhibition of autophagy with resultant accumulation of dysfunctional mitochondria leads to enhanced ROS production activating inflammasomes. Activation of inflammasomes can be dampened by antioxidants such as SIRT-1. Inflammasome and related cascade could serve as future therapeutic targets for various pathological conditions.

  18. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species

    Science.gov (United States)

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V.

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  19. Reactive oxygen species as mediator of tumor radiosensitivity

    Directory of Open Access Journals (Sweden)

    Renu Dayal

    2014-01-01

    Full Text Available In normal functioning of the cell, there is a balance between generation and neutralization of reactive oxygen species (ROS by endogenous cellular defense machinery. Low levels of ROS inside the cells are required for normal functioning of the cell, which regulate signaling mechanisms involved in mitosis and apoptosis; excess of ROS production may cause oxidative stress leading to damage in vital cellular molecules, namely cytosolic lipids, proteins, and DNA. In the situation of intracellular redox imbalance, molecules of cells are altered by ROS leading to pathogenic state. It is to be noted that ROS is not only known to be involved in tumor induction and progression processes but also enhances tumor cell radiosensitivity. The level of ROS-mediated oxidative stress is linked to cellular radiosensitivity. In general, cancer cells exhibit high levels of ROS, which forms a target for selectively killing them by radiation. In this paper, we have reviewed how oxidative stress determines the radiosensitivity of tumor cells involving ROS in the mechanism of radiation induced tumor cell killing. It is suggested that radiation-induced ROS play a key role in the mechanism of tumor cell killing by altering the signaling network and triggering of apoptosis. Furthermore, it is pointed out that combined use of plant-derived antioxidants and radiation enhance overproduction of ROS in tumor cells leading to enhanced radiosensitivity, which may find practical applications in clinic.

  20. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Noah C. Jenkins

    2013-01-01

    Full Text Available We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.

  1. The reactive oxygen species network pathways: an essential ...

    Indian Academy of Sciences (India)

    ) genome sequences, together with molecular recourses of functional genomics and proteomics have revolutionized our understanding of reactive oxygen species (ROS) signalling network mediating disease resistance in plants. So far, ROS ...

  2. Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes.

    Science.gov (United States)

    Tobita, Seiji; Yoshihara, Toshitada

    2016-08-01

    Molecular oxygen plays an indispensable role as a terminal electron acceptor in the electron transport chain in mitochondria. Acute or chronic oxygen deprivation (hypoxia) in organisms results in various diseases, and the elucidation of the pathogenic mechanism of hypoxia-related diseases and various cellular responses to hypoxia is an urgent issue. Optical oxygen imaging methods using phosphorescent probes have opened up techniques for noninvasive imaging of the intracellular and tissue oxygen status, and oxygen-sensitive probes play a key role in the development of this approach. We expect that phosphorescent Ir(III) complexes can serve as new oxygen-sensing probes for intracellular and intravascular oxygen imaging in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evaluation of two novel methods for assessing intracellular oxygen

    International Nuclear Information System (INIS)

    Williams, Catrin F; Lloyd, David; Kombrabail, M; Vijayalakshmi, K; Krishnamoorthy, G; White, Nick

    2012-01-01

    The ability to resolve the spatio-temporal complexity of intracellular O 2 distribution is the ‘Holy Grail’ of cellular physiology. In an effort to obtain a non-invasive approach of mapping intracellular O 2 tensions, two methods of phosphorescent lifetime imaging microscopy were examined in the current study. These were picosecond time-resolved epiphosphorescence microscopy (single 0.5 µm focused spot) and two-photon confocal laser scanning microscopy with pinhole shifting. Both methods utilized nanoparticle-embedded Ru complex (45 nm diameter) as the phosphorescent probe, excited using pulsed outputs of Ti–sapphire Tsunami lasers (710–1050 nm). The former method used a 1 ps pulse width excitation beam with vertical polarization via a dichroic mirror (610 nm, XF43) and a 20× objective (NA 0.55, Nikon). Transmitted luminescence (1–2 × 10 4 counts s −1 ) was collected and time-correlated single photon counted decay times measured. Alternatively, an unmodified Zeiss LSM510 Confocal NLO microscope with 40× objective (NA 1.3) used successively shifted pinhole positions to collect image data from the lagging trail of the raster scan. Images obtained from two-photon excitation of a yeast (Schizosaccharomyces pombe) and a flagellate fish parasite (Spironucleus vortens), electroporated with Ru complex, indicated the intracellular location and magnitude of O 2 gradients, thus confirming the feasibility of optical mapping under different external O 2 concentrations. Both methods gave similar lifetimes for Ru complex phosphorescence under aerobic and anaerobic gas phases. Estimation of O 2 tensions within individual fibroblasts (human dermal fibroblast (HDF)) and mammary adenocarcinoma (MCF-7) cells was possible using epiphosphorescence microscopy. MCF-7 cells showed lower intracellular O 2 concentrations than HDF cells, possibly due to higher metabolic rates in the former. Future work should involve construction of higher resolution 3D maps of Ru coordinate

  4. Evaluation of two novel methods for assessing intracellular oxygen

    Science.gov (United States)

    Williams, Catrin F.; Kombrabail, M.; Vijayalakshmi, K.; White, Nick; Krishnamoorthy, G.; Lloyd, David

    2012-08-01

    The ability to resolve the spatio-temporal complexity of intracellular O2 distribution is the ‘Holy Grail’ of cellular physiology. In an effort to obtain a non-invasive approach of mapping intracellular O2 tensions, two methods of phosphorescent lifetime imaging microscopy were examined in the current study. These were picosecond time-resolved epiphosphorescence microscopy (single 0.5 µm focused spot) and two-photon confocal laser scanning microscopy with pinhole shifting. Both methods utilized nanoparticle-embedded Ru complex (45 nm diameter) as the phosphorescent probe, excited using pulsed outputs of Ti-sapphire Tsunami lasers (710-1050 nm). The former method used a 1 ps pulse width excitation beam with vertical polarization via a dichroic mirror (610 nm, XF43) and a 20× objective (NA 0.55, Nikon). Transmitted luminescence (1-2 × 104 counts s-1) was collected and time-correlated single photon counted decay times measured. Alternatively, an unmodified Zeiss LSM510 Confocal NLO microscope with 40× objective (NA 1.3) used successively shifted pinhole positions to collect image data from the lagging trail of the raster scan. Images obtained from two-photon excitation of a yeast (Schizosaccharomyces pombe) and a flagellate fish parasite (Spironucleus vortens), electroporated with Ru complex, indicated the intracellular location and magnitude of O2 gradients, thus confirming the feasibility of optical mapping under different external O2 concentrations. Both methods gave similar lifetimes for Ru complex phosphorescence under aerobic and anaerobic gas phases. Estimation of O2 tensions within individual fibroblasts (human dermal fibroblast (HDF)) and mammary adenocarcinoma (MCF-7) cells was possible using epiphosphorescence microscopy. MCF-7 cells showed lower intracellular O2 concentrations than HDF cells, possibly due to higher metabolic rates in the former. Future work should involve construction of higher resolution 3D maps of Ru coordinate complex lifetime

  5. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm 2 ), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  6. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis.

    Science.gov (United States)

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-08-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2',7' -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Redundant Catalases Detoxify Phagocyte Reactive Oxygen and Facilitate Histoplasma capsulatum Pathogenesis

    Science.gov (United States)

    Holbrook, Eric D.; Smolnycki, Katherine A.; Youseff, Brian H.

    2013-01-01

    Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system. PMID:23589579

  8. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation.

    Science.gov (United States)

    Nicolaije, Claudia; Koedam, Marijke; van Leeuwen, Johannes P T M

    2012-04-01

    Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization. Copyright © 2011 Wiley Periodicals, Inc.

  9. Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins.

    Science.gov (United States)

    Kim, A; Davis, R; Higuchi, M

    2015-07-16

    Reduction of mitochondrial DNA (mtDNA) content induces the reduction of oxidative phosphorylation and dependence on fermentative glycolysis, that is, the Warburg effect. In aggressive prostate cancer (PCa), the reduction of mtDNA reduces oxygen consumption, increases intracellular oxygen concentration, and induces constitutive activation of Ras. Many essential proteins for cell death, growth, differentiation, and development, such as Ras, require prenylation for subcellular localization and activation. Prenylation of a protein is defined as the attachment of isoprenoids to a cysteine residue at or near the C-terminus. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) produces isoprenoids, and is posttranslationally regulated by oxygen. We investigated a critical role of intracellular oxygen in membrane localization of prenylated proteins. Localization of prenylated proteins (H-Ras, prelamin A/C, and Rab5a) was observed in poorly differentiated PCa (PC-3) and well-differentiated PCa (LNCaP) cells. PC-3 cells exhibited high intracellular oxygen concentration, and H-Ras, prelamin A/C, and Rab5a were localized to various membranes (Golgi and plasma membrane, nuclear membrane, and early endosomes, respectively). Remarkably, exogenous hypoxia (0.2% O2) in PC-3 cells induced intracellular hypoxia and changed the localization of the prenylated proteins. H-Ras and Rab5a were translocated to cytosol, and prelamin A/C was in the nucleus forming an abnormal nuclear envelope. The localization was reversed by mevalonate indicating the involvement of mevalonate pathway. In contrast, in LNCaP cells, exhibiting low intracellular oxygen concentration, H-Ras and Rab5a were localized in the cytosol, and prelamin A/C was inside the nucleus forming an inadequate nuclear envelope. Exogenous hyperoxia (40% O2) increased the intracellular oxygen concentration and induced Ras translocation from cytosol to the membrane. Prelamin A/C was translocated to the nuclear membrane and formed a

  10. Biochemistry and Physiology of Reactive Oxygen Species in Euglena.

    Science.gov (United States)

    Ishikawa, Takahiro; Tamaki, Shun; Maruta, Takanori; Shigeoka, Shigeru

    2017-01-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP + -glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.

  11. Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea

    Directory of Open Access Journals (Sweden)

    Railson Henneberg

    2013-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the protective effects of quercetin, rutin, hesperidin and myricetin against reactive oxygen species production with the oxidizing action of tert-butylhydroperoxide in erythrocytes from normal subjects and sickle cell anemia carriers treated with hydroxyurea. METHODS: Detection of intracellular reactive oxygen species was carried out using a liposoluble probe, 2',7'-dichlorfluorescein-diacetate (DCFH-DA. A 10% erythrocyte suspension was incubated with flavonoids (quercetin, rutin, hesperidin or myricetin; 30, 50, and 100 µmol/L, and then incubated withtert-butylhydroperoxide (75 µmol/L. Untreated samples were used as controls. RESULTS: Red blood cell exposure to tert-butylhydroperoxide resulted in significant increases in the generation of intracellular reactive oxygen species compared to basal levels. Reactive oxygen species production was significantly inhibited when red blood cells were pre-incubated with flavonoids, both in normal individuals and in patients with sickle cell anemia. Quercetin and rutin had the highest antioxidant activity, followed by myricetin and hesperidin. CONCLUSION: Flavonoids, in particular quercetin and rutin, showed better antioxidant effects against damage caused by excess reactive oxygen species characteristic of sickle cell anemia. Results obtained with patients under treatment with hydroxyurea suggest an additional protective effect when associated with the use of flavonoids.

  12. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    Science.gov (United States)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  13. Reactive oxygen species is associated with cryptolepine cytotoxicity ...

    African Journals Online (AJOL)

    The objective of the present study was to determine if the cytotoxicity of CLP is as a result of metabolic activation and reactive oxygen species (ROS) generation. Involvement of metabolic activation was assessed by studying the differential toxicity of CLP to MCL-5 and cHoL, two human lymphoblastoid cell lines differing only ...

  14. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    Unknown

    < 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a.

  15. Luminometric determination of antioxidant capacity towards individual reactive oxygen species

    Czech Academy of Sciences Publication Activity Database

    Komrsková, D.; Lojek, Antonín; Hrbáč, J.; Číž, Milan

    2005-01-01

    Roč. 3, č. 1 (2005), S25 [Cells VI - Biological Days /18./. 24.10.2005-26.10.2005, České Budějovice] R&D Projects: GA ČR(CZ) GA524/01/1219 Institutional research plan: CEZ:AV0Z50040507 Keywords : chemiluminescence * reactive oxygen species * scavenger Subject RIV: BO - Biophysics

  16. Differential reduction of reactive oxygen species by human ...

    Indian Academy of Sciences (India)

    In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reductionabilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocyteswere treated with Antimycin A (AMA) to induce oxidative stress and tissue specific ...

  17. Effects of proline on photosynthesis, root reactive oxygen species ...

    African Journals Online (AJOL)

    Effects of 0.2 mM proline applied to saline nutrient solution on biomass, chlorophyll content, photosynthetic parameters, reactive oxygen species and antioxidant enzymes activities of two melon cultivars (cv. Yuhuang and cv. Xuemei) were examined. Results indicate that exogenous proline increased the fresh and dry ...

  18. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  19. Reactive oxygen species in cancer: a dance with the devil.

    Science.gov (United States)

    Schumacker, Paul T

    2015-02-09

    Reactive oxygen species (ROS) can initiate cancer, but oxidant generation in tumors leaves them vulnerable to further stresses. In this issue of Cancer Cell, Harris and colleagues show that augmenting oxidant stress in normal cells limits tumor initiation and progression. Hence, strategic targeting of antioxidant systems may undermine survival of new tumor cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.

    Science.gov (United States)

    Cordeiro, Rodrigo M

    2014-01-01

    Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. © 2013.

  1. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.

    Science.gov (United States)

    Weidinger, Adelheid; Kozlov, Andrey V

    2015-04-15

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.

  3. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Touyz R.M.

    2004-01-01

    Full Text Available Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS. ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i, a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

  4. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    Directory of Open Access Journals (Sweden)

    Nicholas G Spencer

    Full Text Available Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ substantially enhanced production of reactive oxygen species (ROS following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology.

  5. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    Science.gov (United States)

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  6. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Subhashini Bolisetty

    2013-03-01

    Full Text Available The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.

  7. Role of reactive oxygen species and Bcl-2 family proteins in TNF-α-induced apoptosis of lymphocytes.

    Science.gov (United States)

    Ryazanceva, N V; Novickiy, V V; Zhukova, O B; Biktasova, A K; Chechina, O E; Sazonova, E V; Belkina, M V; Chasovskih, N Yu; Khaitova, Z K

    2010-08-01

    We studied the in vitro apoptosis-inducing effect of recombinant TNF-α (rTNF-α) on blood lymphocytes from healthy donors. rTNF-α-induced apoptosis was accompanied by an increase in the number of cells with low mitochondrial transmembrane potential, increased intracellular content of reactive oxygen species, reduced content of Bcl-2, Bcl-xL, and Bax proteins, and elevated Bad content. The molecular mechanisms of these changes are discussed.

  8. Reactive Oxygen Species and Nitric Oxide in Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Maria Fátima Horta

    2012-01-01

    Full Text Available Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO, reactive oxygen species (ROS, and peroxynitrite (ONOO− in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.

  9. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    Science.gov (United States)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  10. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer

    Czech Academy of Sciences Publication Activity Database

    Hervouet, E.; Čížková, Alena; Demont, J.; Vojtíšková, Alena; Pecina, Petr; Franssen-van Hal, N.; Keijer, J.; Simonnet, H.; Ivánek, Robert; Kmoch, S.; Godinot, C.; Houštěk, Josef

    2008-01-01

    Roč. 29, č. 8 (2008), s. 1528-1537 ISSN 0143-3334 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA303/07/0781 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520514 Keywords : carcinoma * mitochondrial biogenesis * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.930, year: 2008

  11. Reactive Oxygen Species (ROS) generation by lunar simulants

    Science.gov (United States)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  12. Properties of reactive oxygen species by quantum Monte Carlo.

    Science.gov (United States)

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  13. The oxygen sensing signal cascade under the influence of reactive oxygen species

    Science.gov (United States)

    Acker, Helmut

    2005-01-01

    Structural and functional integrity of organ function profoundly depends on a regular oxygen and glucose supply. Any disturbance of this supply becomes life threatening and may result in severe loss of organ function. Particular reductions in oxygen availability (hypoxia) caused by respiratory or blood circulation irregularities cannot be tolerated for longer periods due to an insufficient energy supply by anaerobic glycolysis. Complex cellular oxygen sensing systems have evolved to tightly regulate oxygen homeostasis. In response to variations in oxygen partial pressure (PO2), these systems induce adaptive and protective mechanisms to avoid or at least minimize tissue damage. These various responses might be based on a range of oxygen sensing signal cascades including an isoform of the neutrophil NADPH oxidase, different electron carrier units of the mitochondrial chain such as a specialized mitochondrial, low PO2 affinity cytochrome c oxidase (aa3) and a subfamily of 2-oxoglutarate dependent dioxygenases termed HIF (hypoxia inducible factor) prolyl-hydroxylase and HIF asparaginyl hydroxylase called factor-inhibiting HIF (FIH-1). Thus, specific oxygen sensing cascades involving reactive oxygen species as second messengers may by means of their different oxygen sensitivities, cell-specific and subcellular localization help to tailor various adaptive responses according to differences in tissue oxygen availability. PMID:16321790

  14. Quantification of reactive oxygen species for photodynamic therapy

    Science.gov (United States)

    Tan, Zou; Zhang, Jinde; Lin, Lisheng; Li, Buhong

    2016-10-01

    Photodynamic therapy (PDT) is an effective therapeutic modality that uses a light source to activate light-sensitive photosensitizers to treat both oncologic and nononcological indications. Photosensitizers are excited to the long-lived triplet state, and they react with biomolecules via type I or II mechanism resulted in cell death and tumor necrosis. Free radicals and radical ions are formed by electron transfer reactions (type I), which rapidly react with oxygen leading to the production of reactive oxygen species (ROS), including superoxide ions, hydroxyl radicals and hydrogen peroxide. Singlet molecular oxygen is produced in a Type II reaction, in which the excited singlet state of the photosensitizer generated upon photon absorption by the ground-state photosensitizer molecule undergoes intersystem crossing to a long-lived triplet state. In this talk, the fundmental mechanisms and detection techniques for ROS generation in PDT will be introduced. In particular, the quantification of singlet oxygen generation for pre-clinical application will be highlighted, which plays an essential role in the establishment of robust singlet oxygen-mediated PDT dosimetry.

  15. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  16. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    Science.gov (United States)

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  17. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  18. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  19. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation.

    Science.gov (United States)

    Moon, Jae Yun; Choi, Su Jin; Heo, Cheol Ho; Kim, Hwan Myung; Kim, Hye Sun

    2017-07-01

    α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. © 2017 Federation of European Biochemical Societies.

  20. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds.

    Science.gov (United States)

    Kowol, Christian R; Heffeter, Petra; Miklos, Walter; Gille, Lars; Trondl, Robert; Cappellacci, Loredana; Berger, Walter; Keppler, Bernhard K

    2012-03-01

    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2'-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H(2)O(2). However, without extracellular reductants only weak intracellular ROS generation was observed at IC(50) levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.

  1. Nitric oxide and reactive oxygen species in limb vascular function

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Nyberg, Michael Permin; Hellsten, Ylva

    2014-01-01

    , the extent of enzymatic and non-enzymatic formation of NO and on the other hand, removal of NO, which in part is dependent on the reaction of NO with reactive oxygen species (ROS). The presence of ROS is dependent on the extent of ROS formation via mitochondria and/or enzymes such as NAD(P)H oxidase...... the bioavailability of NO but may also cause cellular damage in the cardiovascular system. Physical activity has been shown to greatly improve cardiovascular function, in part through improved bioavailability of NO, enhanced endogenous antioxidant defense and a lowering of the expression of ROS forming enzymes...

  2. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    Science.gov (United States)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  3. Reactive oxygen species inhibit catalytic activity of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Jensen, Peter Østrup

    2017-01-01

    on calcium and reducing conditions. However, reactive oxygen species (ROS) have been shown to induce citrullination of histones in granulocytes. Here we examine the ability of H2O2 and leukocyte-derived ROS to regulate PAD activity using citrullination of fibrinogen as read-out. H2O2 at concentrations above...... from stimulated leukocytes was unaffected by exogenously added H2O2 at concentrations up to 1000 µM. The role of ROS in regulating PAD activity may play an important part in preventing hypercitrullination of proteins....

  4. Nitric oxide and reactive oxygen species in plant biotic interactions.

    Science.gov (United States)

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [The role of reactive oxygen species (ROS) in arrhythmogenesis].

    Science.gov (United States)

    Tytman, Karol; Kaczmarek, Krzysztof; Lipińska, Stanisława; Wranicz, Jerzy K

    2016-01-01

    Reactive oxygen species (ROS) are the molecular oxygen derivatives that have at least one unpaired electron. Thus, ROS easily react with a number of cell structures causing a change in their functions. ROS produced in small quantities positively affect many cellular mechanisms, but in excess are responsible for the formation of oxidative stress. Oxidative stress is considered a major cause of many diseases, including cardiovascular disease. Abolition of the adverse effects of ROS on organisms in order to maintain redox homeostasis is possible thanks to antioxidants. The research conducted mainly in recent years shows that the formation of arrhythmias may also be related to the phenomenon of oxidative stress. Oxidative damage to cell membranes in particular are causing changes in ion channel activity, which proper functioning is the basis for the formation of normal heart rhythm. Antioxidants seem to play a protective role against the formation of arrhythmias. © 2016 MEDPRESS.

  6. Reactive Oxygen Species in Vascular Formation and Development

    Directory of Open Access Journals (Sweden)

    Yijiang Zhou

    2013-01-01

    Full Text Available Reactive oxygen species (ROS are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-κB, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.

  7. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    Science.gov (United States)

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  8. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency

    International Nuclear Information System (INIS)

    Lan, Ke; Murakami, Masanao; Choudhuri, Tathagata; Kuppers, Daniel A.; Robertson, Erle S.

    2006-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-Jκ, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway

  9. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Kurt M. Sowers

    2010-01-01

    Full Text Available Calcific uremic arteriolopathy (CUA/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.

  10. Effects of various physical stress factors on mitochondrial function and reactive oxygen species in rat spermatozoa

    Science.gov (United States)

    Kim, Suhee; Agca, Cansu; Agca, Yuksel

    2013-01-01

    The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage. PMID:23140582

  11. The roles of reactive oxygen metabolism in drought: not so cut and dried.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

    2014-04-01

    Drought is considered to cause oxidative stress, but the roles of oxidant-induced modifications in plant responses to water deficit remain obscure. Key unknowns are the roles of reactive oxygen species (ROS) produced at specific intracellular or apoplastic sites and the interactions between the complex, networking antioxidative systems in restricting ROS accumulation or in redox signal transmission. This Update discusses the physiological aspects of ROS production during drought, and analyzes the relationship between oxidative stress and drought from different but complementary perspectives. We ask to what extent redox changes are involved in plant drought responses and discuss the roles that different ROS-generating processes may play. Our discussion emphasizes the complexity and the specificity of antioxidant systems, and the likely importance of thiol systems in drought-induced redox signaling. We identify candidate drought-responsive redox-associated genes and analyze the potential importance of different metabolic pathways in drought-associated oxidative stress signaling.

  12. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants.

    Science.gov (United States)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2017-05-01

    Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.

  13. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  14. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  16. In situ reactive oxygen species production for tertiary wastewater treatment.

    Science.gov (United States)

    Guitaya, Léa; Drogui, Patrick; Blais, Jean François

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05 × 10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45 × 10(-5) M after 20 min of electrolysis to a concentration of 2.87 × 10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent.

  17. Reactive oxygen species in health and disease : Finding the right balance

    NARCIS (Netherlands)

    van der Wijst, Monique

    2016-01-01

    When oxygen takes up an electron, reactive oxygen species are formed. These free radicals can react with important molecules in our body (DNA, proteins), just like iron rusts (oxidation). Too many reactive oxygen species, called oxidative stress, result in cellular damage causing either cell death

  18. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen.

    Science.gov (United States)

    Patil, Pritam S; Leipzig, Nic D

    2017-08-01

    Antioxidants play an important role in regulating overabundant reactive oxygen species (ROS) in wound healing to reduce oxidative stress and inflammation. In this work, we demonstrate for the first time that functionalization of methacrylamide chitosan (MAC) with aliphatic pentadecafluoro chains, to synthesize pentadecafluoro-octanoyl methacrylamide chitosan (MACF), enhances the antioxidant capacity of the MAC base hydrogel material, while being able to deliver oxygen for future enhanced wound healing applications. As such, MACF was shown to sequester more nitric oxide (p oxygen. MACF's beneficial antioxidant capacity was further confirmed in in vitro cell culture experiments using human dermal fibroblasts stressed with 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2368-2374, 2017. © 2017 Wiley Periodicals, Inc.

  19. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production?

    Science.gov (United States)

    Holzerová, Eliška; Prokisch, Holger

    2015-06-01

    For more than 50 years, reactive oxygen species have been considered as harmful agents, which can attack proteins, lipids or nucleic acids. In order to deal with reactive oxygen species, there is a sophisticated system developed in mitochondria to prevent possible damage. Indeed, increased reactive oxygen species levels contribute to pathomechanisms in several human diseases, either by its impaired defense system or increased production of reactive oxygen species. However, in the last two decades, the importance of reactive oxygen species in many cellular signaling pathways has been unraveled. Homeostatic levels were shown to be necessary for correct differentiation during embryonic expansion of stem cells. Although the mechanism is still not fully understood, we cannot only regard reactive oxygen species as a toxic by-product of mitochondrial respiration anymore. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species.

    Science.gov (United States)

    Zhang, Shilun; Yin, Juan; Zhong, Jiang

    2017-01-01

    Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L -1 ). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.

  1. Bacterial persistence induced by salicylate via reactive oxygen species

    Science.gov (United States)

    Wang, Tiebin; El Meouche, Imane; Dunlop, Mary J.

    2017-01-01

    Persisters are phenotypic variants of regular cells that exist in a dormant state with low metabolic activity, allowing them to exhibit high tolerance to antibiotics. Despite increasing recognition of their role in chronic and recalcitrant infections, the mechanisms that induce persister formation are not fully understood. In this study, we find that salicylate can induce persister formation in Escherichia coli via generation of reactive oxygen species (ROS). Salicylate-induced ROS cause a decrease in the membrane potential, reduce metabolism and lead to an increase in persistence. These effects can be recovered by culturing cells in the presence of a ROS quencher or in an anaerobic environment. Our findings reveal that salicylate-induced oxidative stress can lead to persistence, suggesting that ROS, and their subsequent impact on membrane potential and metabolism, may play a broad role in persister formation. PMID:28281556

  2. Reactive oxygen species production and discontinuous gas exchange in insects

    Science.gov (United States)

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  3. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    Science.gov (United States)

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  4. Reactive oxygen species-activated nanomaterials as theranostic agents.

    Science.gov (United States)

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use.

  5. Redox mechanism of reactive oxygen species in exercise

    Directory of Open Access Journals (Sweden)

    Feng He

    2016-11-01

    Full Text Available It is well known that regular exercise benefits health. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS, leading to oxidative stress-related tissue damage and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Although mitochondria, NADPH oxidases and xanthine oxidase have all been identified as contributors to ROS production, the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce the body’s adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this article updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing, corresponding antioxidant defense systems as well as dietary manipulation against damage caused by ROS.

  6. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    Science.gov (United States)

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  7. Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species.

    Science.gov (United States)

    Seenivasan, Rajesh; Kolodziej, Charles; Karunakaran, Chandran; Burda, Clemens

    2017-09-01

    Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O 2 •- ) and RNS (e. g. nitric oxide radical; NO • and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials-based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  9. Endogenous mechanisms of reactive oxygen species (ROS generation

    Directory of Open Access Journals (Sweden)

    Agata Sarniak

    2016-11-01

    Full Text Available The main cellular source of reactive oxygen species (ROS is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

  10. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types.

    Science.gov (United States)

    Kruk, Joanna; Aboul-Enein, Hassan Y

    2017-01-01

    The body of evidence available from published literature during the past three decades indicates that reactive oxygen species and reactive nitrogen species can induce, promote and modulate carcinogenesis. The purpose of this review was to present the current status of knowledge on the possible role of oxidative/nitrosative stress in the development and progression of several human cancers. Moreover, we discuss briefly the formation and decomposition of oxygen and nitrogen species within cells and their physiological and damaging influences. Given that some antitumor treatments are based on the formation of ROS, we also summarize what is currently known about supplementing the diet with antioxidants. We conducted literature searches to review the recent progress toward the potential role of reactive oxygen and nitrogen species and associated oxidative stress in carcinogenesis. The epidemiological and laboratory studies showed that excessive production of reactive oxygen/ nitrogen species may lead to consequent alteration in the intracellular homeostasis and cause damage to all important cellular components when the excess of oxidants is not balanced by antioxidant defence and/or DNA repair mechanisms. Chronic oxidative stress can drive carcinogenesis by altering expression of cancer-related genes causing mutation and transformation. There is now common agreement that reactive oxygen and nitrogen species are involved in the development and progression of several human cancers like breast, prostate, colorectal, gynecological, cervical, eye, skin, leukemia, gastric. Antioxidant supplements at low doses can promote health, while excess supplementation can be harmful and even carcinogenic. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies.

    Science.gov (United States)

    Fan, Lampson M; Li, Jian-Mei

    2014-01-01

    Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    Directory of Open Access Journals (Sweden)

    Rachel McCormick

    2016-08-01

    Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner.

  13. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  14. Reactive Oxygen and Nitrogen Species in Pathogenesis of Vascular Complications of Diabetes

    Directory of Open Access Journals (Sweden)

    Seok Man Son

    2012-06-01

    Full Text Available Macrovascular and microvascular diseases are currently the principal causes of morbidity and mortality in subjects with diabetes. Disorders of the physiological signaling functions of reactive oxygen species (superoxide and hydrogen peroxide and reactive nitrogen species (nitric oxide and peroxynitrite are important features of diabetes. In the absence of an appropriate compensation by the endogenous antioxidant defense network, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause cellular damage and contribute to the vascular complications of diabetes. It has recently been suggested that diabetic subjects with vascular complications may have a defective cellular antioxidant response against the oxidative stress generated by hyperglycemia. This raises the concept that antioxidant therapy may be of great benefit to these subjects. Although our understanding of how hyperglycemia-induced oxidative stress ultimately leads to tissue damage has advanced considerably in recent years, effective therapeutic strategies to prevent or delay the development of this damage remain limited. Thus, further investigation of therapeutic interventions to prevent or delay the progression of diabetic vascular complications is needed.

  15. Hyperglycaemia modifies energy metabolism and reactive oxygen species formation in endothelial cells in vitro.

    Science.gov (United States)

    Dymkowska, Dorota; Drabarek, Beata; Podszywałow-Bartnicka, Paulina; Szczepanowska, Joanna; Zabłocki, Krzysztof

    2014-01-15

    There is significant evidence for an involvement of reactive oxygen species (ROS) in the pathogenesis of diabetic vascular complications through many metabolic and structural derangements. However, despite the advanced knowledge on the crucial role of ROS in cardiovascular damage, their intracellular source in endothelial cells exposed to high concentrations of glucose has not been precisely defined. Moreover, the molecular mechanism of action of elevated glucose on mitochondria has not been fully elucidated. The main aim of this study was to describe changes in the mitochondrial metabolism of human umbilical vein endothelial cells (HUVECs) treated with high glucose concentrations and to indicate the actual source of ROS in these cells. HUVECs exposed to 30 mM glucose exhibited an increased content of vascular adhesive molecule-1 (VCAM-1) and an excessive ROS production. Faster oxygen consumption and increased abundance of selected respiratory complexes coexist with slightly declined mitochondrial membrane potential and substantially elevated amount of uncoupling protein-2 (UCP2). Inhibition of NADPH oxidase (NOX) and modification of mitochondrial ROS generation with a mitochondrial uncoupler or respiratory chain inhibitors allowed concluding that the major source of ROS in HUVECs exposed to hyperglycaemic conditions is NOX. The mitochondrial respiratory chain seems not to participate in this phenomenon. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osami [National Inst. of Radiological Sciences, Chiba (Japan). Research Center for Radiation Safety

    2003-03-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, {alpha}-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H{sub 2}O{sub 2} at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  17. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  18. NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system?

    NARCIS (Netherlands)

    van Heerebeek, L.; Meischl, C.; Stooker, W.; Meijer, C. J. L. M.; Niessen, H. W. M.; Roos, D.

    2002-01-01

    Reactive oxygen species play an important role in a variety of (patho)physiological vascular processes. Recent publications have produced evidence of a role for putative non-phagocyte NADP oxidase(s) in the vascular production of reactive oxygen species. In the present review, we discuss the

  19. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.

    Science.gov (United States)

    Berry, Brandon J; Trewin, Adam J; Amitrano, Andrea M; Kim, Minsoo; Wojtovich, Andrew P

    2018-04-04

    Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψ m ) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  1. Selective degeneration of oligodendrocytes mediated by reactive oxygen species.

    Science.gov (United States)

    Griot, C; Vandevelde, M; Richard, A; Peterhans, E; Stocker, R

    1990-01-01

    The mechanism underlying demyelination in inflammatory canine distemper encephalitis is uncertain. Macrophages and their secretory products are thought to play an important effector role in this lesion. Recently, we have shown that anti-canine distemper virus antibodies, known to occur in chronic inflammatory lesions, stimulate macrophages leading to the secretion of reactive oxygen species (ROS). To investigate whether ROS could be involved in demyelination, dog glial cell cultures were exposed to xanthine/xanthine oxidase (X/XO), a system capable of generating O2-. This treatment resulted in a specific time-dependent degeneration and loss of oligodendrocytes, the myelin producing cells of the central nervous system. Initial degeneration was not associated with a decrease in viability of oligodendrocytes as judged by trypan blue and propidium iodide exclusion. Astrocytes and brain macrophages were not affected morphologically by this treatment. Further, an evaluation of the effect of several ROS scavengers, transition metal chelators and inhibitors of poly (ADP-ribose) polymerase suggests that a metal dependent formation of .OH or a similar highly oxidizing species could be responsible for the observed selective damage to oligodendrocytes.

  2. Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation.

    Science.gov (United States)

    McElroy, Pallavi B; Liang, Li-Ping; Day, Brian J; Patel, Manisha

    2017-12-01

    Inflammation has been identified as an important mediator of seizures and epileptogenesis. Understanding the mechanisms underlying seizure-induced neuroinflammation could lead to the development of novel therapies for the epilepsies. Reactive oxygen species (ROS) are recognized as mediators of seizure-induced neuronal damage and are known to increase in models of epilepsies. ROS are also known to contribute to inflammation in several disease states. We hypothesized that ROS are key modulators of neuroinflammation i.e. pro-inflammatory cytokine production and microglial activation in acquired epilepsy. The role of ROS in modulating seizure-induced neuroinflammation was investigated in the pilocarpine model of temporal lobe epilepsy (TLE). Pilocarpine-induced status epilepticus (SE) resulted in a time-dependent increase in pro-inflammatory cytokine production in the hippocampus and piriform cortex. Scavenging ROS with a small-molecule catalytic antioxidant decreased SE-induced pro-inflammatory cytokine production and microglial activation, suggesting that ROS contribute to SE-induced neuroinflammation. Scavenging ROS also attenuated phosphorylation of ribosomal protein S6, the downstream target of the mammalian target of rapamycin (mTOR) pathway indicating that this pathway might provide one mechanistic link between SE-induced ROS production and inflammation. Together, these results demonstrate that ROS contribute to SE-induced cytokine production and antioxidant treatment may offer a novel approach to control neuroinflammation in epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease.

    Science.gov (United States)

    Heller, Jens; Tudzynski, Paul

    2011-01-01

    Reactive oxygen species (ROS) play a major role in pathogen-plant interactions: recognition of a pathogen by the plant rapidly triggers the oxidative burst, which is necessary for further defense reactions. The specific role of ROS in pathogen defense is still unclear. Studies on the pathogen so far have focused on the importance of the oxidative stress response (OSR) systems to overcome the oxidative burst or of its avoidance by effectors. This review focuses on the role of ROS for fungal virulence and development. In the recent years, it has become obvious that (a) fungal OSR systems might not have the predicted crucial role in pathogenicity, (b) fungal pathogens, especially necrotrophs, can actively contribute to the ROS level in planta and even take advantage of the host's response, (c) fungi possess superoxide-generating NADPH oxidases similar to mammalian Nox complexes that are important for pathogenicity; however, recent data indicate that they are not directly involved in pathogen-host communication but in fungal differentiation processes that are necessary for virulence. Copyright © 2011 by Annual Reviews. All rights reserved.

  4. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Highlights: ► Matairesinol suppresses mitochondrial ROS generation during hypoxia. ► Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. ► Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1α in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  5. Nitric oxide and reactive oxygen species in the nucleus revisited.

    Science.gov (United States)

    Provost, Chantale; Choufani, Faten; Avedanian, Levon; Bkaily, Ghassan; Gobeil, Fernand; Jacques, Danielle

    2010-03-01

    Recent work from our group showed that the nuclear envelope membranes contain several G protein-coupled receptors, including prostaglandin E2 (EP3R) and endothelin-1 (ET-1) receptors. Activation of EP3R increased endothelial nitric oxide synthase (eNOS) RNA expression in nuclei. eNOS and inducible NOS (iNOS) are reported to also be present at the nuclear level. Furthermore, reactive oxygen species (ROS) were also localized at the nuclear level. In this review, we show that stimulation with NO donor sodium nitroprusside results in an increase of intranuclear calcium that was dependent on guanylate cyclase activation, but independent of MAPK. This increase in nuclear calcium correlated with an increase in nuclear transcription of iNOS. H2O2 and ET-1 increase both cytosolic and nuclear ROS in human endocardial endothelial cells and in human aortic vascular smooth muscle cells. This increase in ROS levels by H2O2 and ET-1 was reversed by the antioxidant glutathione. In addition, our results strongly suggest that cytosolic signalization is not only transmitted to the nucleus but is also generated by the nucleus. Furthermore, we demonstrate that oxidative stress can be sensed by the nucleus. These results highly suggest that ROS formation is also generated directly by the nucleus and that free radicals may contribute to ET-1 regulation of nuclear Ca2+ homeostasis.

  6. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Science.gov (United States)

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  7. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. Copyright © 2014. Published by Elsevier B.V.

  8. Reactive Nitrogen and Oxygen Intermediates in Patients with Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Erel Ozcan

    1999-01-01

    Full Text Available The metabolisms of reactive nitrogen and oxygen intermediates (RNI and ROI in patients with cutaneous leishmaniasis (CL were investigated and compared with those of healthy subjects. To determine RNI metabolism, nitrite plus nitrate concentrations were measured spectrophotometrically. Nitrite concentration in plasma was determined directly by the Griess method. Nitrate levels in plasma were measured after reduction into nitrite by using copper-cadmium-zinc. ROI metabolism was evaluated by measuring erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Plasma nitrite plus nitrate levels and erythrocyte superoxide dismutase activity were higher in the patient group than healthy subjects (p<0.01. In contrast, erythrocyte catalase and glutathione peroxidase activities were lower (p<0.05, p<0.01, respectively. ROI metabolism was altered in relation to hydrogen peroxide elevation in patients with CL. These alterations in ROI enable nitric oxide (NO to amplify its leishmanicidal effect. The determination of ROI and RNI in patients with CL may be a useful tool to evaluate effector mechanisms of NO and clinical manifestations.

  9. Reactive oxygen species: players in the cardiovascular effects of testosterone

    Science.gov (United States)

    Carneiro, Fernando S.; Carvalho, Maria Helena C.; Reckelhoff, Jane F.

    2015-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  10. Reactive oxygen species a double-edged sword for mesothelioma

    Science.gov (United States)

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  11. Effect of antibiotics on the generation of reactive oxygen species.

    Science.gov (United States)

    Miyachi, Y; Yoshioka, A; Imamura, S; Niwa, Y

    1986-04-01

    The relative antioxidant efficacy, in vitro, of several antibiotics was examined by studying their effects on the generation of reactive oxygen species (ROS) using zymosan-stimulated polymorphonuclear leukocytes (PMNL) and the cell-free, xanthine-xanthine oxidase system. The species investigated are superoxide radical anion (O2-.), hydrogen peroxide (H2O2), and hydroxyl radical (OH.). Three tetracyclines (tetracycline HCl, oxytetracycline HCl, and minocycline HCl), erythromycin, cephalexin, penicillin G, chloramphenicol, and streptomycin were used as test drugs. At concentrations comparable to therapeutic blood levels, tetracycline HCl, oxytetracycline HCl, minocycline HCl, and erythromycin inhibited some of the ROS production by PMNL. In the xanthine-xanthine oxidase system, only minocycline HCl suppressed the H2O2 level. Cephalexin, penicillin G, chloramphenicol, and streptomycin did not affect any of the ROS examined at the concentrations tested. The capacity of some of these agents to inhibit ROS generation by PMNL may account, in part, for their efficacy in inflammatory skin diseases such as acne vulgaris. The antioxidant effect of these antibiotics does not stem from their capability to scavenge ROS, but originates rather from their effect on PMNL cell function directly with resultant anti-inflammatory effects on the inflammatory processes.

  12. Generation of Reactive Oxygen Species from Silicon Nanowires

    Directory of Open Access Journals (Sweden)

    Stephen S. Leonard

    2014-01-01

    Full Text Available Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H 2 O 2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H 2 O 2 , RAW 264.7 cells, and rat alveolar macrophages for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H 2 O 2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.

  13. Curcumin-induced inhibition of cellular reactive oxygen species ...

    Indian Academy of Sciences (India)

    Unknown

    To measure intracellular ROS production, cells were loaded with ... ROS production. Tg is a pharmacological specific inhibitor of sarcoplasmic endoplasmic reticular calcium (SERCA). ATPases and cells treated with Tg exhibit depletion of intracellular .... The dietary pigment curcumin reduces endothelial tissue fac- tor gene ...

  14. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling.

    Science.gov (United States)

    Kuksal, Nidhi; Chalker, Julia; Mailloux, Ryan J

    2017-10-26

    The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.

  15. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    Science.gov (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  16. Comparative Study of Different Methods to Determine the Role of Reactive Oxygen Species Induced by Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nigar A. Najim

    2016-08-01

    Full Text Available Accumulation of reactive oxygen species (ROS followed by an increase in oxidative stress is associated with cellular responses to nanoparticle induced cell damages. Finding the best method for assessing intracellular ROS production is the key step in the detection of oxidative stress induced injury. This study evaluates and compares four different methods for the measurement of intracellular ROS generation using fluorogenic probe, 2´,7´-dichlorofluorescein diacetate (DCFH-DA. Hydrogen peroxide (H2O2 was utilised as a positive control to assess the reactivity of the probe. Spherically shaped zinc oxide (ZnO nanoparticles with an average particle size of 85.7 nm were used to determine the diverse roles of ROS in nanotoxicity in Hs888Lu and U937 cell lines. The results showed that different methods exhibit different patterns of ROS measurement. In conclusion this study found that the time point at which the DCFH-DA is added to the reaction, the incubation time and the oxidative species that is responsible for the oxidation of DCFH, have impact on the intracellular ROS measurement.

  17. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs.

    Science.gov (United States)

    Donaghy, Ludovic; Hong, Hyun-Ki; Jauzein, Cécile; Choi, Kwang-Sik

    2015-01-01

    Reactive oxygen and nitrogen species (ROS and RNS) are naturally produced in all cells and organisms. Modifications of standard conditions alter reactive species generation and may result in oxidative stress. Because of the degradation of marine ecosystems, massive aquaculture productions, global change and pathogenic infections, oxidative stress is highly prevalent in marine bivalve molluscs. Haemocytes of bivalve molluscs produce ROS and RNS as part of their basal metabolism as well as in response to endogenous and exogenous stimuli. However, sources and pathways of reactive species production are currently poorly deciphered in marine bivalves, potentially leading to misinterpretations. Although sources and pathways of ROS and RNS productions are highly conserved between vertebrates and invertebrates, some uncommon pathways seem to only exist in marine bivalves. To understand the biology and pathobiology of ROS and RNS in haemocytes of marine bivalves, it is necessary to characterise their sources and pathways of production. The aims of the present review are to discuss the currently known and unknown intracellular sources of reactive oxygen and nitrogen species in marine bivalve molluscs, in light of terrestrial vertebrates, and to expose principal pitfalls usually encountered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Directory of Open Access Journals (Sweden)

    Nayansi Jha

    2017-01-01

    Full Text Available The generation of reactive oxygen and nitrogen species (RONS has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.

  19. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  20. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  1. Time-resolved luminescence imaging of intracellular oxygen levels based on long-lived phosphorescent iridium(III) complex.

    Science.gov (United States)

    Liu, Shujuan; Zhang, Yangliu; Liang, Hua; Chen, Zejing; Liu, Ziyu; Zhao, Qiang

    2016-07-11

    Time-resolved luminescence imaging of intracellular oxygen levels has been demonstrated based on long-lived phosphorescent signal. A phosphorescent dinuclear iridium(III) complex Ir1 has been designed and synthesized, which exhibits excellent optical properties, such as high quantum yields, large Stokes shift, high photostability and long emission lifetime. The phosphorescent intensity and lifetime of complex are very sensitive to oxygen levels. Thus, the application of Ir1 for monitoring intracellular oxygen levels has been realized successfully. Especially, utilizing the advantageous long emission lifetime of Ir1, the background fluorescence interference could be eliminated effectively by using the photoluminescence lifetime imaging and time-gated luminescence imaging techniques, improving the signal-to-noise ratios in bioimaging.

  2. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    International Nuclear Information System (INIS)

    Wells, Peter G.; Bhuller, Yadvinder; Chen, Connie S.; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C.; Kim, Perry M.; Laposa, Rebecca R.; McCallum, Gordon P.; Nicol, Christopher J.; Parman, Toufan; Wiley, Michael J.; Wong, Andrea W.

    2005-01-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  3. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  4. The connection of monocytes and reactive oxygen species in pain.

    Directory of Open Access Journals (Sweden)

    Dagmar Hackel

    Full Text Available The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS and downstream products elicit pain by stimulation of transient receptor potential (TRP channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1, was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA rats, which lack p47(phox, a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD, catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study

  5. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men.

    Science.gov (United States)

    Desai, Nisarg; Sharma, Rakesh; Makker, Kartikeya; Sabanegh, Edmund; Agarwal, Ashok

    2009-11-01

    To define physiologic levels of reactive oxygen species in infertile men and establish a cutoff value of reactive oxygen species level in neat semen with a high sensitivity and specificity to differentiate infertile men from fertile donors (controls). Reactive oxygen species levels were measured in the neat semen samples (n = 51) from fertile donors and infertile patients (n = 54). Reproductive research laboratory at a tertiary care hospital. Infertile patients from male infertility clinic. Reactive oxygen species measurement in neat semen sample using luminol-based chemiluminescence method, receiver operating characteristic curves. Seminal reactive oxygen species levels, cutoff value, sensitivity and specificity, positive and negative predictive values. The best cutoff value to distinguish between healthy fertile donors and infertile men was 0.0185 x 10(6) counted photons per minute/20 x 10(6) sperm. At this threshold, the specificity was 82% and the sensitivity was 78%. This value can be defined as basal reactive oxygen species level in infertile men. Reactive oxygen species levels in neat semen samples as measured by luminol-based chemiluminescence are a highly specific and sensitive test in the diagnosis of infertility. This test also may help clinicians treat patients with seminal oxidative stress.

  6. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants.

    Science.gov (United States)

    Pucciariello, Chiara; Perata, Pierdomenico

    2017-04-01

    Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O 2 ). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O 2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O 2 -dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O 2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O 2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO - low O 2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances. © 2016 John Wiley & Sons Ltd.

  7. Leishmania donovani activates nuclear transcription factor-κB in macrophages through reactive oxygen intermediates

    International Nuclear Information System (INIS)

    Km Singh, Vandana; Balaraman, Sridevi; Tewary, Poonam; Madhubala, Rentala

    2004-01-01

    Interaction of Leishmania donovani with macrophages antagonizes host defense mechanisms by interfering with a cascade of cell signaling processes in the macrophages. An early intracellular signaling event that follows receptor engagement is the activation of transcription factor NF-κB. It has been reported earlier that NF-κB-dependent signaling pathway regulates proinflammatory cytokine release. We therefore investigated the effect of L. donovani infectivity on this nuclear transcription factor in macrophage cell line J774A.1. Both L. donovani and its surface molecule lipophosphoglycan (LPG) resulted in a dose- and time-dependent activation of NF-κB-DNA binding activity in an electrophoretic mobility shift assay. We also report the involvement of IκB-α and IκB-β in the persistent activation of NF-κB by L. donovani. We demonstrate that the NF-κB activation was independent of viability of the parasite. Electrophoretic mobility supershift assay indicated that the NF-κB complex consists of p65 and c-rel subunits. The interaction of parasite with the macrophages and not the cellular uptake was important for NF-κB activation. Both p38 and ERK mitogen activated protein kinase (MAP) activation appears to be necessary for NF-κB activation by LPG. Preincubation of cells with antioxidants resulted in inhibition of L. donovani induced NF-κB activation, thereby suggesting a potential role of reactive oxygen species in L. donovani induced intracellular signaling. The present data indicate that antioxidants could play an important role in working out various therapeutic modalities to control leishmaniasis

  8. Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa.

    Science.gov (United States)

    Martínez-Pastor, Felipe; Aisen, Eduardo; Fernández-Santos, María Rocío; Esteso, Milagros C; Maroto-Morales, Alejandro; García-Alvarez, Olga; Garde, J Julián

    2009-02-01

    Fe(2)(+)/ascorbate, hydrogen peroxide (H(2)O(2)), and hypoxanthine/xanthine oxidase (XOD) are commonly used for inducing oxidative stress on spermatozoa. A comparative study of these agents was carried out on thawed spermatozoa from red deer. First, we tested a high, medium, and low concentration of each agent: 100, 10, and 1 microM Fe(2)(+) (hydroxyl radical generator); 1 mM, 100, and 10 microM H(2)O(2); and 100, 10, and 1 mU/ml XOD (superoxide and H(2)O(2) generator), incubated at 37 degrees C for 180 min. Intracellular reactive oxygen species (ROS; H(2)DCFDA) increased with dose and time similarly for the three systems at each concentration level. Motility and mitochondrial membrane potential (Deltapsi(m)) were considerably decreased by H(2)O(2) (1 mM and 100 microM) and XOD (100 and 10 mU/ml). Only 1 mM H(2)O(2) reduced viability. The antioxidant Trolox (10 microM) reduced intracellular ROS, but could not prevent the H(2)O(2) or XOD effects. In a second experiment, YO-PRO-1 and M540 were used as apoptotic and membrane stability markers respectively. Only H(2)O(2) increased the proportion of apoptotic and membrane-destabilized spermatozoa. Catalase added to XOD prevented Deltapsi(m) loss, confirming that H(2)O(2) was the causative agent, not superoxide. In a third experiment, caspase activation was tested using the (FAM-VAD-FMK) probe. Viable spermatozoa with activated caspases could be detected in untreated samples, and only H(2)O(2) increased their proportion after 60 min. There were important differences between ROS generators, H(2)O(2) being the most cytotoxic. Although H(2)O(2) and XOD caused Deltapsi(m) dissipation, this was not reflected in increasing apoptotic markers.

  9. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  10. DMPD: NF-kappaB activation by reactive oxygen species: fifteen years later. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16723122 NF-kappaB activation by reactive oxygen species: fifteen years later. Gloi...svg) (.html) (.csml) Show NF-kappaB activation by reactive oxygen species: fifteen years later. PubmedID 167...23122 Title NF-kappaB activation by reactive oxygen species: fifteen years later.

  11. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.

    Science.gov (United States)

    Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2009-12-10

    Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS.

  12. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant.

    Science.gov (United States)

    Jiang, Hong Sheng; Yin, Li Yan; Ren, Na Na; Zhao, Su Ting; Li, Zhi; Zhi, Yongwei; Shao, Hui; Li, Wei; Gontero, Brigitte

    2017-03-01

    The rapid growth in silver nanoparticles (AgNPs) commercialization has increased environmental exposure, including aquatic ecosystem. It has been reported that the AgNPs have damaging effects on photosynthesis and induce oxidative stress, but the toxic mechanism of AgNPs is still a matter of debate. In the present study, on the model aquatic higher plant Spirodela polyrhiza, we found that AgNPs affect photosynthesis and significantly inhibit Photosystem II (PSII) maximum quantum yield (F v /F m ) and effective quantum yield (Φ PSII ). The changes of non-photochemical fluorescence quenching (NPQ), light-induced non-photochemical fluorescence quenching [Y(NPQ)] and non-light-induced non-photochemical fluorescence quenching [Y(NO)] showed that AgNPs inhibit the photo-protective capacity of PSII. AgNPs induce reactive oxygen species (ROS) that are mainly produced in the chloroplast. The activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) was also very sensitive to AgNPs. The internalized Ag, regardless of whether the exposure was Ag +  or AgNPs had the same capacity to generate ROS. Our results support the hypothesis that intra-cellular AgNP dissociate into high toxic Ag + . Rubisco inhibition leads to slowing down of CO 2 assimilation. Consequently, the solar energy consumption decreases and then the excess excitation energy promotes ROS generation in chloroplast.

  13. Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone.

    Science.gov (United States)

    Sypniewski, Daniel; Szkaradek, Natalia; Loch, Tomasz; Waszkielewicz, Anna M; Gunia-Krzyżak, Agnieszka; Matczyńska, Daria; Sołtysik, Dagna; Marona, Henryk; Bednarek, Ilona

    2017-11-08

    Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.

  14. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  15. The role of reactive oxygen species in the antimicrobial activity of pyochelin

    Directory of Open Access Journals (Sweden)

    Kuan Shion Ong

    2017-07-01

    Full Text Available The increase in prevalence of antimicrobial-resistant bacteria (ARB is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values of 3.13 µg/mL (6.26 µg/mL and 6.26 µg/mL (25.00 µg/mL against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS over time, which subsequently caused a significant increase in malondialdehyde (MDA production (a marker for lipid peroxidation and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay. This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.

  16. The role of reactive oxygen species in the antimicrobial activity of pyochelin.

    Science.gov (United States)

    Ong, Kuan Shion; Cheow, Yuen Lin; Lee, Sui Mae

    2017-07-01

    The increase in prevalence of antimicrobial-resistant bacteria (ARB) is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values) of 3.13 µg/mL (6.26 µg/mL) and 6.26 µg/mL (25.00 µg/mL) against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain) in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS) over time, which subsequently caused a significant increase in malondialdehyde (MDA) production (a marker for lipid peroxidation) and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay). This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.

  17. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  18. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  19. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Somaiya Mateen

    Full Text Available Rheumatoid arthritis (RA is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120 and healthy controls (53 were evaluated for the oxidant-antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxidation and DNA damage. The level of various enzymatic and non-enzymatic antioxidants was also monitored. Correlation analysis was also performed for analysing the association between ROS and various other parameters.Intracellular ROS formation, lipid peroxidation (MDA level, protein oxidation (carbonyl level and thiol level and DNA damage were detected in the blood of RA patients. Antioxidant status was evaluated by FRAP assay, DPPH reduction assay and enzymatic (SOD, catalase, GST, GR and non-enzymatic (vitamin C and GSH antioxidants.RA patients showed a higher ROS production, increased lipid peroxidation, protein oxidation and DNA damage. A significant decline in the ferric reducing ability, DPPH radical quenching ability and the levels of antioxidants has also been observed. Significant correlation has been found between ROS and various other parameters studied.RA patients showed a marked increase in ROS formation, lipid peroxidation, protein oxidation, DNA damage and decrease in the activity of antioxidant defence system leading to oxidative stress which may contribute to tissue damage and hence to the chronicity of the disease.

  20. Eltrombopag modulates reactive oxygen species and decreases acute myeloid leukemia cell survival.

    Directory of Open Access Journals (Sweden)

    Anna Kalota

    Full Text Available Previous studies have demonstrated that the small molecule thrombopoietin (TPO mimetic, eltrombopag (E, induces apoptosis in acute myeloid leukemia (AML cells. Here, we sought to define the mechanism of the anti-leukemic effect of eltrombopag. Our studies demonstrate that, at a concentration of 5 μM E in 2% serum, E induces apoptosis in leukemia cells by triggering PARP cleavage and activation of caspase cascades within 2-6 hours. The induction of apoptotic enzymes is critically dependent on drug concentration and the concentration of serum. This effect is not associated with an alteration in mitochondrial potential but is associated with a rapid decrease in a reactive oxygen species (ROS in particular hydrogen peroxide (H2O2. Interestingly, E also decreases mitochondrial maximal and spare respiratory capacities suggesting an induced mitochondrial dysfunction that may not be readily apparent under basal conditions but becomes manifest only under stress. Co-treatment of MOLM14 AML cells with E plus Tempol or H2O2 provides a partial rescue of cell toxicity. Ferric ammonioum citrate (FAC also antagonized the E induced toxicity, by inducing notable increase in ROS level. Overall, we propose that E dramatically decreases ROS levels leading to a disruption of AML intracellular metabolism and rapid cell death.

  1. Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells

    Science.gov (United States)

    Cen, Juan; Zhang, Li; Liu, Fangfang

    2016-01-01

    Reactive oxygen species (ROS) play an important role in multidrug resistance (MDR). This study aimed to investigate the effects of long-term ROS alteration on MDR in MCF-7 cells and to explore its underlying mechanism. Our study showed both long-term treatments of H2O2 and glutathione (GSH) led to MDR with suppressed iROS levels in MCF-7 cells. Moreover, the MDR cells induced by 0.1 μM H2O2 treatment for 20 weeks (MCF-7/ROS cells) had a higher viability and proliferative ability than the control MCF-7 cells. MCF-7/ROS cells also showed higher activity or content of intracellular antioxidants like glutathione peroxidase (GPx), GSH, superoxide dismutase (SOD), and catalase (CAT). Importantly, MCF-7/ROS cells were characterized by overexpression of MDR-related protein 1 (MRP1) and P-glycoprotein (P-gp), as well as their regulators NF-E2-related factor 2 (Nrf2), hypoxia-inducible factor 1 (HIF-1α), and the activation of PI3K/Akt pathway in upstream. Moreover, several typical MDR mediators, including glutathione S-transferase-π (GST-π) and c-Myc and Protein Kinase Cα (PKCα), were also found to be upregulated in MCF-7/ROS cells. Collectively, our results suggest that ROS may be critical in the generation of MDR, which may provide new insights into understanding of mechanisms of MDR. PMID:28058088

  2. Hyperthermia Induces Apoptosis through Endoplasmic Reticulum and Reactive Oxygen Species in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Chun-Han Hou

    2014-09-01

    Full Text Available Osteosarcoma (OS is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS.

  3. Reactive oxygen species and cancer paradox: To promote or to suppress?

    Science.gov (United States)

    Galadari, Sehamuddin; Rahman, Anees; Pallichankandy, Siraj; Thayyullathil, Faisal

    2017-03-01

    Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Balancing the generation and elimination of reactive oxygen species

    Science.gov (United States)

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  5. Direct and Indirect Photoreactions of Chromophoric Dissolved Organic Matter: Roles of Reactive Oxygen Species and Iron

    National Research Council Canada - National Science Library

    Goldstone, Jared

    2002-01-01

    ...), thus acting as a sink for CDOM and photodecomposition may proceed both via direct photochemical reactions or via indirect processes, involving photochemically generated intermediates such as reactive oxygen species (ROS). Superoxide (O2...

  6. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  7. Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Piero Sestili

    2015-01-01

    Full Text Available According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species’ formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species.

  8. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  9. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    Science.gov (United States)

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Role of reactive oxygen species in extracellular signal-regulated ...

    Indian Academy of Sciences (India)

    Unknown

    may contribute to neuronal death is through their ability to influence critical molecules within intracellular signal- ling cascades. Several recent studies indicate ..... contribute to neuronal death and dysfunction in Parkin- son's disease and other neurodegenerative diseases with overlapping histopathological features (Chu et ...

  11. Curcumin-induced inhibition of cellular reactive oxygen species ...

    Indian Academy of Sciences (India)

    Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably ...

  12. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays.

    Science.gov (United States)

    Bhatter, Purva D; Gupta, Pooja D; Birdi, Tannaz J

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.

  13. Monascus purpureus induced apoptosis on gastric cancer cell by scavenging mitochondrial reactive oxygen species.

    Science.gov (United States)

    Kurokawa, Hiromi; Ito, Hiromu; Matsui, Hirofumi

    2017-11-01

    Monascus purpureus is a red dye derived from yeast rice and has been used as color additives for food in East Asia. Monascus purpureus consists of several bioactive components. Some of these components work as a radical scavenger, thus monascus purpureus would also eliminate reactive oxygen species. Cancer cells maintain the high level of reactive oxygen species than normal cell and are death by imbalance in pro-oxidant/antioxidant homeostasis. In this study, we investigated whether monascus purpureus induced cancer specific cell death by scavenging reactive oxygen species. Compared to normal cell, monascus purpureus had cancer specific cytotoxicity. Monascus purpureus and lovastatin, its component, scavenged free radicals caused by a xanthine/xanthine oxidase system, thus Monascus purpureus is likely to scavenge reactive oxygen species by a synergistic effect between lovastatin and other components. Monascus purpureus also decreased reactive oxygen species derived from mitochondria in cancer cells, and cellular apoptosis was induced via activation of caspase-9. Induction of apoptosis by reduction of reactive oxygen species generation decreased acid ceramidase, and this mechanism could be involved with increasing ceramide accumulation in cells.

  14. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri.

    Science.gov (United States)

    Song, K-J; Jang, Y S; Lee, Y A; Kim, K A; Lee, S K; Shin, M H

    2011-07-01

    Naegleria fowleri, a free-living amoeba, is the causative pathogen of primary amoebic meningoencephalitis in humans and experimental mice. N. fowleri is capable of destroying tissues and host cells through lytic necrosis. However, the mechanism by which N. fowleri induces host cell death is unknown. Electron microscopy indicated that incubation of Jurkat T cells with N. fowleri trophozoites induced necrotic morphology of the Jurkat T cells. N. fowleri also induced cytoskeletal protein cleavage, extensive poly (ADP-ribose) polymerase hydrolysis and lactate dehydrogenase (LDH) release. Although no activation of caspase-3 was observed in Jurkat T cells co-incubated with amoebae, intracellular reactive oxygen species (ROS) were strongly generated by NADPH oxidase (NOX). Pretreating cells with necroptosis inhibitor necrostatin-1 or NOX inhibitor diphenyleneiodonium chloride (DPI) strongly inhibited amoeba-induced ROS generation and Jurkat cell death, whereas pan-caspase inhibitor z-VAD-fmk did not. N. fowleri-derived secretory products (NfSP) strongly induced intracellular ROS generation and cell death. Necroptotic effects of NfSP were effectively inhibited by pretreating NfSP with proteinase K. Moreover, NfSP-induced LDH release and intracellular ROS accumulation were inhibited by pretreating Jurkat T cells with DPI or necrostatin-1. These results suggest that N. fowleri induces ROS-dependent necroptosis in Jurkat T cells. © 2011 Blackwell Publishing Ltd.

  15. Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: reactive oxygen species-calcium interplay.

    Science.gov (United States)

    Petrov, Alexey M; Yakovleva, Anastasiya A; Zefirov, Andrey L

    2014-11-15

    Using electrophysiological and optical techniques, we studied the mechanisms by which cholesterol depletion stimulates spontaneous transmitter release by exocytosis at the frog neuromuscular junction. We found that methyl-β-cyclodextrin (MCD, 10 mM)-mediated exhaustion of cholesterol resulted in the enhancement of reactive oxygen species (ROS) production, which was prevented by the antioxidant N-acetyl cysteine (NAC) and the NADPH oxidase inhibitor apocynin. An increase in ROS levels occurred both extra- and intracellularly, and it was associated with lipid peroxidation in synaptic regions. Cholesterol depletion provoked a rise in the intracellular Ca(2+) concentration, which was diminished by NAC and transient receptor potential vanilloid (TRPV) channel blockers (ruthenium red and capsazepine). By contrast, the MCD-induced rise in [Ca(2+)]i remained unaffected if Ca(2+) release from endoplasmic stores was blocked by TMB8 (8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride). The effects of cholesterol depletion on spontaneous release and exocytosis were significantly reduced by the antioxidant, intracellular Ca(2+) chelation with BAPTA-AM and blockers of TRPV channels. Bath application of the calcineurin antagonist cyclosporine A blocked MCD-induced enhancement of spontaneous release/exocytosis, whereas okadaic acid, an inhibitor of phosphatases PP1 and PP2A, had no effect. Thus, our findings indicate that enhancement of spontaneous exocytosis induced by cholesterol depletion may depend on ROS generation, leading to an influx of Ca(2+) via TRPV channels and, subsequently, activation of calcineurin.

  16. Caspase-3-dependent apoptosis of citreamicin ε-induced heLa iells Is associated with reactive oxygen species generation

    KAUST Repository

    Liu, Lingli

    2013-07-15

    Citreamicins, members of the polycyclic xanthone family, are promising antitumor agents that are produced by Streptomyces species. Two diastereomers, citreamicin ε A (1) and B (2), were isolated from a marine-derived Streptomyces species. The relative configurations of these two diastereomers were determined using NMR spectroscopy and successful crystallization of citreamicin ε A (1). Both diastereomers showed potent cytotoxic activity against HeLa (cervical cancer) and HepG2 (hepatic carcinoma) cells with IC 50 values ranging from 30 to 100 nM. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay confirmed that citreamicin ε A (1) induced cellular apoptosis, and Western blot analysis showed that apoptosis occurred via activation of caspase-3. The 2,7-dichlorofluorescein diacetate assay indicated that citreamicin ε substantially increased the intracellular concentration of reactive oxygen species (ROS). To confirm the hypothesis that citreamicin ε induced apoptosis through an increase in the intracellular ROS concentration, the oxidized products, oxicitreamicin ε A (3) and B (4), were obtained from a one-step reaction catalyzed by Ag 2O. These products, with a reduced capacity to increase the intracellular ROS concentration, exhibited a significantly weakened cytotoxicity in both HeLa and HepG2 cells compared with that of citreamicin ε A (1) and B (2). © 2013 American Chemical Society.

  17. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.

    Directory of Open Access Journals (Sweden)

    Isaac Cano

    Full Text Available The production of reactive oxygen species (ROS from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2. Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.

  18. Drought stress and reactive oxygen species: Production, scavenging and signaling

    OpenAIRE

    Cruz de Carvalho, Maria Helena

    2008-01-01

    As sessile organisms, plants have evolved mechanisms that allow them to adapt and survive periods of drought stress. One of the inevitable consequences of drought stress is enhanced ROS production in the different cellular compartments, namely in the chloroplasts, the peroxisomes and the mitochondria. This enhanced ROS production is however kept under tight control by a versatile and cooperative antioxidant system that modulates intracellular ROS concentration and sets the redox-status of the...

  19. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells.

    NARCIS (Netherlands)

    Forkink, M.; Smeitink, J.A.M.; Brock, R.E.; Willems, P.H.G.M.; Koopman, W.J.H.

    2010-01-01

    Reactive oxygen species (ROS) are formed upon incomplete reduction of molecular oxygen (O2) as an inevitable consequence of mitochondrial metabolism. Because ROS can damage biomolecules, cells contain elaborate antioxidant defense systems to prevent oxidative stress. In addition to their damaging

  20. III-10, a newly synthesized flavonoid, induces cell apoptosis with the involvement of reactive oxygen species-mitochondria pathway in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Zhao, Yikai; Guo, Ruichen; Li, Zhiyu; Ma, Shiping; Lu, Na

    2015-10-05

    Study of the mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. We recently established that III-10, a new flavonoid with a pyrrolidinyl and a benzyl group substitution, exerted its anti-tumor effect via inducing differentiation of human U937 leukemia cells. In this study, we demonstrated that III-10 induced cell apoptosis in human hepatocellular carcinoma cells. The activation of caspase-3, caspase-9, and the increased expression ratio of Bax/Bcl-2 were detected in III-10-induced apoptosis. Z-VAD-FMK, a pan-caspase inhibitor, partly attenuated the apoptotic induction of III-10 on both HepG2 and BEL-7402 cells. Furthermore, the increase of intracellular reactive oxygen species levels and the reduction of mitochondria ΔΨm were also observed in BEL-7402 and HepG2 cells after the treatment of III-10. Pretreatment with NAC, a reactive oxygen species production inhibitor, partly attenuated the apoptosis induced by III-10 via blocking the reactive oxygen species generation. Our data also showed that III-10 induced the release of cytochrome c and AIF to cytosol followed after the reactive oxygen species accumulation. Moreover, the GSH levels and ATP generation were both inhibited after III-10 treatment. Besides, the MAPK, the downstream effect of reactive oxygen species accumulation including JNK could be activated by III-10, as well as the inactivation of ERK. Collectively, the generation of reactive oxygen species might play an crucial role in III-10-induced mitochondrial apoptosis pathway, provided more stubborn evidence for III-10 as a potent anticancer therapeutic candidate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Oxygen-enriched fermentation of sodium gluconate by Aspergillus niger and its impact on intracellular metabolic flux distributions.

    Science.gov (United States)

    Shen, Yuting; Tian, Xiwei; Zhao, Wei; Hang, Haifeng; Chu, Ju

    2018-01-01

    Different concentrations of oxygen-enriched air were utilized for sodium gluconate (SG) fermentation by Aspergillus niger. The fermentation time shortened from 20 to 15.5 h due to the increase of volumetric oxygen transfer coefficient (K L a) and the formation of more dispersed mycelia when inlet oxygen concentration ascended from 21 to 32%. According to metabolic flux analysis, during the growth phase, extracellular glucose for SG synthesis accounted for 79.0 and 85.3% with air and oxygen-enriched air (25%), respectively, whereas the proportions were 89.4 and 93.0% in the stationary phase. Intracellular glucose consumption decreased in oxygen-enriched fermentation, as cell respiration was more high-efficiently performed. Metabolic profiling indicated that most intermediates in TCA cycle and EMP pathway had smaller pool sizes in oxygen-enriched fermentations. Moreover, the main by-product of citric acid dramatically decreased from 1.36 to 0.34 g L -1 in oxygen-enriched fermentation. And the sodium gluconate yield increased from 0.856 to 0.903 mol mol -1 .

  2. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    Science.gov (United States)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-05-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ˜30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  3. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    Science.gov (United States)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-01-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ∼30–40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered. PMID:27170190

  4. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  5. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Olesen, Ping Liu; Hougaard, Mads

    2009-01-01

    The objective of the present study was to investigate the toxicity of silver nanoparticles (Ag NPs) in vitro. Silver ions (Ag+) have been used in medical treatments for decades whereas Ag NPs have been used in a variety of consumer products within recent years. This study was undertaken to compare......, both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated...... by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+....

  6. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox.

    Science.gov (United States)

    Moris, Demetrios; Spartalis, Michael; Spartalis, Eleftherios; Karachaliou, Georgia-Sofia; Karaolanis, Georgios I; Tsourouflis, Gerasimos; Tsilimigras, Diamantis I; Tzatzaki, Eleni; Theocharis, Stamatios

    2017-08-01

    Acute and chronic excessive intracellular increase of reactive oxygen species (ROS) is involved in the development and progression of cardiovascular diseases. ROS are by-products of various oxidative physiological and biochemical processes. Sources of ROS are mitochondrial respiration, NADH/NADPH oxidase, xanthine oxidoreductase or the uncoupling of nitric oxide synthase (NOS) in vascular cells. ROS mediate various signaling pathways that underlie cardiovascular pathophysiology. The delicate equilibrium between free-radical generation and antioxidant defense is altered in favor of the former, thus leading to redox imbalance, oxidative stress, and increased cellular injury. An understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of cardiovascular diseases.

  7. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway.

    Science.gov (United States)

    Li, Senpeng; Zhang, Shuo; Jin, Xing; Tan, Xuejie; Lou, Jianfang; Zhang, Xiumei; Zhao, Yunxue

    2014-10-30

    Silver complexes have been shown to possess antimicrobial and anticancer properties. Ag-SP-DNC, a novel silver and singly protonated dehydronorcantharidin complex, was synthesized in our previous study. In this study, we offer evidence that Ag-SP-DNC elicits a reactive oxygen species (ROS)-mediated mitochondrial apoptosis in lung cancer cells. Ag-SP-DNC inhibited the growth of A549 cells by inducing G2/M phase cell cycle arrest and apoptosis. Ag-SP-DNC induced apoptosis was associated with the levels of intracellular ROS. The further study revealed that Ag-SP-DNC disrupted the mitochondrial membrane potential, induced the caspase-3 activation and led to the translocation of apoptosis inducing factor and endonucleaseG to the nucleus. These findings have important implications for the development of silver complexes for anticancer applications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species.

    Science.gov (United States)

    Peleg-Grossman, Smadar; Volpin, Hanne; Levine, Alex

    2007-01-01

    The symbiotic relationships between legumes and rhizobacteria involve extensive signalling between the two organisms. Studies using genetic, biochemical, and pharmacological approaches have demonstrated the involvement of calcium and reactive oxygen species in the establishment of symbiotic interactions. In the early stage of the interactions rhizobia grow as infection thread within host root hairs and are internalized into the plant cells via endocytosis. It is shown here that inoculation of Medicago truncatula roots with Sinorhizobium meliloti induced a battery of vesicle trafficking genes, including the phosphatidylinositol 3-kinase (PI3K) gene that stimulated plasma membrane endocytosis and the production of reactive oxygen species (ROS). Inhibition of the PI3K suppressed the membrane endocytosis and subsequent oxidative burst and prevented root hair curling and formation of infection threads. Similar effects were produced by inhibition of PtdIns-specific phospholipase C (PI-PLC). However, neither inhibition of PI3K nor PI-PLC signalling blocked cytosolic Ca2+ influx or early nodulin (ENOD) gene expression. By contrast, the inhibitors induced ENODs transcription in the absence of Rhizobium, suggesting that the expression of ENODs responds to plasma membrane perturbations. In summary, the results show a major reprogramming of intracellular vesicle trafficking during the early stages of symbiotic interactions that co-ordinate the host responses. Activation of parallel signalling pathways leading to Cacyt2+ influx and ROS production that regulate the root hair curling and ENODs expression are also shown.

  9. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.

    Science.gov (United States)

    Takagi, Hiroshi; Taguchi, Junpei; Kaino, Tomohiro

    2016-08-01

    During fermentation processes, Saccharomyces cerevisiae cells are exposed to multiple stresses, including a high concentration of ethanol that represents toxicity through intracellular reactive oxygen species (ROS) generation. We previously reported that proline protected yeast cells from damage caused by various stresses, such as freezing and ethanol. As an anti-oxidant, proline is suggested to scavenge intracellular ROS. In this study, we examined the role of intracellular proline during ethanol treatment in S. cerevisiae strains that accumulate different concentrations of proline. When cultured in YPD medium, there was a significant accumulation of proline in the put1 mutant strain, which is deficient in proline oxidase, in the stationary phase. Expression of the mutant PRO1 gene, which encodes the γ-glutamyl kinase variant (Asp154Asn or Ile150Thr) with desensitization to feedback inhibition by proline in the put1 mutant strain, showed a prominent increase in proline content as compared with that of the wild-type strain. The oxidation level was clearly increased in wild-type cells after exposure to ethanol, indicating that the generation of ROS occurred. Interestingly, proline accumulation significantly reduces the ROS level and increases the survival rate of yeast cells in the stationary phase under ethanol stress conditions. However, there was not a clear correlation between proline content and survival rate in yeast cells. An appropriate level of intracellular proline in yeast might be important for its stress-protective effect. Hence, the engineering of proline metabolism could be promising for breeding stress-tolerant industrial yeast strains. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives

    Czech Academy of Sciences Publication Activity Database

    Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, Stanislav

    2010-01-01

    Roč. 210, č. 1 (2010), s. 82-88 ISSN 1010-6030 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : singlet oxygen * photosensitizer * phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 2.243, year: 2010

  11. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  12. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction

    Science.gov (United States)

    Giniatullin, AR; Grishin, SN; Sharifullina, ER; Petrov, AM; Zefirov, AL; Giniatullin, RA

    2005-01-01

    During normal cell metabolism the production of intracellular ATP is associated with the generation of reactive oxygen species (ROS), which appear to be important signalling molecules. Both ATP and ROS can be released extracellularly by skeletal muscle during intense activity. Using voltage clamp recording combined with imaging and biochemical assay of ROS, we tested the hypothesis that at the neuromuscular junction extracellular ATP generates ROS to inhibit transmitter release from motor nerve endings. We found that ATP produced the presynaptic inhibitory action on multiquantal end-plate currents. The inhibitory action of ATP (but not that of adenosine) was significantly reduced by several antioxidants or extracellular catalase, which breaks down H2O2. Consistent with these data, the depressant effect of ATP was dramatically potentiated by the pro-oxidant Fe2+. Exogenous H2O2 reproduced the depressant effects of ATP and showed similar sensitivity to anti- and pro-oxidants. While NO also inhibited synaptic transmission, inhibitors of the NO-producing cascade did not prevent the depressant action of ATP. The ferrous oxidation in xylenol orange assay showed the increase of ROS production by ATP and 2-MeSADP but not by adenosine. Suramin, a non-selective antagonist of P2 receptors, and pertussis toxin prevented the action of ATP on ROS production. Likewise, imaging with the ROS-sensitive dye carboxy-2′,7′-dichlorodihydrofluorescein revealed increased production of ROS in the muscle treated with ATP or ADP while UTP or adenosine had no effect. Thus, generation of ROS contributed to the ATP-mediated negative feedback mechanism controlling quantal secretion of ACh from the motor nerve endings. PMID:15774519

  13. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications.

    Science.gov (United States)

    Balasubramanyam, M; Koteswari, A Adaikala; Kumar, R Sampath; Monickaraj, S Finny; Maheswari, J Uma; Mohan, V

    2003-12-01

    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications.

  14. Reactive Oxygen Species Contribute to the Bactericidal Effects of the Fluoroquinolone Moxifloxacin in Streptococcus pneumoniae.

    Science.gov (United States)

    Ferrándiz, M J; Martín-Galiano, A J; Arnanz, C; Zimmerman, T; de la Campa, A G

    2016-01-01

    We studied the transcriptomic response of Streptococcus pneumoniae to the fluoroquinolone moxifloxacin at a concentration that inhibits DNA gyrase. Treatment of the wild-type strain R6, at a concentration of 10× the MIC, triggered a response involving 132 genes after 30 min of treatment. Genes from several metabolic pathways involved in the production of pyruvate were upregulated. These included 3 glycolytic enzymes, which ultimately convert fructose 6-phosphate to pyruvate, and 2 enzymes that funnel phosphate sugars into the glycolytic pathway. In addition, acetyl coenzyme A (acetyl-CoA) carboxylase was downregulated, likely leading to an increase in acetyl-CoA. When coupled with an upregulation in formate acetyltransferase, an increase in acetyl-CoA would raise the production of pyruvate. Since pyruvate is converted by pyruvate oxidase (SpxB) into hydrogen peroxide (H2O2), an increase in pyruvate would augment intracellular H2O2. Here, we confirm a 21-fold increase in the production of H2O2 and a 55-fold increase in the amount of hydroxyl radical in cultures treated during 4 h with moxifloxacin. This increase in hydroxyl radical through the Fenton reaction would damage DNA, lipids, and proteins. These reactive oxygen species contributed to the lethality of the drug, a conclusion supported by the observed protective effects of an SpxB deletion. These results support the model whereby fluoroquinolones cause redox alterations. The transcriptional response of S. pneumoniae to moxifloxacin is compared with the response to levofloxacin, an inhibitor of topoisomerase IV. Levofloxacin triggers the transcriptional activation of iron transport genes and also enhances the Fenton reaction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  16. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: a DFT study.

    Science.gov (United States)

    Nguyen, Manh-Thuong

    2014-08-04

    A density-functional study has been undertaken to investigate the chemical properties of in-plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  18. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Science.gov (United States)

    Cengiz, Pelin; Kintner, Douglas B; Chanana, Vishal; Yuan, Hui; Akture, Erinc; Kendigelen, Pinar; Begum, Gulnaz; Fidan, Emin; Uluc, Kutluay; Ferrazzano, Peter; Sun, Dandan

    2014-01-01

    Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+) efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+) and Ca(2+) overload. The latter was mediated by reversal of Na(+)/Ca(2+) exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+) overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+) homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+) and Ca(2+) homeostasis, which reduces Na(+)-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  19. The Effect of Tacrolimus on Reactive Oxygen Species and Total Antioxidant Status in Pancreatic Beta Cell Line.

    Science.gov (United States)

    Namvaran, Fatemeh; Sharifi, Ali; Namvaran, Mohamad Mehdi; Maruf, Neda; Azarpira, Negar

    2015-12-01

    The mechanism responsible for the development of posttransplant diabetes mellitus associated with tacrolimus treatment remains unclear. To investigate the possible effect of tacrolimus on the development of impaired glucose tolerance in transplant recipients, this study focused on early and second phase insulin secretion, which may be affected by reactive oxygen species under tacrolimus therapy. We measured the anti-oxidant status and reactive oxygen species levels before and after tacrolimus treatment. The pro-duction of reactive oxygen species was determined by flow cytometry. Total antioxidant status was measured using total antioxidant status kits. The antioxidant status decreased while reactive oxygen species level increased significantly (P = .032) CONCLUSIONS: Tacrolimus treatment resulted in dose- and time-dependent increases in the production of reactive oxygen species by beta cells. The antioxidant status decreased in beta cells after tacrolimus treatment. Increased production of reactive oxygen species and decreased antioxidant status by tacrolimus in beta cells may lead to some adverse events.

  20. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...... appreciably as the cell progresses towards death. The results obtained from cell suspensions reflect key features that differentiate cell ensemble from single cell experiments (e.g., the ensemble experiment is more susceptible to the effects of sensitizer that has leaked out of the cell). Overall, the data...

  1. Nuclear Nox4-Derived Reactive Oxygen Species in Myelodysplastic Syndromes

    Directory of Open Access Journals (Sweden)

    Marianna Guida

    2014-01-01

    Full Text Available A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(PH oxidase (Nox complexes, are frequently activated in AML (acute myeloid leukemia blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.

  2. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  3. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...... to occur via zwitterionic peroxy intermediates. Peroxides are also generated on isolated proteins, and protein within intact cells, via(1)O(2)-mediated reactions. The peroxides formed on Trp, Tyr, and His peptides, as well as on proteins, have been shown to induce damage to other targets, with molecular...... oxidation of thiol residues an important reaction. This can result in the inactivation of cellular enzymes and the oxidation of other biological targets. Protein cross-linking and aggregation can also be induced by reactive species formed on photo-oxidised proteins, though the nature of the species...

  4. Proline Modulates the Trypanosoma cruzi Resistance to Reactive Oxygen Species and Drugs through a Novel D, L-Proline Transporter

    Science.gov (United States)

    Sayé, Melisa; Miranda, Mariana R.; di Girolamo, Fabio; de los Milagros Cámara, María; Pereira, Claudio A.

    2014-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease. PMID:24637744

  5. Prior endurance exercise prevents postprandial lipaemia-induced increases in reactive oxygen species in circulating CD31+ cells.

    Science.gov (United States)

    Jenkins, Nathan T; Landers, Rian Q; Thakkar, Sunny R; Fan, Xiaoxuan; Brown, Michael D; Prior, Steven J; Spangenburg, Espen E; Hagberg, James M

    2011-11-15

    We hypothesized that prior exercise would prevent postprandial lipaemia (PPL)-induced increases in intracellular reactive oxygen species (ROS) in three distinct circulating angiogenic cell (CAC) subpopulations. CD34(+), CD31(+)/CD14(-)/CD34(-), and CD31(+)/CD14(+)/CD34(-) CACs were isolated from blood samples obtained from 10 healthy men before and 4 h after ingesting a high fat meal with or without ∼50 min of prior endurance exercise. Significant PPL-induced increases in ROS production in both sets of CD31(+) cells were abolished by prior exercise. Experimental ex vivo inhibition of NADPH oxidase activity and mitochondrial ROS production indicated that mitochondria were the primary source of PPL-induced oxidative stress. The attenuated increases in ROS with prior exercise were associated with increased antioxidant gene expression in CD31(+)/CD14(-)/CD34(-) cells and reduced intracellular lipid uptake in CD31(+)/CD14(+)/CD34(-) cells. These findings were associated with systemic cardiovascular benefits of exercise, as serum triglyceride, oxidized low density lipoprotein-cholesterol, and plasma endothelial microparticle concentrations were lower in the prior exercise trial than the control trial. In conclusion, prior exercise completely prevents PPL-induced increases in ROS in CD31(+)/CD14(-)/CD34(-) and CD31(+)/CD14(+)/CD34(-) cells. The mechanisms underlying the effects of exercise on CAC function appear to vary among specific CAC types.

  6. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation

    OpenAIRE

    Tominaga, Hideyuki; Kodama, Seiji; Matsuda, Naoki; Suzuki, Keiji; Watanabe, Masami

    2002-01-01

    Radiation generates reactive oxygen species (ROS) that interact with cellular molecules, including DNA, lipids, and proteins. To know how ROS contribute to the induction of genetic instability, we examined the effect of the anti-ROS condition, using both ascorbic acid phosphate (APM) treatment or a low oxygen condition, on the induction of delayed reproductive cell death and delayed chromosome aberrations. The primary surviving colonies of mouse m5S-derived cl. 2011-14 cells irradiated with 6...

  7. Intracellular oxygen: Similar results from two methods of measurement using phosphorescent nanoparticles

    Directory of Open Access Journals (Sweden)

    David Lloyd

    2014-03-01

    Full Text Available The ability to resolve the spatio-temporal complexity of intracellular O2 distribution is the "Holy Grail" of cellular physiology. In an effort to obtain a minimally invasive approach to the mapping of intracellular O2 tensions, two methods of phosphorescent lifetime imaging microscopy were compared in the current study and gave similar results. These were two-photon confocal laser scanning microscopy with pinhole shifting, and picosecond time-resolved epi-phosphorescence microscopy using a single 0.5 μm focused spot. Both methods utilized Ru coordination complex embedded nanoparticles (45 nm diameter as the phosphorescent probe, excited using pulsed outputs of a titanium–sapphire Tsunami lasers (710–1050 nm.

  8. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2017-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean....... Higher mortality related to average CPP pressure reactivity as assessed with PRx. Its potential use for individualizing CPP thresholds remains unclear....

  9. THE THEORIES OF AGING: REACTIVE OXYGEN SPECIES AND WHAT ELSE?

    Science.gov (United States)

    Avantaggiato, A; Bertuzzi, G; Pascali, M; Candotto, V; Carinci, F

    2015-01-01

    This manuscript is a short review on the theories of aging, focusing mainly on the balance between the nutrient and the oxygen intake necessary for energy metabolism and the processes for neutralizing the negative consequences of energy production. The first section entitled “Why” provides brief historical details regarding the main group of aging theories, firstly the evolutionary theories and secondly the theories of aging related to humans, cells and biomolecules are discussed. The second section entitled ‘Where’ includes brief summaries of the many cellular levels at which aging damage can occur: replicative senescence with its genetic and epigenetic implications, cytoplasmic accumulation, mitochondrial respiratory chain dysfunction, peroxisome and membrane activity. In the third section entitled ‘How’ the linking mechanisms between the caloric restriction and the antioxidant intake on lifespan and aging in experimental models are discussed. The role of ROS is evaluated in relation to the mitochondria, the AMPK activated sirtuins, the hormesis, the target of rapamicin and the balance autophagy/apoptosis.

  10. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis

    NARCIS (Netherlands)

    Gadjev, Ilya; Vanderauwera, Sandy; Gechev, Tsanko S.; Laloi, Christophe; Minkov, Ivan N.; Shulaev, Vladimir; Apel, Klaus; Inze, Dirk; Mittler, Ron; Van Breusegem, Frank

    Transcriptomic Footprints Disclose Specificity of Reactive Oxygen Species Signaling in Arabidopsis1,[W] Ilya Gadjev2, Sandy Vanderauwera2, Tsanko S. Gechev, Christophe Laloi, Ivan N. Minkov, Vladimir Shulaev, Klaus Apel, Dirk Inzé, Ron Mittler and Frank Van Breusegem* Department of Plant Systems

  11. The role of reactive oxygen species in apoptosis of the diabetic kidney.

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Dekker, D.; Berden, J.H.M.; Scharstuhl, A.; Vlag, J. van der

    2009-01-01

    Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response

  12. Involvement of reactive oxygen species in the electrochemical inhibition of barnacle (Amphibalanus amphitrite) settlement

    Science.gov (United States)

    Rodolfo E. Perez-Roa; Marc A. Anderson; Dan Rittschof; Christopher G. Hunt; Daniel R. Noguera

    2009-01-01

    The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of...

  13. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Science.gov (United States)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  14. Herbivore derived fatty acid-amides elicit reactive oxygen species burst in plants

    Science.gov (United States)

    The formation of a reactive oxygen species (ROS) burst is a central response of plants to many forms of stress including pathogen attack, several abiotic stresses, damage and insect infestation. These ROS act as a direct defense as well as signaling and regulatory molecules. Perception of microbe or...

  15. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...

  16. Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose

    Science.gov (United States)

    Roni Cohen; Kenneth A. Jensen; Carl J. Houtman; Kenneth E. Hammel

    2002-01-01

    It is often proposed that brown rot basidiomycetes use extracellular reactive oxygen species (ROS) to accomplish the initial depolymerization of cellulose in wood, but little evidence has been presented to show that the fungi produce these oxidants in physiologically relevant quantities. We used [14C]phenethyl polyacrylate as a radical trap to estimate extracellular...

  17. Effects of reactive oxygen species action on sperm function in spermatozoa

    Science.gov (United States)

    Reactive oxygen species (ROS) formation and lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic because of the low specificity and sens...

  18. Semiconducting Polymer Nanoprobe for in vivo Imaging of Reactive Oxygen and Nitrogen Species

    Science.gov (United States)

    Pu, Kanyi; Shuhendler, Adam J.

    2014-01-01

    Semiconducting polymer nanoparticles are utilized as a free-radical inert and light-harvesting nanoplatform for in vivo molecular imaging of reactive oxygen and nitrogen species (RONS). With its RONS-sensitive fluorescence, good biodistribution and passive targeting ability to leaky inflammatory vasculature, this nanoprobe permits detection of RONS in the microenvironment of spontaneous bacterial infection following systemic administration. PMID:23943508

  19. Ca 2+ and reactive oxygen species are involved in the defense ...

    African Journals Online (AJOL)

    The role of Ca2+ and reactive oxygen species in the defense responses of callus cultures of rice (Oryza sativa L., cv. Zenith) to infection with avirulent strain of rice blast fungus (Magnaporthe grisea, strain Ina168) was investigated. It was observed that rice calli, especially after mild blast infection, exude substances ...

  20. Lysosome-Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Daum, S.; Reshetnikov, M.S.V.; Šíša, Miroslav; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A.

    2017-01-01

    Roč. 56, č. 49 (2017), s. 15545-15549 ISSN 1433-7851 Institutional support: RVO:61389030 Keywords : aminoferrocene * cancer * lysosomes * prodrugs * reactive oxygen species Subject RIV: ED - Physiology OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  1. Generation of reactive oxygen species in relevant cell lines as a bio ...

    African Journals Online (AJOL)

    Generation of reactive oxygen species in relevant cell lines as a bio-indicator of oxidative effects caused by acid mine water. Oluwafikemi T Iji, June C Serem, Megan J Bester, E Annette Venter, Jan G Myburgh, Lyndy J McGaw ...

  2. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms

    Czech Academy of Sciences Publication Activity Database

    Hyršl, P.; Číž, Milan; Kubala, Lukáš; Lojek, Antonín

    2004-01-01

    Roč. 49, č. 3 (2004), s. 315-319 ISSN 0015-5632 R&D Projects: GA AV ČR IBS5004009 Institutional research plan: CEZ:AV0Z5004920 Keywords : hemocytes * Bombyx mori * reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 1.034, year: 2004

  3. Role of metal-induced reactive oxygen species generation in lung ...

    Indian Academy of Sciences (India)

    Unknown

    role of reactive oxygen species (ROS) in ROFA-induced lung injury. ROFA was collected from a precipitator at ... However, cellular oxidant production and tissue injury were observed mostly with the ROFA-total and ..... transition metals are likely the causative agents of ROFA- induced acute injury (Dreher et al 1997).

  4. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species

    NARCIS (Netherlands)

    Kraaij, Marina D.; Savage, Nigel D. L.; van der Kooij, Sandra W.; Koekkoek, Karin; Wang, Jun; van den Berg, J. Merlijn; Ottenhoff, Tom H. M.; Kuijpers, Taco W.; Holmdahl, Rikard; van Kooten, Cees; Gelderman, Kyra A.

    2010-01-01

    The phagocyte NAPDH-oxidase complex consists of several phagocyte oxidase (phox) proteins, generating reactive oxygen species (ROS) upon activation. ROS are involved in the defense against microorganisms and also in immune regulation. Defective ROS formation leads to chronic granulomatous disease

  5. Radiation induces aerobic glycolysis through reactive oxygen species

    International Nuclear Information System (INIS)

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  6. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... (ICC) and limits of agreement. RESULTS: Fifteen minutes of hyperoxia was accompanied by mean reductions in arterial and venous perfusion velocities of 14% and 16%, respectively (p = 0.0080; p = 0.0019), constriction of major arteries and veins by 5.5% and 8.2%, respectively (p ...). For perfusion velocities, short-term ICCs were 0.79-0.82 and long-term ICCs were 0.06-0.11. Intersession increases in blood glucose were associated with reductions in perfusion velocities (arterial p = 0.0067; venous p = 0.018). CONCLUSION: Oxygen reactivity testing supported that motion-contrast velocimetry...

  7. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.

    Science.gov (United States)

    Kohlhaas, Michael; Liu, Ting; Knopp, Andreas; Zeller, Tanja; Ong, Mei Fang; Böhm, Michael; O'Rourke, Brian; Maack, Christoph

    2010-04-13

    Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na(+) ([Na(+)](i)) reduces mitochondrial Ca(2+) ([Ca(2+)](m)) by accelerating Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca(2+)](m), we speculated that in failing myocytes, elevated [Na(+)](i) promotes oxidative stress. We used a patch-clamp-based approach to simultaneously monitor cytosolic and mitochondrial Ca(2+) and, alternatively, mitochondrial H(2)O(2) together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by beta-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca(2+)](m) increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H(2)O(2) formation. This reactive oxygen species formation was potentiated when mitochondrial Ca(2+) uptake was blocked (by Ru360) or Ca(2+) efflux was accelerated (by elevation of [Na(+)](i)). In failing myocytes, H(2)O(2) formation was increased, which was prevented by reducing mitochondrial Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Besides matching energy supply and demand, mitochondrial Ca(2+) uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na(+)](i) promotes reactive oxygen species formation by reducing mitochondrial Ca(2+) uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart.

  8. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.

    Science.gov (United States)

    Lu, Zheng; Imlay, James A

    2017-01-03

    The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed

  9. Effector molecules in expression of the antimicrobial activity of macrophages against Mycobacterium avium complex: roles of reactive nitrogen intermediates, reactive oxygen intermediates, and free fatty acids.

    Science.gov (United States)

    Akaki, T; Sato, K; Shimizu, T; Sano, C; Kajitani, H; Dekio, S; Tomioka, H

    1997-12-01

    We studied microbicidal activities of reactive nitrogen intermediates (RNI), free fatty acids (FFA), and reactive oxygen intermediates (ROI) against Mycobacterium avium complex (MAC) and the mode of macrophage (mphi) production of these effectors. (1) Intracellular growth of MAC in murine peritoneal mphis was accelerated by scavengers for ROI or RNI and inhibitors of nitric oxide synthase or phospholipase A2, indicating roles of ROI, RNI, and FFA in mphi anti-MAC functions. (2) Acidified NaNO2-derived RNI, FFA (linolenic and arachidonic acids), and the H2O2-mediated halogenation system exhibited a significant anti-MAC bactericidal activity. The combination of RNI with FFA showed a synergistic effect. However, the H2O2-halogenation system in combination with either RNI or FFA showed an antagonism. When Listeria monocytogenes (Lm) was used as a target organism, the combinations of RNI + FFA and RNI + H2O2-halogenation gave a synergistic effect, whereas FFA + H2O2-halogenation showed an antagonism in exerting bactericidal activity. In addition, when ROI generated by the xanthine oxidase-acetaldehyde system was combined with RNI, anti-Lm but not anti-MAC activity was potentiated. (3) ROI production by murine peritoneal mphis was observed immediately after contact with MAC organisms (MAC stimulation) and ceased within 2 h. FFA release was seen 1-24 h after MAC stimulation. RNI production was initiated from 3 h and increased during the first 36 h and continued at least for 4 days. These findings suggest that RNI and FFA rather than ROI are important effectors of anti-MAC functions of mphis, and the collaborating action of RNI with FFA temporarily participates in mphi-mediated killing of MAC in the relatively early phase after MAC stimulation.

  10. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis

    Science.gov (United States)

    Akaki, T; Tomioka, H; Shimizu, T; Dekio, S; Sato, K

    2000-01-01

    We assessed the role of free fatty acids (FFA) in the expression of the activity of macrophages against Mycobacterium tuberculosis in relation to the roles of two major anti-microbial effectors, reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI). Intracellular growth of M. tuberculosis residing inside macrophages was accelerated by treatments of macrophages with either quinacrine (phospholipase A2 (PLA2) inhibitor), arachidonyl trifuloromethylketone (type IV cytosolic PLA2 inhibitor), NG-monomethyl-l-arginine (nitric oxide synthase inhibitor), and superoxide dismutase plus catalase (ROI scavengers). In addition, M. tuberculosis-infected macrophages produced and/or secreted these effectors sequentially in the order ROI (0–3 h), FFA (0–48 h), and RNI (3 to at least 72 h). Notably, membranous FFA (arachidonic acid) of macrophages translocated to M. tuberculosis residing in the phagosomes of macrophages in phagocytic ability-and PLA2-dependent fashions during cultivation after M. tuberculosis infection. FFA, RNI and H2O2-mediated halogenation system (H2O2-halogenation system) displayed strong activity against M. tuberculosis in cell-free systems, while ROI alone exerted no such effects. Combinations of ‘FFA + RNI’ and ‘RNI + H2O2-halogenation system’ exhibited synergistic and additive effects against M. tuberculosis, respectively, while ‘FFA + H2O2-halogenation system’ had an antagonistic effect. Moreover, a sequential attack of FFA followed by RNI exerted synergistic activity against M. tuberculosis. Since M. tuberculosis-infected macrophages showed simultaneous production of RNI with FFA secretion for relatively long periods (approx. 45 h) and prolonged RNI production was seen thereafter, RNI in combination with FFA appear to play critical roles in the manifestation of the activity of macrophages against M. tuberculosis. PMID:10931146

  11. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  12. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis.

    Science.gov (United States)

    Yusuf, A; Brophy, A; Gorey, B; Casey, A

    2018-05-01

    Silver nanoparticles (AgNP) are one of the most widely investigated metallic NPs due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery, meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural biosurfactant, dipalmitoylphosphatidylcholine, in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that because of the encapsulation, liposomal AgNP (Lipo-AgNP) at 0.625 μg ml -1 induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase. It was shown that the predominate form of cell death upon exposure to both uncoated AgNP and Lipo-AgNP was apoptosis. However, a reactive oxygen species-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhance AgNP cytotoxicity and mediates a reactive oxygen species-independent induction of apoptosis. Copyright © 2017 John Wiley & Sons, Ltd.

  13. 2,2'-Fluorine mono-carbonyl curcumin induce reactive oxygen species-Mediated apoptosis in Human lung cancer NCI-H460 cells.

    Science.gov (United States)

    Liu, Guo-Yun; Zhai, Qiang; Chen, Jia-Zhuang; Zhang, Zhuo-Qing; Yang, Jie

    2016-09-05

    In this paper, we synthesized three fluorine-substituted mono-carbonyl curcumin analogs and evaluated their cytotoxicity against several cancer cells by the MTT assay. The results exhibited that all the three compounds were more active than the leading curcumin. Especially, 2,2'-F mono-carbonyl curcumin, 1a, surfaced as an important lead compound displaying almost 4-fold cytotoxicity relative to curcumin. More importantly, 1a was more stable in (RPMI)-1640 medium and more massive uptake than curcumin, which may be relationship to their cytotoxicity, apoptotic acitivity and reactive oxygen species generation. And then, the generation of reactive oxygen species can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 2,2'-F mono-carbonyl curcumin (1a) may cause cancer cells apoptosis through reactive oxygen species-Mediated pathway, but also gives us an important information for design of mono-carbonyl curcumin analog. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Wortmannin induces MCF-7 breast cancer cell death via the apoptotic pathway, involving chromatin condensation, generation of reactive oxygen species, and membrane blebbing

    Directory of Open Access Journals (Sweden)

    Akter R

    2012-07-01

    Full Text Available Rozina Akter,1 Md. Zakir Hossain,2 Maurice G Kleve,3 Michael A Gealt31Applied Biosciences Emphasis, Department of Applied Science, 2Graduate Institute of Technology, 3Department of Biology, College of Science and of Mathematics, University Arkansas at Little Rock, Little Rock, AR, USABackground: Apoptosis can be used as a reliable marker for evaluating potential chemotherapeutic agents. Because wortmannin is a microbial steroidal metabolite, it specifically inhibits the phosphatidyl inositol 3-kinase pathway, and could be used as a promising apoptosis-based therapeutic agent in the treatment of cancer. The objective of this study was to investigate the biomolecular mechanisms involved in wortmannin-induced cell death of breast cancer-derived MCF-7 cells.Methods and results: Our experimental results demonstrate that wortmannin has strong apoptotic effects through a combination of different actions, including reduction of cell viability in a dose-dependent manner, inhibition of proliferation, and enhanced generation of intracellular reactive oxygen species.Conclusion: Our findings suggest that wortmannin induces MCF-7 cell death via a programmed pathway showing chromatin condensation, nuclear fragmentation, reactive oxygen species, and membrane blebbing, which are characteristics typical of apoptosis.Keywords: wortmannin, human breast adenocarcinoma, apoptosis, reactive oxygen species, flow cytometry

  15. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study).

    Science.gov (United States)

    Brezová, Vlasta; Gabcová, Sona; Dvoranová, Dana; Stasko, Andrej

    2005-05-13

    Commercial sunscreen products containing titanium dioxide were irradiated with lambda>300 nm and the formation of oxygen- (.OH, O2.-/.OOH) and carbon-centered radicals was monitored by EPR spectroscopy and spin trapping technique using 5,5-dimethyl-1-pyrroline N-oxide, alpha-phenyl-N-tert-butylnitrone (PBN), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin traps, and free nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl. The photoinduced production of singlet oxygen was shown by 4-hydroxy-2,2,6,6-piperidine. The generation of reactive oxygen radical species upon irradiation of sunscreens significantly depends on their composition, as the additives present (antioxidants, radical-scavengers, solvents) can transform the reactive radicals formed to less harmful products. The continuous in situ irradiation of titanium dioxide powder, recommended for cosmetic application, investigated in different solvents (water, dimethyl sulfoxide, isopropyl myristate) resulted in the generation of oxygen-centered reactive radical species (superoxide anion radical, hydroxyl and alkoxyl radicals).

  16. Photofunctional Co-Cr Alloy Generating Reactive Oxygen Species for Photodynamic Applications

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2013-01-01

    Full Text Available We report the fabrication of photofunctional Co-Cr alloy plate that is prepared by a simple modification process for photodynamic application. Photoinduced functionality is provided by the photosensitizer of hematoporphyrin (Hp that initially generates reactive oxygen species (ROS such as superoxide anion radical and singlet oxygen. The photosensitizer with carboxyl group was chemically bonded to the surface of the Co-Cr alloy plate by esterification reaction. Microstructure and elemental composition of the Co-Cr alloy plate were checked with scanning electron microscopy (SEM and energy dispersive X-ray spectrometer (EDS. Fabrication of the photofunctionality of the Co-Cr alloy plate was confirmed with X-ray photoelectron spectroscopy (XPS, reflectance UV-Vis absorption, and emission spectroscopy. Reactive oxygen generation from the photofunctional Co-Cr alloy plate was confirmed by using the decomposition reaction of 1,3-diphenylisobenzofuran (DPBF. The results suggest that the immobilized photosensitizer molecules on the surface of Co-Cr alloy plate still possess their optical and functional properties including reactive oxygen generation. To open the possibility for its application as a photodynamic material to biological system, the fabricated photofunctional Co-Cr alloy is applied to the decomposition of smooth muscle cells.

  17. Cdh1 inhibits reactive astrocyte proliferation after oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Qiu, Jin; Zhang, Chuanhan; Lv, Youyou; Zhang, Yue; Zhu, Chang; Wang, Xueren; Yao, Wenlong

    2013-08-01

    Anaphase-promoting complex (APC) and its co-activator Cdh1 are required for cell cycle regulation in proliferating cells. Recent studies have defined diverse functions of APC-Cdh1 in nervous system development and injury. Our previous studies have demonstrated the activity of APC-Cdh1 is down-regulated in hippocampus after global cerebral ischemia. But the detailed mechanisms of APC-Cdh1 in ischemic nervous injury are unclear. It is known that astrocyte proliferation is an important pathophysiological process following cerebral ischemia. However, the role of APC-Cdh1 in reactive astrocyte proliferation is not determined yet. In the present study, we cultured primary cerebral astrocytes and set up in vitro oxygen-glucose deprivation and reperfusion model. Our results showed that the expression of Cdh1 was decreased while Skp2 (the downstream substrate of APC-Cdh1) was increased in astrocytes after 1h oxygen-glucose deprivation and reperfusion. The down-regulation of APC-Cdh1 was coupled with reactive astrocyte proliferation. By constructing Cdh1 expressing lentivirus system, we also found exogenous Cdh1 can down-regulate Skp2 and inhibit reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion. Moreover, Western blot showed that other downstream proteins of APC-Cdh1, PFK-1 and SnoN, were decreased in the inhibition of reactive astrocyte proliferation with Cdh1 expressing lentivirus treatment. These results suggest that Cdh1 plays an important role in the regulation of reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    Science.gov (United States)

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kurata, Yuji; Abe, Yuji; Futakawa, Masatoshi; Oigawa, Hiroyuki

    2010-01-01

    Control of oxygen concentration in liquid lead-bismuth is one of the most important tasks to develop accelerator driven systems. In order to improve the reliability of oxygen sensors, re-activation treatments were investigated as well as characterization of oxygen sensors for use in liquid lead-bismuth. The oxygen sensor with a solid electrolyte of yttria-stabilized zirconia and a Pt/gas reference electrode showed almost the same electromotive force values in gas and liquid lead-bismuth, respectively, as the theoretical ones at temperatures above 400 deg. C or 450 deg. C. After long-term use of 6500 h, the outputs of the sensor became incorrect in liquid lead-bismuth. The state of the sensor that indicated incorrect outputs could not be recovered by cleaning with a nitric acid. However, it was found that the oxygen sensor became a correct sensor indicating theoretical values in liquid lead-bismuth after re-activation by the Pt-treatment of the outer surface of the sensor.

  20. [Hyperoxia induces reactive oxygen species production and promotes SIRT1 nucleocytoplasmic shuttling of peripheral blood mononuclear cells in premature infants in vitro].

    Science.gov (United States)

    Yang, Xi; Dong, Wenbin; Li, Qingping; Kang, Lan; Lei, Xiaoping; Zhang, Lianyu; Lu, Youying; Zhai, Xuesong

    2015-12-01

    To explore the relationship between deacetylase sirtuin 1 (SIRT1) and reactive oxygen species (ROS) after oxygen therapy in the peripheral blood mononuclear cells (PBMCs) of the premature infants. According to the fraction of inspired O2 (FiO2), premature infants diagnosed with respiratory distress syndrome (RDS) (gestational age oxygen group (FiO2 oxygen group (FiO2; 300 mL/L-400 mL/L), high dosage oxygen group (FiO2 >400 mL/L). After 48 hours of oxygen treatment, PBMCs and serum were collected from the peripheral blood. Then the intracellular ROS level was detected by MitoSOX(TM) Red labeling combined with confocal laser scanning microscopy; the malondialdehyde (MDA) content in the serum was determined by the whole spectrum spectrophotometer; the SIRT1 localization was observed by immunofluorescence staining; and the SIRT1 levels in PBMCs were examined by Western blotting. With the increase of FiO2, the ROS, MDA content and the rate of SIRT1 nucleocytoplasmic shuttling of PBMCs gradually increased and SIRT1 protein expression was significantly lowered. Hyperoxia induces ROS production in premature infants, promotes SIRT1 to cross from nucleus to cytoplasm, inhibits the resistant ability of SIRT1 to oxidative stress.

  1. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Wang H

    2014-06-01

    Full Text Available Haiping Wang,1 Xiaobing Wang,1 Shaoliang Zhang,2 Pan Wang,1 Kun Zhang,1 Quanhong Liu1 1Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 2Qinglong High-Tech Co, Ltd, Yichun, Jiangxi, People's Republic of China Background: Sonodynamic therapy (SDT is a promising method that uses ultrasound to activate certain chemical sensitizers for the treatment of cancer. The purpose of this study was to investigate the sonoactivity of a novel sensitizer, sinoporphyrin sodium (DVDMS, and its sonotoxicity in an esophageal cancer (ECA-109 cell line. Methods: The fluorescence intensity of DVDMS, hematoporphyrin, protoporphyrin IX, and Photofrin II was detected by fluorescence microscopy and flow cytometry. Generation of singlet oxygen was measured using a 1, 3-diphenylisobenzofuran experiment. A 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide assay was used to examine cell viability. Production of reactive oxygen species (ROS and destabilization of the mitochondrial membrane potential were assessed by flow cytometry. Apoptosis was analyzed using Annexin-PE/7-amino-actinomycin D staining. Confocal microscopy was performed to assess mitochondrial damage and identify release of cytochrome C after treatment. Western blots were used to determine expression of oxidative stress-related and apoptosis-associated protein. Ultrastructural changes in the cell were studied by scanning electron microscopy. Results: DVDMS showed higher autofluorescence intensity and singlet oxygen production efficiency compared with other photosensitizers in both cancerous and normal cells. Compared with hematoporphyrin, DVDMS-mediated SDT was more cytotoxic in ECA-109 cells. Abundant intracellular ROS was found in the SDT groups, and the cytotoxicity

  2. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  3. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    Science.gov (United States)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  4. Theoretical Studies of Oxygen Reactivity of Free-Standing and Supported Boron-Doped Graphene.

    Science.gov (United States)

    Di Valentin, Cristiana; Ferrighi, Lara; Fazio, Gianluca

    2016-05-23

    Graphene inertness towards chemical reactivity can be considered as an accepted postulate by the research community. This limit has been recently overcome by chemically and physically modifying graphene through non-metal doping or interfacing with acceptor/donor materials (metals or semiconductors). As a result, outstanding performances as catalytic, electrocatalytic, and photocatalytic material have been observed. In this critical Review we report computational work performed, by our group, on the reactivity of free-standing, metal- and semiconductor-supported B-doped graphene towards oxygen, which is at the basis of extremely important energy-related chemical processes, such as the oxygen reduction reaction. It appears that a combination of doping and interfacing approaches for the activation of graphene can open unconventional and unprecedented reaction paths, thus boosting the potential of modified graphene in many chemical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics

    Science.gov (United States)

    Bouchard, Matthew B.; Chen, Brenda R.; Burgess, Sean A.; Hillman, Elizabeth M. C.

    2009-01-01

    Camera-based optical imaging of the exposed brain allows cortical hemodynamic responses to stimulation to be examined. Typical multispectral imaging systems utilize a camera and illumination at several wavelengths, allowing discrimination between changes in oxy- and deoxyhemoglobin concentration. However, most multispectral imaging systems utilize white light sources and mechanical filter wheels to multiplex illumination wavelengths, which are slow and difficult to synchronize at high frame rates. We present a new LED-based system capable of high-resolution multispectral imaging at frame rates exceeding 220 Hz. This improved performance enables simultaneous visualization of hemoglobin oxygenation dynamics within single vessels, changes in vessel diameters, blood flow dynamics from the motion of erythrocytes, and dynamically changing fluorescence. PMID:19724566

  6. Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe2O3Core-Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation.

    Science.gov (United States)

    Mu, Yi; Ai, Zhihui; Zhang, Lizhi

    2017-07-18

    Phosphate ions widely exist in the environment. Previous studies revealed that the adsorption of phosphate ions on nanoscale zerovalent iron would generate a passivating oxide shell to block reactive sites and thus decrease the direct pollutant reduction reactivity of zerovalent iron. Given that molecular oxygen activation process is different from direct pollutant reduction with nanoscale zerovalent iron, it is still unclear how phosphate ions will affect molecular oxygen activation and reactive oxygen species generation with nanoscale zerovalent iron. In this study, we systematically studied the effect of phosphate ions on molecular oxygen activation with Fe@Fe 2 O 3 nanowires, a special nanoscale zerovalent iron, taking advantages of rotating ring disk electrochemical analysis. It was interesting to find that the oxygen reduction pathway on Fe@Fe 2 O 3 nanowires was gradually shifted from a four-electron reduction pathway to a sequential one-electron reduction one, along with increasing the phosphate ions concentration from 0 to 10 mmol·L -1 . This oxygen reduction pathway change greatly enhanced the molecular oxygen activation and reactive oxygen species generation performances of Fe@Fe 2 O 3 nanowires, and thus increased their aerobic 4-chlorophenol degradation rate by 10 times. These findings shed insight into the possible roles of widely existed phosphate ions in molecular oxygen activation and organic pollutants degradation with nanoscale zerovalent iron.

  7. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  8. Mitochondrial role of Apoptosis-Inducing Factor (AIF): Oxidative Phosphorylation and Reactive Oxygen Species.

    OpenAIRE

    Apostolova, Nadezda

    2008-01-01

    The apoptotic function of Apoptosis-inducing factor (AIF) is well documented in the literature, but its physiological role in the mitochondrion is less certain. Using a small interfering RNA (siRNA) strategy, we studied whether modulation of AIF expression in cultured cells influenced the production of reactive oxygen species (ROS). We found that siAIF-transfected cells had reduced AIF protein levels and this was paralleled by a significant increase in ROS. We tested the genera...

  9. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

    OpenAIRE

    Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona; Odero-Marah, Valerie A.

    2012-01-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized L...

  10. Role of Insulin-Induced Reactive Oxygen Species in the Insulin Signaling Pathway

    OpenAIRE

    GOLDSTEIN, BARRY J.; MAHADEV, KALYANKAR; WU, XIANGDONG; ZHU, LI; MOTOSHIMA, HIROYUKI

    2005-01-01

    Oxidants, including hydrogen peroxide (H2O2), have been recognized for years to mimic insulin action on glucose transport in adipose cells. Early studies also demonstrated the complementary finding that H2O2 was elaborated during treatment of cells with insulin, suggesting that cellular H2O2 generation was integral to insulin signaling. Recently, reactive oxygen species elicited by various hormones and growth factors have been shown to affect signal transduction pathways in various cell types...

  11. Formation of reactive oxygen and nitrogen species in the presence of pinosylvin - an analogue of resveratrol

    Czech Academy of Sciences Publication Activity Database

    Jančinová, V.; Nosál, R.; Lojek, Antonín; Číž, Milan; Ambrožová, Gabriela; Mihalová, D.; Bauerová, K.; Harmatha, Juraj; Perečko, T.

    2010-01-01

    Roč. 31, č. 2 (2010), s. 79-83 ISSN 0172-780X R&D Projects: GA MŠk(CZ) MEB0810013 Grant - others:GA ČR(CZ) GA203/07/1227 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : pinosylvin * reactive oxygen species * neutrophils Subject RIV: BO - Biophysics Impact factor: 1.621, year: 2010

  12. (3) Melatonin Protects Oocytes and Granulosa Cells from Reactive Oxygen Species during the Ovulatory Process

    OpenAIRE

    田村, 博史; Hiroshi, TAMURA; 山口大学大学院医学系研究科産科婦人科学; Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine

    2009-01-01

    Reactive oxygen species (ROS) are produced within the follicle especially during the ovulatory process. ROS play a physiological role in the process of ovulation, e.g. follicle rapture. However, excessive amount of ROS causes oxidative stress and damages oocytes and luteinized granulosa cells. On the other hand, antioxidant defense systems including superoxide dismutase (SOD) or glutathione (GSH) are present in follicles. The balance between ROS and antioxidants within the follicle seems to b...

  13. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoshchikova, IrinaV; Hey-Mogensen, Martin

    2013-01-01

    Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing...... of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo....

  14. Role of reactive oxygen species in male infertility: An updated review of literature

    OpenAIRE

    Hillary Wagner; Julie W. Cheng; Edmund Y. Ko

    2018-01-01

    Objectives: To review the literature and provide an updated summary on the role of reactive oxygen species (ROS) in male infertility. Methods: A review of PubMed, Cochrane review, and Web of Science databases for full-text English-language articles published between 1943 and 2017 was performed, focusing on the aetiology of ROS, physiological role of ROS on spermatic function, pathological role of ROS in infertility, evaluation of ROS, and role of antioxidants in oxidative stress. Results: ROS...

  15. Xanthine Oxidase Potentiation of Reactive Oxygen Intermediates in Isolated Canine Peripheral Neutrophils

    Science.gov (United States)

    1989-01-01

    admin- istration of allopurinol. Allopurinol inhibits xanthine oxidase (XO) activity in ischemic tissues. The possible role of XO as a pathologic...Press Inc, 1985:143-50. 6. McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase . J Biol Chem 1968;243:5753-60. 7. Bindoli A...Nek York Short Communication Xanthine Oxidase Potentiation of Reactive Oxygen Intermediates in Isolated Canine Peripheral Neutrophils Dale F

  16. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis

    OpenAIRE

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Qayyum; Zafar, Atif; Fatima, Naureen

    2016-01-01

    Background Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120) and healthy controls (53) were evaluated for the oxidant?antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxi...

  17. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF??B

    OpenAIRE

    Sriram, Sandhya; Subramanian, Subha; Sathiakumar, Durga; Venkatesh, Rithika; Salerno, Monica S.; McFarlane, Craig D.; Kambadur, Ravi; Sharma, Mridula

    2011-01-01

    Summary Abnormal levels of reactive oxygen species (ROS) and inflammatory cytokines have been observed in the skeletal muscle during muscle wasting including sarcopenia. However, the mechanisms that signal ROS production and prolonged maintenance of ROS levels during muscle wasting are not fully understood. Here, we show that myostatin (Mstn) is a pro?oxidant and signals the generation of ROS in muscle cells. Myostatin, a transforming growth factor?? (TGF??) family member, has been shown to p...

  18. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension

    Science.gov (United States)

    Naik, Jay S.; Weise-Cross, Laura; Detweiler, Neil D.; Herbert, Lindsay M.; Yellowhair, Tracylyn R.; Resta, Thomas C.

    2017-01-01

    Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a

  19. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Nikki L Jernigan

    Full Text Available Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1 compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2 Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3 Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4 This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models

  20. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    Science.gov (United States)

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  1. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae.

  2. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species.

    Science.gov (United States)

    Chisté, Renan Campos; Mercadante, Adriana Zerlotti; Gomes, Ana; Fernandes, Eduarda; Lima, José Luís Fontes da Costa; Bragagnolo, Neura

    2011-07-15

    Bixa orellana L. (annatto), from Bixaceae family, is a native plant of tropical America, which accumulates several carotenoids (including bixin and norbixin), terpenoids, tocotrienols and flavonoids with potential antioxidant activity. In the present study, the in vitro scavenging capacity of annatto seed extracts against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was evaluated and compared to the bixin standard. Annatto extracts were obtained using solvents with different polarities and their phenolic compounds and bixin levels were determined by high performance liquid chromatography coupled to diode array detector. All annatto extracts were able to scavenge all the reactive species tested at the low μg/mL range, with the exception of superoxide radical. The ethanol:ethyl acetate and ethyl acetate extracts of annatto seeds, which presented the highest levels of hypolaetin and bixin, respectively, were the extracts with the highest antioxidant capacity, although bixin standard presented the lowest IC(50) values. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination.

    Science.gov (United States)

    Bailly, Christophe; Kranner, Ilse

    2011-01-01

    Evidence is emerging that reactive oxygen species (ROS) and antioxidants, together with plant hormones and other reactive species, such as reactive nitrogen species, are part of signalling networks pertinent to plant stress responses, cell division, and cell death. Consequently, they play pivotal roles in the regulation of seed development and maturation, germination and dormancy, seedling establishment, and seed ageing. Importantly, ROS, although essentially required at low concentrations, must be kept under stringent control by antioxidants. If the balance between pro- and antioxidative processes is lost and ROS production prevails, oxidative stress is the result, which can induce cell death and ultimately seed death. This chapter offers a variety of protocols for the determination of ROS, antioxidants, and stress markers aimed at enabling the reader to quantify these compounds. Protocols are also described to visualize ROS and localize the sites of ROS production, hoping to stimulate more research into ROS signalling and antioxidant control in key physiological and biochemical processes in seeds.

  4. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  5. Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells.

    Science.gov (United States)

    Dragomir, Elena; Manduteanu, Ileana; Voinea, Manuela; Costache, Gabi; Manea, Adrian; Simionescu, Maya

    2004-01-01

    Aspirin's pharmacological action is mainly related to its property to inhibit prostaglandin synthesis; apart from this, aspirin has some beneficial side effects that are not completely understood, yet. Since aspirin possesses antioxidant properties and antioxidants prevent high d-glucose enhanced endothelial [Ca(2+)](i), we questioned whether aspirin also has an effect on this process as well as on high-glucose-impaired nitric oxide (NO) production. For these purposes, human endothelial cells (HECs) were cultured in normal concentration (5 mM) glucose (NG) or high concentration (33 mM) glucose (HG) and after confluence, exposed for 48 h to HG in the absence or presence of 1 mM aspirin. Then, the [Ca(2+)](i) was measured fluorimetrically using fura-2, NO production was determined by Griess reaction, superoxide anions (O(2)) was evaluated by ferricytochrome c reduction, the intracellular reactive oxygen species (ROS) were evaluated by fluorimetry, and the levels of protein kinase C (PKC) by Western blot. The results showed that HECs exposed to HG displayed: (i) increased [Ca(2+)](i); (ii) enhanced O(2) release; (iii) augmented level of intracellular ROS; and (iv) PKC translocation to the membrane fraction. By comparison, exposure to cells grown in HG to 1 mM aspirin resulted in: (i) a reduction of histamine stimulated [Ca(2+)](i) release to control level and of [Ca(2+)](i) entry by 30%; (ii) a twofold increase in NO production; (iii) a decrease of O(2)(-) accumulation in both culture medium and cell homogenate (by 60.4% and 70%, respectively); (iv) a decline of ROS to the control levels; and (v) a reduction of PKC translocation to the control levels. These data indicate that aspirin corrects the high-glucose-induced changes in cellular Ca(2+) homeostasis and NO production, via a mechanism involving the reduction of the O(2)(-) levels possible by acting on PKC-induced NADPH activity.

  6. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  8. Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

    Science.gov (United States)

    Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

    2013-05-01

    Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

  9. Regulação metabólica e produção de espécies reativas de oxigênio durante a contração muscular: efeito do glicogênio na manutenção do estado redox intracelular Metabolic regulation and production of oxygen reactive species during muscule contraction: effect of glycogen on intracellular redox state

    Directory of Open Access Journals (Sweden)

    Leonardo R. Silveira

    2008-02-01

    Full Text Available O exercício físico prolongado reduz os estoques de glicogênio muscular. Nessas condições, os processos de fadiga muscular são estimulados coincidindo com um aumento na produção de espécies reativas de oxigênio. A suplementação de carboidratos ou de antioxidantes isoladamente contribui para a melhora da performance muscular, sugerindo um efeito importante da depleção de substrato (glicose e do aumento da produção de EROs no desenvolvimento da fadiga muscular durante a atividade física. Embora o mecanismo seja desconhecido, estamos propondo neste estudo que uma maior disponibilidade de glicogênio poderia favorecer uma maior atividade da via das pentoses fosfato, aumentando a disponibilidade de NADPH e GSH no tecido muscular esquelético. Uma maior capacidade antioxidante aumentaria a capacidade do tecido muscular em atividade, mantendo o equilíbrio redox durante atividade física prolongada e melhorando o desempenho. Neste processo, o ciclo glicose-ácido graxo pode ser importante aumentando a oxidação de lipídio e reduzindo o consumo de glicogênio durante a atividade prolongada. Além disso, um aumento na produção de EROs pode reduzir a atividade de enzimas importantes do metabolismo celular incluindo a aconitase e a a-cetoglutarato desidrogenase, comprometendo a produção de energia oxidativa, via predominante na produção de ATP durante a atividade muscular prolongada.Fatigue is closely related to the depletion of glycogen in the skeletal muscle during prolonged exercise. Under this condition, the production of oxygen reactive species (ROS is substantially increased. It has been shown that dietary supplementation of carbohydrate or antioxidant attenuates muscle fatigue during contraction. This suggests that glycogen availability and/or elevated ROS production plays an important role on muscle fatigue development during prolonged muscle activity. Although the mechanism is still unknown, we propose that elevated muscle

  10. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels

    NARCIS (Netherlands)

    Aksu, Ugur; Ergin, Bulent; Bezemer, Rick; Kandil, Asli; Milstein, Dan M. J.; Demirci-Tansel, Cihan; Ince, Can

    2015-01-01

    Renal ischemia/reperfusion (I/R) injury is commonly seen in kidney transplantation and affects the allograft survival rates. We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol would protect renal oxygenation and nitric oxide (NO) levels in the acute phase of

  11. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.

    Science.gov (United States)

    Scialo, Filippo; Mallikarjun, Venkatesh; Stefanatos, Rhoda; Sanz, Alberto

    2013-12-01

    Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.

  12. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains.

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-03-01

    Experiments designed to reveal the low temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C = CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 K and 100 K. After dosing the reactants onto the surface, temperature programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C = C double bond, rather than involving the cyano (-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K) and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K) respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time scale.

  13. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels.

    Science.gov (United States)

    Chua, Song Lin; Ding, Yichen; Liu, Yang; Cai, Zhao; Zhou, Jianuan; Swarup, Sanjay; Drautz-Moses, Daniela I; Schuster, Stephan Christoph; Kjelleberg, Staffan; Givskov, Michael; Yang, Liang

    2016-11-01

    The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H 2 O 2 ) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections. © 2016 The Authors.

  14. Yap1-regulated glutathione redox system curtails accumulation of formaldehyde and reactive oxygen species in methanol metabolism of Pichia pastoris.

    Science.gov (United States)

    Yano, Taisuke; Takigami, Emiko; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2009-04-01

    The glutathione redox system, including the glutathione biosynthesis and glutathione regeneration reaction, has been found to play a critical role in the yeast Pichia pastoris during growth on methanol, and this regulation was at least partly executed by the transcription factor PpYap1. During adaptation to methanol medium, PpYap1 transiently localized to the nucleus and activated the expression of the glutathione redox system and upregulated glutathione reductase 1 (Glr1). Glr1 activates the regeneration of the reduced form of glutathione (GSH). Depletion of Glr1 caused a severe growth defect on methanol and hypersensitivity to formaldehyde (HCHO), which could be complemented by addition of GSH to the medium. Disruption of the genes for the HCHO-oxidizing enzymes PpFld1 and PpFgh1 caused a comparable phenotype, but disruption of the downstream gene PpFDH1 did not, demonstrating the importance of maintaining intracellular GSH levels. Absence of the peroxisomal glutathione peroxidase Pmp20 also triggered nuclear localization of PpYap1, and although cells were not sensitive to HCHO, growth on methanol was again severely impaired due to oxidative stress. Thus, the PpYap1-regulated glutathione redox system has two important roles, i.e., HCHO metabolism and detoxification of reactive oxygen species.

  15. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS).

    Science.gov (United States)

    Wan, Baoshan; Zhang, Qiufen; Ni, Jinjing; Li, Shuxian; Wen, Donghua; Li, Jun; Xiao, Haihan; He, Ping; Ou, Hong-Yu; Tao, Jing; Teng, Qihui; Lu, Jie; Wu, Wenjuan; Yao, Yu-Feng

    2017-03-01

    Enterohemorrhagic Escherichia coli (EHEC) is one major type of contagious and foodborne pathogens. The type VI secretion system (T6SS) has been shown to be involved in the bacterial pathogenicity and bacteria-bacteria competition. Here, we show that EHEC could secrete a novel effector KatN, a Mn-containing catalase, in a T6SS-dependent manner. Expression of katN is promoted by RpoS and OxyR and repressed by H-NS, and katN contributes to bacterial growth under oxidative stress in vitro. KatN could be secreted into host cell cytosol after EHEC is phagocytized by macrophage, which leads to decreased level of intracellular reactive oxygen species (ROS) and facilitates the intramacrophage survival of EHEC. Finally, animal model results show that the deletion mutant of T6SS was attenuated in virulence compared with the wild type strain, while the deletion mutant of katN had comparable virulence to the wild type strain. Taken together, our findings suggest that EHEC could sense oxidative stress in phagosome and decrease the host cell ROS by secreting catalase KatN to facilitate its survival in the host cells.

  16. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  17. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro.

    Science.gov (United States)

    Hu, C; Kitts, D D

    2005-08-01

    Flavonoids and coumaric acid derivatives were identified from dandelion flower (Taraxacum officinale). Characteristics of chain-breaking antioxidants, such as extended lag phase and reduced propagation rate, were observed in oxidation of linoleic acid emulsion with the addition of dandelion flower extract (DFE). DFE suppressed both superoxide and hydroxyl radical, while the latter was further distinguished by both site-specific and non-specific hydroxyl radical inhibition. DPPH-radical-scavenging activity and a synergistic effect with alpha-tocopherol were attributed to the reducing activity derived from phenolic content of DFE. A significant (p < 0.05) and concentration-dependent, reduced nitric oxide production from acterial-lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells was observed with the addition of DFE. Moreover, peroxyl-radical-induced intracellular oxidation of RAW264.7 cells was inhibited significantly (p < 0.05) by the addition of DFE over a range of concentrations. These results showed that the DFE possessed marked antioxidant activity in both biological and chemical models. Furthermore, the efficacy of DFE in inhibiting both reactive oxygen species and nitric oxide were attributed to its phenolic content.

  18. Resveratrol, piperine and apigenin differ in their NADPH-oxidase inhibitory and reactive oxygen species-scavenging properties.

    Science.gov (United States)

    Whitehouse, Scott; Chen, Pei-Lin; Greenshields, Anna L; Nightingale, Mat; Hoskin, David W; Bedard, Karen

    2016-11-15

    Many plant-derived chemicals have been studied for their potential benefits in ailments including inflammation, cancer, neurodegeneration, and cardiovascular disease. The health benefits of phytochemicals are often attributed to the targeting of reactive oxygen species (ROS). However, it is not always clear whether these agents act directly as antioxidants to remove ROS, or whether they act indirectly by blocking ROS production by enzymes such as NADPH oxidase (NOX) enzymes, or by influencing the expression of cellular pro- and anti- oxidants. Here we evaluate the pro- and anti-oxidant and NOX-inhibiting qualities of four phytochemicals: celastrol, resveratrol, apigenin, and piperine. This work was done using the H661 cell line expressing little or no NOX, modified H661 cells expressing NOX1 and its subunits, and an EBV-transformed B-lymphoblastoid cell line expressing endogenous NOX2. ROS were measured using Amplex Red and nitroblue tetrazolium assays. In addition, direct ROS scavenging of hydrogen peroxide or superoxide generated were measured using Amplex Red and methyl cypridina luciferin analog (MCLA). Of the four plant-derived compounds evaluated, only celastrol displayed NOX inhibitory activities, while celastrol and resveratrol both displayed ROS scavenging activity. Very little impact on ROS was observed with apigenin, or piperine. The results of this study reveal the differences that exist between cell-free and intracellular pro-oxidant and antioxidant activities of several plant-derived compounds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells.

    Science.gov (United States)

    Venkatesan, Balachandar; Mahimainathan, Lenin; Das, Falguni; Ghosh-Choudhury, Nandini; Ghosh Choudhury, Goutam

    2007-05-01

    Reactive oxygen species (ROS) contribute to many glomerular diseases by targeting mesangial cells. ROS have been shown to regulate expression of many antioxidant enzymes including catalase. The mechanism by which the expression of catalase protein is regulated by ROS is not precisely known. Here we report that increased intracellular ROS level by hydrogen peroxide (H(2)O(2)) reduced the expression of catalase. H(2)O(2) increased phosphorylation of Akt kinase in a dose-dependent and sustained manner with a concomitant increase in the phosphorylation of FoxO1 transcription factor. Further analysis revealed that H(2)O(2) promoted rapid activation of phosphatidylinositol (PI) 3 kinase. The PI 3 kinase inhibitor Ly294002 and expression of tumor suppressor protein PTEN inhibited Akt kinase activity, resulting in the attenuation of FoxO1 phosphorylation and preventing the downregulating effect of H(2)O(2) on catalase protein level. Dominant negative Akt attenuated the inhibitory effect of H(2)O(2) on expression of catalase. Constitutively active FoxO1 increased the expression of catalase. However, dominant negative FoxO1 inhibited catalase protein level. Catalase transcription was reduced by H(2)O(2) treatment. Furthermore, expression of dominant negative Akt and constitutively active FoxO1 increased catalase transcription, respectively. These results demonstrate that ROS downregulate the expression of catalase in mesangial cells by PI 3 kinase/Akt signaling via FoxO1 as a target. (c) 2007 Wiley-Liss, Inc.

  20. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate.

    Science.gov (United States)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A(2) and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA(2)-α in this pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit

    Directory of Open Access Journals (Sweden)

    O. G. Lyublinskaya

    2015-01-01

    Full Text Available The present study focuses on the involvement of reactive oxygen species (ROS in the process of mesenchymal stem cells “waking up” and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs, we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchronized in the G0 phase of the cell cycle revealed a transient increase in the ROS level upon the quiescence exit after stimulation of the cell proliferation. This increase was registered before the eMSC entry to the S-phase of the cell cycle, and elimination of this increase by antioxidants (N-acetyl-L-cysteine, Tempol, and Resveratrol blocked G1–S-phase transition. Similarly, a cell cycle arrest which resulted from the antioxidant treatment was observed in the experiments with synchronized human mesenchymal stem cells derived from the adipose tissue. Thus, we showed that physiologically relevant level of ROS is required for the initiation of human mesenchymal stem cell proliferation and that low levels of ROS due to the antioxidant treatment can block the stem cell self-renewal.

  3. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS.

    Directory of Open Access Journals (Sweden)

    Baoshan Wan

    2017-03-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC is one major type of contagious and foodborne pathogens. The type VI secretion system (T6SS has been shown to be involved in the bacterial pathogenicity and bacteria-bacteria competition. Here, we show that EHEC could secrete a novel effector KatN, a Mn-containing catalase, in a T6SS-dependent manner. Expression of katN is promoted by RpoS and OxyR and repressed by H-NS, and katN contributes to bacterial growth under oxidative stress in vitro. KatN could be secreted into host cell cytosol after EHEC is phagocytized by macrophage, which leads to decreased level of intracellular reactive oxygen species (ROS and facilitates the intramacrophage survival of EHEC. Finally, animal model results show that the deletion mutant of T6SS was attenuated in virulence compared with the wild type strain, while the deletion mutant of katN had comparable virulence to the wild type strain. Taken together, our findings suggest that EHEC could sense oxidative stress in phagosome and decrease the host cell ROS by secreting catalase KatN to facilitate its survival in the host cells.

  4. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  5. Reduction of reactive red 241 by oxygen insensitive azoreductase purified from a novel strain Staphylococcus KU898286.

    Directory of Open Access Journals (Sweden)

    Numrah Nisar

    Full Text Available An oxygen insensitive azoreductase was purified from a novel bacterial strain (Staphylococcus sp. KU898286 that was isolated from an abandoned site of the textile waste discharge unit. The isolated enzyme had efficiently cleaved the azo-bonds through reductive transformation under aerobic conditions. Initial phenotypic characterization and final construction of phylogenetic tree on the basis of 16s rDNA demonstrated 99% resemblance of the isolate to Staphylococcus aureus. The purified azoreductase was found to have a broad spectrum activity that reduced RR241 at a concentration of 50mg/L with pH between 6-8 and 30°C temperature. Besides, the reactive red 241 (RR241 was reduced at extracellular level as well as NADH dependent intracellular level. Complete reduction/ decolourization of RR241 were achieved after 18 hrs of exposure. The final degradation product observed to be 2-nephthol was purified by High Pressure Liquid Chromatography (HPLC and the molecular mass was computed by Gas Chromatography-Mass spectroscopy (GC-MS. The study revealed a cost effective and eco-friendly approach to degrade the toxic dyes into less toxic products by Staphylococcus sp. KU898286.

  6. Reciprocal regulation of reactive oxygen species and phospho-CREB regulates voltage gated calcium channel expression during Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Arti Selvakumar

    Full Text Available Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC in regulating Mycobacterium tuberculosis (M. tb survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB, Reactive Oxygen Species (ROS, Protein Kinase C (PKC and Mitogen Activated Protein Kinase (MAPK to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection.

  7. Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species

    Science.gov (United States)

    Chung, Woon-Gye; Miranda, Cristobal L.; Stevens, Jan F.; Maier, Claudia S.

    2009-01-01

    Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 μg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified β-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as antitumorgenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement. PMID:19271284

  8. Prognostic significance of NADPH oxidase-4 as an indicator of reactive oxygen species stress in human retinoblastoma.

    Science.gov (United States)

    Singh, Lata; Saini, Neeru; Pushker, Neelam; Sen, Seema; Sharma, Anjana; Kashyap, Seema

    2016-08-01

    Reactive oxygen species (ROS) have been shown to enhance the proliferation of cancer cells. NADPH oxidases (NOX4) are a major intracellular source of ROS and are found to be associated with cancer and tumor cell invasion. Therefore, the purpose of this study is to evaluate the expression of NOX4 protein in human retinoblastoma. Immunohistochemical expression of NOX4 protein was analyzed in 109 specimens from prospective cases of retinoblastoma and then correlated with clinicopathological parameters and patient survival. Western blotting confirmed and validated the immunoreactivity of NOX4 protein. In our study we found a male preponderance (55.9 %), and 25/109 (22.9 %) were bilateral. Massive choroidal invasion was the histopathological high-risk factor (HRF) most frequently observed, in 42.2 % of the cases. NOX4 protein was expressed in 67.88 % (74/109) of primary retinoblastoma cases and was confirmed by Western blotting. NOX4 was statistically significant with massive choroidal invasion and pathological TNM staging. There was a statistically significant difference in overall survival in patients with NOX4 expression (p = 0.0461). This is the first study to show the expression of NOX4 protein in retinoblastoma tumors. Hence, a retinoblastoma tumor may exhibit greater ROS stress. This protein may prove to be useful as a future therapeutic target for improving the management of retinoblastoma.

  9. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    Directory of Open Access Journals (Sweden)

    Hyunyun Kim

    2016-01-01

    Full Text Available Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS causes cardiovascular diseases (CVDs, atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs, for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  10. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species.

    Science.gov (United States)

    Duan, Xiaodong; Peng, Daizhi; Zhang, Yilan; Huang, Yalan; Liu, Xiao; Li, Ruifu; Zhou, Xin; Liu, Jing

    2017-11-03

    Silver-containing preparations are widely used in the management of skin wounds, but the effects of silver ions on skin wound healing remain poorly understood. This study investigated the effects of silver ions (Ag + ) on the proliferation of human skin keratinocytes (HaCaT) and the production of intracellular reactive oxygen species (ROS). After treating HaCaT cells with Ag + and/or the active oxygen scavenger N-acetyl cysteine (NAC), cell proliferation and intracellular ROS generation were assessed using CCK-8 reagent and DCFH-DA fluorescent probe, respectively. In addition, 5-bromo-2-deoxyUridine (BrdU) incorporation assays, cell cycle flow cytometry, and proliferating cell nuclear antigen (PCNA) immunocytochemistry were conducted to further evaluate the effects of sub-cytotoxic Ag + concentrations on HaCaT cells. The proliferation of HaCaT cells was promoted in the presence of 10 -6 and 10 -5 mol/L Ag + at 24, 48, and 72 h. Intracellular ROS generation also significantly increased for 5-60 min after exposure to Ag + . The number of BrdU-positive cells and the presence of PCNA in HaCaT cells increased 48 h after the addition of 10 -6 and 10 -5 mol/L Ag + , with 10 -5 mol/L Ag + markedly increasing the cell proliferation index. These effects of sub-cytotoxic Ag + concentrations were repressed by 5 mmol/L NAC. Our results suggest that sub-cytotoxic Ag + concentrations promote the proliferation of human keratinocytes and might be associated with a moderate increase in intracellular ROS levels. This study provides important experimental evidence for developing novel silver-based wound agents or dressings with few or no cytotoxicity.

  11. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.

    Science.gov (United States)

    Krishnan, Navasona; Becker, Donald F

    2006-02-01

    Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to delta1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutA(Hh)) and Helicobacter pylori (PutA(Hp)) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutA(Hh) and PutA(Hp) lack DNA binding activity, in contrast to PutA from Escherichia coli (PutA(Ec)), which both regulates and catalyzes proline utilization. PutA(Hh) and PutA(Hp) display catalytic activities similar to that of PutA(Ec) but have higher oxygen reactivity. PutA(Hh) and PutA(Hp) exhibit 100-fold-higher turnover numbers (approximately 30 min(-1)) than PutA(Ec) (PutA(Hh) forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutA(Hh) and PutA(Hp) was probed by oxidative stress studies in E. coli. Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutA(Hp) and PutA(Hh) expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.

  12. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  13. Microparticles from patients with systemic lupus erythematosus induce production of reactive oxygen species and degranulation of polymorphonuclear leukocytes

    DEFF Research Database (Denmark)

    Winberg, Line Kjær; Jacobsen, Søren; Nielsen, Claus H

    2017-01-01

    BACKGROUND: The interaction of circulating microparticles (MPs) with immune cells in systemic lupus erythematosus (SLE) is sparsely investigated. We examined the ability of MPs from SLE patients to induce production of reactive oxygen species (ROS) and degranulation of polymorphonuclear leukocytes...

  14. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  15. Characterization and reactivity of a terminal nickel(III)-oxygen adduct.

    Science.gov (United States)

    Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R

    2015-02-23

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mild hyperthermia enhances sensitivity of gastric cancer cells to chemotherapy through reactive oxygen species-induced autophagic death.

    Science.gov (United States)

    Ba, Ming-Chen; Long, Hui; Cui, Shu-Zhong; Gong, Yuan-Feng; Yan, Zhao-Fei; Wang, Shuai; Wu, Yin-Bing

    2017-06-01

    Mild hyperthermia enhances anti-cancer effects of chemotherapy, but the precise biochemical mechanisms involved are not clear. This study was carried out to investigate whether mild hyperthermia sensitizes gastric cancer cells to chemotherapy through reactive oxygen species-induced autophagic death. In total, 20 BABL/c mice of MKN-45 human gastric cancer tumor model were divided into hyperthermia + chemotherapy group, hyperthermia group, chemotherapy group, N-acetyl-L-cysteine group, and mock group. Reactive oxygen species production and expression of autophagy-related genes Beclin1, LC3B, and mammalian target of rapamycin were determined. The relationships between tumor growth regression, expression of autophagy-related genes, and reactive oxygen species production were evaluated. Tumor size and wet weight of hyperthermia + chemotherapy group was significantly decreased relative to values from hyperthermia group, chemotherapy group, N-acetyl-L-cysteine group, and mock group ( F = 6.92, p Reactive oxygen species production was significantly higher in hyperthermia + chemotherapy group than in hyperthermia, chemotherapy, and mock groups. The expression levels of Beclin1 and LC3B were significantly higher, while those of mammalian target of rapamycin were significantly lower in hyperthermia + chemotherapy group than in hyperthermia, chemotherapy, and mock groups. Tumor growth regression was consistent with changes in reactive oxygen species production and expression of autophagy-related genes. N-acetyl-L-cysteine inhibited changes in the expression of the autophagy-related genes and also suppressed reactive oxygen species production and tumor growth. Hyperthermia + chemotherapy increase expression of autophagy-related genes Beclin1 and LC3B, decrease expression of mammalian target of rapamycin, and concomitantly increase reactive oxygen species generation. These results strongly indicate that mild hyperthermia enhances sensitivity of gastric

  17. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  18. Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro.

    Science.gov (United States)

    Bansal, Savita; Siddarth, Manushi; Chawla, Diwesh; Banerjee, Basu D; Madhu, S V; Tripathi, Ashok K

    2012-02-01

    Increased oxidative stress (OS) in diabetes mellitus is one of the major factors leading to diabetic pathology. However, the mediators and mechanism that provoke OS in diabetes is not fully understood, and it is possible that accumulation of advanced glycation end products (AGEs) formed secondary to hyperglycemic conditions may incite circulating polymorphonuclear neutrophils (PMN) to generate reactive oxygen species (ROS). In this report, we aim to investigate the effect of AGE on reactive oxygen and nitrogen species generation and subsequent OS in PMN. AGE-HSA exert dose- and time-dependent enhancement of ROS and reactive nitrogen intermediates (RNI) generation by PMN. Increased ROS and RNI generation were found to be mediated through the upregulation of NADPH oxidase and inducible nitric oxide synthase (iNOS), respectively, as evident from the fact that AGE-treated neutrophils failed to generate ROS and RNI in presence of diphenyleneiodonium, a flavoprotein inhibitor for both enzymes. Further increased generation of ROS and RNI ceased when the cells were incubated with anti-RAGE antibody suggesting the involvement of AGE-RAGE interaction. Also increased malondialdehyde (MDA) and protein carbonyl formation in AGE-exposed PMN suggest induction of OS by AGE. This study provides evidence that AGEs may play a key role in the induction of oxidative stress through the augmentation of PMN-mediated ROS and RNI generation and this may be in part responsible for development of AGE-induced diabetic pathology.

  19. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  20. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    Science.gov (United States)

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  2. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Saccomanno, S; van Goor, H; Jansen, P; Benedetti, A; Moshage, H

    Background/Aims: Reactive oxygen species (ROS) induce HSCs activation, proliferation and collagen gene expression in vitro. Nitric oxide (NO) represents a reactive molecule that reacts with ROS, yielding peroxynitrite. We thus verified the effect of NO on ROS-induced HSCs proliferation in vitro and

  3. Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression.

    Science.gov (United States)

    Ma, K-G; Shao, Z-W; Yang, S-H; Wang, J; Wang, B-C; Xiong, L-M; Wu, Q; Chen, S-F

    2013-12-01

    To determine whether autophagy contributes to the pathogenesis of degenerative disc disease (DDD) or retards the intervertebral disc (IVD) degeneration, and investigate the possible relationship between compression-induced autophagy and intracellular reactive oxygen species (ROS) in nucleus pulposus (NP) cells in vitro. The autophagosome and autophagy-related markers were used to explore the role of autophagy in rat NP cells under compressive stress, which were measured directly by electronic microscopy, monodansylcadaverine (MDC) staining, immunofluorescence, western blot, and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3-methyladenine (3-MA) and chloroquine (CQ). And the relationship between autophagy and apoptosis was investigated by Annexin-V/propidium iodide (PI)-fluorescein staining. In addition, ROS were measured to determine whether these factors are responsible for the development of compression-induced autophagy. Our results indicated that rat NP cells activated autophagy in response to the same strong apoptotic stimuli that triggered apoptosis by compression. Autophagy and apoptosis were interconnected and coordinated in rat NP cells exposed to compression stimuli. Compression-induced autophagy was closely related to intracellular ROS production. Enhanced degradation of damaged components of NP cells by autophagy may be a crucial survival response against mechanical overload, and extensive autophagy may trigger autophagic cell death. Regulating autophagy and reducing the generation of intracellular ROS may retard IVD degeneration. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  5. Inverse correlation between reactive oxygen species in unwashed semen and sperm motion parameters as measured by a computer-assisted semen analyzer.

    Science.gov (United States)

    Takeshima, Teppei; Yumura, Yasushi; Yasuda, Kengo; Sanjo, Hiroyuki; Kuroda, Shinnosuke; Yamanaka, Hiroyuki; Iwasaki, Akira

    2017-01-01

    This study investigated the correlation between sperm motion parameters obtained by a computer-assisted semen analyzer and levels of reactive oxygen species in unwashed semen. In total, 847 patients, except for azoospermic patients were investigated. At the time of each patient's first consultation, semen parameters were measured using SMAS™ or CellSoft 3000™, and production of reactive oxygen species was measured using a computer-driven LKB Wallac Luminometer 1251 Analyzer. The patients were divided into two groups: reactive oxygen species - positive and negative. The semen parameters within each group were measured using one of the two computer-assisted semen analyzer systems and then compared. Correlations between reactive oxygen species levels and sperm motion parameters in semen from the reactive oxygen species - positive group were also investigated. Reactive oxygen species were detected in semen samples of 282 cases (33.3%). Sperm concentration (P reactive oxygen species - positive group than in the reactive oxygen species - negative group. Among the sperm motion parameters in the reactive oxygen species - positive group, sperm concentration (P reactive oxygen species levels. Therefore, this study demonstrated that excessive reactive oxygen species in semen damage sperm concentration, motility, and other sperm motion parameters.

  6. Mechanism of p47phox-induced increase of reactive oxygen species in peripheral blood mononuclear cells from premature infants on oxygen therapy.

    Science.gov (United States)

    Zhang, Lingping; Dong, Wenbin; Li, Qingping; Kang, Lan; Zhang, Lianyu; Lu, Youying; Zhai, Xuesong

    2016-11-01

    This study aimed to explore the mechanism of p47phox-induced increase of reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) from premature infants after oxygen therapy, and determine a new target for oxidative stress injury alleviation in clinical setting. First, ROS levels as well as p47phox translocation and expression in PBMC samples were evaluated after treatment of premature infants with different concentrations of oxygen. Then, changes of all various parameters were detected after in vitro treatment of PBMCs with diphenyleneiodonium (DPI), apocynin, and high oxygen levels. In premature infants, ROS levels increased significantly after treatment with oxygen, in a concentration-dependent manner (p oxygen concentrations; p47phox translocation, and expression increased as well (p oxygen increases p47phox translocationand expression, which in turn induce ROS production. DPI and apocynin have the opposite effects.

  7. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  8. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  9. Salicylate induces reactive oxygen species and reduces UVC susceptibility in Staphylococcus aureus.

    Science.gov (United States)

    Cai, Jia-Yi; Wang, Yuan-Yuan; Ma, Kai; Hou, Yong-Na; Yao, Guo-Dong; Hayashi, Toshihiko; Itoh, Kikuji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-03-13

    Present study demonstrates that growth of Staphylococcus aureus in the presence of salicylate reduces ultraviolet C (UVC)-induced cell death and increases the generation of reactive oxygen species (ROS). In addition, compounds that scavenge ROS (N-acetylcysteine, glutathione, catalase and superoxide dismutase) reverse the increased UVC survival induced by growth in the presence of salicylate, while ROS donors (tert-butylhydroperoxide, H2O2, and NaClO) enhance survival of salicylate challenged cultures. Collectively these findings suggest that ROS production induced by growth in the presence of salicylate protects S. aureus from UVC-induced cell death.

  10. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  11. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    Science.gov (United States)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  12. A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions

    International Nuclear Information System (INIS)

    Ni, Boris; Lee, Ki-Ho; Sinnott, Susan B

    2004-01-01

    The expansion of the second-generation reactive empirical bond order (REBO) potential for hydrocarbons, as parametrized by Brenner and co-workers, to include oxygen is presented. This involves the explicit inclusion of C-O, H-O, and O-O interactions to the existing C-C, C-H, and H-H interactions in the REBO potential. The details of the expansion, including all parameters, are given. The new, expanded potential is then applied to the study of the structure and chemical stability of several molecules and polymer chains, and to modelling chemical reactions among a series of molecules, within classical molecular dynamics simulations

  13. Reactive oxygen species impact on sperm DNA and its role in male infertility.

    Science.gov (United States)

    Bui, A D; Sharma, R; Henkel, R; Agarwal, A

    2018-04-11

    Reactive oxygen species (ROS) have been extensively studied as a cause of male infertility. Excessive levels of ROS coupled with a deficiency in antioxidants can lead to oxidative stress (OS), which in turn can lead to nuclear and mitochondrial DNA damage, telomere shortening, epigenetic alterations and Y chromosomal microdeletions. In this review, we discuss how OS induces DNA damage and the types of DNA damage that can occur. We also briefly touch on the clinical consequences of OS-induced DNA damage. © 2018 Blackwell Verlag GmbH.

  14. Arterial Spin Labeling and Blood Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease

    DEFF Research Database (Denmark)

    Smeeing, Diederik P J; Hendrikse, Jeroen; Petersen, Esben T

    2016-01-01

    BACKGROUND: The cerebrovascular reactivity (CVR) results of blood oxygen level-dependent (BOLD) and arterial spin labeling (ASL) MRI studies performed in patients with cerebrovascular disease (steno-occlusive vascular disease or stroke) were systematically reviewed. SUMMARY: Thirty-one articles...... found a significant lower ASL CVR in the ipsilateral hemispheres of patients compared to controls. KEY MESSAGES: This review brings support for a reduced BOLD and ASL CVR in the ipsilateral hemisphere of patients with cerebrovascular disease. We suggest that future studies will be performed in a uniform...... way so reference values can be established and could be used to guide treatment decisions in patients with cerebrovascular disease....

  15. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Hlavatá, Lydie

    2005-01-01

    Roč. 37, č. 12 (2005), s. 2478-2503 ISSN 1357-2725 R&D Projects: GA AV ČR(CZ) IAA5011106; GA ČR(CZ) GA301/02/1215; GA ČR(CZ) GA301/05/0221; GA ČR(CZ) GA204/04/0495 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondria * reactive oxygen species * oxidative stress Subject RIV: ED - Physiology Impact factor: 3.871, year: 2005

  16. On the in-vivo photochemical rate parameters for PDT reactive oxygen species modeling

    Science.gov (United States)

    Kim, Michele M.; Ghogare, Ashwini A.; Greer, Alexander; Zhu, Timothy C.

    2017-01-01

    Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in-vitro. Recent developments allow for the estimation of some of these photochemical parameters in-vivo. This review will cover the currently available in-vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT. PMID:28166056

  17. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    Science.gov (United States)

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.

  18. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Griendling, Kathy K; Touyz, Rhian M; Zweier, Jay L; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G; Bhatnagar, Aruni

    2016-08-19

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species. © 2016 American Heart Association, Inc.

  19. The influence of oxygen on the induction of radiation damage in DNA in mammalian cells after sensitization by intracellular glutathione depletion

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Vos, O.; Roos-Verheij, W.S.D.; Lohman, P.H.M.

    1986-05-01

    Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and NPSH (non-protein-bound SH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand DNA breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20% for the 3 types of radiation damage. Also under severely hypoxic conditions (0.01 μM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30%). At somewhat higher concentrations of oxygen (0.5-10 μM) however, the sensitization amounted to about 90% for the induction of ssb and dsb and about 50% for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen. (Auth.)

  20. Dual oxidase 2 generated reactive oxygen species selectively mediate the induction of mucins by epidermal growth factor in enterocytes.

    Science.gov (United States)

    Damiano, Simona; Morano, Annalisa; Ucci, Valentina; Accetta, Roberta; Mondola, Paolo; Paternò, Roberto; Avvedimento, V Enrico; Santillo, Mariarosaria

    2015-03-01

    Dual oxidase 2 enzyme is a member of the reactive oxygen species-generating cell membrane NADPH oxidases involved in mucosal innate immunity. It is not known if the biological activity of dual oxidase 2 is mediated by direct bacterial killing by reactive oxygen species produced by the enzyme or by the same reactive oxygen species acting as second messengers that stimulate novel gene expression. To uncover the role of reactive oxygen species and dual oxidases as signaling molecules, we have dissected the pathway triggered by epidermal growth factor to induce mucins, the principal protective components of gastrointestinal mucus. We show that dual oxidase 2 is essential for selective epidermal growth factor induction of the transmembrane MUC3 and the secreted gel-forming MUC5AC mucins. Reactive oxygen species generated by dual oxidase 2 stabilize tyrosine phosphorylation of epidermal growth factor receptor and induce MUC3 and MUC5AC through persistent activation of extracellular signal-regulated kinases 1/2-protein kinase C. Knocking down dual oxidase 2 by selective RNA targeting (siRNA) reduced epidermal growth factor receptor phosphorylation, and MUC3 and MUC5AC gene expression. Extracellular reactive oxygen species produced by dual oxidase 2, upon stimulation by epidermal growth factor, stabilize epidermal growth factor receptor phosphorylation and activate extracellular signal-regulated kinases 1/2-protein kinase C which induce MUC5AC and MUC3. Extracellular reactive oxygen species produced by dual oxidase 2 that are known to directly kill bacteria, also contribute to the maintenance of the epidermal growth factor-amplification loop, which induces mucins. These data suggest a new function of dual oxidase 2 protein in the luminal protection of the gastrointestinal tract through the induction of mucin expression by growth factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Kinetics of reactive oxygen species produced by rainbow trout (Oncorhynchus mykiss leukocytes and the effect of the antioxidant astaxanthin

    Directory of Open Access Journals (Sweden)

    Leonardo Gomez

    2013-01-01

    Full Text Available Reactive oxygen species contribute to kill of microorganisms. Their activity is usually measured by their capacity to reduce nitroblue tetrazolium into formazan. The incubation time to allow nitroblue tetrazolium reduction by reactive oxygen species usually ranges from 30 to 60 min. The aim of our study was to determine the kinetics of formazan formation, to determine the shortest incubation time possible, and to find if astaxanthin negatively affects the availability of reactive oxygen species (and defense mechanisms of fish. The blood/nitroblue tetrazolium method is based on nitroblue tetrazolium reduction into formazan by reactive oxygen species present in blood. Formazan can be spectrophotometrically measured, allowing quantification of reactive oxygen species. Reactive oxygen species were measured in blood samples from 30 trout intramuscularly injected with astaxanthin (0.3 mg/100 g of fish (experimental group and 30 non-injected trout (controls. Results indicated that in trout non-treated with astaxanthin, the plateau of formazan production was reached after 20 min of incubation. Trout intramuscularly injected with astaxanthin showed the following: on Day 1 after astaxanthin injection, the kinetics were slower but finally reached a plateau similar to astaxanthin-free trouts, and by Day 11 the plateau was significantly higher after 60 min incubation. In conclusion, the kinetics curves here reported allow reducing incubation time of the method to only 20 min in antioxidant-free trout and, on the other hand, our results also revealed that astaxanthin can be used to improve flesh colour in salmonids without affecting reactive oxygen species availability and therefore the defense mechanisms of trout.

  2. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    Science.gov (United States)

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  3. Bactericidal Antibiotics Promote Reactive Oxygen Species Formation and Inflammation in Human Sinonasal Epithelial Cells

    Science.gov (United States)

    Kohanski, Michael A; Tharakan, Anuj; Lane, Andrew P.; Ramanathan, Murugappan

    2015-01-01

    Background Bactericidal antibiotics have been shown to stimulate reactive oxygen species (ROS) formation in mammalian cells through mitochondrial dysfunction. This results in oxidative tissue damage that may have negative consequences for long-term antibiotic use. Antibiotics are widely and heavily used in the treatment of acute and chronic sinusitis, however the relationship between antibiotics and ROS formation in sinonasal epithelial cells (SNECs) has not yet been demonstrated. Methods Human SNECs were collected from patients during endoscopic sinus surgery and grown in culture at the air-liquid interface. Differentiated SNECs were stimulated with the bactericidal antibiotics amoxicillin and levofloxacin and the bacteriostatic antibiotic clarithromycin for 24-hours. Reactive oxygen species were quantified via fluorescence. Cell death was quantified by LDH secretion. Expression of inflammatory markers such as TNF-α and Nrf2 mediated antioxidant genes were measured by RT-PCR. Results Cultured SNECs treated with the bactericidal antibiotics amoxicillin and levofloxacin resulted in a significant increase in production of ROS (pbactericidal antibiotics leads to formation of ROS with an associated increase in inflammatory and antioxidant gene expression and cell death. This suggests that long term or inappropriate antibiotic use in the treatment of sinusitis, may result in oxidative tissue damage to the sinonasal epithelium. Future studies will explore the clinical implications of such damage to the sinonasal epithelium. PMID:26624249

  4. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    International Nuclear Information System (INIS)

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-01-01

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer

  5. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds.

    Science.gov (United States)

    Zhang, Tong; Hansel, Colleen M; Voelker, Bettina M; Lamborg, Carl H

    2016-03-15

    Within natural waters, photodependent processes are generally considered the predominant source of reactive oxygen species (ROS), a suite of biogeochemically important molecules. However, recent discoveries of dark particle-associated ROS production in aquatic environments and extracellular ROS production by various microorganisms point to biological activity as a significant source of ROS in the absence of light. Thus, the objective of this study was to explore the occurrence of dark biological production of the ROS superoxide (O2(-)) and hydrogen peroxide (H2O2) in brackish and freshwater ponds. Here we show that the ROS superoxide and hydrogen peroxide were present in dark waters at comparable concentrations as in sunlit waters. This suggests that, at least for the short-lived superoxide species, light-independent processes were an important control on ROS levels in these natural waters. Indeed, we demonstrated that dark biological production of ROS extensively occurred in brackish and freshwater environments, with greater dark ROS production rates generally observed in the aphotic relative to the photic zone. Filtering and formaldehyde inhibition confirmed the biological nature of a majority of this dark ROS production, which likely involved phytoplankton, particle-associated heterotrophic bacteria, and NADH-oxidizing enzymes. We conclude that biological ROS production is widespread, including regions devoid of light, thereby expanding the relevance of these reactive molecules to all regions of our oxygenated global habit.

  6. New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica.

    Science.gov (United States)

    Cabeza, Matías S; Guerrero, Sergio A; Iglesias, Alberto A; Arias, Diego G

    2015-06-01

    Entamoeba histolytica, an intestinal parasite that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. A flavodiiron protein and a rubrerythrin have been characterized in this human pathogen, although their physiological reductants have not been identified. The present work deals with biochemical studies performed to reach a better understanding of the kinetic and structural properties of rubredoxin reductase and two ferredoxins from E. histolytica. We complemented the characterization of two different metabolic pathways for O2 and H2O2 detoxification in E. histolytica. We characterized a novel amoebic protein with rubredoxin reductase activity that is able to catalyze the NAD(P)H-dependent reduction of heterologous rubredoxins, amoebic rubrerythrin and flavodiiron protein but not ferredoxins. In addition, the protein exhibited an NAD(P)H oxidase activity, which generates hydrogen peroxide from molecular oxygen. We describe how different ferredoxins were also efficient reducing substrates for both flavodiiron protein and rubrerythrin. The enzymatic systems herein characterized could contribute to the in vivo detoxification of O2 and H2O2, playing a key role for the parasite defense against reactive oxidant species. To the best of our knowledge this is the first characterization of a eukaryotic rubredoxin reductase, including a novel kinetic study on ferredoxin-dependent reduction of flavodiiron and rubrerythrin proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages.

    Science.gov (United States)

    Zhu, Zhendong; Ren, Zhanjun; Fan, Xiaoteng; Pan, Yang; Lv, Shan; Pan, Chuanying; Lei, Anmin; Zeng, Wenxian

    2017-01-01

    The process of cryopreservation results in over-production of reactive oxygen species, which is extremely detrimental to spermatozoa. The aim of this study was to investigate whether addition of cysteine to freezing extender would facilitate the cryosurvival of rabbit spermatozoa, and if so, how cysteine protects spermatozoa from cryodamages. Freshly ejaculated semen was diluted with Tris-citrate-glucose extender supplemented with different concentrations of cysteine. The motility, intact acrosomes, membrane integrity, mitochondrial potentials, 8-hydroxyguanosine level and sperm-zona pellucida binding capacity were examined. Furthermore, glutathione peroxidase (GPx) activity, glutathione content (GSH), and level of reactive oxygen species (ROS) and hydrogen peroxide of spermatozoa were analyzed. The values of motility, intact acrosomes, membrane integrity, mitochondrial potentials and sperm-zona pellucida binding capacity of the frozen-thawed spermatozoa in the treatment of cysteine were significantly higher than those of the control. Addition of cysteine to extenders improved the GPx activity and GSH content of spermatozoa, while lowered the ROS, DNA oxidative alterations and lipid peroxidation level, which makes spermatozoa avoid ROS to attack DNA, the plasma membrane and mitochondria. In conclusion, cysteine protects spermatozoa against ROS-induced damages during cryopreservation and post-thaw incubation. Addition of cysteine is recommended to facilitate the improvement of semen preservation for the rabbit breeding industry.

  8. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  9. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  10. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  11. Receptor of advanced glycation end products (RAGE) positively regulates CD36 expression and reactive oxygen species production in human monocytes in diabetes.

    Science.gov (United States)

    Xanthis, A; Hatzitolios, A; Fidani, S; Befani, C; Giannakoulas, G; Koliakos, G

    Advanced glycation end products (AGEs) engagement of a monocyte surface receptor (RAGE) induces atherosclerosis. AGEs also act as CD36 ligands. We studied reactive oxygen species (ROS) and CD36 expression after siRNA inhibition of RAGE expression in human monocytes. We isolated monocytes from: a) 10 type 2 diabetics, and b) 5 age- and sex-matched healthy individuals. CD36 expression and ROS production were evaluated before and after RAGE knockdown. After incubation of monocytes with AGE + bovine serum albumin (BSA), CD36 expression and intracellular ROS increased significantly in all groups. In RAGE-knockdown monocytes, AGE-induced CD36 expression and ROS generation were also significantly inhibited. Blocking RAGE expression using siRNA in human monocytes led to a significant inhibition of CD36 expression and ROS production, suggesting a positive interaction between RAGE, CD36 expression and ROS generation in monocytes.

  12. Production of gamma induced reactive oxygen species and damage of DNA molecule in HaCaT cells under euoxic and hypoxic condition

    International Nuclear Information System (INIS)

    Joseph, P.; Bhat, N.N.; Copplestone, D.; Narayana, Y.

    2014-01-01

    The paper deals with the study of gamma radiation induced reactive oxygen species (ROS) generation in normal human keratinocytes (HaCaT) cells and quantification of subsequent damages induced on DNA molecules. The DNA damages induced in cells after gamma irradiation has been analyzed using Alkaline comet assay. The ROS produced in the cells were quantified by measuring fluorescence after loading the cells with 2', 7' dichlorofluorescin diacetate, a dye that is oxidized into a highly fluorescent form in the presence of peroxides. Studies reveal that in HaCaT cells radical generation occurs when exposed to ionizing radiation and it increases with dose. The induced DNA damages also increases with dose and ROS generation. The study clearly shows the importance of ROS in DNA damage induction and the cells possessing elevated levels of DNA damage after radiation exposure is due to the effect of increased levels of intracellular ROS. (author)

  13. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    Science.gov (United States)

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  14. Peripheral blood mononuclear cells from rat model of pleurisy: The effects of hesperidin on ectoenzymes activity, apoptosis, cell cycle and reactive oxygen species production.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Leal, Daniela Bitencourt Rosa; Doleski, Pedro Henrique; Ledur, Pauline Christ; Ecker, Assis

    2017-07-01

    The present study investigates the effect of hesperidin; a flavonone commonly found in citrus fruits, on the ectoenzymes (ectonucleotidase and ecto-adenosine deaminase) activity, cell viability, apoptosis, cell cycle arrest and reactive oxygen species production in peripheral blood mononuclear cells (PBMCs) from rat model of pleurisy. Wistar rats were pretreated with either saline or hesperidin (80mg/kg) by oral gavage for 21days and injected intrapleurally with 2% carrageenan or saline on the 22nd day. PBMCs were subsequently prepared after 4h of carrageenan induction. The results revealed that hesperidin may exhibit its anti-inflammatory effects through possible modulation of ectonucleotidase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) activities, reduction of intracellular reactive oxygen species, prevention of DNA damage and modulation of apoptosis as well as activation of cell cycle arrest. This study suggests some possible underlying anti-inflammatory mechanisms of hesperidin on PBMCs in acute inflammatory condition. Furthermore, hesperidin may minimize oxidative injury mediated pleurisy in rat. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    Science.gov (United States)

    Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  16. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    Science.gov (United States)

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  17. Extracellular phosphates enhance activities of voltage-gated proton channels and production of reactive oxygen species in murine osteoclast-like cells.

    Science.gov (United States)

    Li, Guangshuai; Miura, Katsuyuki; Kuno, Miyuki

    2017-02-01

    Osteoclasts are highly differentiated bone-resorbing cells and play a significant role in bone remodelling. In the resorption pit, inorganic phosphate (Pi) concentrations increase because of degradation of hydroxyapatite. We studied effects of extracellular Pi on voltage-gated H + channels in osteoclast-like cells derived from a macrophage cell line (RAW264). Extracellular Pi (1.25-20 mM) increased the H + channel currents dose dependently and reversibly. The Pi-induced increases were attenuated by removal of extracellular Na + and by phosphonoformic acid, a blocker of Na + -dependent Pi transporters. Pi increased the maximal conductance, decreased activation time constant, increased deactivation time constant, and shifted the conductance-voltage relationship to more negative voltages. The most marked change was enhanced gating which was mainly caused by elevation of intracellular Pi levels. The Pi-induced enhanced gating was partially inhibited by protein kinase C (PKC) inhibitors, GF109203X and staurosporine, indicating that PKC-mediated phosphorylation was involved in part. The increase in the maximal conductance was mainly due to accompanying decrease in intracellular pH. These effects of Pi were not affected by intracellular Mg 2+ , bafilomycin A 1 (V-ATPase inhibitor) and removal of intracellular ATP. Extracellular Pi also upregulated reactive oxygen species (ROS). Diphenyleneiodonium chloride, an inhibitor of NADPH oxidases, decreased ROS production and partially attenuated the enhanced gating. In the cells during later passages where osteoclastogenesis declined, H + channel activities and ROS production were both modest. These results suggest that, in osteoclasts, ambient Pi is a common enhancer for H + channels and ROS production and that potentiation of H + channels may help ROS production.

  18. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  19. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain.

    Science.gov (United States)

    Ishii, Takamasa; Takanashi, Yumi; Sugita, Koichi; Miyazawa, Masaki; Yanagihara, Rintaro; Yasuda, Kayo; Onouchi, Hiromi; Kawabe, Noboru; Nakata, Munehiro; Yamamoto, Yorihiro; Hartman, Phil S; Ishii, Naoaki

    2017-02-01

    The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle-aged Tet-mev-1 mice with the SDHC V69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle-aged Tet-mev-1 mice overproduced MitoSOX Red-detectable mitochondrial ROS compared to age-matched wild-type C57BL/6J mice, only young adult Tet-mev-1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn- and Cu/Zn-SODs) activities to eliminate the MitoSOX Red-detectable mitochondrial ROS. In contrast, middle-aged Tet-mev-1 mice accumulated both MitoSOX Red-detectable mitochondrial ROS and CM-H 2 DCFDA-detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle-aged Tet-mev-1 mice relative to age-matched wild-type C57BL/6J mice. Furthermore, only middle-aged Tet-mev-1 mice showed JNK/SAPK activation and Ca 2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age-dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.

    Science.gov (United States)

    Zhou, Zijian; Song, Jibin; Nie, Liming; Chen, Xiaoyuan

    2016-11-21

    The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.

  1. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  2. Reactive oxygen species: role in the development of cancer and various chronic conditions

    Directory of Open Access Journals (Sweden)

    Waris Gulam

    2006-05-01

    Full Text Available Abstract Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention.

  3. Reactive oxygen species: role in the development of cancer and various chronic conditions

    Science.gov (United States)

    Waris, Gulam; Ahsan, Haseeb

    2006-01-01

    Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention. PMID:16689993

  4. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  5. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs.

    Directory of Open Access Journals (Sweden)

    Seong-Eun Mun

    Full Text Available Despite the application of numerous supplements to improve in vitro culture (IVC conditions of mammalian cells, studies regarding the effect of fetal bovine serum (FBS on mammalian early embryogenesis, particularly in relation to redox homeostasis, are lacking. Herein, we demonstrated that early development of in vitro-produced (IVP porcine embryos highly depends on the combination of FBS supplementation timing and embryonic reactive oxygen species (ROS requirements. Interestingly, FBS significantly reduced intracellular ROS levels in parthenogenetically activated (PA embryos regardless of the developmental stage. However, the beneficial effect of FBS on early embryogenesis was found only during the late phase (IVC 4-6 days treatment group. In particular, developmental competence parameters, such as blastocyst formation rate, cellular survival, total cell number and trophectoderm proportion, were markedly increased by FBS supplementation during the late IVC phase. In addition, treatment with FBS elevated antioxidant transcript levels during the late IVC phase. In contrast, supplementation with FBS during the entire period (1-6 days or during the early IVC phase (1-2 days greatly impaired the developmental parameters. Consistent with the results from PA embryos, the developmental competence of in vitro fertilization (IVF or somatic cell nuclear transfer (SCNT embryos were markedly improved by treatment with FBS during the late IVC phase. Moreover, the embryonic stage-specific effects of FBS were reversed by the addition of an oxidant and were mimicked by treatment with an antioxidant. These findings may increase our understanding of redox-dependent early embryogenesis and contribute to the large-scale production of high-quality IVP embryos.

  6. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  7. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  8. ETV6/RUNX1 Induces Reactive Oxygen Species and Drives the Accumulation of DNA Damage in B Cells

    Directory of Open Access Journals (Sweden)

    Hans-Peter Kantner

    2013-11-01

    Full Text Available The t(12;21(p13;q22 chromosomal translocation is the most frequent translocation in childhood B cell precursor-acute lymphoblastic leukemia and results in the expression of an ETV6/RUNX1 fusion protein. The frequency of ETV6/RUNX1 fusions in newborns clearly exceeds the leukemia rate revealing that additional events occur in ETV6/RUNX1-positive cells for leukemic transformation. Hitherto, the mechanisms triggering these second hits remain largely elusive. Thus, we generated a novel ETV6/RUNX1 transgenic mouse model where the expression of the fusion protein is restricted to CD19+ B cells. These animals harbor regular B cell development and lack gross abnormalities. We established stable pro-B cell lines carrying the ETV6/RUNX1 transgene that allowed us to investigate whether ETV6/RUNX1 itself favors the acquisition of second hits. Remarkably, these pro-B cell lines as well as primary bone marrow cells derived from ETV6/RUNX1 transgenic animals display elevated levels of reactive oxygen species (ROS as tested with ETV6/RUNX1 transgenic dihydroethidium staining. In line, intracellular phospho-histone H2AX flow cytometry and comet assay revealed increased DNA damage indicating that ETV6/RUNX1 expression enhances ROS. On the basis of our data, we propose the following model: the expression of ETV6/RUNX1 creates a preleukemic clone and leads to increased ROS levels. These elevated ROS favor the accumulation of secondary hits by increasing genetic instability and doublestrand breaks, thus allowing preleukemic clones to develop into fully transformed leukemic cells.

  9. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Monica Llano-Diez

    Full Text Available The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS. Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice. We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.

  10. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    Science.gov (United States)

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  11. Association of reactive oxygen species-mediated signal transduction with in vitro apoptosis sensitivity in chronic lymphocytic leukemia B cells.

    Directory of Open Access Journals (Sweden)

    Adam L Palazzo

    Full Text Available BACKGROUND: Chronic lymphocytic leukemia (CLL is a B cell malignancy with a variable clinical course and unpredictable response to therapeutic agents. Single cell network profiling (SCNP utilizing flow cytometry measures alterations in signaling biology in the context of molecular changes occurring in malignancies. In this study SCNP was used to identify proteomic profiles associated with in vitro apoptotic responsiveness of CLL B cells to fludarabine, as a basis for ultimately linking these with clinical outcome. METHODOLOGY/PRINCIPAL FINDING: SCNP was used to quantify modulated-signaling of B cell receptor (BCR network proteins and in vitro F-ara-A mediated apoptosis in 23 CLL samples. Of the modulators studied the reactive oxygen species, hydrogen peroxide (H₂O₂, a known intracellular second messenger and a general tyrosine phosphatase inhibitor stratified CLL samples into two sub-groups based on the percentage of B cells in a CLL sample with increased phosphorylation of BCR network proteins. Separately, in the same patient samples, in vitro exposure to F-ara-A also identified two sub-groups with B cells showing competence or refractoriness to apoptotic induction. Statistical analysis showed that in vitro F-ara-A apoptotic proficiency was highly associated with the proficiency of CLL B cells to undergo H₂O₂-augmented signaling. CONCLUSIONS/SIGNIFICANCE: This linkage in CLL B cells among the mechanisms governing chemotherapy-induced apoptosis increased signaling of BCR network proteins and a likely role of phosphatase activity suggests a means of stratifying patients for their response to F-ara-A based regimens. Future studies will examine the clinical applicability of these findings and also the utility of this approach in relating mechanism to function of therapeutic agents.

  12. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyong, E-mail: li_qingyong@126.com [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China); Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China)

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  13. The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations.

    Science.gov (United States)

    Berntsen, H F; Bogen, I L; Wigestrand, M B; Fonnum, F; Walaas, S I; Moldes-Anaya, A

    2017-12-01

    Penitrem A is a fungal neurotoxin that recurrently causes intoxication in animals, and occasionally also in humans. We have previously reported that penitrem A induced the production of reactive oxygen species (ROS) in rat cerebellar granule cells, opening for a new mechanism of action for the neurotoxin. The aim of this study was to examine the potential of penitrem A to induce ROS production in isolated human neutrophil granulocytes, and to study possible mechanisms involved. Penitrem A significantly increased the production of ROS in human neutrophils at concentrations as low as 0.25μM (40% increase over basal levels), as measured with the DCF fluorescence assay. The EC 50 determined for the production of ROS by penitrem A was 3.8μM. The maximal increase in ROS production was approximately 330% over basal levels at a concentration of 12.5μM. ROS formation was significantly inhibited by the antioxidant vitamin E (50μM), the intracellular Ca +2 chelator BAPTA-AM (5μM), the mitogen activated protein kinase kinase (MEK) 1/2 and 5 inhibitor U0126 (1 and 10μM), the p38 mitogen activated protein kinase (MAPK) inhibitor SB203580 (1μM), the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 (10μM), and the calcineurin inhibitors FK-506 and cyclosporine A (1.5 and 0.5μM, respectively). These finding suggest that penitrem A is able to induce an increase in ROS production in neutrophils via the activation of several MAPK-signalling pathways. We suggest that this increase may partly explain the pathophysiology generated by penitrem A neuromycotoxicosis in both humans and animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Signal pathway of cytokines produced by reactive oxygen species generated from phorbol myristate acetate-stimulated HMC-1 cells.

    Science.gov (United States)

    Kim, J Y; Ro, J Y

    2005-07-01

    The relationship of cytokine production and reactive oxygen species (ROS) generated in mast cells has not been reported yet. This study aimed to examine the signal pathway in the production of cytokines [interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-alpha)] by ROS generated from phorbol myristate acetate (PMA)-stimulated human mast cell line-1 cells (HMC-1). HMC-1 cells were stimulated with 25 ng/ml of PMA. The ROS generation and production of cytokines (IL-8 and TNF-alpha) were measured by fluorescence-activated cell sorter and enzyme-linked immunosorbent assay method, respectively. Phosphorylation of mitogen-activated protein kinase family (extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase) was detected by the Western blotting method. The expression of cytokine's mRNA was measured by reverse transcriptase--polymerase chain reaction, and the DNA-binding activity of the transcription factors [nuclear factor-kappaB (NF-kappaB) and activator protein-1] was detected by electrophoretic mobility shift assay. PMA-stimulated HMC-1 cells immediately generated ROS, and the generated ROS was inhibited by 1,3-dimethyl-2-thiourea (DMTU), but partially inhibited by catalase or N-acetyl-L-cysteine. The production of cytokines in PMA-stimulated HMC-1 cells reached the maximum at 3-5 h and was inhibited by DMTU and specific kinase inhibitor for p38, SB203580. DMTU and SB203580 also inhibited the expressed cytokine's mRNA level and the increased DNA-binding activity of transcription factors, NF-kappaB in PMA-stimulated HMC-1 cells. These data suggest that intracellular ROS generated from PMA-stimulated HMC-1 cells contributes to the production of inflammatory cytokines via p38 kinase/NF-kappaB.

  15. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    Science.gov (United States)

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells. © 2015 Wiley Periodicals, Inc.

  16. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Peter J. Rogers

    2011-11-01

    Full Text Available Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS, leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH, the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+ level rose up to 50-fold after the diamide treatment. Cellular potassium (K+ in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.

  17. Helenalin bypasses Bcl-2-mediated cell death resistance by inhibiting NF-κB and promoting reactive oxygen species generation.

    Science.gov (United States)

    Hoffmann, Ruth; von Schwarzenberg, Karin; López-Antón, Nancy; Rudy, Anita; Wanner, Gerhard; Dirsch, Verena M; Vollmar, Angelika M

    2011-09-01

    Evasion of cell death by overexpression of anti-apoptotic proteins, such as Bcl-2, is commonly observed in cancer cells leading to a lack of response to chemotherapy. Hence, there is a need to find new chemotherapeutic agents that are able to overcome chemoresistance mediated by Bcl-2 and to understand their mechanisms of action. Helenalin, a sesquiterpene lactone (STL), induces cell death and abrogates clonal survival in a highly apoptosis-resistant Bcl-2 overexpressing Jurkat cell line as well as in two other Bcl-2 overexpressing solid tumor cell lines (mammary MCF-7; pancreatic L6.3pl). This effect is not achieved by directly affecting the mitochondria-protective function of Bcl-2 in the intrinsic pathway of apoptosis since Bcl-2 overexpressing Jurkat cells do not show cytochrome c release and dissipation of mitochondrial membrane potential upon helenalin treatment. Moreover, helenalin induces an atypical form of cell death with necrotic features in Bcl-2 overexpressing cells, neither activating classical mediators of apoptosis (caspases, AIF, Omi/HtrA2, Apaf/apoptosome) nor ER-stress mediators (BiP/GRP78 and CHOP/GADD153), nor autophagy pathways (LC3 conversion). In contrast, helenalin was found to inhibit NF-κB activation that was considerably increased in Bcl-2 overexpressing Jurkat cells and promotes cell survival. Moreover, we identified reactive oxygen species (ROS) and free intracellular iron as mediators of helenalin-induced cell death whereas activation of JNK and abrogation of Akt activity did not contribute to helenalin-elicited cell death. Our results highlight the NF-κB inhibitor helenalin as a promising chemotherapeutic agent to overcome Bcl-2-induced cell death resistance. Copyright © 2011. Published by Elsevier Inc.

  18. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Matthew M Schaefers

    2017-01-01

    Full Text Available Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC, which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence.

  19. Matrine-Type Alkaloids Inhibit Advanced Glycation End Products Induced Reactive Oxygen Species-Mediated Apoptosis of Aortic Endothelial Cells In Vivo and In Vitro by Targeting MKK3 and p38MAPK Signaling.

    Science.gov (United States)

    Liu, Zhongwei; Lv, Ying; Zhang, Yong; Liu, Fuqiang; Zhu, Ling; Pan, Shuo; Qiu, Chuan; Guo, Yan; Yang, Tielin; Wang, Junkui

    2017-12-02

    The matrine-type alkaloids are bioactive components extracted from Sophora flavescens , which is used in treatment of diabetes mellitus in traditional Chinese medicine. Advanced glycation end products mediate diabetic vascular complications. This study was aimed to investigate the protective effects and molecular mechanisms of matrine-type alkaloids on advanced glycation end products-induced reactive oxygen species-mediated endothelial apoptosis. Rats aorta and cultured rat aortic endothelial cells were exposed to advanced glycation end products. Matrine-type alkaloids, p38 mitogen-activated protein kinase (MAPK) inhibitor, and small interference RNAs against p38 MAPK kinases MAPK kinase kinase (MKK)3 and MKK6 were administrated. Intracellular reactive oxygen species production, cell apoptosis, phosphorylation of MKKs/p38 MAPK, and expression levels of heme oxygenase/NADPH quinone oxidoreductase were assessed. The nuclear factor erythroid 2-related factor 2 nuclear translocation and the binding activity of nuclear factor erythroid 2-related factor 2 with antioxidant response element were also evaluated. Matrine-type alkaloids suppressed intracellular reactive oxygen species production and inhibited endothelial cell apoptosis in vivo and in vitro by recovering phosphorylation of MKK3/6 and p38 MAPK, nuclear factor erythroid 2-related factor 2 nuclear translocation, and antioxidant response element binding activity, as well as the expression levels of heme oxygenase/NADPH quinone oxidoreductase. p38 MAPK inhibitor treatment impaired the effects of matrine-type alkaloids in vivo and in vitro. MKK3/6 silencing impaired the effects of matrine-type alkaloids in vitro. Matrine-type alkaloids exert endothelial protective effects against advanced glycation end products induced reactive oxygen species-mediated apoptosis by targeting MKK3/6 and enhancing their phosphorylation. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Tks5-dependent, Nox-mediated Generation of Reactive Oxygen Species is Necessary for Invadopodia Formation*

    Science.gov (United States)

    Diaz, Begoña; Shani, Gidon; Pass, Ian; Anderson, Diana; Quintavalle, Manuela; Courtneidge, Sara A.

    2009-01-01

    Invadopodia are actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. We show here that reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) system are necessary for invadopodia formation and function. The invadopodia protein Tks5 is structurally related to p47phox, a Nox component in phagocytic cells. Knockdown of Tks5 reduces total ROS levels in cancer cells. Furthermore, Tks5 and p22phox can associate with each other, suggesting that Tks5 is part of the Nox complex. Tyrosine phosphorylation of Tks5 and Tks4, but not other Src substrates, is reduced by Nox inhibition. We propose that Tks5 facilitates the production of ROS necessary for invadopodia formation, and that in turn ROS modulates Tks5 tyrosine phosphorylation in a positive feedback loop. PMID:19755709

  1. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation.

    Science.gov (United States)

    Diaz, Begoña; Shani, Gidon; Pass, Ian; Anderson, Diana; Quintavalle, Manuela; Courtneidge, Sara A

    2009-09-15

    Invadopodia are actin-rich membrane protrusions of cancer cells that facilitate pericellular proteolysis and invasive behavior. We show here that reactive oxygen species (ROS) generated by the NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox) system are necessary for invadopodia formation and function. Knockdown of the invadopodia protein Tks5 [tyrosine kinase substrate with five Src homology 3 (SH3) domains], which is structurally related to the Nox component p47(phox), reduces total ROS abundance in cancer cells. Furthermore, Tks5 and p22(phox) can associate with each other, suggesting that Tks5 is part of the Nox complex. Tyrosine phosphorylation of Tks5 and Tks4, but not other Src substrates, is reduced by Nox inhibition. We propose that Tks5 facilitates the production of ROS necessary for invadopodia formation, and that in turn ROS modulate Tks5 tyrosine phosphorylation in a positive feedback loop.

  2. Transportation of reactive oxygen species in a tissue phantom after plasma irradiation

    Science.gov (United States)

    Kawasaki, Toshiyuki; Kuroeda, Gouya; Sei, Ryuhei; Yamaguchi, Masaaki; Yoshinaga, Reishi; Yamashita, Riho; Tasaki, Hikaru; Koga, Kazunori; Shiratani, Masaharu

    2018-01-01

    The transportation of reactive oxygen species (ROSs) in a tissue phantom after plasma irradiation was studied using a two-layered target consisting of a KI-starch gel reagent and an agarose tissue phantom. The two-layered target can visualize the two-dimensional concentration distribution of ROSs after passing through the tissue phantom. ROSs were accumulated in the tissue phantom by the plasma irradiation, and they continued to be transported in the depth direction with the standing time after the plasma irradiation. The amount of ROS after passing through the tissue phantom increased in proportion to both plasma irradiation time and standing time. In this case, the ROS distribution patterns did not depend on these times. The ROS transportation speed after plasma irradiation was 0.05 mm/min in the tissue phantom. The ROS penetration rate depended on the standing time, not on the plasma irradiation time, and it was less than 1%.

  3. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    Science.gov (United States)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG–HCuSNPs–DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  4. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  5. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2016-01-01

    Full Text Available Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required.

  6. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    Science.gov (United States)

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  7. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  8. [Transformation of endogenous reactive oxygen species participates into bacterial antibiotic resistance].

    Science.gov (United States)

    Li, X; Zhong, Y L; Feng, Y J

    2018-04-06

    A growing body of diversified antibiotic resistances raises a significant challenge to anti-infection clinical therapeutics. The emergence of superbugs carrying MCR-1/2 or NDM-1 determinants underlines the importance and urgency in elucidation of molecular mechanisms shared by antibiotic resistances. It is aware that different classes of bactericidal antibiotics consistently stimulate the production of deleterious reactive oxygen species (ROS), which are accompanied with metabolic disturbance. The different destinations of ROS determine its consequence on bacterial fate. Here, we review antibiotic-induced production, progression and transformation of ROS, as well as its role in the development of antibiotic resistance. Additionally, we anticipate that mesosome-like structures-aided exclusion of hydrogen peroxide might represent a previously-unknown mechanism for antibiotic resistance. This mini-review is aiming to present an update overview on antibiotic resistance and provide clues to the development of novel antibiotics.

  9. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  10. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    Science.gov (United States)

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Marcia Cristina Paes

    2011-01-01

    Full Text Available Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

  12. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  13. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  14. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Directory of Open Access Journals (Sweden)

    Okada Futoshi

    2005-09-01

    Full Text Available Abstract Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  15. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  16. Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives

    Directory of Open Access Journals (Sweden)

    Thyago Moreira Queiroz

    2013-05-01

    Full Text Available Hypertension is a multifactorial disorder which has been associated with the reduction in baroreflex sensitivity and autonomic dysfunction. Several studies have revealed that increased reactive oxygen species (ROS generated by nicotinamide adenine dinucleotide phosphate [NAD(PH] oxidase, following activation of type 1 receptor (AT1R by Angiotensin-(Ang II, the main peptide of the Renin–Angiotensin–Aldosterone System (RAAS, is the central mechanism involved in Angiotensin-II-derived hypertension. In the present review we will discuss the role of Angiotensin-II and oxidative stress in hypertension, the relationship between the baroreflex sensitivity (BRS and the genesis of hypertension and how the oxidative stress triggers baroreflex dysfunction in several models of hypertension. Finally, we will describe some novel therapeutic drugs for improving the baroreflex sensitivity during hypertension.

  17. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  18. Diminished macrophage apoptosis and reactive oxygen species generation after phorbol ester stimulation in Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Christine D Palmer

    2009-11-01

    Full Text Available Crohn's Disease (CD is a chronic relapsing disorder characterized by granulomatous inflammation of the gastrointestinal tract. Although its pathogenesis is complex, we have recently shown that CD patients have a systemic defect in macrophage function, which results in the defective clearance of bacteria from inflammatory sites.Here we have identified a number of additional macrophage defects in CD following diacylglycerol (DAG homolog phorbol-12-myristate-13-acetate (PMA activation. We provide evidence for decreased DNA fragmentation, reduced mitochondrial membrane depolarization, impaired reactive oxygen species production, diminished cytochrome c release and increased IL-6 production compared to healthy subjects after PMA exposure. The observed macrophage defects in CD were stimulus-specific, as normal responses were observed following p53 activation and endoplasmic reticulum stress.These findings add to a growing body of evidence highlighting disordered macrophage function in CD and, given their pivotal role in orchestrating inflammatory responses, defective apoptosis could potentially contribute to the pathogenesis of CD.

  19. Exendin-4 protects mitochondria from reactive oxygen species induced apoptosis in pancreatic Beta cells.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available OBJECTIVE: Mitochondrial oxidative stress is the basis for pancreatic β-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic β-cell tumor Min6 cell lines in vitro and observed pancreatic β-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations, we discuss the protective role of Exendin-4 against mitochondrial oxidative damage and its relationship with Ca(2+-independent phospholipase A2. METHODS: We established a pancreatic β-cell oxidative stress damage model using Min6 cell lines cultured in vitro with tert-buty1 hydroperoxide and hydrogen peroxide. We then added Exendin-4 to observe changes in the rate of cell apoptosis (Annexin-V-FITC-PI staining flow cytometry and DNA ladder. We detected the activity of the caspase 3 and 8 apoptotic factors, measured the mitochondrial membrane potential losses and reactive oxygen species production levels, and detected the expression of cytochrome c and Smac/DLAMO in the cytosol and mitochondria, mitochondrial Ca2-independent phospholipase A2 and Ca(2+-independent phospholipase A2 mRNA. RESULTS: The time-concentration curve showed that different percentages of apoptosis occurred at different time-concentrations in tert-buty1 hydroperoxide- and hydrogen peroxide-induced Min6 cells. Incubation with 100 µmol/l of Exendin-4 for 48 hours reduced the Min6 cell apoptosis rate (p<0.05. The mitochondrial membrane potential loss and total reactive oxygen species levels decreased (p<0.05, and the release of cytochrome c and Smac/DLAMO from the mitochondria was reduced. The study also showed that Ca(2+-independent phospholipase A2 activity was positively related to Exendin-4 activity. CONCLUSION: Exendin-4 reduces Min6 cell oxidative damage and the cell apoptosis rate, which may be related to Ca(2-independent phospholipase A2.

  20. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian, E-mail: liujianhq@sina.com

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  1. Effect of density gradient centrifugation on reactive oxygen species in human semen.

    Science.gov (United States)

    Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira

    2017-06-01

    Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm motility analyzing system; CASA

  2. [Reactive oxygen and nitrogen species’ effect on lux-biosensors based on Escherichia coli and Salmonella typhimurium].

    Science.gov (United States)

    Karimova, D N; Manukhov, I V; Gnuchikh, E Yu; Farimov, I F; Deryabin, D G

    2016-01-01

    The effect of reactive oxygen and nitrogen species on lux-biosensors based on the Escherichia coli K12 MG1655 and Salmonella typhimurium LT2 host strains was investigated. The bioactivity of exogenous free radicals to the constitutively luminescent E. coli strain with plasmid pXen7 decreased in the order H2O2 > OCl– > NO• > RОO• > ONOO–> O 2 •- while the bioluminescence of S. typhimurium strain transformed with this plasmid decreased in the order NO• > H2O2 > ONOO– > RОO• > OCl– > O 2 •- The cross-reactivity of induced lux-biosensors to reactive oxygen and nitrogen species, the threshold sensitivity and the luminescence amplitude dependences from the plasmid specificity and the host strain were indicated. The biosensors with plasmid pSoxS′::lux possessed a wider range of sensitivity, including H2O2 and OCl–, along with O 2 •- and NO•. Among the used reactive oxygen and nitrogen species, H2O2 showed the highest induction activity concerning to the plasmids pKatG′::lux, pSoxS′::lux and pRecA′::lux. The inducible lux-biosensors based on S. typhimurium host strain possessed a higher sensitivity to the reactive oxygen and nitrogen species in comparison than the biosensors based on E. coli. .

  3. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    OpenAIRE

    Rossoni-Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno da Cruz; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2011-01-01

    Annatto has been identified asecarotenoids that havetantioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessivel...

  4. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    Science.gov (United States)

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    Science.gov (United States)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  6. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction.

    Science.gov (United States)

    Sun, Lingmei; Liao, Kai; Hang, Chengcheng; Wang, Dayong

    2017-01-01

    To investigate the effects of honokiol on induction of reactive oxygen species (ROS), antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans. To measure ROS accumulation, 2',7'-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS) assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD) genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N'-diethyldithiocarbamate (DDC) were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ). Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit. ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment. Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans.

  7. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Lingmei Sun

    Full Text Available To investigate the effects of honokiol on induction of reactive oxygen species (ROS, antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans.To measure ROS accumulation, 2',7'-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N'-diethyldithiocarbamate (DDC were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ. Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit.ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment.Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans.

  8. The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species.

    Science.gov (United States)

    Chisté, Renan Campos; Freitas, Marisa; Mercadante, Adriana Zerlotti; Fernandes, Eduarda

    2012-12-01

    Caryocar villosum (piquiá) is a native fruit from the Amazonian region, considered to be an interesting source of bioactive compounds. In this paper, five extracts of C. villosum pulp were obtained, using solvents with different polarities and their in vitro scavenging capacity against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was determined. Additionally, the phenolic compounds and carotenoids in each extract were identified and quantified by a high performance liquid chromatography coupled to diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The ethanol/water and water extracts, which presented the highest phenolic contents (5163 and 1745μg/g extract, respectively), with ellagic acid as the major phenolic compound, proved to have the highest ROS and RNS scavenging potential. Nevertheless, in general, ellagic acid was less effective in scavenging ROS (IC(50) from 1.7 to 108μg/ml) and RNS (IC(50) from 0.05 to 0.59μg/ml), when compared to gallic acid (IC(50) from 0.4 to 226μg/ml for ROS and IC(50) from 0.04 to 0.12μg/ml for RNS). The results obtained in the present study clearly demonstrated that the in vitro antioxidant efficiency of C. villosum extracts was closely related to their contents of phenolic compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reactive oxygen metabolites (ROMs) are associated with cardiovascular disease in chronic hemodialysis patients.

    Science.gov (United States)

    Bossola, Maurizio; Vulpio, Carlo; Colacicco, Luigi; Scribano, Donata; Zuppi, Cecilia; Tazza, Luigi

    2012-02-11

    The aim of our study was to measure reactive oxygen metabolites (ROMs) in chronic hemodialysis (HD) patients and evaluate the possible association with cardiovascular disease (CVD) and mortality. We measured ROMs in 76 HD patients and correlated with CVD, cardiovascular (CV) events in the follow-up and all-cause and CVD-related mortality. The levels of ROMs presented a median value of 270 (238.2-303.2) CARR U (interquartile range). We created a ROC curve (ROMs levels vs. CVD) and we identified a cut-off point of 273 CARR U. Patients with ROMs levels ≥273 CARR U were significantly older, had higher C-reactive protein levels and lower creatinine concentrations. The prevalence of CVD was higher in patients with ROMs levels ≥273 (87.1%) than in those with ROMs levels <273 CARR U (17.7%; p<0.0001). ROMs levels were significantly higher in patients with CVD (317±63.8) than in those without (242.7±49.1; p<0.0001). At multiple regression analysis, age, creatinine and C-reactive protein were independent factors associated with ROMs. At multiple logistic regression analysis the association between ROMs and CVD was independent (OR: 1.02, 95% CI: 1.00-1.05; p=0.03). Twenty six patients developed cardiovascular (CV) events during the follow-up. Of these, seven were in the group with ROMs levels <273 CARR U and 19 in the group with ROMs levels ≥273 CARR U. The logistic regression analysis showed that both age (OR: 1.06, 95% CI: 1.01-1.12; p=0.013) and ROMs levels (OR: 1.10, 95% CI: 1.00-1.02; p=0.045) were independently associated with CV events in the follow-up. ROMs are independently associated with CVD and predict CV events in chronic HD patients.

  10. Concentrations and Fluxes of Reactive Oxygen Species on the Mauritanian Shelf

    Science.gov (United States)

    Heller, M. I.; Wuttig, K.; Croot, P. L.

    2016-02-01

    We present field work, which studies biogeochemical processes at the Mauritanian shelf edge in the tropical eastern north Atlantic. The importance of photochemically formed reactive oxygen species (ROS) to biogeochemical and biological processes in the ocean is now clear but we still have a poor understanding of the exact mechanisms and critically, the rates and fluxes of these compounds. Previous research has identified that the redox switch of the essential trace metals Copper (Cu), Manganese (Mn) and Iron (Fe) is sensitive to this mostly photochemically produced ROS, like superoxide (O2-) and its daughter product, Hydrogen Peroxide (H2O2). As O2- and H2O2 can act as both an oxidant and a reductant they can exert an important influence in trace metal redox cycling and with this solubility and bioavailability. However, presently we have little information on the formation rates of O2- and H2O2 from direct photochemical production in the ocean and their relative reactivity with different metal or organic species present in seawater. In this current field work, we present for the first time data, where we used the superoxide thermal source SOTS-1, an over hours at low levels constantly producing O2- source, which we showed earlier, can be used to determine both, concentrations and fluxes of ROS in seawater. The reactivity of O2- in the experimental treatments, which included Cu, Mn, Fe but also the reaction with organic matter, was followed by a well-established chemiluminescence technique using the reagent MCLA, a Cypridina luciferin analog, after additions of SOTS-1, but was also compared to data obtained with potassium superoxide (KO2), another reliable O2- the source, as described and used in field work previously. Additionally the experiments with Mn consisted of treatments with the redox state +II and +III, as we aim to examine the current evidence for Mn(III) in the euphotic zone of the open ocean.

  11. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways.

    Science.gov (United States)

    Arthur, J F; Qiao, J; Shen, Y; Davis, A K; Dunne, E; Berndt, M C; Gardiner, E E; Andrews, R K

    2012-06-01

    Ligation of the platelet-specific collagen receptor, GPVI/FcRγ, causes rapid, transient disulfide-dependent homodimerization, and the production of intracellular reactive oxygen species (ROS) generated by the NADPH oxidase, linked to GPVI via TRAF4. The aim of this study was to evaluate the role of early signaling events in ROS generation following engagement of either GPVI/FcRγ or a second immunoreceptor tyrosine-based activation motif (ITAM)-containing receptor on platelets, FcγRIIa. Using an H(2) DCF-DA-based flow cytometric assay to measure intracellular ROS, we show that treatment of platelets with either the GPVI agonists, collagen-related peptide (CRP) or convulxin (Cvx), or the FcγRIIa agonist 14A2, increased intraplatelet ROS; other platelet agonists such as ADP and TRAP did not. Basal ROS in platelet-rich plasma from 14 healthy donors displayed little inter-individual variability. CRP, Cvx or 14A2 induced an initial burst of ROS within 2 min followed by additional ROS reaching a plateau after 15-20 min. The Syk inhibitor BAY61-3606, which blocks ITAM-dependent signaling, had no effect on the initial ROS burst, but completely inhibited the second phase. Together, these results show for the first time that ROS generation downstream of GPVI or FcγRIIa consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation. © 2012 International Society on Thrombosis and Haemostasis.

  12. Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method.

    Science.gov (United States)

    Hsieh, Chia-Yuan; Chen, Chia-Ling; Yang, Kao-Chi; Ma, Ching-Ting; Choi, Pui-Ching; Lin, Chiou-Feng

    2015-01-01

    We developed an alternative method of simultaneously monitoring the generation of reactive oxygen species (ROS) and cellular oxidative responses using the oxidation-sensitive fluorescent probe dichlorofluorescein (DCF) in fixed samples. In this study, we evaluated the ability of this method to detect ROS generation during the cell cycle under normal culture conditions using flow cytometric analyses. Among the fixatives tested, only acetone and paraformaldehyde did not alter the endogenous oxidation of the responsive dye 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), which is a chloromethyl derivative of H2DCFDA. Only acetone fixation followed by staining with propidium iodide was able to detect ROS generation during the cell cycle without altering DCF oxidation. Further thymidine treatment led to cell cycle arrest at the G1 phase followed by the downregulation of total intracellular ROS. Paraformaldehyde-based fixation enabled the evaluation of ROS generation by immunostaining at a different phase of the cell cycle, whereas MPM2 co-staining enabled identification of the specific mitotic phase. This study demonstrates a modified fixed-sample method that can be used to measure intracellular ROS production during the cell cycle using standard immunostaining techniques.

  13. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Science.gov (United States)

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  14. High concentrations of genistein exhibit pro-oxidant effects in primary muscle cells through mechanisms involving 5-lipoxygenase-mediated production of reactive oxygen species.

    Science.gov (United States)

    Chen, Wei; Lin, Ying Cai; Ma, Xian Yong; Jiang, Zong Yong; Lan, Si Ping

    2014-05-01

    Genistein, a typical soy isoflavone, is an important antioxidant for improving human health and animal production but the compound possesses some pro-oxidant potential. In order to explore the latter, the dose-response relationship of various concentrations of genistein on both cellular proliferation and the redox system were examined. The proliferation of primary muscle cells was promoted by a low concentration of genistein but was inhibited by high concentrations, which also enhanced lipid oxidation and suppressed membrane fluidity. By selecting a high concentration (200 μM) as a pro-oxidant treatment, the mechanism underlying the pro-oxidant function of genistein was then explored. The generation of intracellular reactive oxygen species (ROS) was stimulated by 200 μM genistein, with inhibited expression of NADPH oxidase 4 and cyclooxygenase 1 and 2 as well as increased activity of the glutathione redox system. The cellular expression of 5-lipoxygenase, however, was up-regulated by 200 μM genistein and the addition of 5-lipoxygenase inhibitor (Zileuton) decreased genistein-induced intracellular ROS level, close to that from the addition of the ROS scavenger, N-acetylcysteine. It is concluded that higher concentrations of genistein exert pro-oxidant potential in the primary muscle cells through enhancing ROS production in a 5-lipoxygenase-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?

    Science.gov (United States)

    Roze, Ludmila V.; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C.; Linz, John E.

    2015-01-01

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as “secondary” ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development. PMID:25928133

  16. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans.

    Science.gov (United States)

    Maurya, Indresh Kumar; Pathak, Sarika; Sharma, Monika; Sanwal, Hina; Chaudhary, Preeti; Tupe, Santosh; Deshpande, Mukund; Chauhan, Virander Singh; Prasad, Rajendra

    2011-08-01

    In the present work, we investigated the antifungal activity of two de novo designed, antimicrobial peptides VS2 and VS3, incorporating unnatural amino acid α,β-dehydrophenylalanine (ΔPhe). We observed that the low-hemolytic peptides could irreversibly inhibit the growth of various Candida species and multidrug resistance strains at MIC(80) values ranging from 15.62 μM to 250 μM. Synergy experiments showed that MIC(80) of the peptides was drastically reduced in combination with an antifungal drug fluconazole. The dye PI uptake assay was used to demonstrate peptide induced cell membrane permeabilization. Intracellular localization of the FITC-labeled peptides in Candida albicans was studied by confocal microscopy and FACS. Killing kinetics, PI uptake assay, and the intracellular presence of FITC-peptides suggested that growth inhibition is not solely a consequence of increased membrane permeabilization. We showed that entry of the peptide in Candida cells resulted in accumulation of reactive oxygen species (ROS) leading to cell necrosis. Morphological alteration in Candida cells caused by the peptides was visualized by electron microscopy. We propose that de novo designed VS2 and VS3 peptides have multiple detrimental effects on target fungi, which ultimately result in cell wall disruption and killing. Therefore, these peptides represent a good template for further design and development as antifungal agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Silvering and swimming effects on aerobic metabolism and reactive oxygen species in the European eel.

    Science.gov (United States)

    Amérand, Aline; Mortelette, Hélène; Belhomme, Marc; Moisan, Christine

    2017-01-01

    Silvering, the last metamorphosis in the eel life cycle induces morphological and physiological modifications in yellow eels (sedentary stage). It pre-adapts them to cope with the extreme conditions they will encounter during their 6000-km spawning migration. A previous study showed that silver eels are able to cope with reactive oxygen species (ROS) over-production linked to an increase in aerobic metabolism during sustained swimming, but the question remains as to whether this mechanism is associated with silvering. A sustained swimming session decreased red muscle in vitro mitochondrial oxygen consumption (MO 2 ) but increased ROS production in both eel stages. The swimming exercise used here was perhaps too intense to induce a stimulation of mitochondrial function or biogenesis even when antioxidant enzyme activities were unchanged. Pro-oxidant/antioxidant imbalance by lipid peroxidation increased in yellow but significantly decreased in silver eels. The silvering process therefore appears to allow a pre-adaptation of red muscle radical metabolism to the demands of spawning migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species.

    Science.gov (United States)

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.

  20. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation

    International Nuclear Information System (INIS)

    Tominaga, Hideyuki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami; Matsuda, Naoki

    2004-01-01

    Radiation generates reactive oxygen species (ROS) that interact with cellular molecules, including DNA, lipids, and proteins. To know how ROS contribute to the induction of genetic instability, we examined the effect of the anti-ROS condition, using both ascorbic acid phosphate (APM) treatment or a low oxygen condition, on the induction of delayed reproductive cell death and delayed chromosome aberrations. The primary surviving colonies of mouse m5S-derived cl. 2011-14 cells irradiated with 6 Gy of X-rays were replated and allowed to form secondary colonies. The anti-ROS treatments were applied to either preirradiation culture or postirradiation cultures for primary or secondary colony formation. Both anti-ROS conditions relieved X-ray-induced acute cell killing to a similar extent. These anti-ROS conditions also relieved genetic instability when those conditions were applied during primary colony formation. However, no effect was observed when the conditions were applied during preirradiation culture and secondary colony formation. We also demonstrated that the amounts of ROS in X-ray-irradiated cells rapidly increase and then decrease at 6 hr postirradiation, and the levels of ROS then gradually decrease to a baseline within 2 weeks. The APM treatment kept the ROS production at a lower level than an untreated control. These results suggest that the cause of genetic instability might be fixed by ROS during a 2-week postirradiation period. (author)

  1. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    Directory of Open Access Journals (Sweden)

    Jiří Wilhelm

    2016-01-01

    Full Text Available Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS.

  2. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Keiichi Matsubara

    2015-03-01

    Full Text Available Preeclampsia (PE is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO and tissue damage caused by increased levels of reactive oxygen species (ROS. Furthermore, superoxide (O2− rapidly inactivates NO and forms peroxynitrite (ONOO−. It is known that ONOO− accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD, and glutathione peroxidase (GPx protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE.

  3. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...... of mitochondrial metabolism under most conditions, root tissues often suffer oxygen deprivation during normal development due to the lack of an endogenous supply and isolation from atmospheric oxygen. Since changes in oxygen concentration have multiple effects on metabolism and energy production (Geigenberger......, 2003), tight control of oxygen consumption and homeostasis is likely to be particularly important in underground tissues such as roots. Nitric oxide (NO) is involved in many plant processes (Mur et al., 2013) and, under hypoxia, there is good evidence that nitric oxide (NO) contributes to the recycling...

  4. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.

    Science.gov (United States)

    Zhao, Yuewei; Xia, Qingsu; Yin, Jun Jie; Lin, Ge; Fu, Peter P

    2011-09-10

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and human. PAs require metabolic activation to generate pyrrolic metabolites (dehydro-PAs) that bind cellular protein and DNA, leading to hepatotoxicity and genotoxicity, including tumorigenicity. In this study we report that UVA photoirradiation of a series of dehydro-PAs, e.g., dehydromonocrotaline, dehydroriddelliine, dehydroretrorsine, dehydrosenecionine, dehydroseneciphylline, dehydrolasiocarpine, dehydroheliotrine, and dehydroretronecine (DHR) at 0-70 J/cm2 in the presence of a lipid, methyl linoleate, resulted in lipid peroxidation in a light dose-responsive manner. When irradiated in the presence of sodium azide, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a photo-induced product. When irradiated in the presence of superoxide dismutase, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. Electron spin resonance (ESR) spin trapping studies confirmed that both singlet oxygen and superoxide anion radical were formed during photoirradiation. These results indicate that UVA photoirradiation of dehydro-PAs generates reactive oxygen species (ROS) that mediated the initiation of lipid peroxidation. UVA irradiation of the parent PAs and other PA metabolites, including PA N-oxides, under similar experimental conditions did not produce lipid peroxidation. It is known that PAs induce skin cancer and are secondary (hepatogenous) photosensitization agents. Our results suggest that dehydro-PAs are the active metabolites responsible for skin cancer formation and PA-induced secondary photosensitization. Published by Elsevier Ireland Ltd.

  5. Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells.

    Science.gov (United States)

    Kajihara, Nobuhiro; Kukidome, Daisuke; Sada, Kiminori; Motoshima, Hiroyuki; Furukawa, Noboru; Matsumura, Takeshi; Nishikawa, Takeshi; Araki, Eiichi

    2017-11-01

    Overproduction of reactive oxygen species (ROS) in endothelial cells (ECs) plays a pivotal role in endothelial dysfunction. Mitochondrial ROS (mtROS) is one of the key players in the pathogenesis of diabetic vascular complications. Hypoglycemia is linked to increased ROS production and vascular events; however, the underlying mechanisms remain unclear. In the present study, we aimed to determine whether and how low glucose (LG) mediates mtROS generation in ECs, and to examine the impact of LG-induced mtROS on endothelial dysfunction. Metabolomic profiling, cellular oxygen consumption rate, mtROS, endothelial nitric oxide synthase phosphorylation, and the expression of vascular cell adhesion molecule-1 or intercellular adhesion molecule-1 were evaluated in bovine aortic ECs. We found that LG increased mtROS generation in ECs; which was suppressed by overexpression of manganese superoxide dismutase. Comprehensive metabolic analysis using capillary electrophoresis-mass spectrometry and oxygen consumption rate assessment showed that the pathway from fatty acid to acetyl-CoA through fatty acid oxidation was upregulated in ECs under LG conditions. In addition, etomoxir, a specific inhibitor of the free fatty acid transporter, decreased LG-induced mtROS production. These results suggested that LG increased mtROS generation through activation of fatty acid oxidation. We further revealed that LG inhibited endothelial nitric oxide synthase phosphorylation, and increased the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. These effects were suppressed either by overexpression of manganese superoxide dismutase or by treatment with etomoxir. The activation of fatty acid oxidation followed by mtROS production could be one of the causes for endothelial dysfunction during hypoglycemia. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  6. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.

    Science.gov (United States)

    Rowley, Shane; Liang, Li-Ping; Fulton, Ruth; Shimizu, Takahiko; Day, Brian; Patel, Manisha

    2015-03-01

    Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    Science.gov (United States)

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  8. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  9. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  10. Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Polášek, J., E-mail: xpolasekj@seznam.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physic, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Marek, A.; Vyskočil, J. [HVM Plasma Ltd., Na Hutmance 2, Prague 5, CZ-158 00 (Czech Republic)

    2015-09-30

    In this work, we investigated the possibilities of tungsten and tungsten oxide nanoclusters generation by means of non-reactive and reactive magnetron sputtering with gas aggregation. It was found that in pure argon atmosphere, cluster aggregation proceeded in two regimes depending on argon pressure in the aggregation chamber. At the lower pressure, cluster generation was dominated by two-body collisions yielding larger clusters (about 5.5 nm in diameter) at lower rate. At higher pressures, cluster generation was dominated by three-body collisions yielding smaller clusters (3–4 nm in diameter) at higher rate. The small amount of oxygen admixture in the aggregation chamber had considerable influence on cluster aggregation process. At certain critical pressure, the presence of oxygen led to the raise of deposition rate and cluster size. Resulting clusters were composed mostly of tungsten trioxide. The oxygen pressure higher than critical led to the target poisoning and the decrease in the sputtering rate. Critical oxygen pressure decreased with increasing argon pressure, suggesting that cluster aggregation process was influenced by atomic oxygen species (namely, O{sup −} ion) generated by oxygen–argon collisions in the magnetron plasma. - Highlights: • Formation of tungsten and tungsten oxide clusters was observed. • Two modes of cluster aggregation in pure argon atmosphere were found. • Dependence of cluster deposition speed and size on oxygen admixture was observed. • Changes of dependence on oxygen with changing argon pressure were described.

  11. Real-time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy.

    Science.gov (United States)

    Galvan, Daniel L; Badal, Shawn S; Long, Jianyin; Chang, Benny H; Schumacker, Paul T; Overbeek, Paul A; Danesh, Farhad R

    2017-11-01

    While increased mitochondrial reactive oxygen species have been commonly implicated in a variety of disease states, their in vivo role in the pathogenesis of diabetic nephropathy remains controversial. Using a two-photon imaging approach with a genetically encoded redox biosensor, we monitored mitochondrial redox state in the kidneys of experimental models of diabetes in real-time in vivo. Diabetic (db/db) mice that express a redox-sensitive Green Fluorescent Protein biosensor (roGFP) specifically in the mitochondrial matrix (db/dbmt-roGFP) were generated, allowing dynamic monitoring of redox changes in the kidneys. These db/dbmt-roGFP mice exhibited a marked increase in mitochondrial reactive oxygen species in the kidneys. Yeast NADH-dehydrogenase, a mammalian Complex I homolog, was ectopically expressed in cultured podocytes, and this forced expression in roGFP-expressing podocytes prevented high glucose-induced increases in mitochondrial reactive oxygen species. Thus, in vivo monitoring of mitochondrial roGFP in diabetic mice confirms increased production of mitochondrial reactive oxygen species in the kidneys. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Composition Directed Generation of Reactive Oxygen Species in Irradiated Mixed Metal Sulfides Correlated with Their Photocatalytic Activities.

    Science.gov (United States)

    He, Weiwei; Jia, Huimin; Yang, Dongfang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi; Kim, Hyun-Kyung; Wamer, Wayne G; Yin, Jun-Jie

    2015-08-05

    The ability of nanostructures to facilitate the generation of reactive oxygen species and charge carriers underlies many of their chemical and biological activities. Elucidating which factors are essential and how these influence the production of various active intermediates is fundamental to understanding potential applications of these nanostructures, as well as potential risks. Using electron spin resonance spectroscopy coupled with spin trapping and spin labeling techniques, we assessed 3 mixed metal sulfides of varying compositions for their abilities to generate reactive oxygen species, photogenerate electrons, and consume oxygen during photoirradiation. We found these irradiated mixed metal sulfides exhibited composition dependent generation of ROS: ZnIn2S4 can generate (•)OH, O2(-•) and (1)O2; CdIn2S4 can produce O2(-•) and (1)O2, while AgInS2 only produces O2(-•). Our characterizations of the reactivity of the photogenerated electrons and consumption of dissolved oxygen, performed using spin labeling, showed the same trend in activity: ZnIn2S4 > CdIn2S4 > AgInS2. These intrinsic abilities to generate ROS and the reactivity of charge carriers correlated closely with the photocatalytic degradation and photoassisted antibacterial activities of these nanomaterials.

  13. Differential accumulation of reactive oxygen and nitrogen species in maize lines with contrasting drought tolerance and aflatoxin resistance

    Science.gov (United States)

    Abiotic stresses such as drought stress can exacerbate aflatoxin contamination of maize kernels. Previous studies showed that maize lines resistance to aflatoxin contamination tend to exhibit enhanced drought tolerance and accumulate lower levels of reactive oxygen species (ROS) and nitrogen species...

  14. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Science.gov (United States)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  15. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Science.gov (United States)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  16. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, N.; Bögels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  17. The effect of histamine on the oxidative burst of HL60 cells before and after exposure to reactive oxygen species.

    NARCIS (Netherlands)

    Ching, T.L.; Koelemij, J.G.; Bast, A.

    1995-01-01

    During an inflammation neutrophils are stimulated to produce reactive oxygen species (ROS). These ROS induce the release of histamine from mast cells, which are also present at the inflammation site. In this study dibutyryl cAMP differentiated HL60 cells are used as a model for human neutrophils.

  18. Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes

    Czech Academy of Sciences Publication Activity Database

    Vašíček, Ondřej; Lojek, Antonín; Jančinová, V.; Nosál, R.; Číž, Milan

    2014-01-01

    Roč. 100, č. 1 (2014), s. 67-72 ISSN 0024-3205 R&D Projects: GA MŠk(CZ) LD11010 Institutional support: RVO:68081707 Keywords : Histamine * Histamine receptors * Reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 2.702, year: 2014

  19. The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Dlasková, Andrea; Clarke, K.J.; Porter, R. K.

    2010-01-01

    Roč. 1797, č. 8 (2010), s. 1470-1476 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50110509 Keywords : Mitochondria * Reactive oxygen species * Uncoupling protein 1 Subject RIV: ED - Physiology Impact factor: 5.132, year: 2010

  20. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  1. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells.

    Science.gov (United States)

    Falabella, Micol; Forte, Elena; Magnifico, Maria Chiara; Santini, Paolo; Arese, Marzia; Giuffrè, Alessandro; Radić, Kristina; Chessa, Luciana; Coarelli, Giulia; Buscarinu, Maria Chiara; Mechelli, Rosella; Salvetti, Marco; Sarti, Paolo

    2016-01-01

    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.

  2. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels

    OpenAIRE

    Aksu, Ugur; Ergin, Bulent; Bezemer, Rick; Kandil, Asli; Milstein, Dan M J; Demirci-Tansel, Cihan; Ince, Can

    2015-01-01

    Background Renal ischemia/reperfusion (I/R) injury is commonly seen in kidney transplantation and affects the allograft survival rates. We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol would protect renal oxygenation and nitric oxide (NO) levels in the acute phase of renal I/R. Methods Rats were randomly divided: (1) no I/R, no tempol; (2) no I/R, but with tempol; (3) I/R without tempol; and (4) I/R with tempol. I/R was induced by 30-min clamping of th...

  3. Reactive Oxygen and Nitrogen Species and Functional Adaptation of the Placenta

    Science.gov (United States)

    Myatt, Leslie

    2009-01-01

    The placenta regulates fetal growth and development via transport of nutrients and gases, and synthesis and secretion of steroid and peptide hormones. These functions are determined by vascular development and blood flow and by growth and differentiation of the trophoblast, which contains receptors, transporters and enzymes. The placenta generates reactive oxygen species which may contribute to the oxidative stress seen even in normal pregnancy but this is increased in pregnancies complicated by preeclampsia, IUGR and pregestational diabetes where oxidative and nitrative stress have been clearly documented. Nitrative stress is the covalent modification of proteins and DNA by peroxynitrite formed by the interaction of superoxide and nitric oxide. We have demonstrated nitrative stress by localizing nitrotyrosine residues in these placentas and found increased expression of NADPH oxidase (NOX) enzyme isoforms 1 and 5 as a potential source of superoxide generation. The presence of nitrative stress was associated with diminished vascular reactivity of the fetal placental circulation, a situation that could be reproduced by treatment with peroxynitrite in vitro. We find many nitrated proteins in the placenta, including p38 MAP kinase which has a role in development of the villous vasculature. Nitration of p38 MAPK was increased in the preeclamptic placenta and associated with loss of catalytic activity. We hypothesize that nitration of proteins in the placenta including receptors, transporters, enzymes and structural proteins can alter protein and placental function and this influences fetal growth and development. Increasing nitrative stress but a decrease in oxidative stress, measured as protein carbonylation, is found in the placenta with increasing BMI. Formation of peroxynitrite may then consume superoxide, decreasing nitrative stress. As protein carbonylation is a covalent modification at Lys, Arg, Pro and Thr residues the switch from carbonylation to nitration at

  4. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    Science.gov (United States)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create structural damage and change electrical properties of MEAs. Broad-spectrum electrical impedance spectroscopy

  5. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  6. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis

    Science.gov (United States)

    Padgett, Lindsey E; Broniowska, Katarzyna A; Hansen, Polly A; Corbett, John A; Tse, Hubert M

    2013-01-01

    Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic β cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause β-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic β-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for β-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-γ, TNF-α, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing β cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to β-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-γ influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes. PMID:23323860

  7. β-Glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis.

    Directory of Open Access Journals (Sweden)

    Patricia de Souza Bonfim-Mendonça

    Full Text Available Vulvovaginal candidiasis (VVC is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent. Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO activity, and the release of tumor necrosis factor α (TNF-α, interleukin-8 (IL-8, IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.

  8. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  9. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  10. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues.

    Science.gov (United States)

    Georgiou, Christos D; Zisimopoulos, Dimitrios; Kalaitzopoulou, Electra; Quinn, Richard C

    2017-04-01

    The present study demonstrates that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO 2 atmosphere) generate upon H 2 O wetting the reactive oxygen species (ROS) superoxide radical (O 2 •- ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals ( • OH). This study also validates that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to • OH upon UV photolysis. This investigation was made possible by the development of a new assay for inorganic-origin O 2 •- and H 2 O 2 determination and by the modification of a previous assay for soil • OH. Results show that radiolyzed Mg(ClO 4 ) 2 generates H 2 O 2 and • OH; and when included as part of a mixture analogous to the salt composition of samples analyzed at the Mars Phoenix site, the analogue generated O 2 •- , H 2 O 2 , and • OH, with • OH levels 150-fold higher than in the radiolyzed Mg(ClO 4 ) 2 samples. Radiolyzed Mars Phoenix site salt analogue that did not contain Mg(ClO 4 ) 2 generated only • OH also at 150-fold higher concentration than Mg(ClO 4 ) 2 alone. Additionally, UV photolysis of the perchlorate γ radiolysis product chlorite (ClO 2 - ) generated the oxychlorine products trihalide (Cl 3 - ), chlorine dioxide (ClO 2 • ), and hypochlorite (ClO - ), with the formation of • OH by UV photolysis of ClO - . While the generation of ROS may have contributed in part to 14 CO 2 production in the Viking Labeled Release (LR) experiment and O 2 (g) release in the Viking Gas Exchange (GEx) experiment, our results indicate that they are not likely to be the major contributor to the LR and GEx results. However, due to their highly reactive nature, they are expected to play a significant role in the alteration of organics on Mars. Additionally, experiments with hypochlorite show that the thermal stability of NaClO is in the range of the thermal stability observed for thermally liable oxidant responsible for the Viking LR results. Key Words: Mars-Oxygen

  11. Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

    Science.gov (United States)

    Lee, Yong Sun; Yi, Jung-Sun; Lim, Hye Rim; Kim, Tae Sung; Ahn, Il Young; Ko, Kyungyuk; Kim, JooHwan; Park, Hye-Kyung; Sohn, Soo Jung; Lee, Jong Kwon

    2017-01-01

    With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to 200 μM. The exposure was with 2.0~2.2 mW/cm2 irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances. PMID:28133512

  12. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    Science.gov (United States)

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-10-01

    Fine particulate matter plays a central role in the adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in central Europe, Mainz, Germany, in May-June 2015. Concentrations of environmentally persistent free radicals (EPFR), most likely semiquinone radicals, were found to be in the range of (1-7) × 1011 spins µg-1 for particles in the accumulation mode, whereas coarse particles with a diameter larger than 1 µm did not contain substantial amounts of EPFR. Using a spin trapping technique followed by deconvolution of EPR spectra, we have also characterized and quantified ROS, including OH, superoxide (O2-) and carbon- and oxygen-centered organic radicals, which were formed upon extraction of the particle samples in water. Total ROS amounts of (0.1-3) × 1011 spins µg-1 were released by submicron particle samples and the relative contributions of OH, O2-, C-centered and O-centered organic radicals were ˜ 11-31, ˜ 2-8, ˜ 41-72 and ˜ 0-25 %, respectively, depending on particle sizes. OH was the dominant species for coarse particles. Based on comparisons of the EPR spectra of ambient particulate matter with those of mixtures of organic hydroperoxides, quinones and iron ions followed by chemical analysis using liquid chromatography mass spectrometry (LC-MS), we suggest that the particle-associated ROS were formed by decomposition of organic hydroperoxides interacting with transition metal ions and quinones contained in atmospheric humic-like substances (HULIS).

  13. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  15. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  16. Release of Proteins from Intact Chloroplasts Induced by Reactive Oxygen Species during Biotic and Abiotic Stress

    Science.gov (United States)

    Singh, Nameirakpam D.; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  17. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  18. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  19. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jidong [Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Xu, Jing [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Fei, Yao [College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069 (China); Jiang, Congshan; Zhu, Wenhua; Han, Yan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Lu, Shemin, E-mail: lushemin@xjtu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China (China)

    2016-05-15

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  20. Reactive oxygen species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Chang YT

    2017-07-01

    Full Text Available Yung-Ting Chang,1,2,* Chiung-Yao Huang,3,* Jen-Yang Tang,4,5 Chih-Chuang Liaw,1,3 Ruei-Nian Li,6 Jing-Ru Liu,6 Jyh-Horng Sheu,1,3,7,8 Hsueh-Wei Chang6,9–12 1Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; 2Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; 3Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; 4Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 6Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; 8Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 9Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 10Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan; 11Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 12Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan *These authors contributed equally to this work Abstract: We previously reported that the soft coral-derived bioactive substance, sinuleptolide, can inhibit the proliferation of oral cancer cells in association with oxidative stress. The functional role of oxidative stress in the cell-killing effect of sinuleptolide on oral cancer cells was not investigated as yet. To address this question, we introduced the reactive oxygen species (ROS scavenger (N-acetylcysteine [NAC] in a pretreatment to evaluate the sinuleptolide-induced changes to cell viability, morphology, intracellular

  1. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    Science.gov (United States)

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D; Westin, Erik R

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism

  2. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis Congenita (DC is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF syndromes, converges on the DNA damage response (DDR pathway and subsequent elevation of reactive oxygen species (ROS. Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT, perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold and ROS (1.5-fold to 2-fold. Upon exposure to ionizing radiation (XRT, DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold. DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease. Together, our data supports a

  3. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development.

    Science.gov (United States)

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; Del Pozo, Juan C

    2014-07-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana

    Science.gov (United States)

    Zhang, WeiNa; Chen, WenLi

    2010-02-01

    Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including oxidative stress. Cd, as a toxicity heavy metal, resulted in the production of reactive oxygen species (ROS). In this paper, we demonstrated that ROS contributed to the induction of autophagy in Cd-stressed Arabidopsis thaliana. However, pre-incubation with ascorbic acid (AsA, antioxidant molecule) and catalase (CAT, a H2O2-specific scavenger) decreased the ROS production and the number of autolysosomal-like structures. Together our results indicated that the oxidative condition was essential for autophagy, as treatment with AsA and CAT abolished the formation of autophagosomes, and ROS may function as signal molecules to induce autophagy in abiotic stress.

  6. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Science.gov (United States)

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  7. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  8. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip

    International Nuclear Information System (INIS)

    Zheng, Wenfu; Jiang, Bo; Zhao, Yuyun; Zhang, Wei; Jiang, Xingyu; Hao, Yi

    2014-01-01

    Hyperglycemia, hyperlipidemia and inflammation are key risk factors for atherosclerosis and can lead to overproduction of reactive oxygen species (ROS), which plays a critical role in vascular endothelial dysfunction and subsequent progress of atherosclerosis. However, there is currently a lack of effective drugs that deal with ROS. Platinum nanoparticles (Pt-NPs) have proven to be promising antioxidant drugs in vitro and in vivo. To optimize the efficacy of Pt-NP based drugs, we synthesized and characterized the ROS scavenging properties of three kinds of small molecules that capped Pt-NPs (Pt-AMP-NPs, Pt-ATT-NPs, Pt-MI-NPs) on a blood vessel-mimicking microfluidic chip. The Pt-NPs showed superior superoxide dismutase (SOD)-like functions and can scavenge ROS and recover compromised cell-cell junctions under hyperglycemic, hyperlipidemic and proinflammatory conditions. Amongst these NPs, Pt-AMP-NPs showed the most superior antioxidant properties, suggesting its potency to serve as a novel drug to treat vascular diseases such as atherosclerosis. Our microfluidic chip, providing physiological hemodynamic conditions for the experiments, is potentially a promising tool for a wide range of biological research on the vascular system. (paper)

  9. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  10. Restraining of reactive oxygen species promotes invasion of Listeria monocytogenes into glia cells.

    Science.gov (United States)

    Li, Sen; Chen, Guowei; Wu, Man; Zhang, Jingchen; Wu, Shuyan

    2016-01-01

    Listeria monocytogenes is a foodborne pathogen that could cause severe infection in the central nervous system of humans and animals. However, the molecular mechanism of the pathogenesis is not fundamentally assessed. This study aimed to analyze the role of reactive oxygen species (ROS) in L. monocytogenes during its invasion into glia cells. The ROS level in L. monocytogenes was manipulated using NAD(P)H oxidase inhibitor diphenyleneiodonium chloride (DPI) and ROS scavenger N-acetyl cysteine (NAC). Results showed that the invasiveness of L. monocytogenes was elevated when ROS was downregulated by DPI and NAC treatment. Expression profiles of proinflammatory factors in glia cells were also examined because they play important roles in the functions of glia cells in the brain immune system. The expression levels of proinflammatory factors (tumor necrosis factor α and interleukin-1β) in host glia cells were downregulated when invaded by L. monocytogenes with lower ROS level. This finding indicates that ROS may function as negative regulator during the invasion of L. monocytogenes in brain infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species.

    Science.gov (United States)

    Liu, Huan; Qu, Xue; Kim, Eunkyoung; Lei, Miao; Dai, Kai; Tan, Xiaoli; Xu, Miao; Li, Jinyang; Liu, Yangping; Shi, Xiaowen; Li, Peng; Payne, Gregory F; Liu, Changsheng

    2018-04-01

    Open wounds and burns are prone to infection and there remains considerable interest in developing safe and effective mechanisms to confer antimicrobial activities to wound dressings. We report a biomimetic wound dressing for the in situ and sustained generation of reactive oxygen species (ROS). Specifically, we fabricate a catechol-modified chitosan film that mimics features of the melanin capsule generated during an insect immune response to infection. We use an electrochemical reverse engineering approach to demonstrate that this catechol-chitosan film possesses redox-activities and can be repeatedly oxidized and reduced. In vitro tests demonstrate that this film catalyzes the transfer of electrons from physiological reductant ascorbate to O 2 for sustained ROS generation, and confers ascorbate-dependent antimicrobial activities. In vivo antimicrobial experiment with a rat subcutaneous model indicates the catechol-chitosan film at reduced state inhibits the bacterial growth and alleviates the infection of the incisions. Open wound healing tests with a mouse model indicate that the catechol-chitosan film suppresses the bacterial population at the wound site, induces less inflammation and promotes wound healing. We envision this biomimetic approach for the sustained, localized and in situ generation of ROS could provide new opportunities for wound management by protecting against pathogen infection and potentially even enlisting ROS-mediated wound healing mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications.

    Science.gov (United States)

    Radomska-Leśniewska, Dorota M; Hevelke, Agata; Skopiński, Piotr; Bałan, Barbara; Jóźwiak, Jarosław; Rokicki, Dariusz; Skopińska-Różewska, Ewa; Białoszewska, Agata

    2016-04-01

    Angiogenesis is important for normal functioning of organism and its disturbances are observed in many diseases, called angiogenesis-related states. Reactive oxygen species (ROSs) play an important role in physiology, but high level of cellular ROSs is cytotoxic and mutagenic for the cells, i.e. it can lead to oxidative stress. In this review we discuss close relationship between ROSs and angiogenesis process. Substances counteracting free radicals or their action and oxidative stress are known as antioxidants. We postulate that antioxidants, by affecting angiogenesis, may modulate therapy results in the case of angiogenesis-related disease. Herein, we present some antioxidant preparations of synthetic (N-acetylcysteine, curcumin and its analogs, Probucol, oleane tripertenoid, EGCG synthetic analogs) and nature-identical (vitamin E and C) origin. Then, we analyze their angiogenic properties and their multidirectional molecular effect on angiogenesis. Most preparations reduce neovascularization and diminish the level of proangiogenic molecules, downregulating signaling pathways related to angiogenesis. Moreover, we discuss studies concerning anticancer properties of presented synthetic antioxidants and their application in several angiogenesis-related diseases. We conclude that therapy in angiogenesis-related diseases should be planned with consideration of the angiogenic status of the patient. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells.

    Science.gov (United States)

    Seyfrid, Mathieu; Marschall, Viola; Fulda, Simone

    2016-11-01

    Small-molecule inhibitors of Inhibitor of Apoptosis proteins such as Smac mimetics have been reported to provide a promising tool to sensitize glioblastoma (GBM) cells to cytotoxic therapies including chemotherapeutic drugs. However, the underlying molecular mechanisms of action have not yet been fully unraveled. In the present study, we therefore investigated the role of reactive oxygen species (ROS) in the regulation of Smac mimetic/temozolomide (TMZ)-induced cell death in GBM cells. Here, we show that the Smac mimetic BV6 and TMZ act in concert to stimulate the production of both cytosolic and mitochondrial ROS. This accumulation of ROS contributes toward the activation of the proapoptotic factor BAX upon BV6/TMZ cotreatment as several ROS scavengers (i.e. N-acetyl-L-cysteine, MnTBAP, or α-tocopherol) protect GBM cells against BV6/TMZ-mediated BAX activation. In addition, ROS scavengers significantly rescue GBM cells from BV6/TMZ-triggered cell death, indicating that ROS generation is required for the induction of cell death. By showing that ROS play an important role in the regulation of Smac mimetic/TMZ-induced cell death, our work sheds light on the crucial role of the oxidative system in the cooperative antitumor activity of Smac mimetic/TMZ combination therapy against GBM cells.

  14. Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe

    Science.gov (United States)

    Liu, Li; Xu, Shi-jie; Li, Song-zhan

    2009-07-01

    A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.

  15. Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice.

    Science.gov (United States)

    Liu, Nan; Wang, Lin-Hui; Guo, Ling-Ling; Wang, Guo-Qing; Zhou, Xi-Ping; Jiang, Yan; Shang, Jing; Murao, Koji; Chen, Jing-Wei; Fu, Wen-Qing; Zhang, Guo-Xing

    2013-01-01

    Solid evidence has demonstrated that psychoemotional stress induced alteration of hair cycle through neuropeptide substance P (SP) mediated immune response, the role of reactive oxygen species (ROS) in brain-skin-axis regulation system remains unknown. The present study aims to investigate possible mechanisms of ROS in regulation of SP-mast cell signal pathway in chronic restraint stress (CRS, a model of chronic psychoemotional stress) which induced abnormal of hair cycle. Our results have demonstrated that CRS actually altered hair cycle by inhibiting hair follicle growth in vivo, prolonging the telogen stage and delaying subsequent anagen and catagen stage. Up-regulation of SP protein expression in cutaneous peripheral nerve fibers and activation of mast cell were observed accompanied with increase of lipid peroxidation levels and reduction of the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in CRS mice skin. In addition, SP receptor antagonist (RP67580) reduced mast cell activations and lipid peroxidation levels as well as increased GSH-Px activity and normalized hair cycle. Furthermore, antioxidant Tempol (a free radical scavenger) also restored hair cycle, reduced SP protein expression and mast cell activation. Our study provides the first solid evidence for how ROS play a role in regulation of psychoemotional stress induced SP-Mast cell pathway which may provide a convincing rationale for antioxidant application in clinical treatment with psychological stress induced hair loss.

  16. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    Science.gov (United States)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; hide

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  17. Membrane-bound globin X protects the cell from reactive oxygen species.

    Science.gov (United States)

    Koch, Jonas; Burmester, Thorsten

    2016-01-08

    Globin X (GbX) is a member of the globin family that emerged early in the evolution of Metazoa. In vertebrates, GbX is restricted to lampreys, fish, amphibians and some reptiles, and is expressed in neurons. Unlike any other metazoan globin, GbX is N-terminally acylated and anchored in the cell membrane via myristoyl and palmitoyl groups, suggesting a unique function. Here, we compared the capacity of GbX to protect a mouse neuronal cell line from hypoxia and reactive oxygen species (ROS) with that of myoglobin. To evaluate the contribution of membrane-binding, we generated a mutated version of GbX without acyl groups. All three globins enhanced cell viability under hypoxia, with myoglobin having the most pronounced effect. GbX but not myoglobin protected the cells from hydrogen peroxide (H2O2)-induced stress. Membrane-bound GbX was significantly more efficient than its mutated, soluble form. Furthermore, myoglobin and mutated GbX increased production of ROS upon H2O2-treatment, while membrane-bound GbX did not. The results indicate that myoglobin enhances O2 supply while GbX protects the cell membrane from ROS-stress. The ancient origin of GbX suggests that ROS-protection reflects the function of the early globins before they acquired a respiratory role. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The influence of reactive oxygen species on cell cycle progression in mammalian cells.

    Science.gov (United States)

    Verbon, Eline Hendrike; Post, Jan Andries; Boonstra, Johannes

    2012-12-10

    Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. [Comparison of reactive oxygen species production in neat semen and washed spermatozoa].

    Science.gov (United States)

    Svobodová, M; Oborná, I; Fingerová, H; Novotný, J; Brezinová, J; Radová, L; Vyslouzilová, J; Horáková, J; Grohmannová, J

    2009-12-01

    To determine Reactive Oxygen Species (ROS) production in neat semen and spermatozoa suspension using chemiluminescence and to examine correlation between both methods. Prospective laboratory study. Department of Obstetric and Gynecology, University Hospital, Olomouc. The study included fertile volunteers (FV, n = 17), men from infertile couples (NM, n = 19) and men with idiopathic infertility (NMI, n = 15). ROS levels were determined by the same method in neat and washed semen samples. The ROS production in neat semen was lower than that in spermatozoa suspension. There was no significan