WorldWideScience

Sample records for intestinal stem cells

  1. Update on small intestinal stem cells

    OpenAIRE

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-01-01

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to id...

  2. Update on small intestinal stem cells.

    Science.gov (United States)

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  3. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  4. Radiobiology of intestinal epithelium stem cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.

    1988-01-01

    After a single or three-fold whole body irradiation of mice with a dose of 4 Gy and the time interval for the proliferation to be restored (5 days or 3 weeks) the survival curve for stem cells of small intestine epithelium with regard to radiation dose was the same as that for non-preirradiated mice. This indicated that the proliferative potential of stem cells in these experimental conditions was not reduced

  5. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  7. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  8. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  9. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  10. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  11. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  12. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  13. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  14. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  15. TRAPping telomerase within the intestinal stem cell niche

    OpenAIRE

    Pech, Matthew F; Artandi, Steven E

    2011-01-01

    Recent work from Hans Clevers' lab reveals high telomerase activity and telomere length in dividing LGR5-positive intestinal stem cells. They further report random chromosome segregation and thus challenge the ‘immortal strand' hypothesis at least for this stem cell population.

  16. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...... and predictive significance in CRC patients. This review provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), B cell–specific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining region y-box 9 (SOX9......) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC development and progression remain unclear; however, high expression of these stem cell markers have a potential prognostic significance and might be implicated in chemotherapy resistance...

  17. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  18. Stem cells and cancer of the stomach and intestine.

    Science.gov (United States)

    Vries, Robert G J; Huch, Meritxell; Clevers, Hans

    2010-10-01

    Cancer in the 21st century has become the number one cause of death in developed countries. Although much progress has been made in improving patient survival, tumour relapse is one of the important causes of cancer treatment failure. An early observation in the study of cancer was the heterogeneity of tumours. Traditionally, this was explained by a combination of genomic instability of tumours and micro environmental factors leading to diverse phenotypical characteristics. It was assumed that cells in a tumour have an equal capacity to propagate the cancer. This model is currently known as the stochastic model. Recently, the Cancer stem cell model has been proposed to explain the heterogeneity of a tumour and its progression. According to this model, the heterogeneity of tumours is the result of aberrant differentiation of tumour cells into the cells of the tissue the tumour originated from. Tumours were suggested to contain stem cell-like cells, the cancer stem cells or tumour-initiating cells, which are uniquely capable of propagating a tumour much like normal stem cells fuel proliferation and differentiation in normal tissue. In this review we discuss the normal stem cell biology of the stomach and intestine followed by both the stochastic and cancer stem cell models in light of recent findings in the gastric and intestinal systems. The molecular pathways underlying normal and tumourigenic growth have been well studied, and recently the stem cells of the stomach and intestine have been identified. Furthermore, intestinal stem cells were identified as the cells-of-origin of colon cancer upon loss of the tumour suppressor APC. Lastly, several studies have proposed the positive identification of a cancer stem cell of human colon cancer. At the end we compare the cancer stem cell model and the stochastic model. We conclude that clonal evolution of tumour cells resulting from genetic mutations underlies tumour initiation and progression in both cancer models. This

  19. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  20. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  1. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation

    Science.gov (United States)

    Reddy, Vishruth K.; Short, Sarah P.; Barrett, Caitlyn W.; Mittal, Mukul K.; Keating, Cody E.; Thompson, Joshua J.; Harris, Elizabeth I.; Revetta, Frank; Bader, David M.; Brand, Thomas; Washington, M. Kay; Williams, Christopher S.

    2016-01-01

    Blood Vessel Epicardial Substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves−/− mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wildtype (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves−/− mice. To examine stem cell function after BVES deletion, we employed ex vivo 3D-enteroid cultures. Bves−/− enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar “CBC” and “+4” stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves−/− enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves−/− mice demonstrated significantly greater small intestinal crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves−/− mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. PMID:26891025

  2. File list: Oth.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX856961,SRX1141904,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  3. File list: Unc.Dig.50.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.50.AllAg.Intestinal_stem_cells mm9 Unclassified Digestive tract Intestinal ...stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Dig.50.AllAg.Intestinal_stem_cells.bed ...

  4. File list: Oth.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX1141904,SRX856961,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  5. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-01

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  7. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  8. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes

  9. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  10. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  11. Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell NicheSummary

    Directory of Open Access Journals (Sweden)

    Reina Aoki

    2016-03-01

    Full Text Available Background & Aims: Intestinal epithelial stem cells that express leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 and/or B cell specific Moloney murine leukemia virus integration site 1 (Bmi1 continuously replicate and generate differentiated cells throughout life. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells. However, ablating Paneth cells has no effect on the maintenance of functional stem cells. Here, we show definitively that a small subset of mesenchymal subepithelial cells expressing the winged-helix transcription factor forkhead box l1 (Foxl1 are a critical component of the intestinal stem cell niche. Methods: We genetically ablated Foxl1+ mesenchymal cells in adult mice using 2 separate models by expressing either the human or simian diphtheria toxin receptor under Foxl1 promoter control. Conclusions: Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells. Keywords: Intestinal Stem Cell Niche, Wnt, Mesenchyme

  12. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation

    International Nuclear Information System (INIS)

    Leigh, B.R.; Khan, W.; Hancock, S.L.

    1995-01-01

    Recombinant rat stem cell factor (SCF) has been shown to decrease lethality in mice exposed to total-body irradiation (TBI) in the lower range of lethality through radioprotection of hematopoietic stem cells and acceleration of bone marrow repopulation. This study evaluates the effect of SCF on the survival of the intestinal mucosal stem cell after TBI. This non-hematopoietic cell is clinically relevant. Gastrointestinal toxicity is common during and after abdominal and pelvic radiation therapy and limits the radiation dose in these regions. As observed with bone marrow, the administration of SCF to mice prior to TBI enhanced the survival of mouse duodenal crypt stem cells. The maximum enhancement of survival was seen when 100 μ/kg of SCF was given intraperitoneally 8 h before irradiation. This regimen increased the survival of duodenal crypt stem cells after 12.0 Gy TBI from 22.5 ± 0.7 per duodenal cross section for controls to 30.0 ± 1.7 after treatment with SCF (P=0.03). The TBI dose producing 50% mortality of 6 days (LD 50/6 ) was increased from 14.9 Gy for control mice to 19.0 Gy for mice treated with SCF (dose modification factor = 1.28). These findings demonstrate that SCF (dose modification factor = 1.28). These findings demonstrate that SCF has radioprotective effects on a non-hematopoietic stem cell population and suggest that SCF may be of clinical value in preventing radiation injury to the intestine. 29 refs., 4 figs

  13. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  14. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors

    NARCIS (Netherlands)

    Stange, D.E.; Clevers, H.

    2013-01-01

    The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to

  15. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers

    NARCIS (Netherlands)

    Muñoz, Javier; Stange, Daniel E.; Schepers, Arnout G.; van de Wetering, Marc; Koo, Bon-Kyoung; Itzkovitz, Shalev; Volckmann, Richard; Kung, Kevin S.; Koster, Jan; Radulescu, Sorina; Myant, Kevin; Versteeg, Rogier; Sansom, Owen J.; van Es, Johan H.; Barker, Nick; van Oudenaarden, Alexander; Mohammed, Shabaz; Heck, Albert J. R.; Clevers, Hans

    2012-01-01

    Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted

  16. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  17. File list: NoD.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.10.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  18. File list: NoD.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.20.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  19. File list: InP.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.20.AllAg.Intestinal_stem_cells mm9 Input control Digestive tract Intestinal... stem cells SRX856960,SRX1091861,SRX1091862,SRX193723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  20. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  1. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  2. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes

    NARCIS (Netherlands)

    Schepers, A.G.; Vries, R.G.J.; van den Born, M.M.W.; van de Wetering, M.L.; Clevers, H.

    2011-01-01

    Somatic cells have been proposed to be limited in the number of cell divisions they can undergo. This is thought to be a mechanism by which stem cells retain their integrity preventing disease. However, we have recently discovered intestinal crypt stem cells that persist for the lifetime of a mouse,

  3. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  4. Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development

    NARCIS (Netherlands)

    Kosinski, C.; Stange, D.E.; Xu, C.; Chan, A.S.; Ho, C.; Yuen, S.T.; Mifflin, R.C.; Powell, D.W.; Clevers, H.; Leung, S.Y.; Chen, X.N.

    2010-01-01

    BACKGROUND & AIMS: Intestinal stem cells (ISCs) are regulated by the mesenchymal environment via physical interaction and diffusible factors. We examined the role of Indian hedgehog (Ihh) in mesenchymal organization and the mechanisms by which perturbations in epithelial-mesenchymal interactions

  5. Radioprotective effect of dextran sulphate and aerogenic hypoxia on intestinal crypt stem cells in mice

    International Nuclear Information System (INIS)

    Vacek, A.; Bartonickova, A.; Rotkovska, D.; Konoplyanikova, O.A.; Konoplyanikov, A.G.

    1991-01-01

    A single intraperitoneal injection of dextran sulfate given 6 h before irradiation produced higher numbers of microcolonies of intestinal crypt stem cells in whole-body irradiated mice than an injection of saline in control mice. If dextran sulfate and hypoxia are combined, the radioprotective effect of hypoxia on intestinal crypt stem cells depends on the time interval between irradiation and administration of dextran sulfate. (author). 2 figs., 12 refs

  6. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells.

    Science.gov (United States)

    Kriz, Vitezslav; Korinek, Vladimir

    2018-01-08

    In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL

  7. Crypt base columnar stem cells in small intestines of mice are radioresistant

    NARCIS (Netherlands)

    Hua, G.; Thin, T.H.; Feldman, R.; Haimovitz-Friedman, A.; Clevers, H.; Fuks, Z.; Kolesnick, R.

    2012-01-01

    BACKGROUND & AIMS: Adult stem cells have been proposed to be quiescent and radiation resistant, repairing DNA double-strand breaks by nonhomologous end joining. However, the population of putative small intestinal stem cells (ISCs) at position +4 from the crypt base contradicts this model, in that

  8. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  9. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eo; Seidelin, Jakob B; Yin, Xiaolei

    2017-01-01

    models suggests that intestinal stem cell transplantation could constitute a novel treatment strategy to re-establish mucosal barrier function in patients with severe disease. Intestinal stem cells can be grownin vitroin organoid structures, though only a fraction of the cells contained are stem cells...... with regenerative capabilities. Hence, techniques to enrich stem cell populations are being pursued through the development of multiple two-dimensional and three-dimensional culture protocols, as well as co-culture techniques and multiple growth medium compositions. Moreover, research in support matrices allowing...... for efficient clinical application is in progress.In vitroculture is accomplished by modulating the signaling pathways fundamental for the stem cell niche with a suitable culture matrix to provide additional contact-dependent stimuli and structural support. The aim of this review was to discuss medium...

  11. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  12. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    Science.gov (United States)

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.

  13. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  14. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  15. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Impact of thymectomy and antilymphocytic serum on stem cells of the intestinal epithelium

    International Nuclear Information System (INIS)

    Aparovich, G.G.; Trufakin, V.A.

    1982-01-01

    The population of stem cells of the intestinal epithelium was studied under conditions of the disturbed balance in the immune system on F 1 (CBAxC57B1) mice. It has been shown that thymectomy in adult mice does not influence the stem region of the intestinal epithelium at early time of observation but causes a tendency to the changed number of epithelial stem cells in 4-6 months. Administration of specific sera against T-, B- and mixed lymphoid populations on the 1st day of observation produces an ambi us effect on the stem region and results in an increase of the number of epithelial stem cells on the 5th day. After administration of the antilymphocytic serum there have been determined morphological changes in the population of mature erythrocytes and undulatory fluctuations in the number of mitotic cells of the intestinal epithelium. These data suggest functional correlation of the intestinal epithelium and the state of the immunocompetent tissue [ru

  17. Stem Cells in the Intestine: Possible Roles in Pathogenesis of Irritable Bowel Syndrome.

    Science.gov (United States)

    Ratanasirintrawoot, Sutheera; Israsena, Nipan

    2016-07-30

    Irritable bowel syndrome is one of the most common functional gastrointestinal (GI) disorders that significantly impair quality of life in patients. Current available treatments are still not effective and the pathophysiology of this condition remains unclearly defined. Recently, research on intestinal stem cells has greatly advanced our understanding of various GI disorders. Alterations in conserved stem cell regulatory pathways such as Notch, Wnt, and bone morphogenic protein/TGF- β have been well documented in diseases such as inflammatory bowel diseases and cancer. Interaction between intestinal stem cells and various signals from their environment is important for the control of stem cell self-renewal, regulation of number and function of specific intestinal cell types, and maintenance of the mucosal barrier. Besides their roles in stem cell regulation, these signals are also known to have potent effects on immune cells, enteric nervous system and secretory cells in the gut, and may be responsible for various aspects of pathogenesis of functional GI disorders, including visceral hypersensitivity, altered gut motility and low grade gut inflammation. In this article, we briefly summarize the components of these signaling pathways, how they can be modified by extrinsic factors and novel treatments, and provide evidenced support of their roles in the inflammation processes. Furthermore, we propose how changes in these signals may contribute to the symptom development and pathogenesis of irritable bowel syndrome.

  18. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells

    NARCIS (Netherlands)

    Forster, Ryan; Chiba, Kunitoshi; Schaeffer, Lorian; Regalado, Samuel G; Lai, Christine S; Gao, Qing; Kiani, Samira; Farin, Henner F; Clevers, Hans; Cost, Gregory J; Chan, Andy; Rebar, Edward J; Urnov, Fyodor D; Gregory, Philip D; Pachter, Lior; Jaenisch, Rudolf; Hockemeyer, Dirk

    2014-01-01

    Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the

  19. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition....

  20. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila

    Directory of Open Access Journals (Sweden)

    Péter Nagy

    2016-05-01

    Full Text Available UV radiation resistance-associated gene (UVRAG is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent or late (Rab7-dependent steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans.

  1. Defining a stem cell hierarchy in the intestine: markers, caveats and controversies

    Science.gov (United States)

    Smith, Nicholas R.; Gallagher, Alexandra C.

    2016-01-01

    Abstract The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly‐ and active‐cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly‐cycling stem cells self‐renew but replenish an active‐cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non‐conventional alternatives to a linear hierarchy. While these new and potentially paradigm‐shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system. PMID:26864260

  2. Epimorphin Regulates the Intestinal Stem Cell Niche via Effects on the Stromal Microenvironment.

    Science.gov (United States)

    Vishy, Courtney E; Swietlicki, Elzbieta A; Gazit, Vered; Amara, Suneetha; Heslop, Gabriela; Lu, Jianyun; Levin, Marc S; Rubin, Deborah C

    2018-04-06

    Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche. To examine the role of ISEMFs, we have previously generated mice with deletion of epimorphin (Epim), an ISEMF protein and member of the syntaxin family of intracellular vesicle docking proteins that regulate cell secretion. Herein we explore the mechanisms for previous observations that Epim deletion increases gut crypt cell proliferation, crypt fission and small bowel length in vivo. Stem cell derived crypt culture techniques were used to explore the interaction between enteroids and myofibroblasts from Epim -/- and WT mice. Enteroids co-cultured with ISEMFS had increased growth and crypt-like budding compared to enteroids cultured without stromal support. Epim deletion in ISEMFs resulted in increased enteroid budding and surface area compared to co-cultures with WT ISEMFs. In primary crypt cultures, Epim -/- enteroids had significantly increased surface area and budding compared WTs. However stem cell assays comparing the number of Epim -/- vs WT colony forming units after first passage showed no differences in the absence of ISEMF support. Epim -/- vs. WT ISEMFs had increased Wnt4 expression and addition of Wnt4 to WT co-cultures enhanced budding. We conclude that ISEMFs play an important role in the stem cell niche. Epim regulates stem cell proliferation and differentiation via stromal contributions to the niche microenvironment.

  3. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila.

    Science.gov (United States)

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  4. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  5. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  6. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  7. Wnt signaling in adult intestinal stem cells and cancer

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2014-01-01

    Roč. 26, č. 3 (2014), s. 570-579 ISSN 0898-6568 R&D Projects: GA ČR GAP305/12/2347; GA ČR GAP305/11/1780 Institutional support: RVO:68378050 Keywords : Wnt * intestine * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  8. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    Science.gov (United States)

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  9. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  10. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  12. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    Science.gov (United States)

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  13. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  14. Stem cell injury and restitution after ionizing irradiation in intestine, liver, salivary gland, mesenteric lymph node

    International Nuclear Information System (INIS)

    Lee, Jae Hyun; Cho, Kyung Ja; Lee, Sun Joo; Jang, Won Suk

    1998-01-01

    There is little information about radiation injury on stem cell resident in other organs. In addition there is little experimental model in which radiation plays a role on proliferation stem cell in adult organ. This study was carried out to evaluate the early response of tissue injury and restitution in intestine, liver, salivary gland and lymph node, and to develop in vivo model to investigate stem cell biology by irradiation. The study is to assay the early response to radiation and setup an animal model for radiation effect on cellular response. Duodenal intestine, liver, submandibular salivary gland and mesenteric lymph node were selected to compare apoptosis and proliferating cell nuclear antigen (PCNA) expression to radiosensitivity. For the effect of radiation on cellular responses, rats were irradiated during starvation. Conclusionly, this study showed the value of apoptosis in detection system for evaluating cellular damage against radiation injury. Because apoptosis was regularly inducted depending on tissue-specific pattern, dose and time sequence as well as cellular activity. Furthermore in vivo model in the study will be helped in the further study to elucidate the relationship between radiation injury and starvation or malnutrition. (author). 22 refs., 6 figs

  15. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Mandayam O. Nandan

    2015-01-01

    Full Text Available Krüppel-like factor 5 (KLF5 is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5fl/fl were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112 days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC cells that express Lgr5. By 11 days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14 days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112 days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.

  16. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  18. A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2018-01-01

    Full Text Available Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC-derived intestinal organoids involving four methodological advances. (1 We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2 We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3 Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4 We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.

  19. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  20. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  1. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2018-01-01

    Full Text Available The relationship between intestinal stem cells (ISCs and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.

  2. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    Science.gov (United States)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  3. Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal.

    Science.gov (United States)

    Tian, Aiguo; Jiang, Jin

    2017-10-02

    Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.

  4. Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver.

    Science.gov (United States)

    Degirmenci, Bahar; Hausmann, George; Valenta, Tomas; Basler, Konrad

    2018-01-01

    The term "Wnt signaling" does not refer to one uniform signal transduction cascade. Instead, it describes the multiple discrete signals elicited by Wnt ligands following their interaction with distinct receptor complexes. The interaction of stem cells with niche cells is coordinated by the involvement of different signaling pathways, including Wnt signaling. The stem cell populations are highly sensitive to modulation of Wnt pathway activity. Wnt signaling is of paramount importance for stem cell self-renewal, survival, proliferation, differentiation, movement, and cell polarity. Aberrant activation of Wnt/β-catenin signaling is associated with the pathology of many types of cancer, such as colorectal cancer and hepatocellular carcinoma. Importantly, although often initiated by mutation(s) downstream of the Wnt-receptor complex, the progression of colorectal cancer still seems to be augmented by Wnt ligand-mediated signaling. This chapter focuses on the role of Wnt ligands in the intestine and the liver during homeostasis and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance.

    Science.gov (United States)

    Morgenstern, Yael; Das Adhikari, Upasana; Ayyash, Muneef; Elyada, Ela; Tóth, Beáta; Moor, Andreas; Itzkovitz, Shalev; Ben-Neriah, Yinon

    2017-10-16

    The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5 + ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine. © 2017 The Authors.

  6. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    Directory of Open Access Journals (Sweden)

    Yinhua Jin

    2015-12-01

    Full Text Available Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs. Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic, mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25, Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt. pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  7. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  8. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  9. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  10. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2018-01-01

    Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.

  11. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila.

    Science.gov (United States)

    Park, Joung-Sun; Na, Hyun-Jin; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Yoo, Mi-Ae

    2015-05-01

    The stem cell genomic stability forms the basis for robust tissue homeostasis, particularly in high-turnover tissues. For the genomic stability, DNA damage response (DDR) is essential. This study was focused on the role of two major DDR-related factors, ataxia telangiectasia-mutated (ATM) and ATM- and RAD3-related (ATR) kinases, in the maintenance of intestinal stem cells (ISCs) in the adultDrosophila midgut. We explored the role of ATM and ATR, utilizing immunostaining with an anti-pS/TQ antibody as an indicator of ATM/ATR activation, γ-irradiation as a DNA damage inducer, and the UAS/GAL4 system for cell type-specific knockdown of ATM, ATR, or both during adulthood. The results showed that the pS/TQ signals got stronger with age and after oxidative stress. The pS/TQ signals were found to be more dependent on ATR rather than on ATM in ISCs/enteroblasts (EBs). Furthermore, an ISC/EB-specific knockdown of ATR, ATM, or both decreased the number of ISCs and oxidative stress-induced ISC proliferation. The phenotypic changes that were caused by the ATR knockdown were more pronounced than those caused by the ATM knockdown; however, our data indicate that ATR and ATM are both needed for ISC maintenance and proliferation; ATR seems to play a bigger role than does ATM.

  12. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  13. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    Science.gov (United States)

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  14. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    2012-05-01

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  15. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.

    Science.gov (United States)

    Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E

    2017-07-01

    Mesenchymal stem cells (MSCs) may have beneficial effects in reversing intestinal damage resulting from circulatory disorders. The hypothesis of this study is that MSCs increase antioxidant capacity of small bowel tissue following intestinal ischemia reperfusion (I/R) damage. A total of 100 rats were used for the control group and three experimental groups, as follows: the sham control, local MSC, and systemic MSC groups. Each group consisted of 10 animals on days 1, 4, and 7 of the experiment. Ischemia was established by clamping the superior mesenteric artery (SMA) for 45min; following this, reperfusion was carried out for 1, 4, and 7days in all groups. In the local and systemic groups, MSCs were administered intravenously and locally just after the ischemia, and they were investigated after 1, 4, and 7days. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) activities, as well as malondialdehyde (MDA) and total protein levels, were measured. Histopathological analysis was performed using light and electron microscopy. The indicators of proliferation from the effects of anti- and pro-inflammatory cytokines were evaluated using immunohistochemistry. MDA was increased (Pcytokines interleukin-1β (IL1β), transforming growth factor-β1 (TGFβ1), tumor necrosis factor-α (TNFα), IL6, MIP2, and MPO decreased (Pcytokines EP3 and IL1ra increased (poxygen radicals, suppression of pro-inflammatory cytokines, and increasing the expression of anti-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation.

    Science.gov (United States)

    Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-12-01

    elongation of the hindgut and midgut, as well as the establishment of a population of intestinal stem cells active in the adult midgut and hindgut, requires the presence of the visceral muscle layer, based on the finding that ablation of this layer causes a severe disruption of both processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Indispensable role of Notch ligand-dependent signaling in the proliferation and stem cell niche maintenance of APC-deficient intestinal tumors

    International Nuclear Information System (INIS)

    Nakata, Toru; Shimizu, Hiromichi; Nagata, Sayaka; Ito, Go; Fujii, Satoru; Suzuki, Kohei; Kawamoto, Ami; Ishibashi, Fumiaki; Kuno, Reiko; Anzai, Sho; Murano, Tatsuro; Mizutani, Tomohiro; Oshima, Shigeru; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Hozumi, Katsuto; Watanabe, Mamoru; Okamoto, Ryuichi

    2017-01-01

    Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5 +ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5 +ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas. - Highlights: • Notch signaling is activated in LGR5 +ve cells of APC-deficient intestinal tumors. • Lack of Jag1 but not RBPJ disrupts stem cell niche formation in those tumors. • Lack of Jag1 reduces the proliferation activity of APC-deficient intestinal tumors.

  18. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice.

    Directory of Open Access Journals (Sweden)

    Silvia Fre

    Full Text Available The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.

  19. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.

    Science.gov (United States)

    He, Xi C; Zhang, Jiwang; Tong, Wei-Gang; Tawfik, Ossama; Ross, Jason; Scoville, David H; Tian, Qiang; Zeng, Xin; He, Xi; Wiedemann, Leanne M; Mishina, Yuji; Li, Linheng

    2004-10-01

    In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.

  20. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  1. Protective Role of R-spondin1, an Intestinal Stem Cell Growth Factor, against Radiation-Induced Gastrointestinal Syndrome in Mice

    OpenAIRE

    Bhanja, Payel; Saha, Subhrajit; Kabarriti, Rafi; Liu, Laibin; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta; Sellers, Rani S.; Alfieri, Alan A.; Guha, Chandan

    2009-01-01

    Background Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of...

  2. Posaconazole plasma exposure correlated to intestinal mucositis in allogeneic stem cell transplant patients.

    Science.gov (United States)

    Vanstraelen, Kim; Prattes, Juergen; Maertens, Johan; Lagrou, Katrien; Schoemans, Hélène; Peersman, Nele; Vermeersch, Pieter; Theunissen, Koen; Mols, Raf; Augustijns, Patrick; Annaert, Pieter; Hoenigl, Martin; Spriet, Isabel

    2016-08-01

    Low posaconazole plasma concentrations (PPCs) are frequently encountered in allogeneic hematopoietic stem cell transplant (HSCT) patients, due to variable gastrointestinal absorption. In this study, the impact of intestinal mucositis on posaconazole exposure is investigated. A prospective pharmacokinetic study was performed including allogeneic HSCT patients receiving posaconazole prophylaxis with the oral suspension or tablets. Steady state PPCs were determined using high-performance liquid chromatography-fluorescence detection at the day of transplantation (=day 0), day +7, and +14. Citrulline was measured using liquid chromatography-tandem mass spectrometry to evaluate severity of mucositis, at baseline (day -7 or -6), and at day 0, +7 and +14. Additionally, citrulline plasma concentrations and steady state trough PPCs were determined in hematological patients without HSCT or mucositis. Thirty-four HSCT patients received posaconazole oral suspension together with 25 cL of Coca Cola, 6 HSCT patients received posaconazole tablets and 33 hematological patients not receiving HSCT received posaconazole oral suspension. The median (interquartile range) average PPC was 0.26 mg/L (0.17-0.43), 0.67 mg/L (0.27-1.38), and 1.08 mg/L (0.96-1.38), with suspension in HSCT patients, suspension in hematological patients and tablets in HSCT patients, respectively. A higher trough PPC was encountered with the oral suspension when citrulline plasma concentrations were above 10 μmol/L compared to values below 10 μmol/L (p < 0.001), whereas for tablets, average PPCs remained high with citrulline plasma concentrations below or above 10 μmol/L (p = 0.64). Posaconazole tablets should be preferred to suspension in HSCT patients immediately after transplantation to prevent insufficient plasma exposure due to intestinal mucositis.

  3. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.

    Science.gov (United States)

    Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li

    2017-07-01

    In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  4. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development.

    Science.gov (United States)

    Okada, Morihiro; Shi, Yun-Bo

    2018-01-01

    The gene ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI encode zinc-finger proteins that have been recognized as important oncogenes in various types of cancer. In contrast to the established role of EVI and MDS/EVI in cancer development, their potential function during vertebrate postembryonic development, especially in organ-specific adult stem cells, is unclear. Amphibian metamorphosis is strikingly similar to postembryonic development around birth in mammals, with both processes taking place when plasma thyroid hormone (T3) levels are high. Using the T3-dependent metamorphosis in Xenopus tropicalis as a model, we show here that high levels of EVI and MDS/EVI are expressed in the intestine at the climax of metamorphosis and are induced by T3. By using the transcription activator-like effector nuclease gene editing technology, we have knocked out both EVI and MDS/EVI and have shown that EVI and MDS/EVI are not essential for embryogenesis and premetamorphosis in X. tropicalis On the other hand, knocking out EVI and MDS/EVI causes severe retardation in the growth and development of the tadpoles during metamorphosis and leads to tadpole lethality at the climax of metamorphosis. Furthermore, the homozygous-knockout animals have reduced adult intestinal epithelial stem cell proliferation at the end of metamorphosis (for the few that survive through metamorphosis) or during T3-induced metamorphosis. These findings reveal a novel role of EVI and/or MDS/EVI in regulating the formation and/or proliferation of adult intestinal adult stem cells during postembryonic development in vertebrates.-Okada, M., Shi, Y.-B. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. © FASEB.

  5. Time dependence of intestinal proliferative cell risk vs. stem cell risk to radiation or colcemid cytotoxicity following hydroxyurea

    International Nuclear Information System (INIS)

    Hanson, W.R.; Henninger, D.L.; Fry, R.J.M.

    1979-01-01

    A comparison of the time dependence between intestinal crypt damage by hydroxyurea (HU) and crypt cell or clonogenic cell risk to colcemid (COL) cytotoxicity was made to determine if rapidly cycling cells are clonogenic or if crypt damage by HU induces clonogenic cells into rapid cycle. B6CF 1 /An1 mice were given 15 mg HU 15 min before or after increments of 137 Csγ-irradiation for the crypt colony assay. HU reduced the crypt cells from 254 + - 11 to 170 + - 8; however, the clonogenic cell survival curve was unaltered. At 2 hours after administration of HU, the dose for clonogenic cell survival giving rise to 10 microcolonies/circumference was reduced from 1625 rad in controls to 1375 rad; but at 6 hours after HU, the dose was 2200 rad. Hydroxyurea appears to stimulate stem cells from G 1 into rapid cycle. To test this, groups of mice were given HU and at 6, 12, 18, 24, and 30 hr, a 12 hr treatment of COL was given to kill cells in M phase of the cell cycle. At 3 hr after the last COL injection, mice were killed for crypt cell counts or given 1100 rad 137 Csγ for the microcolony assay. The greatest clonogenic cell risk (38/40) occurred when COL was begun 12 hr after HU, but the greatest total crypt cell risk (183/254) occurred when COL was begun 24 hr after HU at a time when clonogenic cell risk was 10/40. The data suggest that the cell cycle kinetics of clonogenic and rapidly proliferating cells are different. Further, damage to crypts by HU stimulates G 1 clonogenic cells into rapid cycle

  6. A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine

    Directory of Open Access Journals (Sweden)

    Fanju W. Meng

    2015-11-01

    Full Text Available Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK and extracellular signal-regulated kinase (ERK pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.

  7. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  8. 16,16-dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation

    International Nuclear Information System (INIS)

    Hanson, W.R.; Thomas, C.

    1983-01-01

    A variety of prostaglandins (PG) protect the gastric and intestinal mucosa when given before damaging agents as absolute ethanol, acidified taurocholate, boiling water, or nonsteroidal anti-inflammatory agents (NSAI). A synthetic prostaglandin, 16,16-dimethyl PGE 2 , shown to be cytoprotective at physiologic levels to the above agents was given to mice 1 h before or 15 min after 137 Cs gamma(γ) whole-body irradiation. The survival of intestinal stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased when 16,16-dimethyl PGE 2 was given before but not after 137 Cs γ irradiation. The maximum degree of 16,16-dimethyl PGE 2 -induced radioprotection was seen when the drug was given 1 h before irradiation. No radioprotection was seen when the interval between drug and irradiation was 3 h or longer. When the time between 16,16-dimethyl PGE 2 and irradiation was kept at 1 h, the degree of radioprotection was dependent on the PG drug dose. There was a steep rise in the number of surviving cells at low doses of PG. These results imply that tumors which secrete PGE 2 may in part be protected from the lethal effects of ionizing photon radiation

  9. Apc inactivation, but not obesity, synergizes with Pten deficiency to drive intestinal stem cell-derived tumorigenesis.

    Science.gov (United States)

    Tabrizian, Tahmineh; Wang, Donghai; Guan, Fangxia; Hu, Zunju; Beck, Amanda P; Delahaye, Fabien; Huffman, Derek M

    2017-06-01

    Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis after the inactivation of Apc However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 months, and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP- Pten flox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 months of age. Finally, various combinations of Lgr5+-ISC-specific, Apc- and Pten -deleted mice were generated and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU-positive cells in the small intestine ( P  Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion ( P  Apc deficiency in ISCs synergistically increases proliferation, tumor formation and mortality. Thus, aberrant Wnt/β-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ ISC-derived tumorigenesis. © 2017 Society for Endocrinology.

  10. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  11. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  12. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  13. Intestinal Adenovirus Shedding Before Allogeneic Stem Cell Transplantation Is a Risk Factor for Invasive Infection Post-transplant

    Directory of Open Access Journals (Sweden)

    Karin Kosulin

    2018-02-01

    Full Text Available Human adenoviruses (HAdV are a major cause of morbidity and mortality in pediatric human stem cell transplant (HSCT recipients. Our previous studies identified the gastrointestinal tract as a site of HAdV persistence, but the role of intestinal virus shedding pre-transplant for the risk of ensuing invasive infection has not been entirely elucidated. Molecular HAdV monitoring of serial stool samples using RQ-PCR was performed in 304 children undergoing allogeneic HSCT. Analysis of stool and peripheral blood specimens was performed pre-transplant and at short intervals until day 100 post-HSCT. The virus was detected in the stool of 129 patients (42%, and 42 tested positive already before HSCT. The patients displaying HAdV shedding pre-transplant showed a significantly earlier increase of intestinal HAdV levels above the critical threshold associated with high risk of invasive infection (p < 0.01. In this subset of patients, the occurrence of invasive infection characterized by viremia was significantly higher than in patients without HAdV shedding before HSCT (33% vs 7%; p < 0.0001. The data demonstrate that intestinal HAdV shedding before HSCT confers a greatly increased risk for invasive infection and disseminated disease post-transplant, and highlights the need for timely HAdV monitoring and pre-emptive therapeutic considerations in HSCT recipients.

  14. Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research.

    Science.gov (United States)

    Mochel, Jonathan P; Jergens, Albert E; Kingsbury, Dawn; Kim, Hyun Jung; Martín, Martín G; Allenspach, Karin

    2017-12-12

    Recent advances in our understanding of the intestinal stem cell niche and the role of key signaling pathways on cell growth and maintenance have allowed the development of fully differentiated epithelial cells in 3D organoids. Stem cell-derived organoids carry significant levels of proteins that are natively expressed in the gut and have important roles in drug transport and metabolism. They are, therefore, particularly relevant to study the gastrointestinal (GI) absorption of oral medications. In addition, organoids have the potential to serve as a robust preclinical model for demonstrating the effectiveness of new drugs more rapidly, with more certainty, and at lower costs compared with live animal studies. Importantly, because they are derived from individuals with different genotypes, environmental risk factors and drug sensitivity profiles, organoids are a highly relevant screening system for personalized therapy in both human and veterinary medicine. Lastly, and in the context of patient-specific congenital diseases, orthotopic transplantation of engineered organoids could repair and/or replace damaged epithelial tissues reported in various GI diseases, such as inflammatory bowel disease, cystic fibrosis, and tuft enteropathy. Ongoing translational research on organoids derived from dogs with naturally occurring digestive disorders has the potential to improve the predictability of preclinical models used for optimizing the therapeutic management of severe chronic enteropathies in human patients.

  15. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine

    Directory of Open Access Journals (Sweden)

    Ashlee M. Strubberg

    2018-01-01

    Conclusions: CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

  16. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson's disease patient-derived induced pluripotent stem cells.

    Science.gov (United States)

    Son, M-Y; Sim, H; Son, Y S; Jung, K B; Lee, M-O; Oh, J-H; Chung, S-K; Jung, C-R; Kim, J

    2017-12-01

    The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinson's disease (PD). There is compelling evidence that PD is not only a brain disease but also a gastrointestinal disorder; nonetheless, its pathogenesis remains unclear. We aimed to develop human neural and intestinal tissue models of PD patients harbouring an LRRK2 mutation to understand the link between LRRK2 and PD pathology by investigating the gene expression signature. We generated PD patient-specific induced pluripotent stem cells (iPSCs) carrying an LRRK2 G2019S mutation (LK2GS) and then differentiated into three-dimensional (3D) human neuroectodermal spheres (hNESs) and human intestinal organoids (hIOs). To unravel the gene and signalling networks associated with LK2GS, we analysed differentially expressed genes in the microarray data by functional clustering, gene ontology (GO) and pathway analyses. The expression profiles of LK2GS were distinct from those of wild-type controls in hNESs and hIOs. The most represented GO biological process in hNESs and hIOs was synaptic transmission, specifically synaptic vesicle trafficking, some defects of which are known to be related to PD. The results were further validated in four independent PD-specific hNESs and hIOs by microarray and qRT-PCR analysis. We provide the first evidence that LK2GS also causes significant changes in gene expression in the intestinal cells. These hNES and hIO models from the same genetic background of PD patients could be invaluable resources for understanding PD pathophysiology and for advancing the complexity of in vitro models with 3D expandable organoids. © 2017 British Neuropathological Society.

  17. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption.

    Science.gov (United States)

    Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo

    2012-05-01

    Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.

  18. Colorectal cancer stem cells.

    Science.gov (United States)

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  19. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  20. Wnt target gene analysis in colorectal cancer and intestinal stem cells

    NARCIS (Netherlands)

    van der Flier, L.G.

    2009-01-01

    The intestinal epithelium is a specialized simple epithelium that lines the gut and performs primary functions of digestion, absorption and forms a barrier against luminal pathogens. It is organized in invaginations called crypts and finger-like protrusions called villi. The crypts harbor

  1. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  2. A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.

    Science.gov (United States)

    Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis

    2016-06-21

    The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  4. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  5. 16,16-dimethyl prostaglandin E/sub 2/ increases survival of murine intestinal stem cells when given before photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.R.; Thomas, C.

    1983-11-01

    A variety of prostaglandins (PG) protect the gastric and intestinal mucosa when given before damaging agents as absolute ethanol, acidified taurocholate, boiling water, or nonsteroidal anti-inflammatory agents (NSAI). A synthetic prostaglandin, 16,16-dimethyl PGE/sub 2/, shown to be cytoprotective at physiologic levels to the above agents was given to mice 1 h before or 15 min after /sup 137/Cs gamma(..gamma..) whole-body irradiation. The survival of intestinal stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased stem cells measured by their ability to form in situ colonies of regenerating epithelium was increased when 16,16-dimethyl PGE/sub 2/ was given before but not after /sup 137/Cs ..gamma.. irradiation. The maximum degree of 16,16-dimethyl PGE/sub 2/-induced radioprotection was seen when the drug was given 1 h before irradiation. No radioprotection was seen when the interval between drug and irradiation was 3 h or longer. When the time between 16,16-dimethyl PGE/sub 2/ and irradiation was kept at 1 h, the degree of radioprotection was dependent on the PG drug dose. There was a steep rise in the number of surviving cells at low doses of PG. These results imply that tumors which secrete PGE/sub 2/ may in part be protected from the lethal effects of ionizing photon radiation.

  6. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.

    Science.gov (United States)

    Mah, Amanda T; Van Landeghem, Laurianne; Gavin, Hannah E; Magness, Scott T; Lund, P Kay

    2014-09-01

    Nutrient intake regulates intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate nutrient restriction impacts intestinal stem cells (ISC). Little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, progenitors, and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed a high-fat diet for 20 weeks to induce DIO and compared with littermates fed low-fat rodent chow. Histology, fluorescence activated cell sorting, and mRNA analyses measured impact of DIO on jejunal crypt-villus morphometry, numbers, and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight, plasma glucose, insulin, and insulin-like growth factor 1 (IGF1) levels and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length and decreased numbers of Paneth and goblet cells. In vivo, DIO resulted in a selective expansion of Sox9-EGFP(Low) ISC and percentage of ISC in S-phase. ISC expansion significantly correlated with plasma insulin levels. In vitro, isolated ISC from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls, indicating impaired ISC function. This decreased enteroid formation in isolated ISC from DIO mice was rescued by exogenous insulin, IGF1, or both. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo. However, isolated ISC from DIO mice have impaired intrinsic survival and growth in vitro that can be rescued by exogenous insulin or IGF1.

  7. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    Science.gov (United States)

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre

  9. Stem cell biobanks.

    Science.gov (United States)

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  10. Plasticity of intestinal epithelial cells in regeneration and cancer

    NARCIS (Netherlands)

    Tetteh, Paul W.

    2015-01-01

    Cellular plasticity refers to the ability of a cell to change its fate or identity in response to external or intrinsic factors. Regeneration of the intestinal epithelium after injury is driven mainly by plasticity of crypt stem cells that can rapidly divide to replace all the lost cells. Stem cell

  11. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  12. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  13. Potency of Stem Cells

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Potency of Stem Cells. Totipotent Stem Cells (Zygote + first 2 divisions). -Can form placenta, embryo, and any cell of the body. Pluripotent (Embryonic Stem Cells). -Can form any cell of the body but can not form placenta, hence no embryo. Multipotent (Adult stem cells).

  14. Multifaceted Interpretation of Colon Cancer Stem Cells.

    Science.gov (United States)

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-07-05

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but essential to cure the malignant foci completely. Herein, we review the recent evidence for intestinal stem cells and colon cancer stem cells, methods to detect the tumor-initiating cells, and clinical significance of cancer stem cell markers. We also describe the emerging problems of cancer stem cell theory, including bidirectional conversion and intertumoral heterogeneity of stem cell phenotype.

  15. Stem Cells Matter in Response to Fasting

    Directory of Open Access Journals (Sweden)

    Badi Sri Sailaja

    2015-12-01

    Full Text Available The molecular processes underlying intestinal adaptation to fasting and re-feeding remain largely uncharacterized. In this issue of Cell Reports, Richmond et al. report that dormant intestinal stem cells are regulated by PTEN and nutritional status.

  16. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... here Home » Glossary Back to top Glossary Adult stem cell Astrocyte Blastocoel Blastocyst Bone marrow stromal cells Bone ...

  17. Plant stem cell niches.

    Science.gov (United States)

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  18. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  19. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  20. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  1. Stem Cell Pathology.

    Science.gov (United States)

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  2. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  3. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  4. Stem Cells and Aging.

    Science.gov (United States)

    Koliakos, George

    2017-02-01

    The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.

  5. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Ghazvini

    Full Text Available Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in Apc/KRAS tumours, they appear to be very rare (<10(-6 in the Apc-mutant adenomas. In contrast, the Lin(-CD24(hiCD29(+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active β-catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins are co-expressed together with stem cell genes (e.g. Lgr5 within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5(+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing ®-catenin intracellular stabilization.

  6. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to

  7. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human

  8. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    Science.gov (United States)

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  9. Stem cells marked by the R-spondin receptor LGR5

    NARCIS (Netherlands)

    Koo, Bon-Kyoung; Clevers, Hans

    Since the discovery of LGR5 as a marker of intestinal stem cells, the field has developed explosively and led to many new avenues of research. The inner workings of the intestinal crypt stem cell niche are now well understood. The study of stem cell-enriched genes has uncovered some previously

  10. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  11. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... Print this page My Cart Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  12. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Stem Cell Transplants KidsHealth / For Teens / Stem Cell Transplants What's ... Take to Recover? Coping Print What Are Stem Cells? As you probably remember from biology class, every ...

  13. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  14. What is a stem cell?

    Science.gov (United States)

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  15. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  16. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  17. SnapShot : Growing Organoids from Stem Cells

    NARCIS (Netherlands)

    Sato, Toshiro; Clevers, Hans

    2015-01-01

    Tissue stem cells require unique niche microenvironments. In the presence of specific combinations of niche factors, mouse and human epithelial tissues from stomach, small intestine, colon, pancreas duct, and liver bile duct efficiently form stereotypic organoids. The platform of epitheloid

  18. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells...... for differentiation and/or providing bystander support for resident stromal cells. This chapter discusses the cellular and molecular properties of MSC, the mechanisms by which they can modulate immune responses and the clinical applications of MSC in disorders such as graft-versus-host disease and aplastic anaemia...

  20. Myeloproliferative neoplasm stem cells.

    Science.gov (United States)

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2 , CALR , or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC. © 2017 by The American Society of Hematology.

  1. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  2. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  3. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  4. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    Science.gov (United States)

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  5. Biomechanics of stem cells

    Science.gov (United States)

    Spector, A. A.; Yuan, D.; Somers, S.; Grayson, W. L.

    2018-04-01

    Stem cells play a key role in the healthy development and maintenance of organisms. They are also critically important in medical treatments of various diseases. It has been recently demonstrated that the mechanical factors such as forces, adhesion, stiffness, relaxation, etc. have significant effects on stem cell functions. Under physiological conditions, cells (stem cells) in muscles, heart, and blood vessels are under the action of externally applied strains. We consider the stem cell microenvironment and performance associated with their conversion (differentiation) into skeletal muscle cells. Two problems are studied by using mathematical models whose parameters are then optimized by fitting experiments. First, we present our analysis of the process of stem cell differentiation under the application of cyclic unidirectional strain. This process is interpreted as a transition through several (six) stages where each of them is defined in terms of expression of a set of factors typical to skeletal muscle cells. The stem cell evolution toward muscle cells is described by a system of nonlinear ODEs. The parameters of the model are determined by fitting the experimental data on the time course of expression of the factors under consideration. Second, we analyse the mechanical (relaxation) properties of a scaffold that serves as the microenvironment for stem cells differentiation into skeletal muscle cells. This scaffold (surrounded by a liquid solution) is composed of unidirectional fibers with pores between them. The relaxation properties of the scaffold are studied in an experiment where a long cylindrical specimen is loaded by the application of ramp displacement until the strain reaches a prescribed value. The magnitude of the corresponding load is recorded. The specimen is considered as transversely isotropic poroelastic cylinder whose force relaxation is associated with liquid diffusion through the pores. An analytical solution for the total force applied to

  6. Gastric stem cells and gastric cancer stem cells

    OpenAIRE

    Han, Myoung-Eun; Oh, Sae-Ock

    2013-01-01

    The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal ev...

  7. Advancing Stem Cell Biology toward Stem Cell Therapeutics

    OpenAIRE

    Scadden, David; Srivastava, Alok

    2012-01-01

    Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of articles outlining the current status, opportunities, and challenges surrounding the clinical translation of stem cell therapeutics for specific medical conditions.

  8. Facts about Stem Cells and Importance of Them

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-05-01

    Full Text Available Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three accessible sources of autologous adult stem cells in humans: Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest, Adipose tissue (lipid cells, which requires extraction by liposuction, and Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation, and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation

  9. Stem Cells in Burn Eschar

    NARCIS (Netherlands)

    van der Veen, V. C.; Vlig, M.; van Milligen-Kummer, F.J.; de Vries, S.I.; Middelkoop, E.; Ulrich, M.

    2012-01-01

    This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchymal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an

  10. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or

  11. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  12. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  13. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  14. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  15. Fake news portrayals of stem cells and stem cell research.

    Science.gov (United States)

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  16. [Progress in epidermal stem cells].

    Science.gov (United States)

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  17. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  18. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  19. Stem cells in psoriasis.

    Science.gov (United States)

    Hou, Ruixia; Li, Junqin; Niu, Xuping; Liu, Ruifeng; Chang, Wenjuan; Zhao, Xincheng; Wang, Qiang; Li, Xinhua; Yin, Guohua; Zhang, Kaiming

    2017-06-01

    Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently. Copyright © 2016. Published by Elsevier B.V.

  20. International Society for Stem Cell Research

    Science.gov (United States)

    ... renowned stem cell and regenerative medicine community. More stem cell research Take a closer look Recent Blogs View ... story independent nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell ...

  1. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  2. Biochemistry of epidermal stem cells.

    Science.gov (United States)

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    Science.gov (United States)

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.

  4. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.

    1979-01-01

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  5. Lymphoid cells in chicken intestinal epithelium

    DEFF Research Database (Denmark)

    Bjerregaard, P

    1975-01-01

    The intraepithelial lymphoid cells of chicken small intestine were studied by light microscopy using 1 mu Epon sections, and by electron microscopy. Three cell types were found: small lymphocytes, large lymphoid cells, and granular cells. These cells correspond to the theliolymphocytes and globule...

  6. [Perinatal sources of stem cells].

    Science.gov (United States)

    Piskorska-Jasiulewicz, Magdalena Maria; Witkowska-Zimny, Małgorzata

    2015-03-08

    Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton's jelly.

  7. Perinatal sources of stem cells

    Directory of Open Access Journals (Sweden)

    Magdalena Maria Piskorska-Jasiulewicz

    2015-03-01

    Full Text Available Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton’s jelly.

  8. Silent Waters Run Deep. Quiescent stem cells in homeostasis and cancer

    NARCIS (Netherlands)

    S.G. Roth (Sabrina)

    2012-01-01

    markdownabstract__Abstract__ The Introduction summarizes the current literature on quiescence in adult stem cell niches and the various methods for the isolation of quiescent stem cells, outlines the complexity of the intestinal stem cell niche, and formulates the hypothesis that quiescent

  9. Intestinal endocrine cells in radiation enteritis

    International Nuclear Information System (INIS)

    Pietroletti, R.; Blaauwgeers, J.L.; Taat, C.W.; Simi, M.; Brummelkamp, W.H.; Becker, A.E.

    1989-01-01

    In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were quantified by counting their number per unit length of muscularis mucosa. Results in radiation enteritis were compared with matched control specimens by using Student's t test. Chromogranin immunostaining showed a statistically significant increase of endocrine cells in radiation enteritis specimens compared with controls both in small and large intestine (ileum, 67.5 +/- 23.5 cells per unit length of muscularis mucosa in radiation enteritis versus 17.0 +/- 6.1 in controls; colon, 40.9 +/- 13.7 cells per unit length of muscularis mucosa in radiation enteritis versus 9.5 +/- 4.1 in controls--p less than 0.005 in both instances). Increase of endocrine cells was demonstrated also by Grimelius' staining; however, without reaching statistical significance. It is not clear whether or not the increase of endocrine cells in radiation enteritis reported in this study is caused by a hyperplastic response or by a sparing phenomenon. We should consider that increased endocrine cells, when abnormally secreting their products, may be involved in some of the clinical features of radiation enteropathy. In addition, as intestinal endocrine cells produce trophic substances to the intestine, their increase could be responsible for the raised risk of developing carcinoma of the intestine in long standing radiation enteritis

  10. Intestinal endocrine cells in radiation enteritis

    NARCIS (Netherlands)

    Pietroletti, R.; Blaauwgeers, J. L.; Taat, C. W.; Simi, M.; Brummelkamp, W. H.; Becker, A. E.

    1989-01-01

    In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were

  11. Effects of honey to mobilize endogenous stem cells in efforts intestinal and ovarian tissue regeneration in rats with protein energy malnutrition

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2016-05-01

    Conclusions: Expression of CD34+ and CD45+, which significantly different in treatment 2 (2. Furthermore, increase of immune response (decrease Hsp70 expression and increased PGE2 in intestinal tissue. Increased immune response causes expression of GDF-9 in ovarian tissue. Decreased of Hsp70 expression, increased PGE2 and increased GDF-9 followed the process of regeneration of the intestinal and ovarian tissue.

  12. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  13. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Relative biological effectiveness measurements using murine lethality and survival of intestinal and hematopoietic stem cells after Fermilab neutrons compared to JANUS reactor neutrons and 60Co gamma rays

    International Nuclear Information System (INIS)

    Hanson, W.R.; Crouse, D.A.; Fry, R.J.M.; Ainsworth, E.J.

    1984-01-01

    The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD/sub 50/30/) and gut (LD/sub 50/6/) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The LD/sub 50/30/ and LD/sub 50/6/ for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60 Co γ rays. The D 0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60 Co γ rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60 Co γ rays. The RBE estimates for LD/sub 50/30/ were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD/sub 50/6/, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D 0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D 0 1.4 (Fermilab) and 2.8 (JANUS)

  15. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc......The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  16. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Stem Cell Transplantation from Bench to Bedside

    Indian Academy of Sciences (India)

    Table of contents. Stem Cell Transplantation from Bench to Bedside · Slide 2 · Slide 3 · Slide 4 · Principles of an allogeneic stem cell transplant · Principle of an allogeneic stem cell transplant · Principle of an autologous Stem Cell Transplant · Slide 8 · Conditioning · Slide 10 · Slide 11 · Stem Cell Transplantation · Slide 13.

  18. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    Science.gov (United States)

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 Alpha

  19. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  20. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  1. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  2. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    Science.gov (United States)

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  3. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc...

  4. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  5. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    Science.gov (United States)

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  6. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  7. Bioprinting for stem cell research

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  8. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  9. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  10. Counting stem cells : methodological constraints

    NARCIS (Netherlands)

    Bystrykh, Leonid V.; Verovskaya, Evgenia; Zwart, Erik; Broekhuis, Mathilde; de Haan, Gerald

    The number of stem cells contributing to hematopoiesis has been a matter of debate. Many studies use retroviral tagging of stem cells to measure clonal contribution. Here we argue that methodological factors can impact such clonal analyses. Whereas early studies had low resolution, leading to

  11. Stem cell function and maintenance

    Indian Academy of Sciences (India)

    Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/organs. Among others, telomerase and telomere damage is one of the intrinsic physical ...

  12. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  13. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  14. Stem cells and respiratory diseases

    International Nuclear Information System (INIS)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2008-01-01

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  15. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  16. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... of Transplants Transplantation Recovery Coping Print en español Trasplantes de células madre Stem cells are cells in ... finding a match is called tissue typing (or HLA [human leukocyte antigen] typing). HLA is a protein ...

  17. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    Science.gov (United States)

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  18. Lasers, stem cells, and COPD

    Directory of Open Access Journals (Sweden)

    De Necochea-Campion Rosalia

    2010-02-01

    Full Text Available Abstract The medical use of low level laser (LLL irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed.

  19. Bone regeneration and stem cells

    Science.gov (United States)

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  20. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.......This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...

  1. Stem cells for tooth engineering

    Directory of Open Access Journals (Sweden)

    G Bluteau

    2008-07-01

    Full Text Available Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  2. Generation and exploitation of stem cell derived organoid cultures

    NARCIS (Netherlands)

    Karthaus, W.R.

    2013-01-01

    Following the identification of the intestinal epithelium stem cell (ISC) Barker et al. 2007 by Lgr5, the transcriptome of the ISC was defined using microarray technology. One of the genes specifically expressed by ISC’s is Nr2e3. Originally Nr2e3 was identified as a retinal specific gene, where it

  3. Generation and exploitation of stem cell derived organoid cultures.

    NARCIS (Netherlands)

    Karthaus, W.R.

    2013-01-01

    Following the identification of the intestinal epithelium stem cell (ISC) Barker et al. 2007 by Lgr5, the transcriptome of the ISC was defined using microarray technology. One of the genes specifically expressed by ISC’s is Nr2e3. Originally Nr2e3 was identified as a retinal specific gene, where it

  4. Keeping Stem Cells in Check: A Hippo Balancing Act

    NARCIS (Netherlands)

    Vermeulen, Louis

    2013-01-01

    Knowing when to stop proliferation is crucial for any regenerative process. In a recent issue of Nature, Barry et al. (2012) report that the Hippo pathway component YAP negatively regulates Wnt signaling, thereby preventing stem cell overpopulation after a regenerative response in the intestine

  5. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intestinal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mouse groups. Repair of single-strand DNA breaks of elderly mice is slower than that of young animals.

  6. Stem Cells in Regenerative Medicine

    OpenAIRE

    Sykova, Eva; Forostyak, Serhiy

    2013-01-01

    Background: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeuti...

  7. Stem cells: Concepts and prospects

    Indian Academy of Sciences (India)

    development exemplified by murine experiments motivated the ... from specific regions of the brain, cardiac stem cells from atrial ..... have also been shown to integrate and differentiate .... to vascular network structures in three dimensional.

  8. [Progress in stem cells and regenerative medicine].

    Science.gov (United States)

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  9. Stem Cell Lineages: Between Cell and Organism

    Directory of Open Access Journals (Sweden)

    Melinda Bonnie Fagan

    2017-01-01

    Full Text Available Ontologies of living things are increasingly grounded on the concepts and practices of current life science. Biological development is a process, undergone by living things, which begins with a single cell and (in an important class of cases ends with formation of a multicellular organism. The process of development is thus prima facie central for ideas about biological individuality and organismality. However, recent accounts of these concepts do not engage developmental biology. This paper aims to fill the gap, proposing the lineage view of stem cells as an ontological framework for conceptualizing organismal development. This account is grounded on experimental practices of stem cell research, with emphasis on new techniques for generating biological organization in vitro. On the lineage view, a stem cell is the starting point of a cell lineage with a specific organismal source, time-interval of existence, and ‘tree topology’ of branch-points linking the stem to developmental termini. The concept of ‘enkapsis’ accommodates the cell-organism relation within the lineage view; this hierarchical notion is further explicated by considering the methods and results of stem cell experiments. Results of this examination include a (partial characterization of stem cells’ developmental versatility, and the context-dependence of developmental processes involving stem cells.

  10. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  11. Plasticity of spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Paul S Cooke

    2015-06-01

    Full Text Available There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs, and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine.

  12. Radiation, an ideal cytotoxic for the study of cell biology in the small intestine

    International Nuclear Information System (INIS)

    Potten, C.

    2003-01-01

    Epithelial tissues are highly polarised with the proliferative compartment sometimes subdivided into units of proliferation in many instances. My interests have been in trying to understand how many cellular constituents exist, what their function is and intercommunicants are that ensure appropriate steady state cell replacement rates. Radiation has proved to be a valuable tool to induce cell death, reproductive sterilisation, and regenerative proliferation in these systems, the responses to which can provide information on the number of regenerative cells (a function associated with stem cells). Such studies have helped define the epidermal proliferative units and the structurally similar units on the dorsal surface of the tongue. The radiation responses considered in conjunction with a wide range of cell kinetic lineage tracking and somatic mutation studies with complex mathematical modelling, provide insights into the functioning of the poliferative units (crypts) of the small intestine. Comparative studies have then been undertaken with the crypts in the large bowel. In the small intestine, which rarely develops cancer, various protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment. Stem cells in the small intestinal crypts have an intolerance of genotoxic damage (including that induced by very low doses of radiation), they do not undergo cell cycle arrest and repair but commit an altruistic p53 dependent cell suicide (apoptosis). This process is compromised in the large bowel by bcl-2 expression. Recent studies have suggested a second genome protection mechanism operating in the stem cells of the small intestinal crypts that may also have a p53 dependence. Such studies have allowed the cell lineages and genome protection mechanisms operating in the small intestinal crypts to be defined

  13. The longest telomeres: a general signature of adult stem cell compartments

    Science.gov (United States)

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  14. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    International Nuclear Information System (INIS)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-01-01

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo

  15. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Arking, Robert, E-mail: aa2210@wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  16. Stem cells therapy for ALS.

    Science.gov (United States)

    Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro

    2016-01-01

    Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.

  17. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  18. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection

    NARCIS (Netherlands)

    Bartfeld, Sina; Bayram, Tülay; van de Wetering, Marc; Huch, Meritxell; Begthel, Harry; Kujala, Pekka; Vries, Robert; Peters, Peter J; Clevers, Hans

    BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The

  19. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters

    NARCIS (Netherlands)

    Tetteh, Paul W.; Basak, Onur; Farin, Henner F.; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; De Sauvage, Frederic; Van Es, Johan H.; Van Oudenaarden, Alexander; Clevers, Hans

    2016-01-01

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an

  20. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  1. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  2. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

    Science.gov (United States)

    Tetteh, Paul W; Basak, Onur; Farin, Henner F; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; de Sauvage, Frederic; van Es, Johan H; van Oudenaarden, Alexander; Clevers, Hans

    2016-02-04

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells.

    Directory of Open Access Journals (Sweden)

    Yulan Qing

    Full Text Available Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs, creating a preleukemic stem cell (PLSC. Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC. Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM, but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment.

  4. Stem cells and regenerative medicine

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    2005-01-01

    Roč. 3, - (2005), s. 45-46 ISSN 1214-021X. [Cells VI - Biological Days /18./. 24.10.2005-26.10.2005, České Budějovice] R&D Projects: GA MŠk(CZ) 1M0538 Institutional research plan: CEZ:AV0Z5039906 Keywords : stem cells Subject RIV: FH - Neurology

  5. Stem Cells in Regenerative Medicine

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Forostyak, Serhiy

    2013-01-01

    Roč. 22, č. 2 (2013), s. 87-92 ISSN 0898-5901 R&D Projects: GA ČR(CZ) GAP304/11/0189; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : cell therapy * stem cells * clinical study Subject RIV: FH - Neurology

  6. The spermatogonial stem cell niche

    NARCIS (Netherlands)

    de Rooij, Dirk G.

    2009-01-01

    Spermatogonial stem cells (SSCs; A(s) spermatogonia) and their direct descendants (A(pr) and A(al) spermatogonia) are preferentially located in those areas of the seminiferous tubules that border on the interstitial tissue. Fewer of these cells are present in tubule areas directly bordering on

  7. Stem cell therapy for inflammatory bowel disease

    NARCIS (Netherlands)

    Duijvestein, Marjolijn

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal (MSC) cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases (IBD). Hematopoietic stem cells are thought to repopulate the immune system and reset the immunological response to luminal

  8. Stem cells: sources and therapies

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-01-01

    Full Text Available The historical, lexical and conceptual issues embedded in stem cell biology are reviewed from technical, ethical, philosophical, judicial, clinical, economic and biopolitical perspectives. The mechanisms assigning the simultaneous capacity to self-renew and to differentiate to stem cells (immortal template DNA and asymmetric division are evaluated in the light of the niche hypothesis for the stemness state. The induction of cell pluripotency and the different stem cells sources are presented (embryonic, adult and cord blood. We highlight the embryonic and adult stem cell properties and possible therapies while we emphasize the particular scientific and social values of cord blood donation to set up cord blood banks. The current scientific and legal frameworks of cord blood banks are reviewed at an international level as well as allogenic, dedicated and autologous donations. The expectations and the challenges in relation to present-day targeted diseases like diabetes mellitus type I, Parkinson's disease and myocardial infarction are evaluated in the light of the cellular therapies for regenerative medicine.

  9. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S.

    1982-01-01

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intest+nal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mo use groups. Repair of single-strand DNA breaks of eldery mice is slower than that of young animals

  10. Endocrine cells in the denervated intestine

    Science.gov (United States)

    Santos, Gilda C; Zucoloto, Sérgio; Garcia, Sérgio B

    2000-01-01

    This study deals with the effects of myenteric denervation of the proximal jejunum on endocrine cell population of the crypt-villus unit, 5 months after treatment with benzalkonium chloride (BAC). Male Wistar albino rats weighing on average 100 g were allocated to two groups: the BAC group − the proximal jejunal serosa was treated with 2 mm BAC for 30 min, and the control group − treated with saline solution (0,9% NaCl). There was a significant reduction in neurone number in the jejunal myenteric plexus of the BAC group and the endocrine cell population (serotoninergic and argyrophilic cells) was significantly increased in this intestine segment. In conclusion, the present findings provide further evidence that the myenteric denervation induced by BAC may lead to the development of a local imbalance of the neurotransmitters, with a consequent induction of enteroendocrine cell (argyrophilic and serotoninergic cells) hyperplasia in the crypt and villus. PMID:10971748

  11. Turnover of circulating hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Dorie, M J; Maloney, M A; Patt, H M

    1979-10-01

    Short-term parabiosis of male and female CBA/CaJ mice was used to investigate the turnover of circulating hematopoietic stem cells. The change and subsequent disappearance of donor stem cells were monitored by spleen colony assay and chromosome analysis of individual colonies. The results revealed an exponential disappearance of pluripotent stem cells from blood with a characteristic half time of 1.7 h. Blood-borne stem cells were shown to be equilibrated with a subpopulation of marrow stem cells exhibiting a disappearance half time of 9.5 h. Splenectomy did not change the apparent rate of stem cell removal from the blood.

  12. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  14. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  15. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  16. Organizing Organoids: Stem Cells Branch Out.

    Science.gov (United States)

    Davies, Jamie A

    2017-12-07

    In this issue of Cell Stem Cell, Taguchi and Nishinakamura (2017) describe a carefully optimized method for making a branch-competent ureteric bud, a tissue fundamental to kidney development, from mouse embryonic stem cells and human induced pluripotent stem cells. The work illuminates embryology and has important implications for making more realistic kidney organoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  18. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells

    NARCIS (Netherlands)

    Ma, Ming San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn; Balasubramaniyan, Veerakumar; Kuijer, Roelof; Vissink, Arjan; Copray, Sjef; Raghoebar, Gerry

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and

  19. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  20. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  1. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    Science.gov (United States)

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  2. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  3. FDA Warns About Stem Cell Therapies

    Science.gov (United States)

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Therapies Share Tweet Linkedin Pin it More sharing ... see the boxed section below for more advice. Stem Cell Uses and FDA Regulation The FDA has the ...

  4. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  5. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  6. Molecular mechanisms of adult stem cell aging

    National Research Council Canada - National Science Library

    Rudolph, K. Lenhard

    2010-01-01

    "There is growing evidence that adult stem cells age. This process can result in alterations in the number and function of stem cells, leading to distinct phenotypic outcomes in different organ systems...

  7. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data

    NARCIS (Netherlands)

    Grun, D.; Muraro, M.J.; Boisset, J.C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; Born, M. van den; Es, J. van; Jansen, E.; Clevers, H.; Koning, E.J. de; Oudenaarden, A. van

    2016-01-01

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of

  8. Stem Cell Therapy for Erectile Dysfunction.

    Science.gov (United States)

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  9. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  10. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  11. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  12. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  13. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  14. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  15. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    Science.gov (United States)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  16. Nine Things to Know About Stem Cell Treatments

    Science.gov (United States)

    ... Search Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... Know About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...

  17. Setting FIRES to Stem Cell Research

    Science.gov (United States)

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  18. Extinction models for cancer stem cell therapy

    Science.gov (United States)

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  19. Dental pulp stem cells in regenerative dentistry.

    Science.gov (United States)

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  20. Methods for Stem Cell Production and Therapy

    Science.gov (United States)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  1. Cancer stem cells and differentiation therapy.

    Science.gov (United States)

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  2. [Embryonic stem cells. Future perspectives].

    Science.gov (United States)

    Groebner, M; David, R; Franz, W M

    2006-05-01

    Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.

  3. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  4. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  5. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  6. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  7. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  8. Klotho, stem cells, and aging.

    Science.gov (United States)

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  9. Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer

    Science.gov (United States)

    Adams, Peter D.; Jasper, Heinrich; Rudolph, K. Lenhard

    2015-01-01

    Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging. PMID:26046760

  10. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  11. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  12. Stem cell facelift: between reality and fiction.

    Science.gov (United States)

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical.

  13. Stem Cells, Science, and Public Reasoning

    Science.gov (United States)

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  14. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  15. The pluripotency of hair follicle stem cells.

    Science.gov (United States)

    Hoffman, Robert M

    2006-02-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, is also expressed in follicle stem cells as well as their immediate differentiated progeny. The nestin-expressing hair follicle stem cells differentiated into neurons, glial cells, keratinocytes and smooth muscle cells in vitro. Hair-follicle stem cells were implanted into the gap region of a severed sciatic nerve. The hair follicle stem cells greatly enhanced the rate of nerve regeneration and the restoration of nerve function. The follicle stem cells transdifferentiated largely into Schwann cells which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair-follicle stem cells, the transplanted mice recovered the ability to walk normally. These results suggest that hair-follicle stem cells provide an important accessible, autologous source of adult stem cells for regenerative medicine.

  16. Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2017-09-01

    Full Text Available Visceral fat accumulation as observed in Crohn's disease and obesity is linked to chronic gut inflammation, suggesting that accumulation of gut adipocytes can trigger local inflammatory signaling. However, direct interactions between intestinal epithelial cells (IECs and adipocytes have not been investigated, in part because IEC physiology is difficult to replicate in culture. In this study, we originally prepared intact, polarized, and cytokine responsive IEC monolayers from primary or induced pluripotent stem cell-derived intestinal organoids by simple and repeatable methods. When these physiological IECs were co-cultured with differentiated adipocytes in Transwell, pro-inflammatory genes were induced in both cell types, suggesting reciprocal inflammatory activation in the absence of immunocompetent cells. These inflammatory responses were blocked by nuclear factor-κB or signal transducer and activator of transcription 3 inhibition and by anti-tumor necrosis factor- or anti-interleukin-6-neutralizing antibodies. Our results highlight the utility of these monolayers for investigating IEC biology. Furthermore, this system recapitulates the intestinal epithelium–mesenteric fat signals that potentially trigger or worsen inflammatory disorders such as Crohn's disease and obesity-related enterocolitis.

  17. Stem Cell Therapies in Orthopaedic Trauma

    OpenAIRE

    Marcucio, Ralph S.; Nauth, Aaron; Giannoudis, Peter V.; Bahney, Chelsea; Piuzzi, Nicolas S.; Muschler, George; Miclau, Theodore

    2015-01-01

    Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and...

  18. Legal implications of translational promises of unproven stem cell ...

    African Journals Online (AJOL)

    2015-08-02

    Aug 2, 2015 ... multipotent stem cells are haematopoietic stem cells (HSCs), which give rise ... include diseases such as arthritis, heart attacks, multiple sclerosis, diabetes ... regard to autologous stem cell therapy, where a patient's own stem.

  19. Stem cell factor supports migration in canine mesenchymal stem cells.

    Science.gov (United States)

    Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción

    2018-03-01

    Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

  20. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  1. Stem cells in dentistry: A study regarding awareness of stem cells among dental professionals

    OpenAIRE

    Parita K Chitroda; Girish Katti; Nikhat M Attar; Syed Shahbaz; G Sreenivasarao; Ambika Patil

    2017-01-01

    Background: Dental stem cell, a type of adult stem cell, exhibits multipotent differentiation capacity and is drawing worldwide attention because of its numerous applications. The advances in applications of dental stem cells seem to be unsurpassed in the near future, for which specialized skills and knowledge in this arena are of prime significance. Hence, there is a need to acquire more knowledge about dental stem cells to obtain maximum benefits from it in the coming years. Dental stem cel...

  2. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  3. Proliferative capacity of murine hematopoietic stem cells

    International Nuclear Information System (INIS)

    Hellman, S.; Botnick, L.E.; Hannon, E.C.; Vigneulle, R.M.

    1978-01-01

    The present study demonstrates a decrease in self-renewal capacity with serial transfer of murine hematopoietic stem cells. Production of differentiated cell progeny is maintained longer than stem cell self-renewal. In normal animals the capacity for self-renewal is not decreased with increasing donor age. The stem cell compartment in normal animals, both young and old, appears to be proliferatively quiescent. After apparent recovery from the alkylating agent busulfan, the probability of stem cell self-renewal is decreased, there is a permanent defect in the capacity of the bone marrow for serial transplantation, and the stem cells are proliferatively active. These findings support a model of the hematopoietic stem cell compartment as a continuum of cells with decreasing capacities for self-renewal, increasing likelihood for differentiation, and increasing proliferative activity. Cells progress in the continuum in one direction and such progression is not reversible

  4. Therapeutic application of multipotent stem cells

    DEFF Research Database (Denmark)

    Mirzaei, Hamed; Sahebkar, Amirhossein; Sichani, Laleh Shiri

    2018-01-01

    Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through...... been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells...... before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications....

  5. Therapeutic potential of adult stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Keith, W. Nicol

    2006-01-01

    is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple...... lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem...... cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest...

  6. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2014-11-01

    James, J. N. Zara , M. Corselli et al., “An abundant perivascular source of stem cells for bone tissue engineering,” Stem Cells Translational Medicine...vol. 1, no. 9, pp. 673–684, 2012. [89] A.W. James, J. N. Zara , X. Zhang et al., “Perivascular stem cells: a prospectively purified mesenchymal stem...1, pp. 54–63, 2009. [176] A. Askarinam, A. W. James, J. N. Zara et al., “Human perivas- cular stem cells show enhanced osteogenesis and

  7. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  8. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  9. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  10. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  11. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combination stem cell therapy for heart failure

    Directory of Open Access Journals (Sweden)

    Ichim Thomas E

    2010-04-01

    Full Text Available Abstract Patients with congestive heart failure (CHF that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a increasing stem cell migration to the heart; b augmenting stem cell activity; and c combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells.

  13. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  14. Stem cell biology meets systems biology

    OpenAIRE

    Roeder, I.; Radtke, F.

    2009-01-01

    Stem cells and their descendents are the building blocks of life. How stem cell populations guarantee their maintenance and/or self-renewal, and how individual stem cells decide to transit from one cell stage to another to generate different cell types are long-standing and fascinating questions in the field. Here, we review the discussions that took place at a recent EMBO conference in Cambridge, UK, in which these questions were placed in the context of the latest advances in stem cell biol...

  15. Stem cells: limitations and opportunities in Peru

    OpenAIRE

    Amiel-Pérez, José; Laboratorio de Cultivos Celulares, Universidad Científica del Sur. Lima, Perú.; Casado, Fanny; Stem Cell and Cancer Research Institute, McMaster University. Hamilton, Canadá.

    2015-01-01

    Stem cells are defined as rare cells that are characterized by asymmetric division, a process known as self-renewal, and the potential to differentiate into more than one type of terminally differentiated cell. There is a diversity of stem cells including embryonic stem cells, which exist only during the first stages of human development, and many adult stem cells depending on the specific tissues from where they derive or the ones derived from mesenchymal or stromal tissues. On the other han...

  16. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Ali Qayyum, Abbas; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  17. Mesenchymal dental stem cells in regenerative dentistry.

    Science.gov (United States)

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  18. Stem cells and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2008-12-01

    Full Text Available Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

  19. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation.

    Science.gov (United States)

    Lu, Xiaozhao; Bai, Danna; Liu, Xiangwei; Zhou, Chen; Yang, Guodong

    2017-03-31

    Pioneering epidemiological work has established strong association of sedentary lifestyle and obesity with the risk of colorectal cancer, while the detailed underlying mechanism remains unknown. Here we show that Hotair (HOX transcript antisense RNA) is a pro-adipogenic long non-coding RNA highly expressed in gluteal-femoral fat over other fat depots. Hotair knockout in adipose tissue results in gluteal-femoral fat defect. Squeeze of the gluteal-femoral fat induces intestinal proliferation in wildtype mice, while not in Hotair knockout mice. Mechanistically, squeeze of the gluteal-femoral fat induces exosomal Hotair secretion mainly by transcriptional upregulation of Hotair via NFκB. And increased exosomal Hotair in turn circulates in the blood and is partially endocytosed by the intestine, finally promoting the stemness and proliferation of intestinal stem/progenitor cells via Wnt activation. Clinically, obese subjects with sedentary lifestyle have much higher exosomal HOTAIR expression in the serum. These findings establish that sedentary lifestyle promotes exosomal Hotair release from the gluteal-femoral fat, which in turn facilitates intestinal stem and/or progenitor proliferation, raising a possible link between sedentary lifestyle with colorectal tumorigenesis.

  20. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine.

    Science.gov (United States)

    Nguyen, Duc Ninh; Jiang, Pingping; Stensballe, Allan; Bendixen, Emøke; Sangild, Per T; Chatterton, Dereck E W

    2016-04-29

    Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates. Copyright © 2016 Elsevier B

  1. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  2. Stem Cells and Herbal Acupuncture Therapy

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-12-01

    Full Text Available Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

  3. Mesenchymal Stem Cells in Cardiology

    Science.gov (United States)

    White, Ian A.; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M.

    2017-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of pre-clinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  4. Adipose stem cells for bone tissue repair

    OpenAIRE

    Ciuffi, Simone; Zonefrati, Roberto; Brandi, Maria Luisa

    2017-01-01

    Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlik...

  5. Stem cells and cancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-05-01

    Full Text Available Stem cells are the small units of multicellular creature. Regeneration and self-renewal are the ability of the stem cells. Each tissue is having particular stem cells, specific to it. These normal stem cells are converted into cancer stem cells through mutations in it. Although the expression of oncogenes is enhanced a lot, the tumor-supressing gene is lessened. Cancer stem cells are isolated and visualized through different techniques like immunocytochemical staining, spectral karyotyping, immunohistochemistry, induction method and dissection measures, then are performed histological procedures which include fascination, immunohistochemistry, dispensation, in situ hybridization and also quantitative examination of tissue flow cytometric analysis. For the analysis of quantization, statistical tests are also performed as two-sample t-test, Chi-square test, SD and arithmetic mean. Tumor cells generate glioma spheres. These are used in cancer study. Axin 1 is the gene suppressing cancer. Its removal causes the generation of liver cancer. Curcumin is the most effective for suppressing cancer as it increases the normal stem cell function and decreases the cancer stem cell function. Brahma-related gene 1 is crucial for the safeguarding of the stem cell residents in tissue-specific comportment. Different types of cancers originate through genetic mutation, tissue disorganization and cell proliferation. Tumor configuration is produced by the alteration in original cell culture having stem cells and progenitor cell populations. The developmental facets about cancer cells and cancer stem cells as well as their personal natal functions sustain an intricate steadiness to settle on their personal donations to the efficacy or harmfulness of the biological organization.

  6. Mesenchymal stem cells, a hope for the treatment of radiotherapy complications

    International Nuclear Information System (INIS)

    Gourmelon, P.; Semont, A.; Benderitter, M.

    2010-01-01

    This article reports experimental researches performed by IRSN researchers in the field of cell therapy, notably for the treatment of severe accidental radiological burns. It shows than mesenchymal stem cells have been very efficient for the treatment of radio-induced of muscular cutaneous lesions, notably by reducing the pain where conventional analgesic treatments fail. A positive effect has been also obtained by using these stem cells for the treatment of severe intestinal lesions on mice locally irradiated with high doses. The tumorigenic risk associated with the use of these mesenchymal stem cells is also discussed

  7. Of Microenvironments and Mammary Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  8. [Bioethical challenges of stem cell tourism].

    Science.gov (United States)

    Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J

    2013-08-01

    Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.

  9. Ethical Issues in Stem Cell Research

    OpenAIRE

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramm...

  10. Stem cell aging: Survival of the laziest?

    OpenAIRE

    Muller-Sieburg, Christa; Sieburg, Hans B.

    2008-01-01

    The question whether stem cells age remains an enigma. Traditionally, aging was thought to change the properties of hematopoietic stem cells (HSC). We discuss here a new model of stem cell aging that challenges this view. It is now well-established that the HSC compartment is heterogeneous, consisting of epigenetically fixed subpopulations of HSC that differ in self-renewal and differentiation capacity. New data show that the representation of these HSC subsets changes during aging. HSC that ...

  11. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  12. Stem cell treatment of degenerative eye disease

    Directory of Open Access Journals (Sweden)

    Ben Mead

    2015-05-01

    Full Text Available Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs has so far been reliant on mesenchymal stem cells (MSC. Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs, MSC derived from bone marrow (BMSC, adipose tissues (ADSC and dental pulp (DPSC, together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.

  13. Hematopoietic stem cell expansion : challenges and opportunities

    NARCIS (Netherlands)

    Walasek, Marta A.; van Os, Ronald; de Haan, Gerald; Kanz, L; Fibbe, WE; Lengerke, C; Dick, JE

    2012-01-01

    Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell

  14. Stem cell treatment of degenerative eye disease.

    Science.gov (United States)

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  15. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  16. Stem Cells for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  17. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling

    Science.gov (United States)

    Lien, Wen-Hui; Fuchs, Elaine

    2014-01-01

    In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells—embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells—in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects. PMID:25030692

  18. Stem cell-based approaches in dentistry

    Directory of Open Access Journals (Sweden)

    TA Mitsiadis

    2011-11-01

    Full Text Available Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental mesenchymal stem cells can be easily isolated and are amenable to in vitro expansion while retaining their stemness. In vivo studies realised in small and large animals have evidenced the potential of dental mesenchymal stem cells to promote pulp and periodontal regeneration, but have also underlined new important challenges. The homogeneity of stem cell populations and their quality control, the delivery method, the quality of the regenerated dental tissues and their integration to the host tissue are some of the key challenges. The use of bioactive scaffolds that can elicit effective tissue repair response, through activation and mobilisation of endogenous stem cell populations, constitutes another emerging therapeutic strategy. Finally, the use of stem cells and induced pluripotent cells for the regeneration of entire teeth represents a novel promising alternative to dental implant treatment after tooth loss. In this mini-review, we present the currently applied techniques in restorative dentistry and the various attempts that are made to bridge gaps in knowledge regarding treatment strategies by translating basic stem cell research into the dental practice.

  19. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Patentability of Stem Cells in Australia.

    Science.gov (United States)

    Petering, Jenny; Cowin, Prue

    2015-07-01

    The potential therapeutic applications of stem cells are unlimited. However, the ongoing political and social debate surrounding the intellectual property and patenting considerations of stem cell research has led to the implementation of strict legislative regulations. In Australia the patent landscape surrounding stem cells has evolved considerably over the past 20 years. The Australian Patents Act 1990 includes a specific exclusion to the patentability of human beings and of biological processes for their generation. However, this exclusion has received no judicial consideration to date, and so its scope and potential impact on stem cell patents is unclear. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  3. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  4. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    OpenAIRE

    Otsu, Masahiro; Nakayama, Takashi; Inoue, Nobuo

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate...

  5. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  6. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  7. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  8. Perspectives on the Use of Stem Cells for Autism Treatment

    Directory of Open Access Journals (Sweden)

    Dario Siniscalco

    2013-01-01

    Full Text Available Autism and autism spectrum disorders (ASDs are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.

  9. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  10. Nonclinical safety strategies for stem cell therapies

    International Nuclear Information System (INIS)

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-01-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  11. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells

    NARCIS (Netherlands)

    D. ten Berge (Derk); D. Kurek (Dorota); T. Blauwkamp (Tim); W. Koole (Wouter); A. Maas (Alex); E. Eroglu (Elif); R.K. Siu (Ronald); R. Nusse (Roel)

    2011-01-01

    textabstractPluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref.). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive

  12. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  13. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  14. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form

  15. Induced Pluripotent Stem Cells for Regenerative Medicine

    OpenAIRE

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies...

  16. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  18. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Múnera, Jorge O; Wells, James M

    2017-01-01

    Over the past several decades, developmental biologists have discovered fundamental mechanisms by which organs form in developing embryos. With this information it is now possible to generate human "organoids" by the stepwise differentiation of human pluripotent stem cells using a process that recapitulates organ development. For the gastrointestinal tract, one of the first key steps is the formation of definitive endoderm and mesoderm, a process that relies on the TGFb molecule Nodal. Endoderm is then patterned along the anterior-posterior axis, with anterior endoderm forming the foregut and posterior endoderm forming the mid and hindgut. A-P patterning of the endoderm is accomplished by the combined activities of Wnt, BMP, and FGF. High Wnt and BMP promote a posterior fate, whereas repressing these pathways promotes an anterior endoderm fate. The stomach derives from the posterior foregut and retinoic acid signaling is required for promoting a posterior foregut fate. The small and large intestine derive from the mid and hindgut, respectively.These stages of gastrointestinal development can be precisely manipulated through the temporal activation and repression of the pathways mentioned above. For example, stimulation of the Nodal pathway with the mimetic Activin A, another TGF-β superfamily member, can trigger the differentiation of pluripotent stem cells into definitive endoderm (D'Amour et al., Nat Biotechnol 23:1534-1541, 2005). Exposure of definitive endoderm to high levels of Wnt and FGF promotes the formation of posterior endoderm and mid/hindgut tissue that expresses CDX2. Mid-hindgut spheroids that are cultured in a three-dimensional matrix form human intestinal organoids (HIOs) that are small intestinal in nature Spence et al., Nature 2011. In contrast, activation of FGF and Wnt in the presence of the BMP inhibitor Noggin promotes the formation of anterior endoderm and foregut tissues that express SOX2. These SOX2-expressing foregut spheroids can be

  19. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  20. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  1. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  2. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle......Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle...

  3. Very late onset small intestinal B cell lymphoma associated with primary intestinal lymphangiectasia and diffuse cutaneous warts

    OpenAIRE

    Bouhnik, Y; Etienney, I; Nemeth, J; Thevenot, T; Lavergne-Slove, A; Matuchansky, C

    2000-01-01

    As only a handful of lymphoma cases have been reported in conjunction with primary intestinal lymphangiectasia, it is not yet clear if this association is merely fortuitous or related to primary intestinal lymphangiectasia induced immune deficiency. We report on two female patients, 50 and 58 years old, who developed small intestinal high grade B cell lymphoma a long time (45 and 40 years, respectively) after the initial clinical manifestations of primary intestinal lymphangiectasia. They pre...

  4. Physiology of stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Boer, T.P. de

    2007-01-01

    All chapters in this thesis revolve around the general theme, stem cells and their electrophysiological characteristics and capacity to induce pro-arrhythmia. The first part of this thesis focusses on key aspects that are relevant to possible pro-arrhythmic effects of stem cell transplantation. An

  5. Stem Cell Research and Health Education

    Science.gov (United States)

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  6. Cerebral toxoplasmosis after haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Agnieszka Zaucha-Prażmo

    2017-05-01

    Full Text Available Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic haematopoietic stem cell transplantation (HSCT. It frequently involves the central nervous system. The case is presented of cerebral toxoplasmosis in a 17-year-old youth with Fanconi anaemia treated with haematopoietic stem cell transplantation (HSCT

  7. Pathological modifications of plant stem cell destiny

    Science.gov (United States)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  8. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  9. Representations of stem cell clinics on Twitter.

    Science.gov (United States)

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  10. Molecular regulation of human hematopoietic stem cells

    NARCIS (Netherlands)

    van Galen, P.L.J.

    2014-01-01

    Peter van Galen focuses on understanding the determinants that maintain the stem cell state. Using human hematopoietic stem cells (HSCs) as a model, processes that govern self-renewal and tissue regeneration were investigated. Specifically, a role for microRNAs in balancing the human HSC

  11. A MODEL FOR POSTRADIATION STEM CELL KINETICS,

    Science.gov (United States)

    In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular

  12. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  13. Skeletal stem cells in space and time

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...

  14. Stem Cells: What They Are and What They Do

    Science.gov (United States)

    Stem cells: What they are and what they do Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues, and ...

  15. Stem Cell Research: Unlocking the Mystery of Disease

    Science.gov (United States)

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research ...

  16. Amniotic fluid-derived mesenchymal stem cells as a novel ...

    African Journals Online (AJOL)

    CLEMENTINA

    2012-06-28

    Jun 28, 2012 ... stem cells (AFMSCs) have many advantages over other stem cells: avoiding much ethical controversy ... showed that induced pluripotent stem cells (iPSCs) have ... disadvantages of ESCs, BM-MSCs and iPSCs have.

  17. Spermatogonial stem cells: Progress and prospects

    Directory of Open Access Journals (Sweden)

    Mitsuru Komeya

    2015-01-01

    Full Text Available Twenty years ago, the transplantation of spermatogonial stem cells (SSCs from a mouse to other recipient mice was shown to be feasible, which clearly demonstrated the functional identity of SSCs. Since then, several important new findings and other technical developments have followed, which included a new hypothesis on their cell kinetics and spermatogonial hierarchy in the testis, a culture method allowing their self-renewal and proliferation, a testis tissue organ culture method, which induced their complete differentiation up to sperm, and the in vitro induction of germ cells from embryonic stem cells and induced pluripotent stem cells. These advancements reinforced or advanced our understanding of this unique cell. Nonetheless, there are many unresolved questions in the study of spermatogonial stem cells and a long road remains until these cells can be used clinically in reproductive medicine.

  18. Nanotopographical Control of Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Laura E. McNamara

    2010-01-01

    Full Text Available Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated and direct (force-mediated mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

  19. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  20. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  1. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  2. Clinical trials for stem cell transplantation: when are they needed?

    Science.gov (United States)

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  3. Occurrence of lymphoid cells in the intestine of the Goldfish

    NARCIS (Netherlands)

    Weinberg, Steven

    1975-01-01

    The Goldfish intestine normally contains a large number of lymphocytes, many of them being present in the epithelial layer. After stimulation with antigen, the number of lymphoid cells does not increase, but the proportion of large pyroninophilic cells and plasma cells does. It seems therefore that

  4. Glucocorticoids and hemopoietic stem cells

    International Nuclear Information System (INIS)

    Romashko, O.O.; Berin, G.I.

    1978-01-01

    Analyzing the data of home and foreign investigators the problems of the glucocorticoid effect on blood and bone marrow of experimental (including irradiated ones) animals are discussed. Considered are a character and mechanism of the adrenal cortex hormones effect on blood formation, as well as the effect of pharmacological doses of corticosteroids on CFU, their erythropoietic effect in physiological doses on a morphological picture of bone marrow after irradiation and subsequent introduction of hormones and the hormone effect on intensity of erythropoiesis recovery in irradiated mice. Presented are the experimental data on studying the effect of endogenic hypercorticoidism and a reduced level of endogenic corticosteroids on blood-forming stem cells in the irradiated mice and the data on the ACTH injection effect on CFU migration after irradiation. Evaluated are already available data and further investigations to ground advisability and conditions of using corticosteroids as well as determining rational therapeutic effects on secretion of endogenic glucocorticoids when treating blood system diseases

  5. Stem cell therapy for inflammatory bowel disease

    OpenAIRE

    Duijvestein, Marjolijn

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal (MSC) cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases (IBD). Hematopoietic stem cells are thought to repopulate the immune system and reset the immunological response to luminal antigens. MSCs have the capacity to differentiate into a wide variety of distinct cell lineages and to suppress immune responses in vitro and in vivo. The main goal of this thesis was to study the s...

  6. Curbing stem cell tourism in South Africa.

    Science.gov (United States)

    Meissner-Roloff, Madelein; Pepper, Michael S

    2013-12-01

    Stem cells have received much attention globally due in part to the immense therapeutic potential they harbor. Unfortunately, malpractice and exploitation (financial and emotional) of vulnerable patients have also drawn attention to this field as a result of the detrimental consequences experienced by some individuals that have undergone unproven stem cell therapies. South Africa has had limited exposure to stem cells and their applications and, while any exploitation is detrimental to the field of stem cells, South Africa is particularly vulnerable in this regard. The current absence of adequate legislation and the inability to enforce existing legislation, coupled to the sea of misinformation available on the Internet could lead to an increase in illegitimate stem cell practices in South Africa. Circumstances are already precarious because of a lack of understanding of concepts involved in stem cell applications. What is more, credible and easily accessible information is not available to the public. This in turn cultivates fears born out of existing superstitions, cultural beliefs, rituals and practices. Certain cultural or religious concerns could potentially hinder the effective application of stem cell therapies in South Africa and novel ways of addressing these concerns are necessary. Understanding how scientific progress and its implementation will affect each individual and, consequently, the community, will be of cardinal importance to the success of the fields of stem cell therapy and regenerative medicine in South Africa. A failure to understand the ethical, cultural or moral ramifications when new scientific concepts are introduced could hinder the efficacy and speed of bringing discoveries to the patient. Neglecting proper procedure for establishing the field would lead to long delays in gaining public support in South Africa. Understanding the dangers of stem cell tourism - where vulnerable patients are subjected to unproven stem cell therapies that

  7. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston

    2014-01-01

    immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive....... The recognition that dietary nutrients and microbial communities in the intestine influence both mucosal and systemic immune cell development and function as well as immune-mediated disease has led to an explosion of literature in mucosal immunology in recent years and a growing interest in the functionality...

  8. Fundamental Principles of Stem Cell Banking.

    Science.gov (United States)

    Sun, Changbin; Yue, Jianhui; He, Na; Liu, Yaqiong; Zhang, Xi; Zhang, Yong

    2016-01-01

    Stem cells are highly promising resources for application in cell therapy, regenerative medicine, drug discovery, toxicology and developmental biology research. Stem cell banks have been increasingly established all over the world in order to preserve their cellular characteristics, prevent contamination and deterioration, and facilitate their effective use in basic and translational research, as well as current and future clinical application. Standardization and quality control during banking procedures are essential to allow researchers from different labs to compare their results and to develop safe and effective new therapies. Furthermore, many stem cells come from once-in-a-life time tissues. Cord blood for example, thrown away in the past, can be used to treat many diseases such as blood cancers nowadays. Meanwhile, these cells stored and often banked for long periods can be immediately available for treatment when needed and early treatment can minimize disease progression. This paper provides an overview of the fundamental principles of stem cell banking, including: (i) a general introduction of the construction and architecture commonly used for stem cell banks; (ii) a detailed section on current quality management practices; (iii) a summary of questions we should consider for long-term storage, such as how long stem cells can be stored stably, how to prevent contamination during long term storage, etc.; (iv) the prospects for stem cell banking.

  9. Intestinal stromal cells in mucosal immunity and homeostasis.

    Science.gov (United States)

    Owens, B M J; Simmons, A

    2013-03-01

    A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called "non-immune" cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.

  10. Connecting Mitochondria, Metabolism, and Stem Cell Fate

    Science.gov (United States)

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha

    2015-01-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases. PMID:26134242

  11. Stem Cell: Past, Present and Future- A Review Article | Avasthi ...

    African Journals Online (AJOL)

    Stem cells are basic cells of all multicellular organisms having the potency to differentiate into wide range of adult cells. Self renewal and totipotency are characteristic of stem cells. Though totipotency is shown by very early embryonic stem cells, the adult stem cells possess multipotency and differential plasticity which can ...

  12. Stem cell migration - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-03-01

    Full Text Available The trafficking of stem cells is something unconsciously clear to any biologists (e.g., developmental biologists and physicians (e.g., all those taking care of hematopoietic and bone diseases and traumas; neverthless it is a phenomenon coming out as a hot topic just in these last years. Likely, the difficulties to track stem cells migration in vivo and the understanding of the elusive homing signals matching the circulating stem cells properties that makes these cells to stop and to start multiplication and differentiation....

  13. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Stem cell applications in military medicine.

    Science.gov (United States)

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  15. Pluripotent stem cells and reprogrammed cells in farm animals.

    Science.gov (United States)

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  16. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon

    NARCIS (Netherlands)

    Baker, Ann-Marie; Cereser, Biancastella; Melton, Samuel; Fletcher, Alexander G.; Rodriguez-Justo, Manuel; Tadrous, Paul J.; Humphries, Adam; Elia, George; McDonald, Stuart A. C.; Wright, Nicholas A.; Simons, Benjamin D.; Jansen, Marnix; Graham, Trevor A.

    2014-01-01

    Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls

  17. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  18. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  19. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  20. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  1. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  2. Clinical trials for stem cell therapies

    Directory of Open Access Journals (Sweden)

    Lomax Geoff

    2011-05-01

    Full Text Available Abstract In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun.

  3. The Stem Cell Hypothesis of Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2010-04-01

    Full Text Available BACKGROUND: There is probably no single way to age. Indeed, so far there is no single accepted explanation or mechanisms of aging (although more than 300 theories have been proposed. There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic aging of stem cells or rather to the impairment of stem cell function in the aged tissue environment. CONTENT: Recent data suggest that we age, in part, because our self-renewing stem cells grow old as a result of heritable intrinsic events, such as DNA damage, as well as extrinsic forces, such as changes in their supporting niches. Mechanisms that suppress the development of cancer, such as senescence and apoptosis, which rely on telomere shortening and the activities of p53 and p16INK4a may also induce an unwanted consequence: a decline in the replicative function of certain stem cells types with advancing age. This decrease regenerative capacity appears to pointing to the stem cell hypothesis of aging. SUMMARY: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies. KEYWORDS: stem cells, senescence, telomere, DNA damage, epigenetic, aging.

  4. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  5. Time to Reconsider Stem Cell Induction Strategies

    Directory of Open Access Journals (Sweden)

    Hans-Werner Denker

    2012-12-01

    Full Text Available Recent developments in stem cell research suggest that it may be time to reconsider the current focus of stem cell induction strategies. During the previous five years, approximately, the induction of pluripotency in somatic cells, i.e., the generation of so-called ‘induced pluripotent stem cells’ (iPSCs, has become the focus of ongoing research in many stem cell laboratories, because this technology promises to overcome limitations (both technical and ethical seen in the production and use of embryonic stem cells (ESCs. A rapidly increasing number of publications suggest, however, that it is now possible to choose instead other, alternative ways of generating stem and progenitor cells bypassing pluripotency. These new strategies may offer important advantages with respect to ethics, as well as to safety considerations. The present communication discusses why these strategies may provide possibilities for an escape from the dilemma presented by pluripotent stem cells (self-organization potential, cloning by tetraploid complementation, patenting problems and tumor formation risk.

  6. Adult Stem Cells and Diseases of Aging

    Directory of Open Access Journals (Sweden)

    Lisa B. Boyette

    2014-01-01

    Full Text Available Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.

  7. Stem cell bioprocessing: fundamentals and principles.

    Science.gov (United States)

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-06

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  8. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  9. Induced pluripotent stem (iPS) cells from human fetal stem cells

    OpenAIRE

    Guillot, P. V.

    2016-01-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, f...

  10. Interpreting heterogeneity in intestinal tuft cell structure and function.

    Science.gov (United States)

    Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob; Coffey, Robert J; Lau, Ken S

    2018-05-01

    Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.

  11. Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells

    International Nuclear Information System (INIS)

    Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru; Maruyama, Natsuki; Aihara, Eitaro; Tadaishi, Miki; Shimizu, Makoto; Kobayashi-Hattori, Kazuo

    2017-01-01

    We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivation conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.

  12. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract.

    Science.gov (United States)

    Mills, Jason C; Sansom, Owen J

    2015-07-14

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. Copyright © 2015, American Association for the Advancement of Science.

  13. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    Science.gov (United States)

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  14. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Dengqun Liu

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  15. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  16. Concise Review: Quiescence in Adult Stem Cells

    DEFF Research Database (Denmark)

    Rumman, M; Dhawan, J; Kassem, Moustapha

    2015-01-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve...... stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim...

  17. Stem cells and the evolving notion of cellular identity

    OpenAIRE

    Daley, George Q.

    2015-01-01

    Stem cells are but one class of the myriad types of cells within an organism. With potential to self-renew and capacity to differentiate, stem cells play essential roles at multiple stages of development. In the early embryo, pluripotent stem cells represent progenitors for all tissues while later in development, tissue-restricted stem cells give rise to cells with highly specialized functions. As best understood in the blood, skin and gut, stem cells are the seeds that sustain tissue homeost...

  18. HLA engineering of human pluripotent stem cells.

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  19. HLA Engineering of Human Pluripotent Stem Cells

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  20. Microencapsulation of Stem Cells for Therapy.

    Science.gov (United States)

    Leslie, Shirae K; Kinney, Ramsey C; Schwartz, Zvi; Boyan, Barbara D

    2017-01-01

    An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins. A major challenge in cell-based therapies is localizing the delivered stem cells to the target site. Microencapsulation of cells provides a porous polymeric matrix that can provide a protected environment, localize the cells to one area, and maintain their viability by enabling the exchange of nutrients and waste products between the encapsulated cells and the surrounding tissue. In this chapter, we describe a method to produce injectable microbeads containing a tunable number of stem cells using the biopolymer alginate. The microencapsulation process involves extrusion of the alginate suspension containing cells from a microencapsulator, a syringe pump to control its flow rate, an electrostatic potential to overcome capillary forces and a reduced Ca ++ cross-linking solution containing a nutrient osmolyte, to form microbeads. This method allows the encapsulated cells to remain viable up to three weeks in culture and up to three months in vivo and secrete growth factors capable of supporting tissue regeneration.

  1. Translational findings from cardiovascular stem cell research.

    Science.gov (United States)

    Mazhari, Ramesh; Hare, Joshua M

    2012-01-01

    The possibility of using stem cells to regenerate damaged myocardium has been actively investigated since the late 1990s. Consistent with the traditional view that the heart is a "postmitotic" organ that possesses minimal capacity for self-repair, much of the preclinical and clinical work has focused exclusively on introducing stem cells into the heart, with the hope of differentiation of these cells into functioning cardiomyocytes. This approach is ongoing and retains promise but to date has yielded inconsistent successes. More recently, it has become widely appreciated that the heart possesses endogenous repair mechanisms that, if adequately stimulated, might regenerate damaged cardiac tissue from in situ cardiac stem cells. Accordingly, much recent work has focused on engaging and enhancing endogenous cardiac repair mechanisms. This article reviews the literature on stem cell-based myocardial regeneration, placing emphasis on the mutually enriching interaction between basic and clinical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.

  3. Bioprinting and Differentiation of Stem Cells

    Directory of Open Access Journals (Sweden)

    Scott A. Irvine

    2016-09-01

    Full Text Available The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering.

  4. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  5. STEM CELL RESEARCH-CONCEPT AND CONTROVERSIES

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    cells, heart cells, brain cells, etc.). Some researchers regard them as offering the greatest potential for the .... anaemia, heart damage, corneal damage, etc. To be useful for transplant purposes, stem cells must ... activity in the brain was demonstrated contradicting caja's “no new neurons” dogma. However, research into.

  6. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    Directory of Open Access Journals (Sweden)

    Alastair H. Davies

    2016-01-01

    Full Text Available The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

  7. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  8. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  9. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  10. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  11. Stem cell clinics online: the direct-to-consumer portrayal of stem cell medicine.

    Science.gov (United States)

    Lau, Darren; Ogbogu, Ubaka; Taylor, Benjamin; Stafinski, Tania; Menon, Devidas; Caulfield, Timothy

    2008-12-04

    Despite the immature state of stem cell medicine, patients are seeking and accessing putative stem cell therapies in an "early market" in which direct-to-consumer advertising via the internet likely plays an important role. We analyzed stem cell clinic websites and appraised the relevant published clinical evidence of stem cell therapies to address three questions about the direct-to-consumer portrayal of stem cell medicine in this early market: What sorts of therapies are being offered? How are they portrayed? Is there clinical evidence to support the use of these therapies? We found that the portrayal of stem cell medicine on provider websites is optimistic and unsubstantiated by peer-reviewed literature.

  12. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    Science.gov (United States)

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  13. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    Full Text Available Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC. We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1 increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2 tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3 loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4 chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression

  14. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  15. Stem cells and bone: a historical perspective.

    Science.gov (United States)

    Bianco, Paolo

    2015-01-01

    Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone". Copyright © 2014. Published by Elsevier Inc.

  16. Allogeneic Peripheral Blood Stem Cell Harvest

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Allogeneic Peripheral Blood Stem Cell Harvest. Mobilization protocol. G-CSF 10 mcg/Kg / day for 5 days. Pheresis. Cobe Spectra; Haemonetics mcs+. Enumeration. CD34 counts; Cfu-GM assays.

  17. Mesenchymal stem cell therapy for laryngotracheal stenosis

    DEFF Research Database (Denmark)

    Jakobsen, Kathrine Kronberg; Grønhøj, Christian; Jensen, David H

    2017-01-01

    BACKGROUND: Laryngotracheal stenosis (LTS) can be either congenital or acquired. Laryngeal stenosis is most often encountered after prolonged intubation. The mechanism for stenosis following intubation is believed to be hypertrophic scarring. Mesenchymal stem cells (MSCs) therapy has shown...

  18. Guidelines for human embryonic stem cell research

    National Research Council Canada - National Science Library

    Committee on Guidelines for Human Embryonic Stem Cell Research, National Research Council

    2005-01-01

    Since 1998, the volume of research being conducted using human embryonic stem (hES) cells has expanded primarily using private funds because of restrictions on the use of federal funds for such research...

  19. Stomach development, stem cells and disease

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  20. Generating pluripotent stem cells: Differential epigenetic changes during cellular reprogramming

    OpenAIRE

    Tobin, Stacey C.; Kim, Kitai

    2012-01-01

    Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)—derived by ectopic expression of four reprogramming factors in donor somatic cells—are supe...

  1. Tracking of stem cells for treatment in cardiovascular disease

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2005-01-01

    Various stem cells or progenitor cells are being used to treat cardiovascular disease. In ischemic heart disease, stem cell therapy is expected to regenerate damaged myocardium. To evaluate effects of stem cell treatment, the method to image stem cell location, distribution and differentiation is necessary. Optical imaging, MRI, nuclear imaging methods have been used for tracking stem cells. The methods and problems of each imaging technique are reviewed

  2. Biomaterial-stem cell interactions and their impact on stem cell response

    NARCIS (Netherlands)

    Oziemlak-Schaap, Aneta M.; Kuhn, Philipp T.; van Kooten, Theo G.; van Rijn, Patrick

    2014-01-01

    In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective. Regenerative medicine, in which stem cells play a crucial role, has become an interdisciplinary field between cell biology and materials science. New

  3. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    Science.gov (United States)

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  4. Clinical grade adult stem cell banking.

    Science.gov (United States)

    Thirumala, Sreedhar; Goebel, W Scott; Woods, Erik J

    2009-07-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.

  5. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  6. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  7. Stem Cell Treatment for Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-03-01

    Full Text Available Type 1 diabetes mellitus (T1DM is a common chronic disease in children, characterized by a loss of  cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal  cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs such as bone marrow-, adipose tissue- and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.

  8. Biophotonics sensor acclimatization to stem cells environment

    Science.gov (United States)

    Mohamad Shahimin, Mukhzeer

    2017-11-01

    The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.

  9. Stem cell therapy for ischemic heart diseases.

    Science.gov (United States)

    Yu, Hong; Lu, Kai; Zhu, Jinyun; Wang, Jian'an

    2017-01-01

    Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. Key recent published literatures and ClinicalTrials.gov. Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. Who Defends the Stem Cell's Citadel?

    Science.gov (United States)

    Strick-Marchand, Hélène; Durantel, David

    2018-03-01

    Recently in Cell, Wu et al. (2018) demonstrated that intrinsic expression of a subset of interferon stimulated genes confers resistance to viral infections in stem cells both in vitro and in vivo, while differentiated cells lose this intrinsic gatekeeper expression pattern in favor of inducible interferon responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Wnt signaling in the stem cell niche

    NARCIS (Netherlands)

    Rattis, Frédérique Marie; Voermans, Carlijn; Reya, Tannishtha

    2004-01-01

    All the cells present in the blood are derived from the hematopoietic stem cell (HSC). Because mature blood cells have a limited life span, HSCs must perpetuate themselves through self-renewal to maintain a functional hematopoietic compartment for the lifetime of an organism. This review focuses on

  12. Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0260 TITLE: Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets PRINCIPAL INVESTIGATOR: Carla Kim... Cell Carcinoma Stem Cells as Immunotherapy Targets 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0260 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...SUPPLEMENTARY NOTES 14. ABSTRACT Lung squamous cell carcinoma (SCC) is the second most common type of lung cancer, and immunotherapy is a promising new

  13. In vivo stem cell transplantation using reduced cell numbers.

    Science.gov (United States)

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  14. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  15. Autophagy regulates the stemness of cervical cancer stem cells

    Directory of Open Access Journals (Sweden)

    Yang Y

    2017-06-01

    Full Text Available Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSCs are a rare population of multipotent cells with the capacity to self-renew. It has been reported that there are CSCs in cervical cancer cells. Pluripotency-associated (PA transcription factors such as Oct4, Sox2, Nanog and CD44 have been used to isolate CSCs subpopulations. In this study, we showed that autophagy plays an important role in the biological behavior of cervical cancer cells. The expression of the autophagy protein Beclin 1 and LC3B was higher in tumorspheres established from human cervical cancers cell lines (and CaSki than in the parental adherent cells. It was also observed that the basal and starvation-induced autophagy flux was higher in tumorspheres than in the bulk population. Autophagy could regulate the expression level of PA proteins in cervical CSCs. In addition, CRISPR/Cas 9-mediated Beclin 1 knockout enhanced the malignancy of HeLa cells, leading to accumulation of PA proteins and promoted tumorsphere formation. Our findings suggest that autophagy modulates homeostasis of PA proteins, and Beclin 1 is critical for CSC maintenance and tumor development in nude mice. This demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance. Keywords: cervical cancer, autophagy, cancer stem cell, LC3, Oct4

  16. Stem cell research: applicability in dentistry.

    Science.gov (United States)

    Mathur, Shivani; Chopra, Rahul; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj

    2014-01-01

    In the face of extraordinary advances in the prevention, diagnosis, and treatment of human diseases, the inability of most tissues and organs to repair and regenerate after damage is a problem that needs to be solved. Stem cell research is being pursued in the hope of achieving major medical breakthroughs. Scientists are striving to create therapies that rebuild or replace damaged cells with tissues grown from stem cells that will offer hope to people suffering from various ailments. Regeneration of damaged periodontal tissue, bone, pulp, and dentin is a problem that dentists face today. Stem cells present in dental pulp, periodontal ligament, and alveolar bone marrow have the potential to repair and regenerate teeth and periodontal structures. These stem cells can be harvested from dental pulp, periodontal ligament, and/or alveolar bone marrow; expanded; embedded in an appropriate scaffold; and transplanted back into a defect to regenerate bone and tooth structures. These cells have the potential to regenerate dentin, periodontal ligament, and cementum and can also be used to restore bone defects. The kind of scaffold, the source of cells, the type of in vitro culturing, and the type of surgical procedure to be used all require careful consideration. The endeavor is clearly multidisciplinary in nature, and the practicing dental surgeon has a critical role in it. Playing this role in the most effective way requires awareness of the huge potential associated with the use of stem cells in a clinical setting, as well as a proper understanding of the related problems.

  17. Concise Review: Stem Cells in Osteoimmunology.

    Science.gov (United States)

    Fierro, Fernando A; Nolta, Jan A; Adamopoulos, Iannis E

    2017-06-01

    Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Multipotent stem cells of mother's milk

    Directory of Open Access Journals (Sweden)

    Alessandra Reali

    2016-03-01

    Full Text Available In recent years the presence of stem cells (hBSCs: human breastmilk-derived stem cells and epithelial progenitors has been demonstrated in mother’s milk (MM. Stem cells present in samples of fresh MM exhibit a high degree of vitality and this makes possible the performance of cell cultures and to evaluate the differentiation capacity of the hBSCs. The most important datum that expresses the enormous potential of the use of MM stem cells is the presence of a cell population capable of differentiating into the three mesoderm, endoderm and ectoderm lines. The small number of studies and MM samples analyzed and the different sampling methods applied suggest standardization in the collection, analysis and culture of MM in future studies, in consideration of the well-known extreme variability of MM composition, also from the standpoint of cells.The analysis of literature data confirms the uniqueness of MM and its enormous potential.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  19. Two subpopulations of stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Amagai, T.; Kina, T.; Sado, T.; Nishikawa, S.

    1985-01-01

    An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells

  20. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  1. Socializing with the neighbors: stem cells and their niche.

    Science.gov (United States)

    Fuchs, Elaine; Tumbar, Tudorita; Guasch, Geraldine

    2004-03-19

    The potential of stem cells in regenerative medicine relies upon removing them from their natural habitat, propagating them in culture, and placing them into a foreign tissue environment. To do so, it is essential to understand how stem cells interact with their microenvironment, the so-called stem cell niche, to establish and maintain their properties. In this review, we examine adult stem cell niches and their impact on stem cell biology.

  2. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  3. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  4. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  5. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells

    Science.gov (United States)

    Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian

    2013-01-01

    Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and

  6. Osteopontin attenuates acute gastrointestinal graft-versus-host disease by preventing apoptosis of intestinal epithelial cells

    International Nuclear Information System (INIS)

    Kawakami, Kentaro; Minami, Naoki; Matsuura, Minoru; Iida, Tomoya; Toyonaga, Takahiko; Nagaishi, Kanna; Arimura, Yoshiaki; Fujimiya, Mineko; Uede, Toshimitsu; Nakase, Hiroshi

    2017-01-01

    Background and aims: Acute graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation, which often targets gastrointestinal (GI) tract. Osteopontin (OPN) plays an important physiological role in the efficient development of Th1 immune responses and cell survival by inhibiting apoptosis. The role of OPN in acute GI-GVHD is poorly understood. In the present study, we investigated the role of OPN in donor T cells in the pathogenicity of acute GI-GVHD. Methods: OPN knockout (KO) mice and C57BL/6 (B6) mice were used as donors, and (C57BL/6 × DBA/2) F1 (BDF1) mice were used as allograft recipients. Mice with acute GI-GVHD were divided into three groups: the control group (BDF1→BDF1), B6 group (B6→BDF1), and OPN-KO group (OPN-KO→BDF1). Bone marrow cells and spleen cells from donors were transplanted to lethally irradiated recipients. Clinical GVHD scores were assessed daily. Recipients were euthanized on day 7 after transplantation, and colons and small intestines were collected for various analyses. Results: The clinical GVHD score in the OPN-KO group was significantly increased compared with the B6 and control groups. We observed a difference in the severity of colonic GVHD between the OPN-KO group and B6 group, but not small intestinal-GVHD between these groups. Interferon-γ, Tumor necrosis factor-α, Interleukin-17A, and Interleukin-18 gene expression in the OPN-KO group was differed between the colon and small intestine. Flow cytometric analysis revealed that the fluorescence intensity of splenic and colonic CD8 T cells expressing Fas Ligand was increased in the OPN-KO group compared with the B6 group. Conclusion: We demonstrated that the importance of OPN in T cells in the onset of acute GI-GVHD involves regulating apoptosis of the intestinal cell via the Fas-Fas Ligand pathway. - Highlights: • A lack of osteopontin in donor cells exacerbated clinical gastrointestinal GVHD. • Donor cells lacking

  7. Lymphoscintigraphy and autologous stem cell implantation

    International Nuclear Information System (INIS)

    Peña, Yamile; Batista, Juan F.; Perera, Alejandro; Torres, Leonel A.; Sánchez, Elvia L.; Sánchez, Yolaine; Ducat, Luis; Prats, Anais; Hernández, Porfirio; Romero, Susana; Goicochea, Pedro; Quintela, Ana M.

    2016-01-01

    Lymphoscintigraphy is the criterion standard technique for the diagnosis of lymphedema. Advances of the application of autologous hematopoietic stem cells in ischemic disorders of lower limbs have increased the attention of researchers in this field. Aim: To determine the usefulness of lymphoscintigraphy for the assessment the efficacy of autologous stem cell implantation in patients with chronic lymphedema of the upper and lower limbs. Methods: Sixty-five patients were included. Clinical evaluation and lymphoscintigraphy were performed before and six months after stem cells implantation. The stem cells implantations were carried out by multiple superficial and deep injections in the trajectory of the lymphatic vessels and also in the inguinal region. A volume of 0.75 to 1.00 mL of cell suspension (1.0-2.2 x 109 stem cells) was administered in each injection site. Lymphoscintigraphy: Whole-body scans were acquired at 20 minutes, 1 hour, and 3 hours after administration of 185 to 259 MBq (5–7mCi) of 99m Tc-albumin nanocolloids in the interdigital space of both limbs. The anatomy and function of the lymphatic system were evaluated. Results: Functional assessment before implantation of stem cells showed that 69.2% of the patients had severe lymphatic insufficiency. The 61.5% of patients showed clinical improvement, confirmed by the results of the lymphoscintigraphy. The 46.1% of the cases evaluated showed a clear improvement. The study showed that the isotopic lymphography can evaluate the therapeutic response and its intensity. Conclusion: Lymphoscintigraphy is a useful technique for the evaluation and monitoring of autologous stem cell transplantation in patients with chronic lymphedema. (author)

  8. Human stem cells for craniomaxillofacial reconstruction.

    Science.gov (United States)

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.

  9. Stem Cell, Regenerative Medicine and Cancer | Center for Cancer Research

    Science.gov (United States)

    Of the estimated trillion cells that build up our bodies, only a little number can self-renew and give rise to many different cell types. These unspecialized cells are called stem cells. Stem cell division and differentiation is fundamental to the development of the mature organism. Stem cells have recently attracted significant attention largely due to their potential medical

  10. Differential marker expression by cultures rich in mesenchymal stem cells

    Science.gov (United States)

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  11. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Organization of haemopoietic stem cells: the generation-age hypothesis

    International Nuclear Information System (INIS)

    Rosendaal, M.; Hodgson, G.S.; Bradley, T.R.

    1978-01-01

    This paper proposes that the previous division history of each stem cell is one determinant of the functional organisation of the haemopoietic stem cell population. Older stem cell are used to form blood before younger ones. The stem cells generating capacity of a lineage is finite, and cells are eventually lost to the system by forming two committed precursors of the cell lines, and the next oldest stem cell takes over. Hence the proposed term 'generation-age hypothesis', supported by experimental evidence. Older stem cells from normal bone marrow and 13 day foetal liver were stripped away with phase-specific drugs revealing a younger population of stem cells with three-to four-fold greater stem cell generating capacity. Normal stem cells aged by continuous irradiation and serial retransplantation had eight-fold reduced generating capacity. That of stem cells in the bloodstream was half to a quarter that of normal bone marrow stem cells. There were some circulating stem cells, identified by reaction to brain-associated antigen, positive for 75% of normal femoral stem cells but not their progeny, whose capacity for stem cell generation was an eighth to one fortieth that of normal cells. (U.K.)

  13. A functional model for adult stem cells in epithelial tissues.

    NARCIS (Netherlands)

    Verstappen, J.; Katsaros, C.; Torensma, R.; Hoff, J.W. Von den

    2009-01-01

    Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem

  14. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  15. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    Science.gov (United States)

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  16. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  17. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  18. Esterification of xanthophylls by human intestinal Caco-2 cells.

    Science.gov (United States)

    Sugawara, Tatsuya; Yamashita, Kyoko; Asai, Akira; Nagao, Akihiko; Shiraishi, Tomotaka; Imai, Ichiro; Hirata, Takashi

    2009-03-15

    We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5mumol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.

  19. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    Science.gov (United States)

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  20. Tissue response after radiation exposure. Intestine

    International Nuclear Information System (INIS)

    Otsuka, Kensuke; Tomita, Masanori; Yamauchi, Motohiro; Iwasaki, Toshiyasu

    2014-01-01

    Gastrointestinal syndrome followed by 'gut death' is due to intestinal disorders. This syndrome is induced by high-dose (>10 Gy) of ionizing radiation. Recovery from the gastrointestinal syndrome would depend on the number of survived clonogens and regeneration capability of crypts. These tissue alterations can be observed by high-dose radiation, however, cellular dynamics in crypts can be affected by low-dose radiation. For example, Potten et al. found that low-dose radiation induce apoptosis of intestinal stem cells, which produce all differentiated function cells. Recently, intestinal stem cells are characterized by molecular markers such as Lgr5. Since intestinal adenomas can be induced by deletion of Apc gene in Lgr5 + stem cells, it is widely recognized that Lgr5 + stem cells are the cell-of-origin of cancer. Duodenal Lgr5 + stem cells are known as radioresistant cells, however, we found that ionizing radiation significantly induces the turnover of colonic Lgr5 + stem cells. Combined with the knowledge of other radioresistant markers, stem-cell dynamics in tissue after irradiation are becoming clear. The present review introduces the history of gastrointestinal syndrome and intestinal stem cells, and discusses those future perspectives. (author)

  1. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  2. In Vitro Cardiomyogenic Potential of Human Amniotic Fluid Stem Cells

    OpenAIRE

    Guan, Xuan; Delo, Dawn M.; Atala, Anthony; Soker, Shay

    2011-01-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including the inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells, and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy by testing the in vitro differentiation capab...

  3. Intestinal bacteria and the regulation of immune cell homeostasis.

    Science.gov (United States)

    Hill, David A; Artis, David

    2010-01-01

    The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

  4. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    DEFF Research Database (Denmark)

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T

    2005-01-01

    The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation of the en...

  5. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  6. Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report

    Science.gov (United States)

    Shroff, Geeta

    2016-01-01

    Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312

  7. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...... be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...... the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell...

  8. Genetic modification of stem cells for transplantation.

    Science.gov (United States)

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  9. Embryonic stem cells in pig and cattle

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul; Wolf, Xenia Asbæk; Rasmussen, Mikkel Aabech

    2007-01-01

    Porcine and bovine cell lines derived from the inner cell mass (ICM) or epiblasts of blastocysts have been maintained over extended periods of time and characterized by morphology, identification of some stem cell markers and, in few cases, by production of chimaeric offspring. However, germ line...... transmission in chimaeras has never been obtained. Due to this incomplete characterization of the cell lines, the expression embryonic stem (ES)-like cells is presently used in pig and cattle. The ICM or epiblast can be isolated from the blastocyst by whole blastocyst culture, mechanical isolation......, or immunosurgery, and they are generally cultured on feeder cells. The resulting ES-like cells may be differentiated in vivo by chimaera and teratoma formation or in vitro by embryoid body formation and monolayer induction. It is likely that more well characterized and stable porcine and bovine ES cell lines...

  10. Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research

    NARCIS (Netherlands)

    de Rooij, Dirk G.; Mizrak, S. Canan

    2008-01-01

    In recent years, embryonic stem (ES) cell-like cells have been obtained from cultured mouse spermatogonial stem cells (SSCs). These advances have shown that SSCs can transition from being the stem cell-producing cells of spermatogenesis to being multipotent cells that can differentiate into

  11. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  12. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  13. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  14. Wnt Signalling in Gastrointestinal Epithelial Stem Cells

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2018-03-01

    Full Text Available Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.

  15. Stem cell extracellular vesicles and kidney injury

    OpenAIRE

    Grange, Cristina; Iampietro, Corinne; Bussolati, Benedetta

    2017-01-01

    Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstra...

  16. The Use of Embryonic Stem Cells

    OpenAIRE

    Corkery, Padraig

    2002-01-01

    Over the past year there has been great interest, optimism and anxiety in many societies about developments in the use of embryonic stem cells (ES cells). Within the scientific community there has been debate for some time on the merits and ethical implications of using ES cells. The discussion entered the public domain inthe decisive way during the past year when there were significant changes in legislation governing the use of such cells in Britain and the United States. These changes c...

  17. What's missing? Discussing stem cell translational research in educational information on stem cell "tourism".

    Science.gov (United States)

    Master, Zubin; Zarzeczny, Amy; Rachul, Christen; Caulfield, Timothy

    2013-01-01

    Stem cell tourism is a growing industry in which patients pursue unproven stem cell therapies for a wide variety of illnesses and conditions. It is a challenging market to regulate due to a number of factors including its international, online, direct-to-consumer approach. Calls to provide education and information to patients, their families, physicians, and the general public about the risks associated with stem cell tourism are mounting. Initial studies examining the perceptions of patients who have pursued stem cell tourism indicate many are highly critical of the research and regulatory systems in their home countries and believe them to be stagnant and unresponsive to patient needs. We suggest that educational material should include an explanation of the translational research process, in addition to other aspects of stem cell tourism, as one means to help promote greater understanding and, ideally, curb patient demand for unproven stem cell interventions. The material provided must stress that strong scientific research is required in order for therapies to be safe and have a greater chance at being effective. Through an analysis of educational material on stem cell tourism and translational stem cell research from patient groups and scientific societies, we describe essential elements that should be conveyed in educational material provided to patients. Although we support the broad dissemination of educational material on stem cell translational research, we also acknowledge that education may simply not be enough to engender patient and public trust in domestic research and regulatory systems. However, promoting patient autonomy by providing good quality information to patients so they can make better informed decisions is valuable in itself, irrespective of whether it serves as an effective deterrent of stem cell tourism. © 2013 American Society of Law, Medicine & Ethics, Inc.

  18. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  19. the production of mouse embryonic stem cells

    Indian Academy of Sciences (India)

    MADU

    What history tells us VII. Twenty-five years ago: the production of mouse embryonic stem cells ... cells into the cavity of the blastocyst, it will be possible to test the effect of .... to the use of efficient immunosuppressive drugs like cyclosporin – was ...

  20. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2007-05-01

    165-72. 60. Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Tumer Z, Tommerup N, et al. Hedgehog signaling in small-cell lung cancer : frequent......NUMBER Chemo Resistance of Breast Cancer Stem Cells 5b. GRANT NUMBER W81XWH-04-1-0471 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d