WorldWideScience

Sample records for intracellular dynamics measured

  1. Dynamics of intracellular information decoding

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-01-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity

  2. Dynamics of intracellular information decoding.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  3. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  4. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  5. Collective Dynamics of Intracellular Water in Living Cells

    International Nuclear Information System (INIS)

    Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M

    2012-01-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  6. Fluorescent nanosensors for intracellular measurements: synthesis, characterisation, calibration and measurement

    Directory of Open Access Journals (Sweden)

    Arpan Shailesh Desai

    2014-01-01

    Full Text Available Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer and a pH-insensitive reference fluorophore (internal standard immobilised in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesised using standard laboratory equipment and are detectable by non-invasive widely accessibly imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: 1 synthesis and characterisation of polyacrylamide and silica based nanosensors 2 nanosensor calibration and 3 performing measurements using fluorescence microscopy.

  7. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  8. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  9. Microrheometric upconversion-based techniques for intracellular viscosity measurements

    Science.gov (United States)

    Rodríguez-Sevilla, Paloma; Zhang, Yuhai; de Sousa, Nuno; Marqués, Manuel I.; Sanz-Rodríguez, Francisco; Jaque, Daniel; Liu, Xiaogang; Haro-González, Patricia

    2017-08-01

    Rheological parameters (viscosity, creep compliance and elasticity) play an important role in cell function and viability. For this reason different strategies have been developed for their study. In this work, two new microrheometric techniques are presented. Both methods take advantage of the analysis of the polarized emission of an upconverting particle to determine its orientation inside the optical trap. Upconverting particles are optical materials that are able to convert infrared radiation into visible light. Their usefulness has been further boosted by the recent demonstration of their three-dimensional control and tracking by single beam infrared optical traps. In this work it is demonstrated that optical torques are responsible of the stable orientation of the upconverting particle inside the trap. Moreover, numerical calculations and experimental data allowed to use the rotation dynamics of the optically trapped upconverting particle for environmental sensing. In particular, the cytoplasm viscosity could be measured by using the rotation time and thermal fluctuations of an intracellular optically trapped upconverting particle, by means of the two previously mentioned microrheometric techniques.

  10. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells......, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped...... in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods....

  11. Distributed and dynamic intracellular organization of extracellular information.

    Science.gov (United States)

    Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S

    2018-06-05

    Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.

  12. Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces.

    Science.gov (United States)

    Présent, Romain M; Rotureau, Elise; Billard, Patrick; Pagnout, Christophe; Sohm, Bénédicte; Flayac, Justine; Gley, Renaud; Pinheiro, José P; Duval, Jérôme F L

    2017-11-08

    Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator. Depletion kinetics of Cd(ii) from bulk solution following biouptake and intracellular accumulation is addressed as a function of cell volume fraction using electroanalytical probes and ligand exchange-based analyses. It is shown that metal biouptake in the absence and presence of MTc is successfully interpreted on the basis of a formalism recently developed for metal partitioning dynamics at biointerfaces with integration of intracellular metal speciation. The analysis demonstrates how fast sequestration of metals by intracellular MTc bypasses metal excretion (efflux) and enhances the rate of metal depletion to an extent such that complete removal is achieved at sufficiently large cell volume fractions. The magnitude of the stability constant of nanoparticulate metal-MTc complexes, as derived from refined analysis of macroscopic bulk metal depletion data, is further confirmed by independent electrochemical measurement of metal binding by purified MTc extracts.

  13. Polymeric gel nanoparticle pH sensors for intracellular measurements

    OpenAIRE

    Almdal, Kristoffer; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki; Christensen, Nynne Meyn; Henriksen, Jonas Rosager; Sun, Honghao

    2011-01-01

    Precise measurements of pH in cells and intracellular compartments are of importance to both the fundamental understanding of metabolism and to the development of drugs that are released from the endosomes-lysome pathway. We have developed polymer gel nanoparticles as carriers of covalently bound fluorophores for ratiometric measurements of pH. One pH insensitive fluorophore serves as a reference while one or more pH sensitive fluorophores serve to give the desired pH dependence of the output...

  14. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Sun, Honghao; Henriksen, Jonas Rosager

    2011-01-01

    Particle-based nanosensors have over the last decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors is challenging...... and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle...... quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pKa to each sensor, seem to be a solution...

  15. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    Science.gov (United States)

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  16. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  17. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...... of redox properties. As genetically encoded sensors they can be expressed in living cells and used for analysis of intracellular redox conditions; however, which parameters are measured depends on how the sensors interact with various cellular redox components. Results of both biochemical and cell...

  18. Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy

    Science.gov (United States)

    There is increasing interest in using live-cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of multip...

  19. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Radhakrishnan, Harsha; Wu, Weicheng; Daneshmand, Ali; Climov, Mihail; Ayata, Cenk; Boas, David A

    2013-06-01

    This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS-OCT. The technique measures both the axial and transverse velocities of CBF, whereas conventional Doppler OCT measures only the axial one. In addition, the technique produces a three-dimensional map of the diffusion coefficient quantifying nontranslational motions. In the DLS-OCT diffusion map, we observed high-diffusion spots, whose locations highly correspond to neuronal cell bodies and whose diffusion coefficient agreed with that of the motion of intracellular organelles reported in vitro in the literature. Therefore, the present method has enabled, for the first time to our knowledge, label-free imaging of the diffusion-like motion of intracellular organelles in vivo. As an example application, we used the method to monitor CBF and IM during a brief ischemic stroke, where we observed an induced persistent reduction in IM despite the recovery of CBF after stroke. This result supports that the IM measured in this study represent the cellular energy metabolism-related active motion of intracellular organelles rather than free diffusion of intracellular macromolecules.

  20. Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles in proliferating and nonproliferating mammalian cells

    International Nuclear Information System (INIS)

    Korbelik, M.; Osmak, M.; Suhar, A.; Turk, V.; Skrk, J.

    1990-01-01

    Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles were examined in proliferating and nonproliferating Chinese hamster fibroblasts (V 79). The results show that there are significant alterations in cysteine and aspartic intracellular proteinases activity already in the early postirradiation period, which are different in proliferating and nonproliferating cells. Irradiation of the cells examined to low doses and up to 15 Gy induced an increase in cysteine proteinases activity in the early postexposure period, while at higher irradiation doses applied, the activity of these proteinases was decreased. These observations suggest that intracellular proteinases are actively participating in process involving recovery from radiation injury or cell killing. (orig.) [de

  1. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  2. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    Science.gov (United States)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  3. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    International Nuclear Information System (INIS)

    Coppola, S; Pozzi, D; De Sanctis, S Candeloro; Caracciolo, G; Digman, M A; Gratton, E

    2013-01-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP–DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol–DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm 2 s −1 ). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm 2 s −1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes. (paper)

  4. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    Science.gov (United States)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  5. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    Science.gov (United States)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  6. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan R.

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute...... conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D...

  7. Measurement of Intracellular Ionized Calcium in a Free-living Soil Nematode, Caenorhabditis elegans.

    Science.gov (United States)

    Kawaii, S; Yoshizawa, Y; Mizutani, J

    1993-01-01

    A calcium chelating fluorescence indicator, fura-2, was used to measure intracellular ionized calcium in Caenorhabditis elegans. The indicator loading process was harmless to the nematode, and completed within 2-3 h. Fura-2 was loaded mainly at its intestinal tract. The effects of DOPA on locomotion and the level of intracellular calcium were investigated and measured by using a microfluorometer. The addition of DOPA temporarily increased [Ca(2+)]i for several minutes.

  8. Dynamics via measurability

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Generators f for σ -algebras can be used to view the dynamics of an invertible measurable transformation T in terms of the range values of f ∘ T . Such generators are the norm rather than the exception. Related measurable and quantitative methods of estimating a function from the behavior of ergodic averages are also discussed.

  9. pTRA - A reporter system for monitoring the intracellular dynamics of gene expression.

    Science.gov (United States)

    Wagner, Sabine G; Ziegler, Martin; Löwe, Hannes; Kremling, Andreas; Pflüger-Grau, Katharina

    2018-01-01

    The presence of standardised tools and methods to measure and represent accurately biological parts and functions is a prerequisite for successful metabolic engineering and crucial to understand and predict the behaviour of synthetic genetic circuits. Many synthetic gene networks are based on transcriptional circuits, thus information on transcriptional and translational activity is important for understanding and fine-tuning the synthetic function. To this end, we have developed a toolkit to analyse systematically the transcriptional and translational activity of a specific synthetic part in vivo. It is based on the plasmid pTRA and allows the assignment of specific transcriptional and translational outputs to the gene(s) of interest (GOI) and to compare different genetic setups. By this, the optimal combination of transcriptional strength and translational activity can be identified. The design is tested in a case study using the gene encoding the fluorescent mCherry protein as GOI. We show the intracellular dynamics of mRNA and protein formation and discuss the potential and shortcomings of the pTRA plasmid.

  10. The Living Cell as a Multi-agent Organisation: A Compositional Organisation Model of Intracellular Dynamics

    Science.gov (United States)

    Jonker, C. M.; Snoep, J. L.; Treur, J.; Westerhoff, H. V.; Wijngaards, W. C. A.

    Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli's intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell's essential dynamic patterns.

  11. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    Science.gov (United States)

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  12. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    2008-12-23

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.

  13. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    KAUST Repository

    Knodel, Markus

    2017-10-02

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.

  14. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Westerink, Remco H.S.

    2011-01-01

    Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca 2+ concentration ([Ca 2+ ] i ) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca 2+ ] i , e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca 2+ ] i are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca 2+ ] i in plate reader systems, though the results of such plate reader-based measurements have been questioned. In view of the increasing use of plate reader systems for measurements of [Ca 2+ ] i a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca 2+ ] i . Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with caveats and limitations that require further investigation. - Research highlights: → The use of plate readers for high-throughput screening of intracellular Ca 2+ is associated with many pitfalls and limitations. → Single cell

  15. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-photon uncaging.

    Directory of Open Access Journals (Sweden)

    Erwin Idoux

    Full Text Available The variations of the intracellular concentration of calcium ion ([Ca(2+](i are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+](i imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+](i changes is difficult to attain. The tools designed so far to modify [Ca(2+](i, even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+](i, in real time and with sub-cellular resolution, using two-photon Ca(2+ uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+](i variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+ channels, and the standardization of [Ca(2+](i patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.

  16. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH.

    Science.gov (United States)

    Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2018-06-13

    A pH-sensitive bio-optical transponder (pH-BOT) capable of simultaneously reporting the timing of intracellular DNA cargo release from a gold nanoparticle (AuNP) and the evolving intracellular pH (pH i) during endosomal maturation is demonstrated. The pH-BOT is designed with a triple-dye-labeled duplex DNA appended to a 6.6 nm AuNP, utilizing pH-responsive fluorescein paired with DyLight405 as a surface energy transfer (SET) coupled dye pair to ratiometrically report the pH at and after cargo release. A non-SET-coupled dye, DyLight 700, is used to provide dynamic tracking throughout the experiment. The pH-BOT beacon of the cargo uptake, release, and processing was visualized using live-cell confocal fluorescent microscopy in Chinese hamster ovary cells, and it was observed that while maturation of endosomes carrying pH-BOT is slowed significantly, the pH-BOT is distributed throughout the endolysosomal system while remaining at pH ∼6. This observed decoupling of endosomal maturation from acidification lends support to those models that propose that pH alone is not sufficient to explain endosomal maturation and may enable greater insight into our understanding of the fundamental processes of biology.

  17. DMPD: Intracellular DNA sensors in immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18573338 Intracellular DNA sensors in immunity. Takeshita F, Ishii KJ. Curr Opin Im...munol. 2008 Aug;20(4):383-8. Epub 2008 Jun 23. (.png) (.svg) (.html) (.csml) Show Intracellular DNA sensors ...in immunity. PubmedID 18573338 Title Intracellular DNA sensors in immunity. Authors Takeshita F, Ishii KJ. P

  18. DMPD: NOD-like receptors (NLRs): bona fide intracellular microbial sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18585455 NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Shaw...tml) (.csml) Show NOD-like receptors (NLRs): bona fide intracellular microbial sensors. PubmedID 18585455 Ti...tle NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Authors

  19. Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90

    International Nuclear Information System (INIS)

    Picard, Didier

    2006-01-01

    p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the 'fluorescence recovery after photobleaching' (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions

  20. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2015-12-01

    Full Text Available Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB, which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i, which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions.

  2. F NMR measurement of intracellular free calcium in human red blood cells

    International Nuclear Information System (INIS)

    Gupta, R.K.; Schanne, F.A.X.

    1986-01-01

    Optical techniques for the measurement of intracellular Ca are not readily applicable to the human red cell because of the intense absorption of hemoglobin. The authors have therefore examined the use of 19 F NMR of 5,5'-difluoro-1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (5FBAPTA) introduced non-disruptively by intracellular hydrolysis of the membrane-permeant acetoxymethyl ester derivative. 19 F NMR spectra of 5FBAPTA-containing erythrocytes at 188 MHz displayed two well resolved resonances corresponding to the free and Ca-bound forms of the chelator, the resonance of the free form being ten-fold larger than that of the Ca-bound form. Addition of the ionophore A23187 resulted in the disappearance of the resonance of the free anion and a quantitative increase in the intensity of the resonance of the Ca-complex. From these data, and a K/sub D/ of 708 nM for the Ca-5FBAPTA complex, the authors estimate red cell free Ca to be 70 nM, which is in the range of values obtained for other cells, despite the fact that the human red cell, which lacks intracellular organelles for storing Ca, possesses only 1 μmol total Ca/1. cells in comparison to mmols of total Ca found in other cells. The authors ability to use 19 F NMR to measure free Ca in the red blood cell paves the way for future NMR studies of red cell free Ca concentrations in human essential hypertension as well as in other diseases states in which alterations in cellular Ca homeostasis may be involved

  3. 31P MR spectroscopic measurement of intracellular pH in normal human hearts

    International Nuclear Information System (INIS)

    Kwon, Jae Hyun; Lee, Hui Joong; Jang, Yong Min

    2002-01-01

    To assess the usefulness of intracellular pH (pHi), calculated by determining the shift of a high-energy metabolite such as inorganic phosphate (Pi) of γ-ATP after performing MRS with ECG-gated two-dimensional 31 P CSI (chemical shift imaging), as a parameter for the overall state of the intracellular milieu. Proto decoupled 31 P CSI was performed on a 1.5-T scanner using a 1 H 31 P dual-tuned surface coil. Cardiac MRS data were obtained from eight normal volunteers aged 24-32 years with no history of heart disease. From the spectra obtained from several regions of the heart, peack position and peak area were estimated. The metabolic ratios of α-, β-, γ-ATP, PCr, Pi, phosphodiester and diphosphoglycerate were calculated, and pHi was estimated from the chemical shift of Pi and γ-ATP resonance. We then compared the data for the anterior myocardium with those previously published. The major phosphorous metabolites identified in these human hearts were as follows: PCr, at -0.1 to +0.1 ppm; three phosphate peaks from ATP, with a chemical shift centered at about -2.7 ppm (γ-ATP), -7.8 ppm (α-ATP), and -16.3 ppm (β-ATP); and phosphodiester (PDE) at 2-3 ppm, inorganic phosphate (Pi) at 4.5-5.4 ppm, and diphosphoglycerate (DPG) at 5.4-6.3 ppm. The PCr/β-ATP ratio was 2.20±0.17 and the PDE/β-ATP ratio, 1.04±0.09 pHi readings were 7.31±0.23 (calculated by the shift of Pi) and 6.81±0.20 (calculated by the shift of γ-ATP). Pi/PCR was 0.539, a ratio higher than that mentioned in previously published reports. The measurement of intracellular metabolism was affected by various kinds of factors. We believe, however, that pHi readings indicate the overall state of the cardiac intracellular milieu. An unexpected pHi readings, seen at MRS, may reflect errors in the MR procedure itself and, or in the analytical method

  4. {sup 31}P MR spectroscopic measurement of intracellular pH in normal human hearts

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Hyun; Lee, Hui Joong; Jang, Yong Min [Kyungpook National Univ., Taegu (Korea, Republic of)] [and others

    2002-05-01

    To assess the usefulness of intracellular pH (pHi), calculated by determining the shift of a high-energy metabolite such as inorganic phosphate (Pi) of {gamma}-ATP after performing MRS with ECG-gated two-dimensional {sup 31}P CSI (chemical shift imaging), as a parameter for the overall state of the intracellular milieu. Proto decoupled {sup 31}P CSI was performed on a 1.5-T scanner using a {sup 1}H{sup 31}P dual-tuned surface coil. Cardiac MRS data were obtained from eight normal volunteers aged 24-32 years with no history of heart disease. From the spectra obtained from several regions of the heart, peack position and peak area were estimated. The metabolic ratios of {alpha}-, {beta}-, {gamma}-ATP, PCr, Pi, phosphodiester and diphosphoglycerate were calculated, and pHi was estimated from the chemical shift of Pi and {gamma}-ATP resonance. We then compared the data for the anterior myocardium with those previously published. The major phosphorous metabolites identified in these human hearts were as follows: PCr, at -0.1 to +0.1 ppm; three phosphate peaks from ATP, with a chemical shift centered at about -2.7 ppm ({gamma}-ATP), -7.8 ppm ({alpha}-ATP), and -16.3 ppm ({beta}-ATP); and phosphodiester (PDE) at 2-3 ppm, inorganic phosphate (Pi) at 4.5-5.4 ppm, and diphosphoglycerate (DPG) at 5.4-6.3 ppm. The PCr/{beta}-ATP ratio was 2.20{+-}0.17 and the PDE/{beta}-ATP ratio, 1.04{+-}0.09 pHi readings were 7.31{+-}0.23 (calculated by the shift of Pi) and 6.81{+-}0.20 (calculated by the shift of {gamma}-ATP). Pi/PCR was 0.539, a ratio higher than that mentioned in previously published reports. The measurement of intracellular metabolism was affected by various kinds of factors. We believe, however, that pHi readings indicate the overall state of the cardiac intracellular milieu. An unexpected pHi readings, seen at MRS, may reflect errors in the MR procedure itself and, or in the analytical method.

  5. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.

    Science.gov (United States)

    Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin

    2017-12-01

    Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.

  6. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Herrera-Navarro

    2014-01-01

    Full Text Available This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i the detection of the cell’s nuclei and (ii the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  7. Dynamics of inorganic nutrients in intertidal sediments: porewater, exchangeable and intracellular pools

    Directory of Open Access Journals (Sweden)

    Emilio eGarcia-Robledo

    2016-05-01

    Full Text Available The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: the porewater (PW nutrients and the exchangeable (EX ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB and other microorganisms can accumulate large amounts of nutrients intracellularly (IC, highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC and EX and their relation to chlorophylls (used as a proxy for MPB abundance and organic matter (OM contents in an intertidal mudflat of Cadiz Bay (Spain. MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an

  8. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells.

    Science.gov (United States)

    Murtazina, Dilyara A; Chung, Daesuk; Ulloa, Aida; Bryan, Emily; Galan, Henry L; Sanborn, Barbara M

    2011-08-01

    To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.

  9. Invariant measures in brain dynamics

    International Nuclear Information System (INIS)

    Boyarsky, Abraham; Gora, Pawel

    2006-01-01

    This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a 'folding' property on the space of ensembles

  10. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography.

    Science.gov (United States)

    Zhu, Xiaohui; Hitchcock, Adam P; Bazylinski, Dennis A; Denes, Peter; Joseph, John; Lins, Ulysses; Marchesini, Stefano; Shiu, Hung-Wei; Tyliszczak, Tolek; Shapiro, David A

    2016-12-20

    Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe 3 O 4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathway of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. These results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level.

  11. Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes.

    Directory of Open Access Journals (Sweden)

    Sara Mohebbi

    Full Text Available Hyperspectral imaging (HSI is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.

  12. Dynamic measurement of forward scattering

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen; Rusch, W.

    1975-01-01

    A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...

  13. Intracellular Calcium Dynamics and Autonomic Stimulation in Atrial Fibrillation: Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Chou, MD

    2008-01-01

    Full Text Available While atrial fibrillation is characterized by the co-existence of multiple activation waves within the atria, rapid activations in the pulmonary veins play an important role for the initiation and maintenance of atrial fibrillation. In addition to reentry, non-reentrant mechanisms resulting from abnormal intracellular calcium handling and intracellular calcium overload can also be responsible for these rapid activations in the pulmonary veins. Meanwhile, alterations of autonomic tone, involving both the sympathetic and parasympathetic nervous system, have been implicated in initiating paroxysmal atrial fibrillation. But the effectiveness of autonomic modulation as an adjunctive therapeutic strategy to catheter ablation of atrial fibrillation has been inconsistent. The interactions between the autonomic nervous system and atrial fibrillation are more complex than currently understood and further mechanistic and clinical studies are warranted.

  14. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy

    OpenAIRE

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-01-01

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the...

  15. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth

    NARCIS (Netherlands)

    Orij, R.; Postmus, J.; ter Beek, A.; Brul, S.; Smits, G.J.

    2009-01-01

    The specific pH values of cellular compartments affect virtually all biochemical processes, including enzyme activity, protein folding and redox state. Accurate, sensitive and compartment-specific measurements of intracellular pH (pHi) dynamics in living cells are therefore crucial to the

  16. Propagation of dynamic measurement uncertainty

    International Nuclear Information System (INIS)

    Hessling, J P

    2011-01-01

    The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result

  17. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  18. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2017-09-01

    Full Text Available Changes in intracellular Na+ concentration ([Na+]i are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

  19. Quantum measurement and dynamical maps

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1985-01-01

    The problem of measurement in a quantum system involves the interaction of a classical system with only a small number of degrees of freedom ('measuring apparatus') coupled to the quantum system which is being subjected to measurement. It has been the practice to think of the measuring apparatus as a quantum system with a very large number of degrees of freedom treated in the classical limit. It is, however, possible to formulate the problem in such a manner that the measuring apparatus is a classical system with a finite number of degrees of freedom; this involves the perception of the classical system as the projection of a quantum system. The use of dynamical maps, which are discussed in this paper, is shown to be of benefit in tackling this problem. (UK)

  20. Combined radiation-protective and radiation-sensitizing agents. IV. Measurement of intracellular protector concentrations

    International Nuclear Information System (INIS)

    Koch, C.J.; Stobbe, C.C.; Hettiaratchi, P.

    1989-01-01

    Radiosensitization of hypoxic V79 Chinese hamster cells by 0.5 mM misonidazole at approximately 0-4 degrees C is substantially enhanced by pretreating the cells overnight with 0.1 mM buthionine sulfoximine, which lowers the cellular glutathione content to 5% of control values (from 4 mM to approximately 0.2 mM). The enhanced sensitization is reversed by concentrations of exogenous cysteine that are much lower (0.02 mM) than the original glutathione content. Reduced Co-enzyme A affords reversal of the enhancing effect at concentrations of about 1 mM. Sodium ascorbate gives no protection at all even at concentrations of 2 mM. The intracellular concentration of the reducing agents was measured using a spin-through oil technique. There was no diffusion of Co-A (MW greater than 750) or ascorbate (excluded by charge) into the cells. In contrast, cysteine was rapidly concentrated by factors of 4-10, even at the low temperatures used. Extracellular ascorbate's inability to radioprotect argues against electron transfer across the cell membrane as a mechanism for radioprotection. This mechanism could have explained the ability of exogenous thiols to radioprotect in former studies using glutathione, and in the present studies using Co-A. The potential of cysteine to be concentrated by cells poses a problem in the interpretation of exogenous protection by non-diffusing thiols, since trace contamination by cysteine could lead to the actual protection observed. Cysteine could also be formed by exchange reactions of exogenous thiols with the disulfide of cysteine, present in all media formulations

  1. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  2. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁ measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂ was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴ T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.

  3. Modelling the Dynamics of Intracellular Processes as an Organisation of Multiple Agents

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.; Armano, G.; Merelli, E.; Denzinger, J.; Martin, A.; Miles, S.; Tianfield, H.; Unland, R.

    2005-01-01

    This paper explores how the dynamics of complex biological processes can be modeled as an organisation of multiple agents. This modelling perspective identifies organisational structure occurring in complex decentralised processes and handles complexity of the analysis of the dynamics by structuring

  4. Intracellular Redox State Revealed by In Vivo 31P MRS Measurement of NAD+ and NADH Contents in Brains

    Science.gov (United States)

    Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2015-01-01

    Purpose Nicotinamide adenine dinucleotide (NAD), in oxidized (NAD+) or reduced (NADH) form, plays key roles in cellular metabolism. Intracellular NAD+/NADH ratio represents the cellular redox state; however, it is difficult to measure in vivo. We report here a novel in vivo 31P MRS method for noninvasive measurement of intracellular NAD concentrations and NAD+/NADH ratio in the brain. Methods It uses a theoretical model to describe the NAD spectral patterns at a given field for quantification. Standard NAD solutions and independent cat brain measurements at 9.4 T and 16.4 T were used to evaluate this method. We also measured T1 values of brain NAD. Results Model simulation and studies of solutions and brains indicate that the proposed method can quantify submillimolar NAD concentrations with reasonable accuracy if adequate 31P MRS signal-to-noise ratio and linewidth were obtained. The NAD concentrations and NAD+/NADH ratio of cat brains measured at 16.4 T and 9.4 T were consistent despite the significantly different T1 values and NAD spectra patterns at two fields. Conclusion This newly established 31P MRS method makes it possible for the first time to noninvasively study the intracellular redox state and its roles in brain functions and diseases, and it can potentially be applied to other organs. PMID:23843330

  5. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9.

    Directory of Open Access Journals (Sweden)

    Manuela Pedrazzi

    Full Text Available Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts, defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36 have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.

  6. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    Full Text Available The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome

  7. Dynamic indocyanine green angiography measurements

    Science.gov (United States)

    Holmes, Timothy; Invernizzi, Alessandro; Larkin, Sean; Staurenghi, Giovanni

    2012-11-01

    Dynamic indocyanine green imaging uses a scanning laser ophthalmoscope and a fluorescent dye to produce movies of the dye-filling pattern in the retina and choroid of the eye. It is used for evaluating choroidal neovascularization. Movies are examined to identify the anatomy of the pathology for planning treatment and to evaluate progression or response to treatment. The popularity of this approach is affected by the complexity and difficulty in interpreting the movies. Software algorithms were developed to produce images from the movies that are easy to interpret. A mathematical model is formulated of the flow dynamics, and a fitting algorithm is designed that solves for the flow parameters. The images provide information about flow and perfusion, including regions of change between examinations. Imaged measures include the dye fill-time, temporal dispersion, and magnitude of the dye dilution temporal curves associated with image pixels. Cases show how the software can help to identify clinically relevant anatomy such as feeder vessels, drain vessels, capillary networks, and normal choroidal draining vessels. As a potential tool for research into the character of neovascular conditions and treatments, it reveals the flow dynamics and character of the lesion. Future varieties of this methodology may be used for evaluating the success of engineered tissue transplants, surgical flaps, reconstructive surgery, breast surgery, and many other surgical applications where flow, perfusion, and vascularity of tissue are important.

  8. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1998-01-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using 14 C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO 2 was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  9. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  10. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function.

    Science.gov (United States)

    Bronfman, F C; Lazo, O M; Flores, C; Escudero, C A

    2014-01-01

    Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.

  11. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation

    International Nuclear Information System (INIS)

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-01-01

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

  13. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 1698221...1 Title Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Author

  14. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  15. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  16. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  17. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Science.gov (United States)

    Hecht, Vivian C.; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M.; Olcum, Selim; Higgins, John M.; Chen, Jianzhu; Grover, William H.; Manalis, Scott R.

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell. PMID:23844039

  18. Dynamic properties of energy affordability measures

    International Nuclear Information System (INIS)

    Heindl, Peter; Schuessler, Rudolf

    2015-01-01

    Measures of affordability and of fuel poverty are applied in practice to assess the affordability of energy services, for example, or of water or housing. The extensive body of literature on affordability measures has little overlap with the existing literature on poverty measurement. A comprehensive assessment of the response of affordability measures as a result of changes in the distribution of income or expenditure (the dynamic properties) is missing. This paper aims to fill this gap by providing a conceptual discussion on the ‘dynamics’ of both energy affordability measures and fuel poverty measures. Several types of measures are examined in a microsimulation framework. Our results indicate that some measures exhibit odd dynamic behavior. This includes measures used in practice, such as the low income/high cost measure and the double median of expenditure share indicator. Odd dynamic behavior causes the risk of drawing false policy recommendations from the measures. Thus, an appropriate response of affordability measures to changes in relevant variables is a prerequisite for defining meaningful measures that inform about affordability or deprivation in certain domains of consumption. - Highlights: • We investigate changes in fuel poverty measures as result from changes in income and expenditure. • More generally, we investigate dynamic behavior of affordability measures using microsimulation. • We propose axioms regarding dynamic behavior of affordability measures. • Some measures which are used in practice show unintuitive dynamic behavior. • Inappropriate dynamic behavior causes a risk of false policy implications.

  19. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  20. Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+ signals in populations of hair cells. The bundle Ca(2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+ chelators or blocking Ca(2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+ decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+ signaling in the hair cell.

  1. Live-cell Microscopy and Fluorescence-based Measurement of Luminal pH in Intracellular Organelles

    Directory of Open Access Journals (Sweden)

    Li Ma

    2017-08-01

    Full Text Available Luminal pH is an important functional feature of intracellular organelles. Acidification of the lumen of organelles such as endosomes, lysosomes, and the Golgi apparatus plays a critical role in fundamental cellular processes. As such, measurement of the luminal pH of these organelles has relevance to both basic research and translational research. At the same time, accurate measurement of intraorganellar pH in living cells can be challenging and may be a limiting hurdle for research in some areas. Here, we describe three powerful methods to measure rigorously the luminal pH of different intracellular organelles, focusing on endosomes, lysosomes, and the Golgi apparatus. The described methods are based on live imaging of pH-sensitive fluorescent probes and include: (1 A protocol based on quantitative, ratiometric measurement of endocytosis of pH-sensitive and pH-insensitive fluorescent conjugates of transferrin; (2 A protocol for the use of proteins tagged with a ratiometric variant of the pH-sensitive intrinsically fluorescent protein pHluorin; and (3 A protocol using the fluorescent dye LysoSensor™. We describe necessary reagents, key procedures, and methods and equipment for data acquisition and analysis. Examples of implementation of the protocols are provided for cultured cells derived from a cancer cell line and for primary cultures of mouse hippocampal neurons. In addition, we present strengths and weaknesses of the different described intraorganellar pH measurement methods. These protocols are likely to be of benefit to many researchers, from basic scientists to those conducting translational research with a focus on diseases in patient-derived cells.

  2. On the Dynamics of Bohmian Measures

    KAUST Repository

    Markowich, Peter A.; Paul, Thierry A.; Sparber, Christof

    2012-01-01

    The present work is devoted to the study of dynamical features of Bohmian measures, recently introduced by the authors. We rigorously prove that for sufficiently smooth wave functions the corresponding Bohmian measure furnishes a distributional

  3. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  4. Signal transforms in dynamic measurements

    CERN Document Server

    Layer, Edward

    2015-01-01

    This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.    

  5. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  6. Dynamic elasticity measurement for prosthetic socket design.

    Science.gov (United States)

    Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin

    2017-07-01

    The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.

  7. Dynamic electrochemical measurement of chloride ions

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, Derk B.; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement,

  8. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  9. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes.

    Science.gov (United States)

    Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua

    2017-10-09

    Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On the Dynamics of Bohmian Measures

    KAUST Repository

    Markowich, Peter A.

    2012-05-08

    The present work is devoted to the study of dynamical features of Bohmian measures, recently introduced by the authors. We rigorously prove that for sufficiently smooth wave functions the corresponding Bohmian measure furnishes a distributional solution of a nonlinear Vlasov-type equation. Moreover, we study the associated defect measures appearing in the classical limit. In one space dimension, this yields a new connection between mono-kinetic Wigner and Bohmian measures. In addition, we shall study the dynamics of Bohmian measures associated to so-called semi-classical wave packets. For these type of wave functions, we prove local in-measure convergence of a rescaled sequence of Bohmian trajectories towards the classical Hamiltonian flow on phase space. Finally, we construct an example of wave functions whose limiting Bohmian measure is not mono-kinetic but nevertheless equals the associated Wigner measure. © 2012 Springer-Verlag.

  11. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1999-01-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the β-oxidation activity of 14 C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  12. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Diseases, Tokyo (Japan)

    1999-02-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the {beta}-oxidation activity of {sup 14}C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  13. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  14. Dynamic Properties of Impulse Measuring Systems

    DEFF Research Database (Denmark)

    Pedersen, A.; Lausen, P.

    1971-01-01

    After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...... the interaction between the generator and the measuring circuit is of paramount importance to the voltage across the test object. Based on the measured values the determination of the applied voltage is considered....

  15. Local and global measures of shape dynamics

    International Nuclear Information System (INIS)

    Driscoll, Meghan K; Losert, Wolfgang; Fourkas, John T

    2011-01-01

    The shape and motion of cells can yield significant insights into the internal operation of a cell. We present a simple, yet versatile, framework that provides multiple metrics of cell shape and cell shape dynamics. Analysis of migrating Dictyostelium discoideum cells shows that global and local metrics highlight distinct cellular processes. For example, a global measure of shape shows rhythmic oscillations suggestive of contractions, whereas a local measure of shape shows wave-like dynamics indicative of protrusions. From a local measure of dynamic shape, or boundary motion, we extract the times and locations of protrusions and retractions. We find that protrusions zigzag, while retractions remain roughly stationary along the boundary. We do not observe any temporal relationship between protrusions and retractions. Our analysis framework also provides metrics of the boundary as whole. For example, as the cell speed increases, we find that the cell shape becomes more elongated. We also observe that while extensions and retractions have similar areas, their shapes differ

  16. Modulating and Measuring Intracellular H2O2 Using Genetically Encoded Tools to Study Its Toxicity to Human Cells.

    Science.gov (United States)

    Huang, Beijing K; Stein, Kassi T; Sikes, Hadley D

    2016-12-16

    Reactive oxygen species (ROS) such as H 2 O 2 play paradoxical roles in mammalian physiology. It is hypothesized that low, baseline levels of H 2 O 2 are necessary for growth and differentiation, while increased intracellular H 2 O 2 concentrations are associated with pathological phenotypes and genetic instability, eventually reaching a toxic threshold that causes cell death. However, the quantities of intracellular H 2 O 2 that lead to these different responses remain an unanswered question in the field. To address this question, we used genetically encoded constructs that both generate and quantify H 2 O 2 in a dose-response study of H 2 O 2 -mediated toxicity. We found that, rather than a simple concentration-response relationship, a combination of intracellular concentration and the cumulative metric of H 2 O 2 concentration multiplied by time (i.e., the area under the curve) determined the occurrence and level of cell death. Establishing the quantitative relationship between H 2 O 2 and cell toxicity promotes a deeper understanding of the intracellular effects of H 2 O 2 specifically as an individual reactive oxygen species, and it contributes to an understanding of its role in various redox-related diseases.

  17. Improving the Measurement of Earnings Dynamics

    DEFF Research Database (Denmark)

    Daly, Moira K.; Hryshko, Dmytro; Manovskii, Iourii

    The stochastic process for earnings is the key element of incomplete markets models in modern quantitative macroeconomics. We show that a simple modification of the canonical process used in the literature leads to a dramatic improvement in the measurement of earnings dynamics in administrative....... Accounting for these effects enables more accurate analysis using quantitative models with permanent and transitory earnings risk, and improves empirical estimates of consumption insurance against permanent earnings shocks....

  18. Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation

    International Nuclear Information System (INIS)

    Pinto, Sandra; Martínez-Romero, Alicia; O’Connor, José-Enrique; Gil-Benso, Rosario; San-Miguel, Teresa; Terrádez, Liria; Monteagudo, Carlos; Callaghan, Robert C

    2014-01-01

    Chemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival. In this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed. Our results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface. Coexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)

  19. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  20. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells.

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2012-06-25

    The whole picture: Carbon nanodots labeled with two fluorescent dyes have been developed as a tunable ratiometric pH sensor to measure intracellular pH. The nanosensor shows good biocompatibility and cellular dispersibility. Quantitative determinations on intact HeLa cells and pH fluctuations associated with oxidative stress were performed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  3. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    International Nuclear Information System (INIS)

    Dai, Jin; He, Jianfeng; Niemi, Antti J.

    2016-01-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  4. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  5. Platelet activating factor enhances synaptic vesicle exocytosis via PKC, elevated intracellular calcium, and modulation of synapsin 1 dynamics and phosphorylation

    Directory of Open Access Journals (Sweden)

    Jennetta W Hammond

    2016-01-01

    Full Text Available Platelet activating factor (PAF is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analogue of PAF (cPAF enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C (PKC activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity.

  6. Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation.

    Science.gov (United States)

    Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L

    2017-03-01

    Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.

  7. Survey of Type I ELM dynamics measurements

    International Nuclear Information System (INIS)

    Leonard, A W; Asakura, N; Boedo, J A; Becoulet, M; Counsell, G F; Eich, T; Fundamenski, W; Herrmann, A; Horton, L D; Kamada, Y; Kirk, A; Kurzan, B; Loarte, A; Neuhauser, J; Nunes, I; Oyama, N; Pitts, R A; Saibene, G; Silva, C; Snyder, P B; Urano, H; Wade, M R; Wilson, H R

    2006-01-01

    This report summarizes Type I edge localized mode (ELM) dynamics measurements from a number of tokamaks, including ASDEX-Upgrade, DIII-D, JET, JT-60U and MAST, with the goal of providing guidance and insight for the development of ELM simulation and modelling. Several transport mechanisms are conjectured to be responsible for ELM transport, including convective transport due to filamentary structures ejected from the pedestal, parallel transport due to edge ergodization or magnetic reconnection and turbulent transport driven by the high edge gradients when the radial electric field shear is suppressed. The experimental observations are assessed for their validation, or conflict, with these ELM transport conjectures

  8. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. © 2016 Authors; published by Portland Press Limited.

  9. Ground-based measurements of ionospheric dynamics

    Science.gov (United States)

    Kouba, Daniel; Chum, Jaroslav

    2018-05-01

    Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.

  10. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  11. Dynamic neurotransmitter interactions measured with PET

    International Nuclear Information System (INIS)

    Schiffer, W.K.; Dewey, S.L.

    2001-01-01

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  12. Dynamic neurotransmitter interactions measured with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  13. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  14. Measuring competitive fitness in dynamic environments.

    Science.gov (United States)

    Razinkov, Ivan A; Baumgartner, Bridget L; Bennett, Matthew R; Tsimring, Lev S; Hasty, Jeff

    2013-10-24

    Most yeast genes are dispensable for optimal growth in laboratory cultures. However, this apparent lack of fitness contribution is difficult to reconcile with the theory of natural selection. Here we use stochastic modeling to show that environmental fluctuations can select for a genetic mechanism that does not affect growth in static laboratory environments. We then present a novel experimental platform for measuring the fitness levels of specific genotypes in fluctuating environments. We test this platform by monitoring a mixed culture of two yeast strains that differ in their ability to respond to changes in carbon source yet exhibit the same fitness level in static conditions. When the sugar in the growth medium was switched between galactose and glucose, the wild-type strain gained a growth advantage over the mutant strain. Interestingly, both our computational and experimental results show that the strength of the adaptive advantage conveyed by the wild-type genotype depends on the total number of carbon source switches, not on the frequency of these fluctuations. Our results illustrate the selective power of environmental fluctuations on seemingly slight phenotypic differences in cellular response dynamics and underscore the importance of dynamic processes in the evolution of species.

  15. Noninvasive hemoglobin measurement using dynamic spectrum

    Science.gov (United States)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  16. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-01-01

    Full Text Available Chloride intracellular channel 1 (CLIC1 is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM database using structure-based virtual screening and molecular dynamics (MD simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition.

  17. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    Science.gov (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  18. Issues with performance measures for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Mexico, 20-23 June 2013 Issues with Performance Measures for Dynamic Multi-objective Optimisation Mard´e Helbig CSIR: Meraka Institute Brummeria, South Africa...

  19. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    Science.gov (United States)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  20. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.

    Directory of Open Access Journals (Sweden)

    Vivi Andasari

    Full Text Available In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008 where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.

  1. Risk importance measures in the dynamic flowgraph methodology

    International Nuclear Information System (INIS)

    Tyrväinen, T.

    2013-01-01

    This paper presents new risk importance measures applicable to a dynamic reliability analysis approach with multi-state components. Dynamic reliability analysis methods are needed because traditional methods, such as fault tree analysis, can describe system's dynamical behaviour only in limited manner. Dynamic flowgraph methodology (DFM) is an approach used for analysing systems with time dependencies and feedback loops. The aim of DFM is to identify root causes of a top event, usually representing the system's failure. Components of DFM models are analysed at discrete time points and they can have multiple states. Traditional risk importance measures developed for static and binary logic are not applicable to DFM as such. Some importance measures have previously been developed for DFM but their ability to describe how components contribute to the top event is fairly limited. The paper formulates dynamic risk importance measures that measure the importances of states of components and take the time-aspect of DFM into account in a logical way that supports the interpretation of results. Dynamic risk importance measures are developed as generalisations of the Fussell-Vesely importance and the risk increase factor. -- Highlights: • New risk importance measures are developed for the dynamic flowgraph methodology. • Dynamic risk importance measures are formulated for states of components. • An approach to handle failure modes of a component in DFM is presented. • Dynamic risk importance measures take failure times into account. • Component's influence on the system's reliability can be analysed in detail

  2. Response of Listeria monocytogenes to disinfection stress at the single-cell and population levels as monitored by intracellular pH measurements and viable-cell counts

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Dennis S.; Arneborg, Nils

    2009-01-01

    of the bacterium. In situ analyses of Listeria monocytogenes single cells were performed during exposure to different concentrations of the disinfectant Incimaxx DES to study a possible population subdivision. Bacterial survival was quantified with plate counting and disinfection stress at the single-cell level...... by measuring intracellular pH (pHi) over time by fluorescence ratio imaging microscopy. pHi values were initially 7 to 7.5 and decreased in both attached and planktonic L. monocytogenes cells during exposure to sublethal and lethal concentrations of Incimaxx DES. The response of the bacterial population...... was homogenous; hence, subpopulations were not detected. However, pregrowth with NaCl protected the planktonic bacterial cells during disinfection with Incimaxx (0.0015%) since pHi was higher (6 to 6.5) for the bacterial population pregrown with NaCl than for cells grown without NaCl (pHi 5 to 5.5) (P

  3. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side of the transfo......Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side...

  4. Noninvasive measurement of dynamic correlation functions

    CSIR Research Space (South Africa)

    Uhrich, P

    2017-08-01

    Full Text Available an impor- tant role in many theoretical approaches, including fluctuation- dissipation theorems and the Kubo formula [1], optical coherence [2], glassy dynamics and aging [3], and many more. In a classical (non-quantum-mechanical) system, a straightforward...

  5. Measurement fidelity in the presence of coherent dynamics or dissipation

    Science.gov (United States)

    You, Jian-Qiang; Ashhab, S.; Nori, Franco

    2011-03-01

    We analyze the problem of a charge qubit probed by a quantum point contact when the measurement is concurrent with Hamiltonian-induced coherent dynamics or dissipation. This additional dynamics changes the state of the qubit before the measurement is completed. As a result, the measurement fidelity is reduced. We calculate the reduction in measurement fidelity in these cases. References: S. Ashhab, J. Q. You, and F. Nori, New J. Phys. 11, 083017 (2009); Phys. Scr. T137, 014005 (2009).

  6. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  7. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water

    International Nuclear Information System (INIS)

    Heilmann, Johannes; Taucher-Scholz, Gisela; Haberer, Thomas; Scholz, Michael; Kraft, Gerhard

    1996-01-01

    Purpose: The study was aimed at the measurement of effect-depth distributions of intracellularly induced DNA damage in water as tissue equivalent after heavy ion irradiation with therapy particle beams. Methods and Materials: An assay involving embedding of Chinese hamster ovary (CHO-K1) cells in large agarose plugs and electrophoretic elution of radiation induced DNA fragments by constant field gel electrophoresis was developed. Double-strand break production was quantified by densitometric analysis of DNA-fluorescence after staining with ethidium-bromide and determination of the fraction of DNA eluted out of the agarose plugs. Intracellular double-strand break induction and the effect of a 3 h rejoining incubation were investigated following irradiation with 250 kV x-rays and 190 MeV/u carbon- and 295 MeV/u neon-ions. Results and Conclusion: While the DNA damage induced by x-irradiation decreased continuously with penetration depth, a steady increase in the yield of double-strand breaks was observed for particle radiation, reaching distinct maxima at the position of the physical Bragg peaks. Beyond this, the extent of radiation damage dropped drastically. From comparison of DNA damage and calculated dose profiles, relative biological efficiencies (RBEs) for both double-strand break induction and unrejoined strand breaks after 3 h were determined. While RBE for the induction of DNA double-strand breaks decreased continuously with penetration depth, RBE maxima greater than unity were found with carbon- and neon-ions for double-strand break rejoining near the maximum range of the particles. The method presented here allows for a fast and accurate determination of depth profiles of relevant radiobiological effects for mixed particle fields in tissue equivalent

  8. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  9. A dynamic method for magnetic torque measurement

    Science.gov (United States)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  10. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in-process......The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...

  11. Measurement of dynamic bite force during mastication.

    Science.gov (United States)

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (Pmastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics. © 2012 Blackwell Publishing Ltd.

  12. Defining and Measuring Job Vacancies in a Dynamic Perspective

    NARCIS (Netherlands)

    P.A. Donker van Heel (Peter)

    2015-01-01

    textabstractWhat is the best definition for job vacancies, what is the best method to measure job vacancies, and what further research is needed to gain a better insight into job vacancies in a dynamic perspective?

  13. Dynamics of quantum measurements employing two Curie-Weiss apparatuses

    Science.gov (United States)

    Perarnau-Llobet, Martí; Nieuwenhuizen, Theodorus Maria

    2017-10-01

    Two types of quantum measurements, measuring the spins of an entangled pair and attempting to measure a spin at either of two positions, are analysed dynamically by apparatuses of the Curie-Weiss type. The outcomes comply with the standard postulates. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  14. Measure theoretical approach to recurrent properties for quantum dynamics

    International Nuclear Information System (INIS)

    Otobe, Yoshiki; Sasaki, Itaru

    2011-01-01

    Poincaré's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincaré's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schrödinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  15. Limitations and corrections in measuring dynamic characteristics of structural systems

    International Nuclear Information System (INIS)

    Walter, P.L.

    1978-10-01

    The work deals with limitations encountered in measuring the dynamic characteristics of structural systems. Structural loading and response are measured by transducers possessing multiple resonant frequencies in their transfer function. In transient environments, the resultant signals from these transducers are shown to be analytically unpredictable in amplitude level and frequency content. Data recorded during nuclear effects simulation testing on structures are analyzed. Results of analysis can be generalized to any structure which encounters dynamic loading. Methods to improve the recorded data are described which can be implemented on a frequency selective basis during the measurement process. These improvements minimize data distortion attributable to the transfer characteristics of the measuring transducers

  16. Unitarity, Feedback, Interactions - Dynamics Emergent from Repeated Measurements

    Science.gov (United States)

    Corona Ugalde, Paulina; Altamirano, Natacha; Mann, Robert; Zych, Magdalena

    Modern measurement theory dispenses with the description of a measurement as a projection. Rather, the measurement is understood as an operation, whereby the system's final state is determined by an action of a completely positive trace non-increasing map and the outcomes are described by linear operators on the system, distributed according to a positive-operator valued measure (POVM). The POVM approach unifies the theory of measurements with a general description of dynamics, the theory of open quantum systems. Engineering a particular measurement and engineering a particular dynamics for the system are thus two complementary aspects of the same conceptual framework. This correspondence is directly applied in quantum simulations and quantum control theory . With this motivation, we study what types of dynamics can emerge from a model of repeated short interactions of a system with a set of ancillae. We show that contingent on the model parameters the resulting dynamics ranges from exact unitarity to arbitrary fast decoherence. For a series of measurements the effective dynamics includes feedback-control, which for a composite system yields effective interactions between the subsystems. We quantify the amount of decoherence accompanying such induced interactions. The simple framework used in the present study can find applications in devising novel quantum control protocols, or quantum simulations.

  17. Dynamic Anthropometry – Deffning Protocols for Automatic Body Measurement

    Directory of Open Access Journals (Sweden)

    Slavenka Petrak

    2017-12-01

    Full Text Available The paper presents the research on possibilities of protocol development for automatic computer-based determination of measurements on a 3D body model in defined dynamic positions. Initially, two dynamic body positions were defined for the research on dimensional changes of targeted body lengths and surface segments during body movement from basic static position into a selected dynamic body position. The assumption was that during body movement, specifi c length and surface dimensions would change significantly from the aspect of clothing construction and functionality of a garment model. 3D body scanning of a female test sample was performed in basic static and two defined dynamic positions. 3D body models were processed and measurement points were defined as a starting point for the determination of characteristic body measurements. The protocol for automatic computer measurement was defined for every dynamic body position by the systematic set of activities based on determined measurement points. The verification of developed protocols was performed by automatic determination of defined measurements on the test sample and by comparing the results with the conventional manual measurement.

  18. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  19. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  20. The measurement of dynamic radii for passenger car tyre

    Science.gov (United States)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  1. Modeling HIV-1 intracellular replication: two simulation approaches

    NARCIS (Netherlands)

    Zarrabi, N.; Mancini, E.; Tay, J.; Shahand, S.; Sloot, P.M.A.

    2010-01-01

    Many mathematical and computational models have been developed to investigate the complexity of HIV dynamics, immune response and drug therapy. However, there are not many models which consider the dynamics of virus intracellular replication at a single level. We propose a model of HIV intracellular

  2. Computer Vision Based Measurement of Wildfire Smoke Dynamics

    Directory of Open Access Journals (Sweden)

    BUGARIC, M.

    2015-02-01

    Full Text Available This article presents a novel method for measurement of wildfire smoke dynamics based on computer vision and augmented reality techniques. The aspect of smoke dynamics is an important feature in video smoke detection that could distinguish smoke from visually similar phenomena. However, most of the existing smoke detection systems are not capable of measuring the real-world size of the detected smoke regions. Using computer vision and GIS-based augmented reality, we measure the real dimensions of smoke plumes, and observe the change in size over time. The measurements are performed on offline video data with known camera parameters and location. The observed data is analyzed in order to create a classifier that could be used to eliminate certain categories of false alarms induced by phenomena with different dynamics than smoke. We carried out an offline evaluation where we measured the improvement in the detection process achieved using the proposed smoke dynamics characteristics. The results show a significant increase in algorithm performance, especially in terms of reducing false alarms rate. From this it follows that the proposed method for measurement of smoke dynamics could be used to improve existing smoke detection algorithms, or taken into account when designing new ones.

  3. Dynamic measures of RSA predict distress and regulation in toddlers.

    Science.gov (United States)

    Brooker, Rebecca J; Buss, Kristin A

    2010-05-01

    In this study, we examined a new method for quantifying individual variability using dynamic measures of respiratory sinus arrhythmia (RSA). This method incorporated temporal variation into the measurement of RSA and provided information beyond that offered by more traditional quantifications such as difference scores. Dynamic and static measures of change in RSA were tested in relation to displays of emotion and affective behaviors during a fear-eliciting episode in a sample of 88 typically developing and high-fear toddlers during a laboratory visit at age 24 months. Dynamic measures of RSA contributed information that was unique from traditionally employed, static change scores in predicting high-fear toddlers' displays of shyness during a fear-eliciting episode. In contrast, RSA change scores offered information related to boldness in nonhigh-fear children. In addition, several associations included estimates of nonlinear change in RSA. Implications for the study of individual differences in RSA and relations with emotion and emotion regulation are discussed.

  4. Dynamic equivalence relation on the fuzzy measure algebras

    Directory of Open Access Journals (Sweden)

    Roya Ghasemkhani

    2017-04-01

    Full Text Available The main goal of the present paper is to extend classical results from the measure theory and dynamical systems to the fuzzy subset setting. In this paper, the notion of  dynamic equivalence relation is introduced and then it is proved that this relation is an equivalence relation. Also, a new metric on the collection of all equivalence classes is introduced and it is proved that this metric is complete.

  5. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  6. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  7. Dynamic subcriticality measurements using the CF neutron noise method: Videotape

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Johnson, E.B.

    1987-01-01

    The capability to measure the subcriticality for a multiplying system with k-effective values as low as 0.3 was demonstrated for measurement times of approximately 10 s; the measured k-effective values obtained do not depend on the speed with which the solution height is changed or on whether the tank is filling or draining. As in previous experiments, the low-frequency ratios of spectral densities are all that are needed to obtain the k-effective value. This method's effectiveness for systems where conditions are changing with time as demonstrated, probably exceeds the dynamic requirements for most nuclear fuel plant processing applications. The calculated k-effective values using the KENO code and Hansen-Roach cross-sections compare well with the experimental values. Before the dynamic capability of the method can be considered fully explored, additional dynamic experiments are required for other geometries and fuel concentrations.

  8. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  9. Statistical Measures to Quantify Similarity between Molecular Dynamics Simulation Trajectories

    Directory of Open Access Journals (Sweden)

    Jenny Farmer

    2017-11-01

    Full Text Available Molecular dynamics simulation is commonly employed to explore protein dynamics. Despite the disparate timescales between functional mechanisms and molecular dynamics (MD trajectories, functional differences are often inferred from differences in conformational ensembles between two proteins in structure-function studies that investigate the effect of mutations. A common measure to quantify differences in dynamics is the root mean square fluctuation (RMSF about the average position of residues defined by C α -atoms. Using six MD trajectories describing three native/mutant pairs of beta-lactamase, we make comparisons with additional measures that include Jensen-Shannon, modifications of Kullback-Leibler divergence, and local p-values from 1-sample Kolmogorov-Smirnov tests. These additional measures require knowing a probability density function, which we estimate by using a nonparametric maximum entropy method that quantifies rare events well. The same measures are applied to distance fluctuations between C α -atom pairs. Results from several implementations for quantitative comparison of a pair of MD trajectories are made based on fluctuations for on-residue and residue-residue local dynamics. We conclude that there is almost always a statistically significant difference between pairs of 100 ns all-atom simulations on moderate-sized proteins as evident from extraordinarily low p-values.

  10. Measurements of dynamic shape factors of LMFBR aggregate aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.; Briant, J.K.

    1980-01-01

    Dynamic shape factors for branched, chain-like aggregates of LMFBR mixed-oxide fuels have been measured with a LAPS spiral-duct centrifuge. The aerosol was generated by repeatedly pulsing a focused laser beam onto the surface of a typical LMFBR fuel pellet. The measured values of the dynamic shape factor, corrected for slip, vary between kappa = 3.60 at D/sub ae/ = 0.5 μm, and kappa = 2.23 at D/sub ae/ = 1.5 μm

  11. In vivo measurement of intracellular pH in human brain during different tensions of carbon dioxide in arterial blood. A 31P-NMR study

    DEFF Research Database (Denmark)

    Jensen, K E; Thomsen, C; Henriksen, O

    1988-01-01

    The effect of changes in carbon dioxide tension in arterial blood upon intracellular pH in brain tissue was studied in seven healthy volunteers, aged 22-45 years. The pH changes were monitored by use of 31P nuclear magnetic resonance spectroscopy, performed on a whole-body 1.5 Tesla Siemens imaging...

  12. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  13. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    Science.gov (United States)

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  14. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    Science.gov (United States)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  15. Dynamic Modeling of Pavements with Application to Deflection Measurements

    DEFF Research Database (Denmark)

    Madsen, Stine Skov

    Pavement surface deflection measurements are the primary means of evaluating the bearing capacity of a pavement. The most common type of device used for measuring pavement surface deflections is the Falling Weight Deflectometer (FWD). However, increasing attention has been given to the Rolling Wheel...... Deflectometer (RWD) type of device due to its ability to measure deflections continuously while driving at traffic speed. To be able to properly interpret deflection measurements from an RWD device, more knowledge about the structural behavior of a pavement when subjected to transient dynamic loads moving...

  16. Progression of 3D Protein Structure and Dynamics Measurements

    Science.gov (United States)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  17. Measuring Clearance Mechanics Based on Dynamic Leg Length

    Science.gov (United States)

    Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli

    2018-01-01

    The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…

  18. Frontiers in Fluctuation Spectroscopy: Measuring protein dynamics and protein spatio-temporal connectivity

    Science.gov (United States)

    Digman, Michelle

    Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.

  19. Measure theoretical approach to recurrent properties for quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Otobe, Yoshiki [Department of Mathematical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Sasaki, Itaru, E-mail: otobe@math.shinshu-u.ac.jp, E-mail: isasaki@shinshu-u.ac.jp [Fiber-Nanotech Young Researcher Empowerment Center, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)

    2011-11-18

    Poincare's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincare's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schroedinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  20. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  1. A Dynamic Attitude Measurement System Based on LINS

    Directory of Open Access Journals (Sweden)

    Hanzhou Li

    2014-08-01

    Full Text Available A dynamic attitude measurement system (DAMS is developed based on a laser inertial navigation system (LINS. Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG. The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min.

  2. A Dynamic Attitude Measurement System Based on LINS

    Science.gov (United States)

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  3. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    Science.gov (United States)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry

  4. Dynamic-speckle profilometer for online measurements of coating thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kamshilin, A A [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Semenov, D V [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Nippolainen, E [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Miridonov, S [Optics Department, CICESE, Carr. Tijuana-Ensenada km 107, C.P. 22860, A.P. 360, Ensenada, B.C. (Mexico)

    2007-10-15

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements.

  5. Dynamic-speckle profilometer for online measurements of coating thickness

    International Nuclear Information System (INIS)

    Kamshilin, A A; Semenov, D V; Nippolainen, E; Miridonov, S

    2007-01-01

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements

  6. Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W

    2012-01-01

    Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)

  7. Measures of thermodynamic irreversibility in deterministic and stochastic dynamics

    International Nuclear Information System (INIS)

    Ford, Ian J

    2015-01-01

    It is generally observed that if a dynamical system is sufficiently complex, then as time progresses it will share out energy and other properties amongst its component parts to eliminate any initial imbalances, retaining only fluctuations. This is known as energy dissipation and it is closely associated with the concept of thermodynamic irreversibility, measured by the increase in entropy according to the second law. It is of interest to quantify such behaviour from a dynamical rather than a thermodynamic perspective and to this end stochastic entropy production and the time-integrated dissipation function have been introduced as analogous measures of irreversibility, principally for stochastic and deterministic dynamics, respectively. We seek to compare these measures. First we modify the dissipation function to allow it to measure irreversibility in situations where the initial probability density function (pdf) of the system is asymmetric as well as symmetric in velocity. We propose that it tests for failure of what we call the obversibility of the system, to be contrasted with reversibility, the failure of which is assessed by stochastic entropy production. We note that the essential difference between stochastic entropy production and the time-integrated modified dissipation function lies in the sequence of procedures undertaken in the associated tests of irreversibility. We argue that an assumed symmetry of the initial pdf with respect to velocity inversion (within a framework of deterministic dynamics) can be incompatible with the Past Hypothesis, according to which there should be a statistical distinction between the behaviour of certain properties of an isolated system as it evolves into the far future and the remote past. Imposing symmetry on a velocity distribution is acceptable for many applications of statistical physics, but can introduce difficulties when discussing irreversible behaviour. (paper)

  8. Simulation error propagation for a dynamic rod worth measurement technique

    International Nuclear Information System (INIS)

    Kastanya, D.F.; Turinsky, P.J.

    1996-01-01

    KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth

  9. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  10. Investigating dynamical complexity in the magnetosphere using various entropy measures

    Science.gov (United States)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather

  11. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  12. Cerebral NMR spectroscopy to study intracellular space in vivo: methodological development for diffusion weighted spectroscopy at short time scale and for pH measurement using 31P detection

    International Nuclear Information System (INIS)

    Marchadour, Charlotte

    2013-01-01

    NMR spectroscopy is a unique modality to evaluate intracellular environment in vivo. Indeed observed molecules are specifically intracellular and generally have a biochemistry role and a specific cellular compartmentation. That could be a useful tool to understand cell functioning in their environment. My thesis work consisted in development of new sequence in both diffusion and phosphorus NMR spectroscopy.My first study was to develop a diffusion-weighted spectroscopy at ultra-short diffusion time to look at the anomalous diffusion in the rat brain. ADC evolution as a function of time shows that brain metabolites motion is mainly due to random diffusion and that active transport (if exist) are negligible. Data modeling evidences that diffusion at short diffusion time is sensitive to cytoplasm viscosity and short scale crowding. In collaboration with the pharmaceutical company, this technique was chosen to follow up transgenic mice (rTg4510), model of tau pathology. Preliminary results show significant differences of ADC at an early stage of neuro-degenerescence (3 and 6 months).Phosphorus spectroscopy allows observation of metabolites directly implicated in energetic processes. During this thesis, localization sequences were developed to measure intracellular pH in the primate striatum. These sequences are supposed to be used to evaluate the potential of pH as a bio-marker of neuro-degenerescence in a phenotypic model of the Huntington disease in the non-human primate. (author) [fr

  13. Automatic anatomical structures location based on dynamic shape measurement

    Science.gov (United States)

    Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell

    2005-09-01

    New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.

  14. Measurements of radiated elastic wave energy from dynamic tensile cracks

    Science.gov (United States)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  15. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods

    International Nuclear Information System (INIS)

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H.

    2010-01-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  16. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  17. Measurements of the dynamic input impedance of a dc SQUID

    International Nuclear Information System (INIS)

    Hilbert, C.; Clarke, J.

    1985-01-01

    The impedance of a circuit coupled magnetically via a mutual inductance M/sub i/ to a dc SQUID of geometric inductance L is modified by the dynamic input impedance of the SQUID, which can be characterized by the flux-to-current transfer function J/sub Phi/approx. =partialJ/partialPhi; J is the current circulating in the SQUID loop and ∫ is the flux applied to the loop. At the same time, the SQUID is modified by the presence of the input circuit in the lumped circuit approximation, one expects its inductance to be reduced to L'(1-α/sub e/ 2 )L, where α/sub e/ is an effective coupling coefficient. Calculations of J/sub Phi/ using an analog simulator are described and presented in the form of a dynamic inductance L and a dynamic resistance R versus bias current I and Phi. Experimental measurements of L and R were made on a planar, thin-film SQUID tightly coupled to a spiral input coil that was connected in series with a capacitor C/sub i/ to form a resonant circuit. Thus, J/sub Phi/ was determined from the change in the resonant frequency and quality factor of this circuit as a function of I and Phi. At low bias currents (low Josephson frequencies) the measured values of L were in reasonable agreement with values simulated for the reduced SQUID, while at higher bias currents (higher Josephson frequencies) the measured values were in better agreement with values simulated for the unscreened SQUID. Similar conclusions were reached in the comparison of the experimental and simulated values of the flux-to-voltage transfer function V/sub Phi/

  18. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  19. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  20. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  1. Measurements and analysis of end-to-end Internet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern [Univ. of California, Berkeley, CA (United States). Computer Science Division

    1997-04-01

    Accurately characterizing end-to-end Internet dynamics - the performance that a user actually obtains from the lengthy series of network links that comprise a path through the Internet - is exceptionally difficult, due to the network`s immense heterogeneity. At the heart of this work is a `measurement framework` in which a number of sites around the Internet host a specialized measurement service. By coordinating `probes` between pairs of these sites one can measure end-to-end behavior along O(N2) paths for a framework consisting of N sites. Consequently, one obtains a superlinear scaling that allows measuring a rich cross-section of Internet behavior without requiring huge numbers of observation points. 37 sites participated in this study, allowing the author to measure more than 1,000 distinct Internet paths. The first part of this work looks at the behavior of end-to-end routing: the series of routers over which a connection`s packets travel. Based on 40,000 measurements made using this framework, the author analyzes: routing `pathologies` such as loops, outages, and flutter; the stability of routes over time; and the symmetry of routing along the two directions of an end-to-end path. The author finds that pathologies increased significantly over the course of 1995 and that Internet paths are heavily dominated by a single route. The second part of this work studies end-to-end Internet packet dynamics. The author analyzes 20,000 TCP transfers of 100 Kbyte each to investigate the performance of both the TCP endpoints and the Internet paths. The measurements used for this part of the study are much richer than those for the first part, but require a great degree of attention to issues of calibration, which are addressed by applying self-consistency checks to the measurements whenever possible. The author finds that packet filters are capable of a wide range of measurement errors, some of which, if undetected, can significantly taint subsequent analysis.

  2. Measuring urban tree loss dynamics across residential landscapes.

    Science.gov (United States)

    Ossola, Alessandro; Hopton, Matthew E

    2018-01-15

    The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by

  3. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  4. Understanding quantum measurement from the solution of dynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-04-15

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of

  5. Measurement Model Nonlinearity in Estimation of Dynamical Systems

    Science.gov (United States)

    Majji, Manoranjan; Junkins, J. L.; Turner, J. D.

    2012-06-01

    The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.

  6. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  7. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  8. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.

    2012-01-01

    -atom Molecular Dynamics (MD) simulations to investigate the structural consequences of phosphorylating the Na+/K+- ATPase (NKA) residue S936, which is the best characterized phosphorylation site in NKA, targeted in vivo by Protein Kinase A (PKA) (1-3). The MD simulations suggest that S936 phosphorylation opens......Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all...... a C-terminal hydrated pathway leading to D926, a transmembrane residue proposed to form part of the third sodium ion-binding site (4). Simulations of a S936E mutant form, for which only subtle effects are observed when expressed in Xenopus oocytes and studied with electrophysiology, does not mimic...

  9. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  10. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    Science.gov (United States)

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  11. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  12. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  13. Dynamical Behaviors of Rumor Spreading Model with Control Measures

    Directory of Open Access Journals (Sweden)

    Xia-Xia Zhao

    2014-01-01

    Full Text Available Rumor has no basis in fact and flies around. And in general, it is propagated for a certain motivation, either for business, economy, or pleasure. It is found that the web does expose us to more rumor and increase the speed of the rumors spread. Corresponding to these new ways of spreading, the government should carry out some measures, such as issuing message by media, punishing the principal spreader, and enhancing management of the internet. In order to assess these measures, dynamical models without and with control measures are established. Firstly, for two models, equilibria and the basic reproduction number of models are discussed. More importantly, numerical simulation is implemented to assess control measures of rumor spread between individuals-to-individuals and medium-to-individuals. Finally, it is found that the amount of message released by government has the greatest influence on the rumor spread. The reliability of government and the cognizance ability of the public are more important. Besides that, monitoring the internet to prevent the spread of rumor is more important than deleting messages in media which already existed. Moreover, when the minority of people are punished, the control effect is obvious.

  14. Measuring business dynamics among incumbent firms in The Netherlands

    NARCIS (Netherlands)

    Folkeringa, M.; van Stel, A.; Suddle, K.; Tan, S.

    2008-01-01

    Business dynamics in an industry is generally seen as an important indicator of the industry's level of competitiveness and economic performance. Two types of business dynamics may be distinguished: business dynamics reflecting competition by new-firm entries and business dynamics reflecting

  15. MGS Radio Science Measurements of Atmospheric Dynamics on Mars

    Science.gov (United States)

    Hinson, D. P.

    2001-12-01

    The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).

  16. Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics.

    Science.gov (United States)

    Zecha, Jana; Meng, Chen; Zolg, Daniel Paul; Samaras, Patroklos; Wilhelm, Mathias; Kuster, Bernhard

    2018-05-01

    The coordination of protein synthesis and degradation regulating protein abundance is a fundamental process in cellular homeostasis. Today, mass spectrometry-based technologies allow determination of endogenous protein turnover on a proteome-wide scale. However, standard dynamic SILAC (Stable Isotope Labeling in Cell Culture) approaches can suffer from missing data across pulse time-points limiting the accuracy of such analysis. This issue is of particular relevance when studying protein stability at the level of proteoforms because often only single peptides distinguish between different protein products of the same gene. To address this shortcoming, we evaluated the merits of combining dynamic SILAC and tandem mass tag (TMT)-labeling of ten pulse time-points in a single experiment. Although the comparison to the standard dynamic SILAC method showed a high concordance of protein turnover rates, the pulsed SILAC-TMT approach yielded more comprehensive data (6000 proteins on average) without missing values. Replicate analysis further established that the same reproducibility of turnover rate determination can be obtained for peptides and proteins facilitating proteoform resolved investigation of protein stability. We provide several examples of differentially turned over splice variants and show that post-translational modifications can affect cellular protein half-lives. For example, N-terminally processed peptides exhibited both faster and slower turnover behavior compared with other peptides of the same protein. In addition, the suspected proteolytic processing of the fusion protein FAU was substantiated by measuring vastly different stabilities of the cleavage products. Furthermore, differential peptide turnover suggested a previously unknown mechanism of activity regulation by post-translational destabilization of cathepsin D as well as the DNA helicase BLM. Finally, our comprehensive data set facilitated a detailed evaluation of the impact of protein

  17. Dynamic pressure measures for long pipeline leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  18. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  19. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  20. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  1. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  2. A symmetric geometric measure and the dynamics of quantum discord

    International Nuclear Information System (INIS)

    Jiang Feng-Jian; Shi Ming-Jun; Lü Hai-Jiang; Yan Xin-Hu

    2013-01-01

    A symmetric measure of quantum correlation based on the Hilbert—Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically. (general)

  3. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    Science.gov (United States)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  4. A study of dynamic foot pressure measurement in diabetic patients

    Directory of Open Access Journals (Sweden)

    Milka D Madhale

    2017-01-01

    Full Text Available Introduction: Diabetic foot ulcer is a major source of morbidity and a leading cause of hospitalization. It is estimated that approximately 20% of hospital admissions among patients with diabetes mellitus are due to diabetic foot ulcer. It can lead to infection, gangrene, amputation, and even death if appropriate care is not provided. Overall, the lower limb amputation in diabetic patients is 15 times higher than in non-diabetics. In the majority of cases, the cause for the foot ulcer is the altered architecture of the foot due to neuropathy resulting in abnormal pressure points on the soles. Purpose: The aim of this study is to develop low cost, lightweight foot pressure scanner and check its reliability and validity which can help to prevent foot ulceration. Design/Methodology/Approach: In the present study, a low cost, lightweight foot pressure scanner is developed, and dynamic plantar pressures in a group of 110 Indian patients with diabetes with or without neuropathy and foot ulcers are measured. Practical Implications: If these pressure points can be detected, ulcers can be prevented by providing offloading footwear. Originality/Value: Differences are found in dynamic foot pressures in different study groups, namely, diabetic patients, patients with diabetic peripheral neuropathy, patients with foot ulcers, and nondiabetics. The differences are significant (P < 0.01, which showed the validity of the tool. Reliability and consistency of the tool was checked by test–retest method. Paper Type: Original Research work. Conclusion: Based on the results of the present study, it is concluded that the scanner is successfully developed and it can measure foot pressures. It is a novel device to proactively monitor foot health in diabetics in an effort to prevent and reduce diabetic foot complications.

  5. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  6. How Does the Ca2+-paradox Injury Induce Contracture in the Heart?—A Combined Study of the Intracellular Ca2+ Dynamics and Cell Structures in Perfused Rat Hearts—

    International Nuclear Information System (INIS)

    Mani, Hiroki; Tanaka, Hideo; Adachi, Tetsuya; Ikegawa, Masaya; Dai, Ping; Fujita, Naohisa; Takamatsu, Tetsuro

    2015-01-01

    The calcium (Ca 2+ )-paradox injury of the heart, induced by restoration of extracellular Ca 2+ after its short-term depletion, is known to provoke cardiomyocyte contracture. However, undetermined is how the Ca 2+ -paradox provokes such a distinctive presentation of myocytes in the heart. To address this, we imaged sequential intracellular Ca 2+ dynamics and concomitant structures of the subepicardial ventricular myocytes in fluo3-loaded, Langendorff-perfused rat hearts produced by the Ca 2+ paradox. Under rapid-scanning confocal microscopy, repletion of Ca 2+ following its depletion produced high-frequency Ca 2+ waves in individual myocytes with asynchronous localized contractions, resulting in contracture within 10 min. Such alterations of myocytes were attenuated by 5-mM NiCl 2 , but not by verapamil, SEA0400, or combination of ryanodine and thapsigargin, indicating a contribution of non-specific transmembrane Ca 2+ influx in the injury. However, saponin-induced membrane permeabilization of Ca 2+ showed no apparent contracture despite the emergence of high-frequency Ca 2+ waves, indicating an essential role of myocyte-myocyte and myocyte-extracellular matrix (ECM) mechanical connections in the Ca 2+ paradox. In immunohistochemistry Ca 2+ depletion produced separation of the intercalated disc that expresses cadherin and dissipation of β-dystroglycan located along the sarcolemma. Taken together, along with the trans-sarcolemmal Ca 2+ influx, disruption of cell-cell and cell-ECM connections is essential for contracture in the Ca 2+ -paradox injury

  7. Uncovering Dynamic Capabilities for Service Innovation: Conceptualization and Measurement

    NARCIS (Netherlands)

    Janssen, M.; Alexiev, A.S.; Castaldi, C.; Den Hertog, P.

    2013-01-01

    The dynamic capabilities view (DCV) is in need of a solid empirical grounding. Existing attempts to identify the organizational behaviour (or microfoundations) on which dynamic capabilities rely are largely biased towards manufacturing. Thereby, these conceptualizations overlook some of the aspects

  8. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  9. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  10. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  11. Determining tumor blood flow parameters from dynamic image measurements

    Science.gov (United States)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  12. Measurements of particle dynamics in slow, dense granular Couette flow

    Science.gov (United States)

    Mueth, Daniel M.

    2003-01-01

    Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.

  13. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  14. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  15. Testing and Validation of the Dynamic Inertia Measurement Method

    Science.gov (United States)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions.

  16. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  17. Implosion dynamics measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  18. Implosion dynamics measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.

    2012-01-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  19. Implosion dynamics measurements at the National Ignition Facility

    Science.gov (United States)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  20. Likelihood-based Dynamic Factor Analysis for Measurement and Forecasting

    NARCIS (Netherlands)

    Jungbacker, B.M.J.P.; Koopman, S.J.

    2015-01-01

    We present new results for the likelihood-based analysis of the dynamic factor model. The latent factors are modelled by linear dynamic stochastic processes. The idiosyncratic disturbance series are specified as autoregressive processes with mutually correlated innovations. The new results lead to

  1. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  2. Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET.

    Science.gov (United States)

    de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint-Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry

    2017-09-01

    Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Dynamic PET with 18 F-THK5117, a tracer for tau pathology, was used to estimate the ventricular CSF time-activity as a biomarker for CSF clearance. We tested 3 hypotheses: extracranial CSF is detected at the superior turbinates; CSF clearance is reduced in AD; and CSF clearance is inversely associated with amyloid deposition. Methods: Fifteen subjects, 8 with AD and 7 normal control volunteers, were examined with 18 F-THK5117. Ten subjects additionally underwent 11 C-Pittsburgh compound B ( 11 C-PiB) PET scanning, and 8 were 11 C-PiB-positive. Ventricular time-activity curves of 18 F-THK5117 were used to identify highly correlated time-activity curves from extracranial voxels. Results: For all subjects, the greatest density of CSF-positive extracranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinate CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET-measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    Science.gov (United States)

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  4. Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Science.gov (United States)

    Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.

    2012-12-01

    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential

  5. A comparison of different measures for dynamical event mean transverse momentum fluctuation

    International Nuclear Information System (INIS)

    Liu Lianshou; Fu Jinghua

    2004-01-01

    Various measures for the dynamical event mean transverse momentum fluctuation are compared with the real dynamical fluctuation using a Monte Carlo model. The variance calculated from the G-moments can reproduce the dynamical variance well, while those obtained by subtraction procedures are approximate measures for not very low multiplicity. Φ pt , proposed by Gazdzicki M and Mrowczynski S, can also serve as an approximate measure after being divided by the square root of mean multiplicity

  6. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  7. Intracellular Drug Uptake-A Comparison of Single Cell Measurements Using ToF-SIMS Imaging and Quantification from Cell Populations with LC/MS/MS.

    Science.gov (United States)

    Newman, Carla F; Havelund, Rasmus; Passarelli, Melissa K; Marshall, Peter S; Francis, Ian; West, Andy; Alexander, Morgan R; Gilmore, Ian S; Dollery, Colin T

    2017-11-21

    ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic kidney (HEK293), cervical cancer (HeLa), and liver cancer (HepG2). There is significant interest in the variation of drug uptake at the single cell level, and we use ToF-SIMS to show that there is great diversity between individual cells and when comparing each of the cell types. These single cell measurements are compared to quantitative measurements of cell-associated amiodarone for the population using LC/MS/MS and cell counting with flow cytometry. NR8383 and HepG2 cells uptake the greatest amount of amiodarone with an average of 2.38 and 2.60 pg per cell, respectively, and HeLa and Hek 293 have a significantly lower amount of amiodarone at 0.43 and 0.36 pg per cell, respectively. The amount of cell-associated drug for the ensemble population measurement (LC/MS/MS) is compared with the ToF-SIMS single cell data: a similar amount of drug was detected per cell for the NR8383, and HepG2 cells at a greater level than that for the HEK293 cells. However, the two techniques did not agree for the HeLa cells, and we postulate potential reasons for this.

  8. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  9. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    Science.gov (United States)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  10. Mycobacterium tuberculosis PPD-induced immune biomarkers measurable in vitro following BCG vaccination of UK adolescents by multiplex bead array and intracellular cytokine staining

    Directory of Open Access Journals (Sweden)

    Worth Andrew

    2010-07-01

    Full Text Available Abstract Background The vaccine efficacy reported following Mycobacterium bovis Bacillus Calmette Guerin (BCG administration to UK adolescents is 77% and defining the cellular immune response in this group can inform us as to the nature of effective immunity against tuberculosis. The aim of this study was to identify which cytokines and lymphocyte populations characterise the peripheral blood cellular immune response following BCG vaccination. Results Diluted blood from before and after vaccination was stimulated with Mycobacterium tuberculosis purified protein derivative for 6 days, after which soluble biomarkers in supernatants were assayed by multiplex bead array. Ten out of twenty biomarkers measured were significantly increased (p Mycobacterium tuberculosis purified protein derivative stimulation of PBMC samples from the 12 month group revealed that IFNγ expression was detectable in CD4 and CD8 T-cells and natural killer cells. Polyfunctional flow cytometry analysis demonstrated that cells expressing IFNγ alone formed the majority in each subpopulation of cells. Only in CD4 T-cells and NK cells were there a notable proportion of responding cells of a different phenotype and these were single positive, TNFα producers. No significant expression of the cytokines IL-2, IL-17 or IL-10 was seen in any population of cells. Conclusions The broad array of biomarker responses detected by multiplex bead array suggests that BCG vaccination is capable, in this setting, of inducing a complex immune phenotype. Although polyfunctional T-cells have been proposed to play a role in protective immunity, they were not present in vaccinated adolescents who, based on earlier epidemiological studies, should have developed protection against pulmonary tuberculosis. This may be due to the later sampling time point available for testing or on the kinetics of the assays used.

  11. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    Science.gov (United States)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  12. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  13. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  14. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Science.gov (United States)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countablely many quasistable states has at least the computational power of a universal Turing machine. Such an analyses assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  15. Subpicosecond Dynamics in Nucleotides Measured by Spontaneous Raman Spectroscopy

    NARCIS (Netherlands)

    Terpstra, P.A.; Terpstra, P.A.; Otto, Cornelis; Greve, Jan

    1997-01-01

    The band widths in Raman spectra are sensitive to dynamics active on a time scale from 0.1 to 10 ps. The band widths of nucleotide vibrations and their dependence on temperature, concentration, and structure are reported. From the experimental band widths and second moments, it is derived that the

  16. Wideband impedance measurements of DC motors under dynamic load conditions

    NARCIS (Netherlands)

    Diouf, F.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2013-01-01

    One of the principal conducted EMI(electromagnetic interferences) sources of low voltage DC (direct current) motors is the commutation occurring during rotation. In this paper the small-signal impedance of low voltage DC motors under different functioning modes, including the dynamic one is studied

  17. Performance of classification confidence measures in dynamic classifier systems

    Czech Academy of Sciences Publication Activity Database

    Štefka, D.; Holeňa, Martin

    2013-01-01

    Roč. 23, č. 4 (2013), s. 299-319 ISSN 1210-0552 R&D Projects: GA ČR GA13-17187S Institutional support: RVO:67985807 Keywords : classifier combining * dynamic classifier systems * classification confidence Subject RIV: IN - Informatics, Computer Science Impact factor: 0.412, year: 2013

  18. Mapping Populations: An Objective Measurement of Revolutionary Dynamics

    Science.gov (United States)

    2013-06-01

    the figurehead for the NSDAP because of his apparent ubiquity with the working class and the machinations of the bourgeoisie society members...dynamics between the proletariat and the bourgeoisie of German society in the 1920’s exemplified the need for a figurehead. Furthermore, the

  19. Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation

    Science.gov (United States)

    2014-02-10

    1303.4629. 15. Leskovec J, Backstrom L, Kleinberg J (2009) Meme -tracking and the dynamics of the news cycle. Proc 15th ACM SIGKDD : 497505. 16. Leskovec J...2011) Memes online: Extracted, subtracted, injected, and recollected. Proc 5th Int AAAI Conf on Weblogs and Social Media : 353–360. 21. Watts DJ (2002) A

  20. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  1. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles

    Science.gov (United States)

    Vasir, Jaspreet K.; Labhasetwar, Vinod

    2008-01-01

    Understanding the interaction of nanoparticles (NPs) with the cell membrane and their trafficking through cells is imperative to fully explore the use of NPs for efficient intracellular delivery of therapeutics. Here, we report a novel method of measuring the force of NP-cell membrane interactions using atomic force microscopy (AFM). Poly(dl-lactide co-glycolide, PLGA) NPs functionalized with poly-l-lysine were used as a model system, to demonstrate that this force determines the adhesive interaction of NPs with the cell membrane and in turn the extent of cellular uptake of NPs, and hence that of the encapsulated therapeutic. Cellular uptake of NPs was monitored using AFM imaging, and the dynamics of their intracellular distribution was quantified using confocal microscopy. Results demonstrated that the functionalized NPs have a five-fold greater force of adhesion with the cell membrane and the time-lapse AFM images show their rapid internalization than unmodified NPs. The intracellular trafficking study showed that the functionalized NPs escape more rapidly and efficiently from late endosomes than unmodified NPs and result in 10-fold higher intracellular delivery of the encapsulated model protein. The findings described herein enhance our basic understanding of the NP-cell membrane interaction on the basis of physical phenomena that could have wider applications in developing efficient nanocarrier systems for intracellular delivery of therapeutics. PMID:18692238

  2. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  3. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    International Nuclear Information System (INIS)

    Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P

    2010-01-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without

  5. Dynamic portfolio managment based on complex quantile risk measures

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Tulupova

    2011-05-01

    Full Text Available The article focuses on effectiveness evaluation combined measures of financial risks, which are convex combinations of measures VaR, CVaR and their analogues for the right distribution tail functions of a portfolio returns.

  6. Measurement and control of quasiparticle dynamics in a superconducting qubit.

    Science.gov (United States)

    Wang, C; Gao, Y Y; Pop, I M; Vool, U; Axline, C; Brecht, T; Heeres, R W; Frunzio, L; Devoret, M H; Catelani, G; Glazman, L I; Schoelkopf, R J

    2014-12-18

    Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.

  7. Dynamic Axle Load of an Automotive Vehicle When Driven on a Mobile Measurement Platform

    OpenAIRE

    Jagiełowicz-Ryznar C.

    2014-01-01

    An analysis of the dynamic axle load of an automotive vehicle (AV) when it is driven on a mobile measurement platform is presented in this paper. During the ride, the time characteristic of the dynamic force N(t), acting on the axle, was recorded. The effect of the vehicle axle mass on the maximum dynamic force value and the dynamic coefficient were studied. On this basis it was attempted to calculate the total vehicle’s weight. Conclusions concerning the dynamic loads of the vehicle axles in...

  8. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  9. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza, E-mail: m-nabid@sbu.ac.ir

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2 mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. - Highlights: • A novel fully glutathione degradable waterborne polyurethane was developed. • The waterborne nanocarrier with disulfide bonds in both hard and soft segment were developed for redox-triggered intracellular delivery of DOX. • The polyester diol bearing disulfide bonds in the backbone was prepared by a polycondensation polymerization reaction.

  10. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  11. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  12. Measurement and analysis on dynamic behaviour of parallel-plate assembly in nuclear reactors

    International Nuclear Information System (INIS)

    Chen Junjie; Guo Changqing; Zou Changchuan

    1997-01-01

    Measurement and analysis on dynamic behaviour of parallel-plate assembly in nuclear reactors have been explored. The electromagnetic method, a new method of measuring and analysing dynamic behaviour with the parallel-plate assembly as the structure of multi-parallel-beams joining with single-beam, has been presented. Theoretical analysis and computation results of dry-modal natural frequencies show good agreement with experimental measurements

  13. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics

    International Nuclear Information System (INIS)

    Crooks, Gavin E; Sivak, David A

    2011-01-01

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen–Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Rényi divergence

  14. Testing and Validation of the Dynamic Interia Measurement Method

    Science.gov (United States)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  15. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  16. Methane Emission Estimates from Landfills Obtained with Dynamic Plume Measurements

    International Nuclear Information System (INIS)

    Hensen, A.; Scharff, H.

    2001-01-01

    Methane emissions from 3 different landfills in the Netherlands were estimated using a mobile Tuneable Diode Laser system (TDL). The methane concentration in the cross section of the plume is measured downwind of the source on a transect perpendicular to the wind direction. A gaussian plume model was used to simulate the concentration levels at the transect. The emission from the source is calculated from the measured and modelled concentration levels.Calibration of the plume dispersion model is done using a tracer (N 2 O) that is released from the landfill and measured simultaneously with the TDL system. The emission estimates for the different locations ranged from 3.6 to 16 m 3 ha -1 hr -1 for the different sites. The emission levels were compared to emission estimates based on the landfill gas production models. This comparison suggests oxidation rates that are up to 50% in spring and negligible in November. At one of the three sites measurements were performed in campaigns in 3 consecutive years. Comparison of the emission levels in the first and second year showed a reduction of the methane emission of about 50% due to implementation of a gas extraction system. From the second to the third year emissions increased by a factor of 4 due to new land filling. Furthermore measurements were performed in winter when oxidation efficiency was reduced. This paper describes the measurement technique used, and discusses the results of the experimental sessions that were performed

  17. Dynamical measurements of the interior structure of exoplanets

    International Nuclear Information System (INIS)

    Becker, Juliette C.; Batygin, Konstantin

    2013-01-01

    Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.

  18. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  19. Measurement of collective dynamical mass of Dirac fermions in graphene.

    Science.gov (United States)

    Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee

    2014-08-01

    Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

  20. Analysis of interactive fixed effects dynamic linear panel regression with measurement error

    OpenAIRE

    Nayoung Lee; Hyungsik Roger Moon; Martin Weidner

    2011-01-01

    This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.

  1. Measuring Group Work Dynamics and Its Relation with L2 Learners' Task Motivation and Language Production

    Science.gov (United States)

    Poupore, Glen

    2016-01-01

    While learners of a second language (L2) are increasingly interacting in small groups as part of a communicative methodological paradigm, very few studies have investigated the social dynamics that occur in such groups. The aim of this study is to introduce a group work dynamic measuring instrument and to investigate the relationship between group…

  2. The Focus Factor: A Dynamic Measure of Journal Specialisation

    Science.gov (United States)

    Nicolaisen, Jeppe; Frandsen, Tove Faber

    2015-01-01

    Introduction: We present a new bibliometric indicator to measure journal specialisation over time, named the focus factor. This new indicator is based on bibliographic coupling and counts the percentage of re-citations given in subsequent years. Method: The applicability of the new indicator is demonstrated on a selection of general science…

  3. Interpretation of measurements of dynamic fluorescence of the eye

    Science.gov (United States)

    Schweitzer, Dietrich; Hammer, Martin; Jentsch, Susanne; Schenke, Stefan

    2007-09-01

    First pathological alterations occur at cellular level, most in metabolism. An indirect estimation of metabolic activity in cells is measurement of microcirculation. Measurements of tissue autofluorescence are potentially suited for direct investigation of cellular metabolism. Besides redox pairs of co-enzymes (NADH-NAD, FADH2-FAD) several other fluorophores are excited in tissue. In addition, a number of anatomical structures are simultaneously excited, when investigating the eye-ground. In this study, spectral and time resolved comparison was performed between purified substances, single ocular structures and in vivo measurements of the time-resolved autofluorescence at the human eye. In human eyes, the ageing pigment lipofuscin covers other fluorophores at the fundus in long - wave visible range. Applying lifetime measurements, weakly emitting fluorophores can be detected, when the lifetimes are different from the strongly emitting fluorophore. For this, the autofluorescence was excited at 468 nm and detected in two spectral ranges (500 nm-560 nm, 560 nm-700 nm). In tri-exponential fitting, the short lifetime corresponds to retinal pigment epithelium, the mean lifetime corresponds probably to neural retina and the long lifetime is caused by fluorescence of connective tissue.

  4. Dynamics of 'quantumness' measures in the decohering harmonic ...

    Indian Academy of Sciences (India)

    2016-07-26

    Jul 26, 2016 ... are relative measures, using different definitions of the distance between the given quantum states and the set ..... the correspondence principle on the face of it, as they ..... validity of using the negativity – ηW – as an absolute.

  5. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    Science.gov (United States)

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  6. Dynamic measurements of the elastic constants of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2005-01-01

    . But a new mechanical design, which reduces mechanical resonance, is described. The measurements were carried out in atmospheric air at normal pressure, and this causes an oscillatory airflow in the sample. To obtain the elastic constants, the influence of the airflow was subtracted from the data by a new...

  7. An intelligent instrument for measuring the dynamic parameters of groundwater

    International Nuclear Information System (INIS)

    Du Guoping

    2002-01-01

    An intelligent instrument was developed for measuring direction and velocity of the groundwater, permeability coefficient, hydraulic transmitting coefficient, static level, hydraulic gradient and flow direction of each layer. The instrument can be widely applied for detecting seepage of abutment and river bank, exploitation of groundwater, conservation of water and soil, water surging in mine, survey of groundwater resource and environment protection etc

  8. Multiscale measures of equilibrium on finite dynamic systems

    International Nuclear Information System (INIS)

    Bigerelle, M.; Iost, A.

    2004-01-01

    This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, t e , depends on the number, n, of elementary cells as: t e ∝n 2.22 ±0.06 . For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium

  9. Two Notes on Measure-Theoretic Entropy of Random Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    YuJun ZHU

    2009-01-01

    In this paper, Brin-Katok local entropy formula and Katok's definition of the measure theoretic entropy using spanning set are established for the random dynamical system over an invertible ergodic system.

  10. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  11. Dynamic Length Metrology (DLM) for measurements with sub-micrometre uncertainty in a production environment

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Hattel, Jesper Henri

    2016-01-01

    Conventional length metrology for traceable accurate measurements requires costly temperature controlled facilities, long waiting time for part acclimatisation, and separate part material characterisation. This work describes a method called Dynamic Length Metrology (DLM) developed to achieve sub...

  12. Wind Turbine Performance Measurements by Means of Dynamic Data Analysis

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Wagner, Rozenn; Demurtas, Giorgio

    tools have been developed by authors to try to make the drift field and fixed point determination more robust. A sensitivity analysis with nacelle lidar data showed drift determination was not very dependent on the time steps applied, leading to use of time steps of 2-3 points for each dataset. Power...... bin size should be fixed. Data averaging with 5 sec data was more distinct for determination of the fixed points than 2 and 1 sec data. With the nacelle lidar the Langevin method seemed to produce a power curve that was comparable to the IEC power curve. Analysis of the Langevin method with spinner...... curves could be made faster with 1Hz dataset. In the FastWind project the Langevin power curve method was used on real power curve measurement datasets with the purpose to evaluate the method for practical use. A practical guide to application of the method to real power curve measurement data was made...

  13. Measurement of neutron importance by a dynamic method

    International Nuclear Information System (INIS)

    Dmitriev, V.M.; Matusevich, E.S.; Regushevskij, V.I.; Sazonov, S.P.; Usikov, D.A.

    1977-01-01

    A procedure is proposed for measuring neutron importance spatial distribution in a critical reactor by determining the parameters of its run-up with a constant neutron source. 252 Cf quasiisotropic point source was used. The measurements were performed at a critical assembly with a highly enriched uranium core and beryllium reflector. Importance distributions in critical and subsritical assemblies were compared for various degrees of subcriticality. Absolute normalization for the importance was obtained, and some new integral reactor characteristics were determined experimentally on its basis. An experimental data acquisition and processing system was developed on the basis of the ELECTRONIKA-100 computer. An algorithm was also developed for statistical treatment of the data. The importance distributions in critical and subcritical assemblies proved to coincide up to a rather deep subcriticality

  14. Dynamic strain measurements in a sliding microstructured contact

    International Nuclear Information System (INIS)

    Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga

    2008-01-01

    A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain

  15. Biosensor based on measurements of the clustering dynamics of magnetic particles

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....

  16. High Dynamic Range Nonlinear Measurement using Analog Cancellation

    Science.gov (United States)

    2012-10-01

    shield around sensitive areas. The target may also be sensitive to radiated coupling from the system and will benefit from a shield box or Faraday ... cage , if it is not already enclosed. On the shared measurement path and through the target, cross-channel coupling cannot be prevented, so low-PIM...testing is desired, traditional filtering is recommended, as the primary benefits of the analog canceller are effectively nullified. 2.4 Wideband

  17. Mathematical Modelling of Bacterial Meningitis Transmission Dynamics with Control Measures

    Directory of Open Access Journals (Sweden)

    Joshua Kiddy K. Asamoah

    2018-01-01

    Full Text Available Vaccination and treatment are the most effective ways of controlling the transmission of most infectious diseases. While vaccination helps susceptible individuals to build either a long-term immunity or short-term immunity, treatment reduces the number of disease-induced deaths and the number of infectious individuals in a community/nation. In this paper, a nonlinear deterministic model with time-dependent controls has been proposed to describe the dynamics of bacterial meningitis in a population. The model is shown to exhibit a unique globally asymptotically stable disease-free equilibrium E0, when the effective reproduction number RVT≤1, and a globally asymptotically stable endemic equilibrium E1, when RVT>1; and it exhibits a transcritical bifurcation at RVT=1. Carriers have been shown (by Tornado plot to have a higher chance of spreading the infection than those with clinical symptoms who will sometimes be bound to bed during the acute phase of the infection. In order to find the best strategy for minimizing the number of carriers and ill individuals and the cost of control implementation, an optimal control problem is set up by defining a Lagrangian function L to be minimized subject to the proposed model. Numerical simulation of the optimal problem demonstrates that the best strategy to control bacterial meningitis is to combine vaccination with other interventions (such as treatment and public health education. Additionally, this research suggests that stakeholders should press hard for the production of existing/new vaccines and antibiotics and their disbursement to areas that are most affected by bacterial meningitis, especially Sub-Saharan Africa; furthermore, individuals who live in communities where the environment is relatively warm (hot/moisture are advised to go for vaccination against bacterial meningitis.

  18. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    Science.gov (United States)

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  19. Use of measurement theory for operationalization and quantification of psychological constructs in systems dynamics modelling

    Science.gov (United States)

    Fitkov-Norris, Elena; Yeghiazarian, Ara

    2016-11-01

    The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.

  20. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  1. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  2. INFORMATION MINING OF SPATIO-TEMPORAL EVOLUTION OF LAKES BASED ON MULTIPLE DYNAMIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Feng

    2017-09-01

    Full Text Available Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes’ area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1 the swap dynamic degree (SDD reflects the space activity of lakes in the study period. 2 the attenuation dynamic degree (ADD reflects the net attenuation of lakes into non-lake areas. 3 the fragmentation dynamic degree (FDD reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation – fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  3. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  4. Study on dynamic rod worth measurement method and its test verification

    International Nuclear Information System (INIS)

    Wu Lei; Liu Tongxian; Zhao Wenbo; Li Songling; Yu Yingrui

    2015-01-01

    An advanced rod worth measurement technique, the dynamic rod worth measurement method (DRWM) has been developed. Static Spatial Factors (SSF) and Dynamic Spatial Factor (DSF) were introduced to improve the inverse kinetics method. The three dimensional steady and transient simulations for the measurement process was carried out to calculate the modification factors. The rod worth measurement, test was performed on a research reactor to verify DRWM. The results showed that the DRWM method provided the improved accuracy and could be a replacement of the traditional methods. (authors)

  5. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  6. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  7. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  8. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  9. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  10. Measuring and modeling behavioral decision dynamics in collective evacuation.

    Directory of Open Access Journals (Sweden)

    Jean M Carlson

    Full Text Available Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies.

  11. Reliability and Correlation of Static and Dynamic Foot Arch Measurement in a Healthy Pediatric Population.

    Science.gov (United States)

    Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten

    2017-09-01

    Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P body mass index (P mind. For clinical purposes, static and dynamic arch data should be interpreted separately.

  12. Dynamic measurement of matter creation using a feedback rotor

    International Nuclear Information System (INIS)

    Winkler, L.I.

    1989-01-01

    A room-temperature version of an experiment to search for cosmological matter creation using a precision rotor has been underway at University of Virginia since the late 1970's. The ultimate goal of this experiment is to be able to detect a change in the rotor moment of inertia I at a rate I/I≤10 -18 per second. In the original measurement strategy, and I/I was to be detected as an anomalous drag torque causing the rotor angular momentum to decay, with time constant Γ* = 10 -18 seconds. Here an alternate method of detecting an I/I using a precision rotor is proposed. In this alternate strategy, the rotor is driven by negative derivative feedback to follow a time-dependent reference of either exponential or sinusoidal form. An I/I is detected as an anomalous response of the rotor to the drive torque. Since this alternate strategy is not based on the detection of a drag torque, it can be used to verify that an observed rotor spin-down is caused by an I/I, rather than some other loss mechanism. Signal-to-noise ratios are developed for this strategy, and a way of differentiating positive from null results is described. Matter-creation tests performed using the alternate strategy indicate that the EST device produces noise which currently limits the sensitivity of the experiment. Null results were at least one order of magnitude above the theoretical values of the minimum detectable I/I. Also, anomalous drift in the rotor response caused the detection of positive results. These limitations are shown to be due to nonlinearity and asymmetry in the EST device, which can be corrected in future efforts

  13. Measuring Static and Dynamic Properties of Frozen Silty Soils

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  14. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    Science.gov (United States)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  15. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H [Department of Automatic Measurement and Control, Harbin Institute of Technology, PO Box 305, Harbin, 150001 (China)

    2006-10-15

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  16. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Science.gov (United States)

    Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.

    2006-10-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  17. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    International Nuclear Information System (INIS)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H

    2006-01-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system

  18. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  19. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  20. A novel voltage clamp circuit for the measurement of transistor dynamic on-resistance

    NARCIS (Netherlands)

    Gelagaev, R.; Jacqmaer, P.; Everts, J.; Driesen, Johan

    2012-01-01

    For determining the dynamic on-resistance Rdyn,on of a power transistor, the voltage and current waveforms have to be measured during the switching operation. In measurements of voltage waveforms, using an oscilloscope, the characteristics of an amplifier inside the oscilloscope are distorted when

  1. A dynamic approach to real-time performance measurement in design projects

    DEFF Research Database (Denmark)

    Skec, Stanko; Cash, Philip; Storga, Mario

    2017-01-01

    Recent developments in engineering design management point to the need for more dynamic, fine-grain measurement approaches able to deal with multi-dimensional, cross-level process performance in product design. Thus, this paper proposes a new approach to the measurement and management of individu...

  2. Measuring Sandy Bottom Dynamics by Exploiting Depth from Stereo Video Sequences

    DEFF Research Database (Denmark)

    Musumeci, Rosaria E.; Farinella, Giovanni M.; Foti, Enrico

    2013-01-01

    In this paper an imaging system for measuring sandy bottom dynamics is proposed. The system exploits stereo sequences and projected laser beams to build the 3D shape of the sandy bottom during time. The reconstruction is used by experts of the field to perform accurate measurements and analysis...

  3. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  4. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  5. Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry

    Science.gov (United States)

    Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.

    1996-02-01

    The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.

  6. Comparison of experimental measurements of power MOSFET SEBs in dynamic and static modes

    International Nuclear Information System (INIS)

    Calvel, P.; Peyrotte, C.; Baiget, A.; Stassinopoulos, E.G.

    1991-01-01

    In this paper a study to determine the Single Event Burnout (SEB) sensitivity for burnout of IRF-150 Power MOSFETs in both static and dynamic modes in terms of LET threshold and cross section is described. The dynamic tests were conducted with a power converter which was designed for actual space application. The results were compared with static measurements which were made during the exposure to the heavy ions. The data showed that the dynamic mode was less sensitive than the static by two orders of magnitude in cross section. It was also observed that ions with a range less than 30 microns did not produce destructive burnout in the dynamic mode even when their LET exceeded the threshold value. The extent of physical MOSFET damage in the destructive, dynamic tests appeared to correlate with the ion LET and source-drain voltage

  7. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    Science.gov (United States)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  8. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  9. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  10. The Relationship of Static Tibial Tubercle-Trochlear Groove Measurement and Dynamic Patellar Tracking.

    Science.gov (United States)

    Carlson, Victor R; Sheehan, Frances T; Shen, Aricia; Yao, Lawrence; Jackson, Jennifer N; Boden, Barry P

    2017-07-01

    The tibial tubercle to trochlear groove (TT-TG) distance is used for screening patients with a variety of patellofemoral joint disorders to determine who may benefit from patellar medialization using a tibial tubercle osteotomy. Clinically, the TT-TG distance is predominately based on static imaging with the knee in full extension; however, the predictive ability of this measure for dynamic patellar tracking patterns is unknown. To determine whether the static TT-TG distance can predict dynamic lateral displacement of the patella. Cohort study (Diagnosis); Level of evidence, 2. The static TT-TG distance was measured at full extension for 70 skeletally mature subjects with (n = 32) and without (n = 38) patellofemoral pain. The dynamic patellar tracking patterns were assessed from approximately 45° to 0° of knee flexion by use of dynamic cine-phase contrast magnetic resonance imaging. For each subject, the value of dynamic lateral tracking corresponding to the exact knee angle measured in the static images for that subject was identified. Linear regression analysis determined the predictive ability of static TT-TG distance for dynamic patellar lateral displacement for each cohort. The static TT-TG distance measured with the knee in full extension cannot accurately predict dynamic lateral displacement of the patella. There was weak predictive ability among subjects with patellofemoral pain ( r 2 = 0.18, P = .02) and no predictive capability among controls. Among subjects with patellofemoral pain and static TT-TG distances 15 mm or more, 8 of 13 subjects (62%) demonstrated neutral or medial patellar tracking patterns. The static TT-TG distance cannot accurately predict dynamic lateral displacement of the patella. A large percentage of patients with patellofemoral pain and pathologically large TT-TG distances may have neutral to medial maltracking patterns.

  11. Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve

    2013-05-01

    Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

  12. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    Directory of Open Access Journals (Sweden)

    Beijing K. Huang

    2014-01-01

    Full Text Available Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies.

  14. Evaluating measurement of dynamic constructs: defining a measurement model of derivatives.

    Science.gov (United States)

    Estabrook, Ryne

    2015-03-01

    While measurement evaluation has been embraced as an important step in psychological research, evaluating measurement structures with longitudinal data is fraught with limitations. This article defines and tests a measurement model of derivatives (MMOD), which is designed to assess the measurement structure of latent constructs both for analyses of between-person differences and for the analysis of change. Simulation results indicate that MMOD outperforms existing models for multivariate analysis and provides equivalent fit to data generation models. Additional simulations show MMOD capable of detecting differences in between-person and within-person factor structures. Model features, applications, and future directions are discussed. (c) 2015 APA, all rights reserved).

  15. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  16. Microprocessor-controlled time domain reflectometer for dynamic shock position measurements

    International Nuclear Information System (INIS)

    Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.

    1980-01-01

    Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements

  17. Mercury dynamics in a San Francisco estuary tidal wetland: assessing dynamics using in situ measurements

    Science.gov (United States)

    Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger

    2012-01-01

    We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.

  18. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  19. Correction for dynamic bias error in transmission measurements of void fraction

    International Nuclear Information System (INIS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  20. Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent, E-mail: vincent.dupuis@upmc.fr

    2017-01-01

    In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH. - Highlights: • Dynamic hysteresis measurements are a promising tool to study magnetic hyperthermia. • Dynamic hysteresis cycles can be reproduced using a simple model. • The effect of viscosity on hyperthermia of maghemite is weaker than expected.

  1. Utilization of an electronic portal imaging device for measurement of dynamic wedge data

    International Nuclear Information System (INIS)

    Elder, Eric S.; Miner, Marc S.; Butker, Elizabeth K.; Sutton, Danny S.; Davis, Lawrence W.

    1996-01-01

    Purpose/Objective: Due to the motion of the collimator during dynamic wedge treatments, the conventional method of collecting comprehensive wedge data with a water tank and a scanning ionization chamber is obsolete. It is the objective of this work to demonstrate the use of an electronic portal imaging device (EPID) and software to accomplish this task. Materials and Methods: A Varian Clinac[reg] 2300 C/D, equipped with a PortalVision TM EPID and Dosimetry Research Mode experimental software, was used to produce the radiation field. The Dosimetry Research Mode experimental software allows for a band of 10 of 256 high voltage electrodes to be continuously read and averaged by the 256 electrometer electrodes. The file that is produced contains data relating to the integrated ionization at each of the 256 points, essentially the cross plane beam profile. Software was developed using Microsoft C ++ to reformat the data for import into a Microsoft Excel spreadsheet allowing for easy mathematical manipulation and graphical display. Beam profiles were measured by the EPID with a 100 cm TSD for various field sizes. Each field size was measured open, steel wedged, and dynamically wedged. Scanning ionization chamber measurements performed in a water tank were compared to the open and steel wedged fields. Ionization chamber measurements taken in a water tank were compared with the dynamically wedged measurements. For the EPID measurements the depth was varied using Gammex RMI Solid Water TM placed directly above the EPID sensitive volume. Bolus material was placed between the Solid Water TM and the EPID to avoid an air gap. Results: Comparison of EPID measurements with those from an ion chamber in a water tank showed a discrepancy of ∼5%. Scans were successfully obtained for open, steel wedged and dynamically wedged beams. Software has been developed to allow for easy graphical display of beam profiles. Conclusions: Measurement of dynamic wedge data proves to be easily

  2. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  3. Methods Research about Accuracy Loss Tracing of Dynamic Measurement System Based on WNN

    International Nuclear Information System (INIS)

    Lin, S-W; Fei, Y T; Jiang, M L; Tsai, C-Y; Cheng Hsinyu

    2006-01-01

    The paper presents a method of achieving accuracy loss of the dynamic measurement system according to change of errors on different period of the system. WNN, used to trace the accuracy loss of dynamic measurement system, traces the total precision loss during a certain period to every part of the system, and the accuracy loss of every part can be get, so retaining the accuracy and optimum design of the system is possible. Take tracing the accuracy loss of a simulated system for an example to testify the method

  4. Optimization of Measurements on Dynamically Sensitive Structures Using a Reliability Approach

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    Design of a measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of a measuring program. Design variab...... variables are the numbers of measuring points, the locations of these points and the required number of sample records. An example with a simply supported plane, vibrating beam is considered and tentative results are presented.......Design of a measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of a measuring program. Design...

  5. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  6. Analysis and Optimization of Dynamic Measurement Precision of Fiber Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available In order to improve the dynamic performance of high precision interferometer fiber optic gyroscope (IFOG, the influencing factors of the fast response characteristics are analyzed based on a proposed assistant design setup, and a high dynamic detection method is proposed to suppress the adverse effects of the key influencing factors. The assistant design platform is built by using the virtual instrument technology for IFOG, which can monitor the closed-loop state variables in real time for analyzing the influence of both the optical components and detection circuit on the dynamic performance of IFOG. The analysis results indicate that nonlinearity of optical Sagnac effect, optical parameter uncertainty, dynamic characteristics of internal modules and time delay of signal detection circuit are the major causes of dynamic performance deterioration, which can induce potential system instability in practical control systems. By taking all these factors into consideration, we design a robust control algorithm to realize the high dynamic closed-loop detection of IFOG. Finally, experiments show that the improved 0.01 deg/h high precision IFOG with the proposed control algorithm can achieve fast tracking and good dynamic measurement precision.

  7. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  8. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.

    Science.gov (United States)

    Chardonnens, Julien; Favre, Julien; Cuendet, Florian; Gremion, Gérald; Aminian, Kamiar

    2014-01-01

    Dynamics is a central aspect of ski jumping, particularly during take-off and stable flight. Currently, measurement systems able to measure ski jumping dynamics (e.g. 3D cameras, force plates) are complex and only available in few research centres worldwide. This study proposes a method to determine dynamics using a wearable inertial sensor-based system which can be used routinely on any ski jumping hill. The system automatically calculates characteristic dynamic parameters during take-off (position and velocity of the centre of mass perpendicular to the table, force acting on the centre of mass perpendicular to the table and somersault angular velocity) and stable flight (total aerodynamic force). Furthermore, the acceleration of the ski perpendicular to the table was quantified to characterise the skis lift at take-off. The system was tested with two groups of 11 athletes with different jump distances. The force acting on the centre of mass, acceleration of the ski perpendicular to the table, somersault angular velocity and total aerodynamic force were different between groups and correlated with the jump distances. Furthermore, all dynamic parameters were within the range of prior studies based on stationary measurement systems, except for the centre of mass mean force which was slightly lower.

  9. Application of computer picture processing to dynamic strain measurement under electromagnetic field

    International Nuclear Information System (INIS)

    Yagawa, G.; Soneda, N.

    1987-01-01

    For the structural design of fusion reactors, it is very important to ensure the structural integrity of components under various dynamic loading conditions due to a solid-electromagnetic field interaction, an earthquake, MHD effects and so on. As one of the experimental approaches to assess the dynamic fracture, we consider the strain measurement near a crack tip under a transient electromagnetic field, which in general involves several experimental difficulties. The authors have developed a strain measurement method using a picture processing technique. In this method, locations of marks printed on a surface of specimen are determined by the picture processing. The displacement field is interpolated using the mark displacements and finite elements. Finally the strain distribution is calculated by differentiating the displacement field. In the present study, the method is improved and automated apply to the measurement of dynamic strain distribution under an electromagnetic field. Then the effects of dynamic loading on the strain distribution are investigated by comparing the dynamic results with the static ones. (orig./GL)

  10. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  11. Structural rearrangement of the intracellular domains during AMPA receptor activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Ljudmila; Jensen, Anna Guldvang

    2016-01-01

    -clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence...

  12. Estimation of Dynamic Errors in Laser Optoelectronic Dimension Gauges for Geometric Measurement of Details

    Directory of Open Access Journals (Sweden)

    Khasanov Zimfir

    2018-01-01

    Full Text Available The article reviews the capabilities and particularities of the approach to the improvement of metrological characteristics of fiber-optic pressure sensors (FOPS based on estimation estimation of dynamic errors in laser optoelectronic dimension gauges for geometric measurement of details. It is shown that the proposed criteria render new methods for conjugation of optoelectronic converters in the dimension gauge for geometric measurements in order to reduce the speed and volume requirements for the Random Access Memory (RAM of the video controller which process the signal. It is found that the lower relative error, the higher the interrogetion speed of the CCD array. It is shown that thus, the maximum achievable dynamic accuracy characteristics of the optoelectronic gauge are determined by the following conditions: the parameter stability of the electronic circuits in the CCD array and the microprocessor calculator; linearity of characteristics; error dynamics and noise in all electronic circuits of the CCD array and microprocessor calculator.

  13. ŽAMPA’S SYSTEMS THEORY: A COMPREHENSIVE THEORY OF MEASUREMENT IN DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Renata Rychtáriková

    2018-04-01

    Full Text Available The article outlines in memoriam Prof. Pavel Žampa’s concepts of system theory which enable us to devise a measurement in dynamic systems independently of the particular system behaviour. From the point of view of Žampa’s theory, terms like system time, system attributes, system link, system element, input, output, sub-systems, and state variables are defined. In Conclusions, Žampa’s theory is discussed together with another mathematical approaches of qualitative dynamics known since the 19th century. In Appendices, we present applications of Žampa’s technical approach to measurement of complex dynamical (chemical and biological systems at the Institute of Complex Systems, University of South Bohemia in České Budějovice.

  14. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  15. Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion

    DEFF Research Database (Denmark)

    Støve, Morten Pallisgaard; Palsson, Thorvaldur Skuli; Hirata, Rogerio Pessoto

    2018-01-01

    Introduction: Measurement of static joint range of motion is used extensively in orthopaedic and rehabilitative communities to benchmark treatment efficacy. Static measures are, however, insufficient in providing detailed information about patient impairments. Dynamic range of motion measures cou...

  16. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents.

    Science.gov (United States)

    Emery, Carolyn A; Cassidy, J David; Klassen, Terry P; Rosychuk, Rhonda J; Rowe, Brian B

    2005-06-01

    There is a need in sports medicine for a static and dynamic standing balance measure to quantify balance ability in adolescents. The purposes of this study were to determine the test-retest reliability of timed static (eyes open) and dynamic (eyes open and eyes closed) unipedal balance measurements and to examine factors associated with balance. Adolescents (n=123) were randomly selected from 10 Calgary high schools. This study used a repeated-measures design. One rater measured unipedal standing balance, including timed eyes-closed static (ECS), eyes-open dynamic (EOD), and eyes-closed dynamic (ECD) balance at baseline and 1 week later. Dynamic balance was measured on a foam surface. Reliability was examined using both intraclass correlation coefficients (ICCs) and Bland and Altman statistical techniques. Multiple linear regressions were used to examine other potentially influencing factors. Based on ICCs, test-retest reliability was adequate for ECS, EOD, and ECD balance (ICC=.69, .59, and .46, respectively). The results of Bland and Altman methods, however, suggest that caution is required in interpreting reliability based on ICCs alone. Although both ECS balance and ECD balance appear to demonstrate adequate test-retest reliability by ICC, Bland and Altman methods of agreement demonstrate sufficient reliability for ECD balance only. Thirty percent of the subjects reached the 180-second maximum on EOD balance, suggesting that this test is not appropriate for use in this population. Balance ability (ECS and ECD) was better in adolescents with no past history of lower-extremity injury. Timed ECD balance is an appropriate and reliable clinical measurement for use in adolescents and is influenced by previous injury.

  17. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  18. The Finite-Horizon Singular H∞ Control Problem With Dynamic Measurement Feedback

    NARCIS (Netherlands)

    Stoorvogel, A.A.; Trentelman, H.L.

    1993-01-01

    This paper is concerned with the finite-horizon version of the H∞ problem with measurement feedback. Given a finite-dimensional linear, time-varying system, together with a positive real number γ, we obtain necessary and sufficient conditions for the existence of a possibly time-varying dynamic

  19. Small specimen measurements of dynamic fracture toughness of heavy section steels for nuclear pressure vessel

    International Nuclear Information System (INIS)

    Tanaka, Y.; Iwadate, T.; Suzuki, K.

    1987-01-01

    This study presents the dynamic fracture toughness properties (KId) of 12 heats of RPV steels measured using small specimens and analysed based on the current research. The correlation between the KId test and other engineering small specimen tests such as Charpy test and drop weight test are also discussed and a method to predict the KId value is presented. (orig./HP)

  20. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    CSIR Research Space (South Africa)

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  1. Development of a Modular Test Stand for the Measuring of Dynamic ...

    African Journals Online (AJOL)

    In order to evaluate the human's dynamic physical strain during work, for example during assembly work, an evaluation library of all executions carried out by humans is needed. Therefore, necessary measurements of muscular strains via electromyography have to be carried out which require standardized and repeatable ...

  2. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.E.; Bergwerff, C.E.; Heiser, W.J.; Resing, W.C.M.

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  3. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.; Bergwerff, C.E.; Heiser, W.J.; Resing, W. C. M.

    2014-01-01

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  4. Biosensor based on the measurements of clustering dynamics of magnetic particles using a double pass setup

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...

  5. Comparison of particle size measurements of some aqueous suspensions by laser polarimetry and dynamic light scattering

    International Nuclear Information System (INIS)

    Chirikov, S N

    2016-01-01

    The results of the size distributions measurements of the particles of aqueous suspensions of ZnO, CuO, TiO 2 , and BaTiO 3 by methods of laser polarimetry and dynamic light scattering are considered. These measurements are compared with the results obtained by electron microscopy. It is shown that a laser polarimetry method gives more accurate results for size parameter values more than 1-2. (paper)

  6. Study of Influencing Factors of Dynamic Measurements Based on SnO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jinhuai Liu

    2004-08-01

    Full Text Available Abstract: The gas-sensing behaviour based on a dynamic measurement method of a single SnO2 gas sensor was investigated by comparison with the static measurement. The influencing factors of nonlinear response such as modulation temperature, duty ratio, heating waveform (rectangular, sinusoidal, saw-tooth, pulse, etc. were also studied. Experimental data showed that temperature was the most essential factor because the changes of frequency and heating waveform could result in the changes of temperature essentially.

  7. Credit Rating via Dynamic Slack-Based Measure And It´s Optimal Investment Strategy

    OpenAIRE

    A. Delavarkhalafi; A. Poursherafatan

    2015-01-01

    In this paper we check the credit rating of firms applied for a loan. In this regard we introduce a model, named Dynamic Slack-Based Measure (DSBM) for measuring credit rating of applicant companies. Selection of financial ratios that represent the financial state of a company -in the best possible way- is one of the most challenging parts of any credit rating analysis. At first, ranking needs to identify the appropriate variables. Therefore we introduce five financial variables to provide a ...

  8. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  9. Measurement of the Dynamic Displacements of Railway Bridges Using Video Technology

    Directory of Open Access Journals (Sweden)

    Ribeiro Diogo

    2015-01-01

    Full Text Available This article describes the development of a non-contact dynamic displacement measurement system for railway bridges based on video technology. The system, consisting of a high speed video camera, an optical lens, lighting lamps and a precision target, can perform measurements with high precision for distances from the camera to the target up to 25 m, with acquisition frame rates ranging from 64 fps to 500 fps, and be articulated with other measurement systems, which promotes its integration in structural health monitoring systems. The system’s performance was evaluated based on two tests, one in the laboratory and other on the field. The laboratory test evaluated the performance of the system in measuring the displacement of a steel beam, subjected to a point load applied dynamically, for distances from the camera to the target between 3 m and 15 m. The field test allowed evaluating the system’s performance in the dynamic measurement of the displacement of a point on the deck of a railway bridge, induced by passing trains at speeds between 160 km/h and 180 km/h, for distances from the camera to the target up to 25 m. The results of both tests show a very good agreement between the displacement measurement obtained with the video system and with a LVDT.

  10. Research on an optoelectronic measurement system of dynamic envelope measurement for China Railway high-speed train

    Science.gov (United States)

    Zhao, Ziyue; Gan, Xiaochuan; Zou, Zhi; Ma, Liqun

    2018-01-01

    The dynamic envelope measurement plays very important role in the external dimension design for high-speed train. Recently there is no digital measurement system to solve this problem. This paper develops an optoelectronic measurement system by using monocular digital camera, and presents the research of measurement theory, visual target design, calibration algorithm design, software programming and so on. This system consists of several CMOS digital cameras, several luminous targets for measuring, a scale bar, data processing software and a terminal computer. The system has such advantages as large measurement scale, high degree of automation, strong anti-interference ability, noise rejection and real-time measurement. In this paper, we resolve the key technology such as the transformation, storage and calculation of multiple cameras' high resolution digital image. The experimental data show that the repeatability of the system is within 0.02mm and the distance error of the system is within 0.12mm in the whole workspace. This experiment has verified the rationality of the system scheme, the correctness, the precision and effectiveness of the relevant methods.

  11. Static and dynamic cyclotorsion measurement and evaluation of related factors in patients candidates for PRK

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shayegan

    2016-10-01

    Full Text Available To evaluate the degree of static and dynamic cyclotorsion and related factors in patients candidate for photorefractive keratectomy. In this analytic-descriptive study, 400 patients (aged 18-55 years who were candidates for photorefractive keratectomy with laser excimer (zyoptix 100 HZ by a single ophthalmologist in Khatam-al-Anbia Hospital were enrolled. The patients' age, sex, myopic and astigmatism degrees and static and dynamic cyclotorsion degree were measured and registered. Finally, the data was analyzed statistically. 73% of patients (n=146 were female and the mean age of all patients was 29.8±5.7 years (19-49. The mean preoperative sphere and cylinder degree of patients was -3.24±1.72 and -1.06±1.04, respectively. The mean spheric equivalent (SE was -3.78±1.69, the mean total static excyclotorsion and incyclotorsion were 3.81±2.65 (48.5% and - 2.99±2.13 (27.8%, respectively and 23.8% had no static cyclotorsion. The mean dynamic excyclotorsion and incyclotorsion were 3.66±2.65 (65.8% and -2.62±2.13 (27.5%, respectively, and 23% had no dynamic cyclotorsion. There was no significant relationship between static or dynamic cyclotorsion and age and no significant relationship between static cyclotorsion and sex, but women showed higher degrees of dynamic cyclotorsion (P=0.04. Also, sphere and cylinder degree had no significant relationship with cyclotorsion, however, there was a linear significant correlation between static and dynamic cyclotorsion (p=0.05. The amount of dynamic cyclotorsions during photorefractive keratectomy is higher in female and correlate straight with static cyclotorsions.

  12. Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Knebel, Pascal [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Barth, Stephan [ECN Wind Energy, Energy research Centre of the (Netherlands); Peinke, Joachim [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany)

    2007-07-15

    We report on an experimental setup for measurements of dynamic stall for airfoils via the pressure distribution over wind tunnel walls. This measuring technique, hitherto used for lift measurements under static conditions, is also an adequate method for dynamic conditions until stall occurs. A step motor is used, allowing for sinusoidal as well as non-sinusoidal and stochastic pitching to simulate fast fluctuating flow conditions. Measurements with sinusoidal pitching and constant angular velocities were done and show dynamic stall characteristics. Under dynamic stall conditions, maximum lift coefficients were up to 80% higher than the maximum for static lift.

  13. An evaluation of dynamic mutuality measurements and methods in cyclic time series

    Science.gov (United States)

    Xia, Xiaohua; Huang, Guitian; Duan, Na

    2010-12-01

    Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.

  14. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    Science.gov (United States)

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  15. Phonon-magnon interaction in low dimensional quantum magnets observed by dynamic heat transport measurements.

    Science.gov (United States)

    Montagnese, Matteo; Otter, Marian; Zotos, Xenophon; Fishman, Dmitry A; Hlubek, Nikolai; Mityashkin, Oleg; Hess, Christian; Saint-Martin, Romuald; Singh, Surjeet; Revcolevschi, Alexandre; van Loosdrecht, Paul H M

    2013-04-05

    Thirty-five years ago, Sanders and Walton [Phys. Rev. B 15, 1489 (1977)] proposed a method to measure the phonon-magnon interaction in antiferromagnets through thermal transport which so far has not been verified experimentally. We show that a dynamical variant of this approach allows direct extraction of the phonon-magnon equilibration time, yielding 400 μs for the cuprate spin-ladder system Ca(9)La(5)Cu(24)O(41). The present work provides a general method to directly address the spin-phonon interaction by means of dynamical transport experiments.

  16. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  17. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    Science.gov (United States)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  18. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  19. Measurement of Dynamic Urethral Pressures with a High Resolution Manometry System in Continent and Incontinent Women

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W.

    2015-01-01

    Objectives Female stress urinary incontinence (SUI) is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under dynamic conditions. An 8-French high resolution manometry catheter (HRM) currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25ms response rate and circumferential pressure sensors along the length of the catheter (ManoScan® ESO, Given Imaging). We evaluated the concordance, repeatability, and tolerability of this catheter. Methods We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. Results The correlation coefficient for resting MUCPs measured by HRM vs. UPP was high (r = 0.79, prest, cough, and strain with HRM: r= 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, strain) were higher in continent than incontinent subjects (all p continent subjects during cough and strain maneuvers compared to rest. Conclusions This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women. PMID:25185595

  20. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  1. Optimization of Measurements on Dynamically Sensitive Structures Using a Reliability Approach

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1990-01-01

    Design of measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of masuring program. Design variables a...... are the numbers of measuring points, the locations of these points and the required number of sample records. An example with a simply supported plane, vibrating beam is considered and tentative results are presented.......Design of measuring program devoted to parameter identification of structural dynamic systems described by random fields is considered. The design problem is formulated as an optimization problem to minimize the total expected costs due to failure and costs of masuring program. Design variables...

  2. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  3. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  4. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  5. Local difference measures between complex networks for dynamical system model evaluation.

    Science.gov (United States)

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node

  6. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  7. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  8. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    The design of measurement programs devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program...

  9. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    The design of a measured program devoted to parameter identification of structural dynamic systems is considered, the design problem is formulated as an optimization problem due to minimize the total expected cost of the measurement program. All the calculations are based on a priori knowledge...... and engineering judgement. One of the contribution of the approach is that the optimal nmber of sensors can be estimated. This is sown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program for estimating the modal damping parameters...

  10. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1993-01-01

    The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensory can be estimated. This is shown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...

  11. Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost, i.e. the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contributions of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...

  12. Secretome of obligate intracellular Rickettsia

    Science.gov (United States)

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  13. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  14. Seamless variation of isometric and anisometric dynamical integrity measures in basins's erosion

    Science.gov (United States)

    Belardinelli, P.; Lenci, S.; Rega, G.

    2018-03-01

    Anisometric integrity measures defined as improvement and generalization of two existing measures (LIM, local integrity measure, and IF, integrity factor) of the extent and compactness of basins of attraction are introduced. Non-equidistant measures make it possible to account for inhomogeneous sensitivities of the state space variables to perturbations, thus permitting a more confident and targeted identification of the safe regions. All four measures are used for a global dynamics analysis of the twin-well Duffing oscillator, which is performed by considering a nearly continuous variation of a governing control parameter, thanks to the use of parallel computation allowing reasonable CPU time. This improves literature results based on finite (and commonly large) variations of the parameter, due to computational constraints. The seamless evolution of key integrity measures highlights the fine aspects of the erosion of the safe domain with respect to the increasing forcing amplitude.

  15. Study on dynamic measurement of fuel pellet length during loading into cladding tube

    International Nuclear Information System (INIS)

    Zhang Kai

    1993-09-01

    Various methods are presented for measuring the pellet length in the cladding tube (zirconium tube) during the loading process of the preparation of single rod of nuclear fuel assembly. These methods are used in former Soviet Union, west European countries and China in the manufacturing of nuclear power plant element. Different methods of dynamic measurement by using mechanics, optics and electricity and their special features are analysed and discussed. The structure and measuring principle of a developed measuring device,and its measuring precision and system deviation are also introduced. Finally, the length of loaded pellets is checked with analog pellets. The results are as expected and show that the method and principle used in the measuring device are feasible. It is an ideal and advanced method for the pellet loading of single cladding tube. The principle mentioned above can also be used in other industries

  16. Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)

    1999-07-01

    Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)

  17. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    Science.gov (United States)

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p balance tasks. Practical implications for assessment and training are discussed.

  18. Dynamic response of infrastructure to environmentally induced loads analysis, measurements, testing, and design

    CERN Document Server

    Manolis, George

    2017-01-01

    This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the empha...

  19. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.

    Science.gov (United States)

    Ulbrich, Mark; Muhlsteff, Jens; Teichmann, Daniel; Leonhardt, Steffen; Walter, Marian

    2015-06-01

    Bioimpedance measurements on the human thorax are suitable for assessment of body composition or hemodynamic parameters, such as stroke volume; they are non-invasive, easy in application and inexpensive. When targeting personal healthcare scenarios, the technology can be integrated into textiles to increase ease, comfort and coverage of measurements. Bioimpedance is generally measured using two electrodes injecting low alternating currents (0.5-10 mA) and two additional electrodes to measure the corresponding voltage drop. The impedance is measured either spectroscopically (bioimpedance spectroscopy, BIS) between 5 kHz and 1 MHz or continuously at a fixed frequency around 100 kHz (impedance cardiography, ICG). A thorax simulator is being developed for testing and calibration of bioimpedance devices and other new developments. For the first time, it is possible to mimic the complete time-variant properties of the thorax during an impedance measurement. This includes the dynamic real part and dynamic imaginary part of the impedance with a peak-to-peak value of 0.2 Ω and an adjustable base impedance (24.6 Ω ≥ Z0 ≥ 51.6 Ω). Another novelty is adjustable complex electrode-skin contact impedances for up to 8 electrodes to evaluate bioimpedance devices in combination with textile electrodes. In addition, an electrocardiographic signal is provided for cardiographic measurements which is used in ICG devices. This provides the possibility to generate physiologic impedance changes, and in combination with an ECG, all parameters of interest such as stroke volume (SV), pre-ejection period (PEP) or extracellular resistance (Re) can be simulated. The speed of all dynamic signals can be altered. The simulator was successfully tested with commercially available BIS and ICG devices and the preset signals are measured with high correlation (r = 0.996).

  20. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.

    Science.gov (United States)

    Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-21

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in

  1. Optimization of dynamic envelope measurement system for high speed train based on monocular vision

    Science.gov (United States)

    Wu, Bin; Liu, Changjie; Fu, Luhua; Wang, Zhong

    2018-01-01

    The definition of dynamic envelope curve is the maximum limit outline caused by various adverse effects during the running process of the train. It is an important base of making railway boundaries. At present, the measurement work of dynamic envelope curve of high-speed vehicle is mainly achieved by the way of binocular vision. There are some problems of the present measuring system like poor portability, complicated process and high cost. A new measurement system based on the monocular vision measurement theory and the analysis on the test environment is designed and the measurement system parameters, the calibration of camera with wide field of view, the calibration of the laser plane are designed and optimized in this paper. The accuracy has been verified to be up to 2mm by repeated tests and experimental data analysis. The feasibility and the adaptability of the measurement system is validated. There are some advantages of the system like lower cost, a simpler measurement and data processing process, more reliable data. And the system needs no matching algorithm.

  2. Technical Note: Measurement of common carotid artery lumen dynamics using black-blood MR cine imaging.

    Science.gov (United States)

    Dai, Erpeng; Dong, Li; Zhang, Zhe; Li, Lyu; Zhang, Hui; Zhao, Xihai; Wang, Jinnan; Yuan, Chun; Guo, Hua

    2017-03-01

    To demonstrate the feasibility of measuring the common carotid artery (CCA) lumen dynamics using a black-blood cine (BB-cine) imaging method. Motion-sensitized driven-equilibrium (MSDE) prepared spoiled gradient sequence was used for the BB-cine imaging. CCAs of eleven healthy volunteers were studied using this method. Lumen dynamics, including lumen area evolution waveforms and distension values, were measured and evaluated by comparing this method with bright-blood cine (BrB-cine) imaging. Compared with the BrB-cine images, flow artifacts were effectively suppressed in the BB-cine images. BrB-cine images generally show larger lumen areas than BB-cine images. The lumen area waveforms and distension measurements from BB-cine imaging showed smaller variances among different subjects than BrB-cine imaging. The proposed BB-cine imaging technique can suppress the flow artifacts effectively and reduce the partial volume effects from the vessel wall. This might allow more accurate lumen dynamics measurements than traditional BrB-cine imaging, which may further be valuable for investigating biomechanical and functional properties of the cardiovascular system. © 2017 American Association of Physicists in Medicine.

  3. Reconstruction of dynamic structures of experimental setups based on measurable experimental data only

    Science.gov (United States)

    Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang

    2018-03-01

    Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.

  4. Credit Rating via Dynamic Slack-Based Measure And It´s Optimal Investment Strategy

    Directory of Open Access Journals (Sweden)

    A. Delavarkhalafi

    2015-01-01

    Full Text Available In this paper we check the credit rating of firms applied for a loan. In this regard we introduce a model, named Dynamic Slack-Based Measure (DSBM for measuring credit rating of applicant companies. Selection of financial ratios that represent the financial state of a company -in the best possible way- is one of the most challenging parts of any credit rating analysis. At first, ranking needs to identify the appropriate variables. Therefore we introduce five financial variables to provide a ranking. As noted above, we assess the performance of these firms. Then we introduce the dynamic model of SBM and theorems, also we discuss the overall structure of DSBM. Then we will present the implementation and the simulation model. After that, we propose a stochastic controlled dynamic system model to express the optimal strategy. Banks expect companies selected with DSBM model, act in accordance with this strategy. This stochastic dynamic system is originated from the balance sheets of firms applying for a loan. Finally we evaluate the performance of the system and strategy problem.

  5. A new method for measuring lift forces acting on an airfoil under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    Wind turbines operate in a turbulent atmospheric boundary layer and are exposed to strong wind fluctuations in time and space. This can induce the dynamic stall, a phenomenon that causes extra loads. Dynamic stall occurs under fast changes in the angle of attack (AoA) and was determined in detail in helicopter research. But in contrast to helicopter aerodynamics, the changes in the AoA of wind turbine airfoils are in general non-sinusoidal, and thus it seems to be difficult to use these measurements and models. Our goal is to acquire lift data under conditions more comparable to real wind turbines, including non-periodic changes in the AoA. For this purpose a closed test section for our wind tunnel was built. An airfoil with a chord length of 0.2m will be rotated by a stepping motor with angular velocities of up to 300 {sup circle} /s. With a maximum wind velocity of 50m/s, Reynolds numbers of Re=700 000 can be realized. The lift force is determined by the counter forces acting on the wind tunnel walls. These are measured by two lines of 40 pressure sensors with sampling rates up to 2kHz. The results show distinct dynamic stall characteristics. Further experiments with different parameters and foils will give a better insight in dynamic stall and a verification and improvement of existing models.

  6. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  7. Intracellular localization of Arabidopsis sulfurtransferases.

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  8. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  9. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  10. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2008-01-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index

  11. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  12. A harmonic coil measurement system based on a dynamic signal acquisition device

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.X., E-mail: zhoujx@ihep.ac.c [Institute of High Energy Physics, P.O. Box 918-9, Beijing 100049 (China); Li, L.; Yin, B.G.; Deng, C.D.; Kang, W.; Chen, Y.; Zhang, Z.; Fu, S.N. [Institute of High Energy Physics, P.O. Box 918-9, Beijing 100049 (China)

    2010-12-21

    A new harmonic coil measurement system based on a dynamic signal acquisition device has been successfully developed to check the field quality of the quadrupole magnet for the CSNS/RCS, which operates at the 25 Hz excitation cycle with a DC bias. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a harmonic coil and an encoder. A dedicated algorithm was developed in LabView code to identify over specified intervals, synchronized to the coil's rotation in the magnetic field. Through full integration of hardware and software, the traditional device (PDI 5025) is replaced successfully. This paper summarizes the characteristics of the system and presents the results of DC measurements.

  13. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... to highlight that the aim of this device is to independently measure two road profiles, without the influence of the vehicle dynamics where the mechanism is attached. Before the mechatronic mechanism is attached to a real vehicle, its dynamic behavior must be known. A theoretical analysis of the mechanism...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  14. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements.

    Science.gov (United States)

    Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen

    2017-10-16

    Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.

  15. Using pressure square-like wave to measure the dynamic characteristics of piezoelectric pressure sensor

    International Nuclear Information System (INIS)

    Han, L-L; Tsung, T-T; Chen, L-C; Chang Ho; Jwo, C-S

    2005-01-01

    Piezoelectric pressure sensors are commonly used to measuring the dynamic characteristics in a hydraulic system. The dynamic measurements require a pressure sensor which has a high response rate. In this paper, we proposed use of a pressure square wave to excite the piezoelectric pressure sensor. Experimental frequencies are 0.5, 1.0, 1.5, and 2.0 kHz at 10, 15, 20 bar, respectively. Results show that the waveform of time-domain and frequencydomain response are quite different under above testing conditions. The higher the frequencies tested, the faster the pressure-rise speeds obtained. Similarly, the higher the testing pressure, the shorter the rise time attained

  16. Dynamic regimes in YBCO in applied magnetic field probed by swept frequency microwave measurements

    International Nuclear Information System (INIS)

    Sarti, S; Silva, E; Giura, M; Fastampa, R; Boffa, M; Cucolo, A M

    2004-01-01

    We report measurements of the microwave resistivity in YBa 2 Cu 3 O 7-δ (YBCO), in the presence of an applied magnetic field. Measurements are performed as a function of frequency, over a continuum spectrum between 6 and 20 GHz, by means of a Corbino disc geometry. These data allow for a direct identification of different dynamical regimes in the dissipation of YBCO in the presence of an applied magnetic field. While at high temperatures a frequency independent resistivity is observed, at lower temperatures we find a marked frequency dependence. The line in the (H,T) plane at which this change in the dynamical regime is observed is clearly identified and discussed in terms of vortex motion and fluctuational resistivity

  17. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  18. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  19. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  20. Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data.

    OpenAIRE

    Hustedt, E J; Cobb, C E; Beth, A H; Beechem, J M

    1993-01-01

    In the preceding companion article in this issue, an optical dye and a nitroxide radical were combined in a new dual function probe, 5-SLE. In this report, it is demonstrated that time-resolved optical anisotropy and electron paramagnetic resonance (EPR) data can be combined in a single analysis to measure rotational dynamics. Rigid-limit and rotational diffusion models for simulating nitroxide EPR data have been incorporated into a general non-linear least-squares procedure based on the Marq...

  1. Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass

    Science.gov (United States)

    Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.

    2007-03-01

    We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.

  2. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements

    Science.gov (United States)

    Hübner, R.; Heller, K.; Günther, T.; Kleber, A.

    2015-01-01

    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.

  3. Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements

    International Nuclear Information System (INIS)

    Sakamoto, Koichi; Kamiya, Masakatsu; Uchida, Takeshi; Kawano, Keiichi; Ishimori, Koichiro

    2010-01-01

    Research highlights: → The dynamic parameters for the backbone dynamics in Cyt c were determined. → The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. → The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. → The redox-dependent dynamics are shown in the backbone of Cyt c. → The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15 N NMR relaxation experiments. 15 N T 1 and T 2 values and 1 H- 15 N NOEs of uniformly 15 N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S 2 ), the effective correlation time for internal motion (τ e ), the 15 N exchange broadening contributions (R ex ) for each residue, and the overall correlation time (τ m ) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S 2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S 2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  4. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    Science.gov (United States)

    Stevenson, Claire E.; Bergwerff, Catharina E.; Heiser, Willem J.; Resing, Wilma C. M.

    2014-01-01

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working memory and dynamic measures of analogical…

  5. Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements

    Science.gov (United States)

    Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent

    2017-01-01

    In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH.

  6. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  7. Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

    International Nuclear Information System (INIS)

    Chang Ho; Lan Chouwei; Chen, L-C

    2006-01-01

    This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder

  8. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements.

    Science.gov (United States)

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-04-25

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.

  9. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  10. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  11. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  12. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Science.gov (United States)

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  13. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  14. 4D measurements of biological and synthetic structures using a dynamic interferometer

    Science.gov (United States)

    Toto-Arellano, Noel-Ivan

    2017-12-01

    Considering the deficiency of time elapsed for phase-stepping interferometric techniques and the need of developing non-contact and on-line measurement with high accuracy, a single-shot phase-shifting triple-interferometer (PSTI) is developed for analysis of characteristics of transparent structures and optical path difference (OPD) measurements. In the proposed PSTI, coupled three interferometers which generate four interference patterns, and a polarizer array is used as phase shifters to produce four spatially separated interferograms with π/2-phase shifts, which are recorded in a single capture by a camera. The configuration of the PSTI allows dynamic measurements (4D measurements) and does not require vibration isolation. We have applied the developed system to examine the size and OPD of cells, and the slope of thin films

  15. Characterizing the dynamics of quantum discord under phase damping with POVM measurements

    International Nuclear Information System (INIS)

    Jiang Feng-Jian; Jian-Feng Ye; Yan Xin-Hu; Lü Hai-Jiang

    2015-01-01

    In the analysis of quantum discord, the minimization of average entropy traditionally involved over orthogonal projective measurements may be attained at more optimal decompositions by using the positive-operator-valued measure (POVM) measurements. Taking advantage of the quantum steering ellipsoid in combination with three-element POVM optimization, we show that, for a family of two-qubit X states locally interacting with Markovian non-dissipative environments, the decay rates of quantum discord show smooth dynamical evolutions without any sudden change. This is in contrast to two-element orthogonal projective measurements, in which case the sudden change of the decay rates of quantum and classical decoherences may be a common phenomenon. Notwithstanding this, we find that a subset of X states (including the Bell diagonal states) involving POVM optimization can still preserve the sudden change character as usual. (paper)

  16. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    Science.gov (United States)

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  17. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  18. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics.

    Science.gov (United States)

    Donolato, Marco; Antunes, Paula; Bejhed, Rebecca S; Zardán Gómez de la Torre, Teresa; Østerberg, Frederik W; Strömberg, Mattias; Nilsson, Mats; Strømme, Maria; Svedlindh, Peter; Hansen, Mikkel F; Vavassori, Paolo

    2015-02-03

    We demonstrate detection of DNA coils formed from a Vibrio cholerae DNA target at picomolar concentrations using a novel optomagnetic approach exploiting the dynamic behavior and optical anisotropy of magnetic nanobead (MNB) assemblies. We establish that the complex second harmonic optical transmission spectra of MNB suspensions measured upon application of a weak uniaxial AC magnetic field correlate well with the rotation dynamics of the individual MNBs. Adding a target analyte to the solution leads to the formation of permanent MNB clusters, namely, to the suppression of the dynamic MNB behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling circle amplification and benchmark against a commercial equipment. The results demonstrate the fast optomagnetic readout of rolling circle products from bacterial DNA utilizing the dynamic properties of MNBs in a miniaturized and low-cost platform requiring only a transparent window in the chip.

  19. [Evaluation of corneal biomechanics in keratoconus using dynamic ultra-high-speed Scheimpflug measurements].

    Science.gov (United States)

    Brettl, S; Franko Zeitz, P; Fuchsluger, T A

    2018-06-22

    The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.

  20. Modeling the heterogeneity of human dynamics based on the measurements of influential users in Sina Microblog

    Science.gov (United States)

    Wang, Chenxu; Guan, Xiaohong; Qin, Tao; Yang, Tao

    2015-06-01

    Online social network has become an indispensable communication tool in the information age. The development of microblog also provides us a great opportunity to study human dynamics that play a crucial role in the design of efficient communication systems. In this paper we study the characteristics of the tweeting behavior based on the data collected from Sina Microblog. The user activity level is measured to characterize how often a user posts a tweet. We find that the user activity level follows a bimodal distribution. That is, the microblog users tend to be either active or inactive. The inter-tweeting time distribution is then measured at both the aggregate and individual levels. We find that the inter-tweeting time follows a piecewise power law distribution of two tails. Furthermore, the exponents of the two tails have different correlations with the user activity level. These findings demonstrate that the dynamics of the tweeting behavior are heterogeneous in different time scales. We then develop a dynamic model co-driven by the memory and the interest mechanism to characterize the heterogeneity. The numerical simulations validate the model and verify that the short time interval tweeting behavior is driven by the memory mechanism while the long time interval behavior by the interest mechanism.

  1. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  2. Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure

    International Nuclear Information System (INIS)

    Cui, Qiang; Li, Ye; Yu, Chen-lu; Wei, Yi-Ming

    2016-01-01

    The fast growing Revenue Passenger Kilometers and the relatively lagged energy supply of aviation industry impels the airlines to improve energy efficiency. In this paper, we focus on evaluating and analyzing influencing factors for airline energy efficiency. Number of employees and aviation kerosene are chosen as the inputs. Revenue Ton Kilometers, Revenue Passenger Kilometers and total business income are the outputs. Capital stock is selected as the dynamic factor. A new model, Virtual Frontier Dynamic Slacks Based Measure, is proposed to calculate the energy efficiencies of 21 airlines from 2008 to 2012. We verify two important properties to manifest the advantages of the new model. Then a regression is run to analyze the influencing factors of airline energy efficiency. The main findings are: 1. The overall energy efficiency of Malaysia Airlines is the highest during 2008–2012.2. Per capita Gross Domestic Product, the average service age of fleet size and average haul distance have significant impacts on the efficiency score. 3. The difference between full-service carriers and low-cost carriers has no significant effects on airline energy efficiency. - Highlights: • A Virtual Frontier Dynamic Slacks Based Measure is developed. • 21 airlines' energy efficiencies are evaluated. • Malaysia Airlines has the highest overall energy efficiency. • Three explanatory variables have significant impacts.

  3. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Science.gov (United States)

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  4. Correlation between hedonic liking and facial expression measurement using dynamic affective response representation.

    Science.gov (United States)

    Zhi, Ruicong; Wan, Jingwei; Zhang, Dezheng; Li, Weiping

    2018-06-01

    Emotional reactions towards products play an essential role in consumers' decision making, and are more important than rational evaluation of sensory attributes. It is crucial to understand consumers' emotion, and the relationship between sensory properties, human liking and choice. There are many inconsistencies between Asian and Western consumers in the usage of hedonic scale, as well as the intensity of facial reactions, due to different culture and consuming habits. However, very few studies discussed the facial responses characteristics of Asian consumers during food consumption. In this paper, explicit liking measurement (hedonic scale) and implicit emotional measurement (facial expressions) were evaluated to judge the consumers' emotions elicited by five types of juices. The contributions of this study included: (1) Constructed the relationship model between hedonic liking and facial expressions analyzed by face reading technology. Negative emotions "sadness", "anger", and "disgust" showed noticeable high negative correlation tendency to hedonic scores. The "liking" hedonic scores could be characterized by positive emotion "happiness". (2) Several emotional intensity based parameters, especially dynamic parameter, were extracted to describe the facial characteristic in sensory evaluation procedure. Both amplitude information and frequency information were involved in the dynamic parameters to remain more information of the emotional responses signals. From the comparison of four types of emotional descriptive parameters, the maximum parameter and dynamic parameter were suggested to be utilized for representing emotional state and intensities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  6. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    International Nuclear Information System (INIS)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Liu, Hongli; Zeng, Jiuzhen; Jin, Tan

    2017-01-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x – y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear. (paper)

  7. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    Science.gov (United States)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli

    2017-10-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.

  8. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  9. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  10. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  11. The study of sheath flow dark zone phenomenon in dynamic individual cells scattering measurement

    Science.gov (United States)

    Zhang, Lu; Zhao, Hong; Wang, Xiaopin; Zhang, Weiguang

    2008-09-01

    Dynamic cells scattering is one of the most efficient approaches exploring in measurements of cells size, morphology and growth states. This technique can be widely applied in real-time detection for pharmaceutical industry, food industry, liquor industry and other biological fields. A novel method named dynamic individual cells scattering measurement is designed in this paper, which can make cells pass through quartz glass measurement zone one by one with sheath flow driving force. During the experiments, an obvious phenomenon has been found which is called sheath flow dark zone phenomenon (SFDZ). Under the influence of SFDZ, sheath flow forming detection becomes very difficult. In this paper, the causes giving rise to SFDZ have been analyzed. And an improved method is put forward, in which the orifice inside the measurement zone is set as an optical system. Then the illuminating system is redesigned. In this way, almost all the illuminating light can enter orifice so that the total reflection energy decreases substantially. A comparison experiments have been done, which proves the efficiency of this redesigned optical system and its sound effects on SFDZ avoiding.

  12. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  13. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  14. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    Science.gov (United States)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  15. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI.

    Science.gov (United States)

    Jiang, Kai; Tang, Hui; Mishra, Prasanna K; Macura, Slobodan I; Lerman, Lilach O

    2018-06-01

    To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T 1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Technical improvements for the dynamic measurement of general scour and landslides

    Science.gov (United States)

    Chung Yang, Han; Su, Chih Chiang

    2017-04-01

    Disasters occurring near riverbeds, such as landslides, earth slides, debris flow, and general scour, are easily caused by flooding from typhoons. The occurrence of each type of disaster involves a process, so if a disaster event can be monitored in real time, hazards can be predicted, thereby enabling early warnings that could reduce the degree of loss engendered by the disaster. The study of technical improvements for the dynamic measurement of general scour and landslides could help to release these early warnings. In this study, improved wireless tracers were set up on site to ensure the feasibility of the improved measurement technology. A wireless tracer signal transmission system was simultaneously set up to avoid danger to surveyors caused by them having to be on site to take measurements. In order to understand the real-time dynamic riverbed scouring situation, after the flow path of the river was confirmed, the sites for riverbed scouring observation were established at the P30 pier of the Dajia River Bridge of National Highway No. 3, and approximately 100 m both upstream and downstream (for a total of three sites). A rainy event that caused riverbed erosion occurred in May 2015, and subsequently, Typhoons Soudelor, Goni, and Dujuan caused further erosion in the observed area. The results of the observations of several flood events revealed that wireless tracers can reflect the change in riverbed scour depth caused by typhoons and flooding in real time. The wireless tracer technique can be applied to real-time dynamic scouring observation of rivers, and these improvements in measurement technology could be helpful in preventing landslides in the future.

  17. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  18. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube

    Science.gov (United States)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.

    2012-01-01

    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  19. Three-dimensional display and measurement of cardiac dynamic indexes from MR images

    International Nuclear Information System (INIS)

    Kono, M.; Matsuo, M.; Yamasaki, K.; Banno, T.; Toriwaki, J.; Yokoi, S.; Oshita, H.

    1986-01-01

    The cardiac dynamic index, to which such variables as cardiac output, ejection fraction, and wall motion contribute, is routinely determined using various modalities such as angiography, radionuclide imaging, US, and x-ray CT. Each of these modalities, however, has some disadvantages in regard to evaluating the cardiac dynamic index. The authors have obtained precise multidirectional projection images of the heart by means of computer graphics and reformatted data of cardiac MR images obtained with cardiac gating. The contiguous coronal MR images of the heart are made at an interimage distance of 5 mm. In each section, five or six cardiac images can be obtained, depending on the systolic or diastolic phase. These images are stored in a computer, and a three-dimensional display of the heart with biocular observation and with multiplex holograms is made possible with computer graphics. Three-dimensional measurement of the cardiac index is now being attempted, including cardiac output, ejection fraction, and wall motion

  20. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  1. The KMOS Deep Survey: Dynamical Measurements of Star-Forming Galaxies at z 3.5

    Science.gov (United States)

    Turner, Owen; Cirasuolo, Michele; Harrison, Chris; McLure, Ross; Dunlop, James; Swinbank, Mark; Johnson, Helen; Sobral, David; Matthee, Jorryt; Sharples, Ray

    2017-07-01

    This poster present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 78 typical star-forming galaxies at z = 3.5 in the mass range 9.0 isolated. The results suggest that the rotation-dominated galaxies in the sample are offset to lower velocities at fixed stellar mass and have higher velocity dispersions than star-forming galaxies in the local and intermediate redshift universe. Only 1/3 of the galaxies in the sample are dominated by rotation, which hints that random motions are playing an increasingly significant role in supporting the dynamical mass in the systems. When searching for evolution in scaling relations, such as the stellar mass Tully-Fisher relation, it is important to take these random motions into account.

  2. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  3. Mycobacterium intracellulare Infection Mimicking Progression of Scleroderma

    DEFF Research Database (Denmark)

    Krabbe, Simon; Engelhart, Merete; Thybo, Sören

    2017-01-01

    This case report describes a patient with scleroderma who developed Mycobacterium intracellulare infection, which for more than a year mimicked worsening of her connective tissue disorder. The patient was diagnosed with scleroderma based on puffy fingers that developed into sclerodactyly, abnormal......, unfortunately with significant scarring. Immunodeficiency testing was unremarkable. In summary, an infection with Mycobacterium intracellulare was mistaken for an unusually severe progression of scleroderma....

  4. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement

    Science.gov (United States)

    Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong

    2017-11-01

    We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.

  5. Apparatus for dynamic measurement of gases released from materials heated under programmed temperature-time control

    International Nuclear Information System (INIS)

    Early, J.W.; Abernathey, R.M.

    1982-04-01

    This apparatus, a prototype of one being constructed for hotcell examination of irradiated nuclear materials, measures dynamic release rates and integrated volumes of individual gases from materials heated under controlled temperature-time programs. It consists of an inductively heated vacuum furnace connected to a quadrupole mass spectrometer. A computerized control system with data acquisition provides scanning rates down to 1s and on-line tabular and graphic displays. Heating rates are up to 1300 0 C/min to a maximum temperature of 2000 0 C. The measurement range is about 10 -6 to 10 -2 torr-liter/s for H 2 , CH 4 , H 2 O, N 2 , and CO and 10 -8 to 10 -2 torr-liter/s for He, Kr, and Xe. Applications are described for measurements of Kr and Xe in mixed oxide fuel, various gases in UO 2 pellets, and He in 238 PuO 2 power and heat sources

  6. Aerosol measurements, morphological analysis and evaluation of the dynamic shape factor during the TVMA experiment

    International Nuclear Information System (INIS)

    Tarroni, G.; Castellani, C.M.; De Zaiacomo, T.

    1989-05-01

    In the frame of a CEC program concerning studies on the behaviour of aerosols produced in sodium fire (CONT Group), a test called TVMA was projected for the purpose of comparing code calculations with experimental data. The test took place on May 17, 1988 at the CEA CEN-Cadarache. CEA looked after execution of the sodium pool fire and the main parameter measurements. A British (UKAEA) and an Italian (ENEA) team participated in the test with the aim of carrying out measurements on aerosol parameters. The main results obtained by the ENEA team using its own instrumentation, concerning mass aerosol concentration, granulometry and morphological analyses of particles, are reported. The dynamic shape factor for particles in the aerodynamic range 1.9-7 μm, as evaluated by measuring geometric particle sizes after their aerodynamic separation, is also presented. (author)

  7. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices.

    Science.gov (United States)

    Díaz, Camilo A R; Leitão, Cátia; Marques, Carlos A; Domingues, M Fátima; Alberto, Nélia; Pontes, Maria José; Frizera, Anselmo; Ribeiro, Moisés R N; André, Paulo S B; Antunes, Paulo F C

    2017-10-23

    Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.

  8. Dynamic VaR Measurement of Gold Market with SV-T-MN Model

    Directory of Open Access Journals (Sweden)

    Fenglan Li

    2017-01-01

    Full Text Available VaR (Value at Risk in the gold market was measured and predicted by combining stochastic volatility (SV model with extreme value theory. Firstly, for the fat tail and volatility persistence characteristics in gold market return series, the gold price return volatility was modeled by SV-T-MN (SV-T with Mixture-of-Normal distribution model based on state space. Secondly, future sample volatility prediction was realized by using approximate filtering algorithm. Finally, extreme value theory based on generalized Pareto distribution was applied to measure dynamic risk value (VaR of gold market return. Through the proposed model on the price of gold, empirical analysis was investigated; the results show that presented combined model can measure and predict Value at Risk of the gold market reasonably and effectively and enable investors to further understand the extreme risk of gold market and take coping strategies actively.

  9. Measurement of droplet dynamics across grid spacer in mist cooling of subchannel of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.

    1984-01-01

    An experiment was conducted of the dynamics and heat transfer of a droplet-vapor mist flow across a test grid spacer in a flow channel of 2 x 2 electrically heated simulation fuel rods. Embedded thermocouples were used to measure the rod cladding temperature and an unshielded Chromel-Alumel thermocouple was transversed in the center of the subchannel to measure the temperature of the water and steam coolant phases at various axial locations. Thermocouples were also embedded in the test grid spacer. Optical measurements of the size and velocity distributions of droplets and the velocity distribution of the superheated steam were made by special laser-Doppler anemometry techniques through quartz glass windows immediately upstream and downstream of the test grid spacer. Experiments over a range of steam and injected water flow rates and rod heat flux have been performed and some representative results and discussions are presented

  10. Measuring the Dynamic Characteristics of a Low Specific Speed Pump—Turbine Model

    Directory of Open Access Journals (Sweden)

    Eve Cathrin Walseth

    2016-03-01

    Full Text Available This paper presents results from an experiment performed to obtain the dynamic characteristics of a reversible pump-turbine model. The characteristics were measured in an open loop system where the turbine initially was run on low rotational speed before the generator was disconnected allowing the turbine to go towards runaway. The measurements show that the turbine experience damped oscillations in pressure, speed and flow rate around runaway corresponding with presented stability criterion in published literature. Results from the experiment is reproduced by means of transient simulations. A one dimensional analytical turbine model for representation of the pump-turbine is used in the calculations. The simulations show that it is possible to reproduce the physics in the measurement by using a simple analytical model for the pump-turbine as long as the inertia of the water masses in the turbine are modeled correctly.

  11. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  12. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  13. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  14. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  15. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  16. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building.

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-07-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  17. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Directory of Open Access Journals (Sweden)

    Young-Jin Cha

    2016-07-01

    Full Text Available Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA, was characterized and modeled as a simplified lumped-mass beam model (SLMM, using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA. Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  18. Measurement-based performance profiles and dynamics of UDT over dedicated connections

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Ian [University of Chicago; Kettimuthu, R. [Argonne National Laboratory (ANL); Wu, Qishi [University of Memphis; Yun, Daqing [Harrisburg University; Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL

    2016-11-01

    Wide-area data transfers in high-performance computing and big data scenarios are increasingly being carried over dedicated network connections that provide high capacities at low loss rates. UDP-based transport protocols are expected to be particularly well-suited for such transfers but their performance is relatively unexplored over a wide range of connection lengths, compared to TCP over shared connections. We present extensive throughput measurements of UDP-based Data Transfer (UDT) over a suite of physical and emulated 10 Gbps connections. In sharp contrast to current UDT analytical models, these measurements indicate much more complex throughput dynamics that are sensitive to the connection modality, protocol parameters, and round-trip times. Lyapunov exponents estimated from the Poincare maps of UDT traces clearly indicate regions of instability and complex dynamics. We propose a simple model based on the ramp-up and sustainment regimes of a generic transport protocol, which qualitatively illustrates the dominant monotonicity and concavity properties of throughput profiles and relates them to Lyapunov exponents. These measurements and analytical results together enable us to comprehensively evaluate UDT performance and select parameters to achieve high throughput, and they also provide guidelines for designing effective transport protocols for dedicated connections.

  19. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.

  20. Measurement of AC losses in superconducting tapes by reproduction of thermometric dynamic response

    Energy Technology Data Exchange (ETDEWEB)

    Ligneris, Benoit des; Aubin, Marcel; Cave, Julian

    2003-04-15

    We have developed a dynamic response thermometric method for the measurement of AC losses in high T{sub c} superconductors. This method is based on the comparison of a temperature response caused by a known dissipation in the sample with that produced by the AC losses. By passing a DC current and measuring the DC voltage and corresponding temperature response the sample can be used as its own power dissipation reference. The advantages of this method are the short measurement duration time and the possibility to vary many experimental conditions: for example, AC and DC transport currents and AC, DC and rotating applied magnetic fields. In this article we present the basic method using variable short pulses of constant DC current for calibration and similarly of constant amplitude AC current to create the losses. The losses are obtained by numerical modelling and comparison of the thermometric dynamic response in the two above conditions. Finally, we present some experimental results for a Bi2223 superconducting tape at 50 Hz and 77 K.

  1. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-01-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303

  2. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    Science.gov (United States)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  3. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Science.gov (United States)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  4. Measuring and Calculative Complex for Registration of Quasi-Static and Dynamic Processes of Electromagnetic Irradiation

    Directory of Open Access Journals (Sweden)

    V. I. Ovchinnikov

    2007-01-01

    Full Text Available The paper is devoted to the development of measuring device to register dynamic processes of electromagnetic irradiation during the treatment of materials with energy of explosion. Standard units to register main parameters of the explosion do not allow predict and control results of the process. So, to overcome disadvantages of former control units a new one has been developed applying Hall’s sensors. The device developed allows effectively register of the inductive component of the electromagnetic irradiation in wide range of temperature for many shot-time processes.

  5. Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning

    DEFF Research Database (Denmark)

    Trujillo, Juan-José; Bingöl, Ferhat; Larsen, Gunner Chr.

    2011-01-01

    the instantaneous transversal wake position which is quantitatively compared with the prediction of the Dynamic Wake Meandering model. The results, shown for two 10-min time series, suggest that the conjecture of the wake behaving as a passive tracer is a fair approximation; this corroborates and expands...... the results of one-dimensional measurements already presented in the first part of this paper. Consequently, it is now possible to separate the deterministic and turbulent parts of the wake wind field, thus enabling capturing the wake in the meandering frame of reference. The results correspond, qualitatively...

  6. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    Science.gov (United States)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in

  7. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior....... the possibility of two spectral dimensions characterizing the fracton modes. Our data imply important differences between the physical mechanisms dominating the low-temperature behavior of aerogels and dense glasses, respectively. From our analysis we also conclude that the low-temperature properties of amorphous...

  8. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bethoux, J.-M. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Happy, H. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France)]. E-mail: henri.happy@iemn.univ-lille1.fr; Dambrine, G. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Derycke, V. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Goffman, M. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Bourgoin, J.-P. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France)

    2006-12-15

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H {sub 21}|{sup 2}) cut-off frequency (f {sub t}) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed.

  9. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    International Nuclear Information System (INIS)

    Bethoux, J.-M.; Happy, H.; Dambrine, G.; Derycke, V.; Goffman, M.; Bourgoin, J.-P.

    2006-01-01

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H 21 | 2 ) cut-off frequency (f t ) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed

  10. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection...... and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown...

  11. Study of the molecular structure and dynamics of bakelite with neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1990-06-01

    The molecular structure and dynamics of calcined bakelite were studied with neutron transmission and scattering cross section measurements. The total cross sections determined were correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. The total cross section determined showed a deviation smaller than 5% from the literature values. The frequency distribution as well as overall experimental results allowed to suggest a structural model like polycyclic hydrocarbons for bakelite calcined at 800 0 C. (F.E.). 65 refs, 31 figs, 5 tabs

  12. The measurement and modeling of alpha-particle-induced charge collection in dynamic memories

    International Nuclear Information System (INIS)

    Oldiges, P.J.

    1989-01-01

    This thesis addresses the problem of α-particle-induced charge collection in high-density dynamic random access memories. A novel technique for the measurement of charge collection in high-density memory cells and bit lines due to α-particle strikes was developed. The technique involves D.C. tests on simple test structures with an α-particle source on the device package as a lid. The advantages of this new measurement technique are: the method allows for in-situ measurements of charge collection on both MOS capacitors and bit lines found in present-day memories; the on-chip measurement technique minimizes errors due to external probes loading the device under test; the measurements can be controlled by a personal computer, with the data being able to be reduced on the same machine. Results obtained using this new measurement technique show that the charge collection is found to depend upon test-structure size and the configuration of its neighbors. Results of two-dimensional simulations of charge flow along the surface of an MOS capacitor from current injection due to an α-particle strike indicate that a spatial potential variation of 0.5V may occur between the point of current injection and capacitor edge for a 1M dRAM capacitor

  13. Theoretical aspects of synthetic measurement of the development dynamics in the context of city

    Directory of Open Access Journals (Sweden)

    Zbyszko Pawlak

    2012-12-01

    Full Text Available  Background:  The paper presents the theoretical basis for the proposal of modeling of the dynamics of the modern cities’ development by the use of a properly constructed synthetic indicator. Additionally to the possibility of the quantification of the development of social and economic systems of cities, its implementation allows the identification of nonlinear processes as phase transitions, which occur e.g. under influence of technological and social innovations. The economic and physical approach to this allows to learn more about the nature of these processes and to set new instruments supporting the management of urban areas in conditions of an increasing competiveness.  Methods: The mathematical modeling of social and economical processes and economical and physical approach to dynamics of systems of nonlinear development. Results and conclusions: Based on conducted simulation researches, it can be concluded that the synthetic measure of the development of urban areas can be a good tool supporting the city management by local authorities. The economical and physical approach to the nonlinear dynamics of urban systems marks out new areas for further researches, the determination of minimum required conditions (the necessary level for stimulation of the phase transition and the analysis of factors allowing to avoid the negative consequences of a phase transition, especially in smaller cities areas, seems to be the most important ones.  

  14. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Nihat Sayin

    2015-01-01

    Full Text Available Purpose: To measure the choroidal thickness (CT after dynamic exercise by using enhanced depth imaging optical coherence tomography (EDI-OCT. Materials and Methods: A total of 19 healthy participants performed 10 min of low-impact, moderate-intensity exercise (i.e., riding a bicycle ergometer and were examined with EDI-OCT. Each participant was scanned before exercise and afterward at 5 min and 15 min. CT measurement was taken at the fovea and 1000 μ away from the fovea in the nasal, temporal, superior, and inferior regions. Retinal thickness, intraocular pressure, ocular perfusion pressure (OPP, heart rate, and mean blood pressure (mBP were also measured. Results: A significant increase occurred in OPP and mBP at 5 min and 15 min following exercise (P ˂ 0.05. The mean subfoveal CT at baseline was 344.00 ± 64.71 μm compared to 370.63 ± 66.87 μm at 5 min and 345.31 ± 63.58 μm at 15 min after exercise. CT measurements at all locations significantly increased at 5 min following exercise compared to the baseline (P ˂ 0.001, while measurements at 15 min following exercise did not significant differ compared to the baseline (P ˃ 0.05. There was no significant difference in retinal thickness at any location before and at 5 min and 15 min following exercise (P ˃ 0.05. Conclusion: Findings revealed that dynamic exercise causes a significant increase in CT for at least 5 min following exercise.

  15. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    Science.gov (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  16. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    Science.gov (United States)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  17. Quantification of resilience to water scarcity, a dynamic measure in time and space

    Directory of Open Access Journals (Sweden)

    S. P. Simonovic

    2016-05-01

    Full Text Available There are practical links between water resources management, climate change adaptation and sustainable development leading to reduction of water scarcity risk and re-enforcing resilience as a new development paradigm. Water scarcity, due to the global change (population growth, land use change and climate change, is of serious concern since it can cause loss of human lives and serious damage to the economy of a region. Unfortunately, in many regions of the world, water scarcity is, and will be unavoidable in the near future. As the scarcity is increasing, at the same time it erodes resilience, therefore global change has a magnifying effect on water scarcity risk. In the past, standard water resources management planning considered arrangements for prevention, mitigation, preparedness and recovery, as well as response. However, over the last ten years substantial progress has been made in establishing the role of resilience in sustainable development. Dynamic resilience is considered as a novel measure that provides for better understanding of temporal and spatial dynamics of water scarcity. In this context, a water scarcity is seen as a disturbance in a complex physical-socio-economic system. Resilience is commonly used as a measure to assess the ability of a system to respond and recover from a failure. However, the time independent static resilience without consideration of variability in space does not provide sufficient insight into system's ability to respond and recover from the failure state and was mostly used as a damage avoidance measure. This paper provides an original systems framework for quantification of resilience. The framework is based on the definition of resilience as the ability of physical and socio-economic systems to absorb disturbance while still being able to continue functioning. The disturbance depends on spatial and temporal perspectives and direct interaction between impacts of disturbance (social, health

  18. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  19. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.

    Science.gov (United States)

    Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L

    2008-06-01

    Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.

  20. Dynamic PIV measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In one of the power uprated plants in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In the preliminary study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on the flow. (author)

  1. The 2017 Xe run at CERN Linac3: measurements and beam dynamics simulations

    CERN Document Server

    Benedetti, Stefano; Kuchler, Detlef; Lombardi, Alessandra; Wenander, Fredrik John Carl; Toivanen, Ville Aleksi; CERN. Geneva. ATS Department

    2018-01-01

    At CERN quark-gluon plasma and fixed target ion experiments are performed thanks to the Heavy-ion Facility, composed by different accelerators. The starting point is CERN Linac3, which delivers 4.2 MeV/u ion beams to the Low Energy Ion Ring (LEIR). In 2017 Linac3 accelerated Xe instead of the most usual Pb. Machine development (MD) time was allocated to adapt the accelerator to the new ion species. This article summarizes the measurements performed during the MD time allocated to characterize the line from the source to the filtering section. A parallel effort was devoted to match those measurements to the beam dynamics simulations, and the second part of the article highlights the results achieved in this regard. Thanks to the improved understanding of the machine critical areas, a list of possible improvements is proposed at the end.

  2. Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Hayden, S.M.; Dai, P.; Mook, H.A.; Perring, T.G.; Cheong, S.W.; Fisk, Z.; Dogan, F.; Mason, T.E.

    1997-01-01

    The authors review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-T c superconducting systems La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 6+x . Experiments were performed using the chopper spectrometers HET and MARI at the ISIS spallation source. The authors have placed their measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. They find that the insulating S = 1/2 antiferromagnetic parent compounds show a dramatic renormalization in the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in frequency

  3. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  4. Numerical simulation and analysis of fuzzy PID and PSD control methodologies as dynamic energy efficiency measures

    International Nuclear Information System (INIS)

    Ardehali, M.M.; Saboori, M.; Teshnelab, M.

    2004-01-01

    Energy efficiency enhancement is achieved by utilizing control algorithms that reduce overshoots and undershoots as well as unnecessary fluctuations in the amount of energy input to energy consuming systems during transient operation periods. It is hypothesized that application of control methodologies with characteristics that change with time and according to the system dynamics, identified as dynamic energy efficiency measures (DEEM), achieves the desired enhancement. The objective of this study is to simulate and analyze the effects of fuzzy logic based tuning of proportional integral derivative (F-PID) and proportional sum derivative (F-PSD) controllers for a heating and cooling energy system while accounting for the dynamics of the major system components. The procedure to achieve the objective includes utilization of fuzzy logic rules to determine the PID and PSD controllers gain coefficients so that the control laws for regulating the heat exchangers heating or cooling energy inputs are determined in each time step of the operation period. The performances of the F-PID and F-PSD controllers are measured by means of two cost functions that are based on quadratic forms of the energy input and deviation from a set point temperature. It is found that application of the F-PID control algorithm, as a DEEM, results in lower costs for energy input and deviation from a set point temperature by 24% and 17% as compared to a PID and 13% and 8% as compared to a PSD, respectively. It is also shown that the F-PSD performance is better than that of the F-PID controller

  5. A new approach to the derivation of dynamic information from ionosonde measurements

    Directory of Open Access Journals (Sweden)

    L. Liu

    2003-11-01

    Full Text Available A new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs, over Wuhan (114.4° E, 30.6° N, 45.2° dip, China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM. Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant.Key words. Meteorology and atmospheric dynamics (thermospheric dynamics – Ionosphere (ionosphere-atmosphere interaction; instrument and techniques

  6. A new approach to the derivation of dynamic information from ionosonde measurements

    Directory of Open Access Journals (Sweden)

    L. Liu

    Full Text Available A new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs, over Wuhan (114.4° E, 30.6° N, 45.2° dip, China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM. Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics – Ionosphere (ionosphere-atmosphere interaction; instrument and techniques

  7. The pion polarisability and more measurements on chiral dynamics at COMPASS

    CERN Document Server

    Friedrich, Jan

    2016-01-01

    Within the physics program of the COMPASS experiment at CERN pion-photon reactions are measured via the Primakoff effect, referring to processes in which high-energetic pions react with the quasi-real photon field that surrounds the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability has been determined, a result that has been published meanwhile as a Physical Review Letter [ 1 ]. The COMPASS measurement is in tension with the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. The analysis of a more recent high-statistics data taking is underway. Reactions with neutral and more charged pions in the final state are measured and analyzed as well. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain informa...

  8. Reliability of corneal dynamic scheimpflug analyser measurements in virgin and post-PRK eyes.

    Science.gov (United States)

    Chen, Xiangjun; Stojanovic, Aleksandar; Hua, Yanjun; Eidet, Jon Roger; Hu, Di; Wang, Jingting; Utheim, Tor Paaske

    2014-01-01

    To determine the measurement reliability of CorVis ST, a dynamic Scheimpflug analyser, in virgin and post-photorefractive keratectomy (PRK) eyes and compare the results between these two groups. Forty virgin eyes and 42 post-PRK eyes underwent CorVis ST measurements performed by two technicians. Repeatability was evaluated by comparing three consecutive measurements by technician A. Reproducibility was determined by comparing the first measurement by technician A with one performed by technician B. Intraobserver and interobserver intraclass correlation coefficients (ICCs) were calculated. Univariate analysis of covariance (ANCOVA) was used to compare measured parameters between virgin and post-PRK eyes. The intraocular pressure (IOP), central corneal thickness (CCT) and 1st applanation time demonstrated good intraobserver repeatability and interobserver reproducibility (ICC ≧ 0.90) in virgin and post-PRK eyes. The deformation amplitude showed a good or close to good repeatability and reproducibility in both groups (ICC ≧ 0.88). The CCT correlated positively with 1st applanation time (r = 0.437 and 0.483, respectively, pPRK eyes, virgin eyes showed longer 1st applanation time (7.29 ± 0.21 vs. 6.96 ± 0.17 ms, pPRK eyes. There were differences in 1st applanation time and deformation amplitude between virgin and post-PRK eyes, which may reflect corneal biomechanical changes occurring after the surgery in the latter.

  9. Dynamic measurement of the corneal tear film with a Twyman-Green interferometer

    Science.gov (United States)

    Micali, Jason D.; Greivenkamp, John E.; Primeau, Brian C.

    2015-05-01

    An interferometer for measuring dynamic properties of the in vivo tear film on the human cornea has been developed. The system is a near-infrared instantaneous phase-shifting Twyman-Green interferometer. The laser source is a 785 nm solid-state laser, and the system has been carefully designed and calibrated to ensure that the system operates at eye-safe levels. Measurements are made over a 6 mm diameter on the cornea. Successive frames of interferometric height measurements are combined to produce movies showing both the quantitative and qualitative changes in the topography of the tear film surface and structure. To date, measurement periods of up to 120 s at 28.6 frames per second have been obtained. Several human subjects have been examined using this system, demonstrating a surface height resolution of 25 nm and spatial resolution of 6 μm. Examples of features that have been observed in these preliminary studies of the tear film include postblink disruption, evolution, and stabilization of the tear film; tear film artifacts generated by blinking; tear film evaporation and breakup; and the propagation of foreign objects in the tear film. This paper discusses the interferometer design and presents results from in vivo measurements.

  10. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  11. Causality analysis in business performance measurement system using system dynamics methodology

    Science.gov (United States)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  12. Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Holtkamp, D. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Iverson, A. J. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States); Hixson, R. S.; Veeser, L. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2013-08-14

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R{sub 0} are <2%, and uncertainties in absolute reflectance are <5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of <2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

  13. Disentangling distribution effects and nature of the dynamics in relaxation measurements: the RMR method

    CERN Document Server

    Sappey, R; Ocio, M; Hammann, J

    2000-01-01

    We discuss here the nature of the low-temperature magnetic relaxation in samples of magnetic nanoparticles. In addition to usual magnetic viscosity measurement, we have used the residual memory ratio (RMR) method. This procedure enables us to overcome the uncertainties usually associated with the energy barrier distribution, thus giving a more detailed insight on the nature of the observed dynamics. A custom-made apparatus coupling dilution refrigeration and SQUID magnetometry allowed measurements of very diluted samples at temperatures ranging between 60 mK and 7 K. Two types of particles have been studied: gamma-Fe sub 2 O sub 3 of moderate anisotropy, and CoFe sub 2 O sub 4 of higher anisotropy where quantum effects are more likely to occur. In both cases, the data cannot simply be interpreted in terms of mere thermally activated dynamics of independent particles. The deviation from thermal activation seems to go opposite of what is expected from the possible effect of particle interactions. We therefore b...

  14. Interferometer for measuring the dynamic surface topography of a human tear film

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  15. Analyzing repeated measures data on individuals nested within groups: accounting for dynamic group effects.

    Science.gov (United States)

    Bauer, Daniel J; Gottfredson, Nisha C; Dean, Danielle; Zucker, Robert A

    2013-03-01

    Researchers commonly collect repeated measures on individuals nested within groups such as students within schools, patients within treatment groups, or siblings within families. Often, it is most appropriate to conceptualize such groups as dynamic entities, potentially undergoing stochastic structural and/or functional changes over time. For instance, as a student progresses through school, more senior students matriculate while more junior students enroll, administrators and teachers may turn over, and curricular changes may be introduced. What it means to be a student within that school may thus differ from 1 year to the next. This article demonstrates how to use multilevel linear models to recover time-varying group effects when analyzing repeated measures data on individuals nested within groups that evolve over time. Two examples are provided. The 1st example examines school effects on the science achievement trajectories of students, allowing for changes in school effects over time. The 2nd example concerns dynamic family effects on individual trajectories of externalizing behavior and depression. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics

    International Nuclear Information System (INIS)

    Kusakabe, Yoshinori; Matsushita, Taro; Honda, Saori; Okada, Sakie; Murase, Kenya

    2010-01-01

    We used blood oxygenation level-dependent magnetic resonance imaging (BOLD MRI) to measure renal oxygenation dynamics in rats injected with diuretics and evaluated diuretic effect on renal oxygenation. We performed BOLD MRI studies in 32 rats using a 1.5-tesla MR imaging system for animal experiments. We intravenously injected rats with saline (n=7), furosemide (n=7), acetazolamide (n=6), or mannitol (n=6). For controls, 6 rats were not injected with drugs. We estimated the apparent transverse relaxation rate (R 2 *) from the apparent transverse relaxation time (T 2 *)-weighted images and measured the time course of R 2 * at 4-min intervals over approximately 30 min. Compared with preadministration values, the R 2 * value did not change significantly in either the cortex or medulla in the control and mannitol groups but decreased significantly in the saline group; the R 2 * value significantly decreased in the medulla but did not change significantly in the cortex in the furosemide group; and the R 2 * value significantly increased in the medulla and significantly decreased in the cortex in the acetazolamide group. Our study results suggest that BOLD MRI is useful for evaluating the dynamics of renal oxygenation in response to various diuretics in the renal cortex and in the medulla. (author)

  17. Reconstruction of tissue dynamics in the compressed breast using multiplexed measurements and temporal basis functions

    Science.gov (United States)

    Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Fang, Qianqian; Carp, S. A.; Selb, J. J.; Boas, David A.

    2007-02-01

    In the course of our experiments imaging the compressed breast in conjunction with digital tomosynthesis, we have noted that significant changes in tissue optical properties, on the order of 5%, occur during our imaging protocol. These changes seem to consistent with changes both in total Hemoglobin concentration as well as in oxygen saturation, as was the case for our standalone breast compression study, which made use of reflectance measurements. Simulation experiments show the importance of taking into account the temporal dynamics in the image reconstruction, and demonstrate the possibility of imaging the spatio-temporal dynamics of oxygen saturation and total Hemoglobin in the breast. In the image reconstruction, we make use of spatio-temporal basis functions, specifically a voxel basis for spatial imaging, and a cubic spline basis in time, and we reconstruct the spatio-temporal images using the entire data set simultaneously, making use of both absolute and relative measurements in the cost function. We have modified the sequence of sources used in our imaging acquisition protocol to improve our temporal resolution, and preliminary results are shown for normal subjects.

  18. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law.

    Science.gov (United States)

    Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim

    2005-06-01

    During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.

  19. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    Science.gov (United States)

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-07

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed.

  20. Development and validation of the downhole freestanding shear device (DFSD) for measuring the dynamic properties of clay.

    Science.gov (United States)

    2008-12-01

    The Downhole Freestanding Shear Device (DFSD) is an innovative tool developed for in situ measurement of dynamic : properties (modulus and damping) of clay soils over a broad range of strains. The device essentially performs : laboratory-quality tors...