WorldWideScience

Sample records for intestinal interstitial cells

  1. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle......Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle...

  2. Interstitial cells of Cajal and Auerbach's plexus. A scanning electron microscopical study of guinea-pig small intestine

    DEFF Research Database (Denmark)

    Jessen, Harry; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy......Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy...

  3. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1991-01-01

    with elastin fibers. The organization shown in this study strongly supports the concept of interstitial cells of Cajal as important regulatory cells also in the human small intestine. The characteristic cytology and organization of interstitial cells of Cajal may provide a basis for future morphological......Previous morphological and electrophysiological studies have supported the hypothesis that interstitial cells of Cajal have important regulatory (pacemaker) functions in the gut. In the current study, interstitial cells of Cajal associated with Auerbach's plexus in human small intestine were...... studied. Freshly resected intestine was examined by light and electron microscopy. The interstitial cells of Cajal resembled modified smooth muscle cells. They had caveolae and dense bodies, an incomplete basal lamina, a very well-developed smooth endoplasmic reticulum, and abundant intermediate (10 nm...

  4. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Mikkelsen, H B; Thuneberg, L

    1992-01-01

    Evidence showing that interstitial cells of Cajal have important regulatory functions in the gut musculature is accumulating. In the current study, the ultrastructure of the deep muscular plexus and associated interstial cells of Cajal in human small intestine were studied to provide a reference...... a continuous basal lamina, caveolae, intermediate filaments, dense bodies, dense bands, and a well-developed subsurface smooth endoplasmic reticulum), but the arrangement of organelles was clearly different, and cisternae of granular endoplasmic reticulum were abundant. Interstitial cells of Cajal were......, and only few gap junctions with other interstitial cells of Cajal or with the musculature were observed. Compared with interstitial cells of Cajal from other mammals, those associated with the deep muscular plexus in the human small intestine more closely resemble smooth muscle cells...

  5. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Dengqun Liu

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  6. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity

    DEFF Research Database (Denmark)

    Huizinga, J D; Thuneberg, L; Klüppel, M

    1995-01-01

    The pacemaker activity in the mammalian gut is responsible for generating anally propagating phasic contractions. The cellular basis for this intrinsic activity is unknown. The smooth muscle cells of the external muscle layers and the innervated cellular network of interstitial cells of Cajal......, which is closely associated with the external muscle layers of the mammalian gut, have both been proposed to stimulate pacemaker activity. The interstitial cells of Cajal were identified in the last century but their developmental origin and function have remained unclear. Here we show...... of Cajal associated with Auerbach's nerve plexus and intestinal pacemaker activity....

  7. The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.

    Science.gov (United States)

    Becheanu, G; Manuc, M; Dumbravă, Mona; Herlea, V; Hortopan, Monica; Costache, Mariana

    2008-01-01

    Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distribution pattern of ICC in the normal and pathological human colon was evaluated by immunohistochemistry using antibodies for CD117, CD34, and S-100. In two cases with intestinal chronic idiopathic pseudo-obstruction we found a diffuse or focal reducing number of Cajal cells, the loss of immunoreactivity for CD117 being correlated with loss of immunoreactivity for CD34 marker. Our study revealed that the number of interstitial cells of Cajal also decrease in colonic diverticular disease and Crohn disease (p<0.05), whereas the number of enteric neurones appears to be normal. These findings might explain some of the large bowel motor abnormalities known to occur in these disorders. Interstitial Cajal cells may play an important role in pathogenesis and staining for CD117 on transmural intestinal surgical biopsies could allow a more extensive diagnosis in evaluation of chronic intestinal pseudo-obstruction.

  8. Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal -

    Directory of Open Access Journals (Sweden)

    Kim Jung Nam

    2013-03-01

    Full Text Available Objective: Pyungwi-san (PWS plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs are pacemaker cells that generate slow waves in the gastrointestinal (GI tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The wholecell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a Ca2+-free solution and a thapsigargin, a Ca2+-ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.

  9. Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon

    DEFF Research Database (Denmark)

    Rumessen, J J

    1994-01-01

    Interstitial cells of Cajal (ICC) were described a century ago by Ramón y Cajal a.o. as primitive neurons in the intestines. In the period 1900-1960 a large number of light microscopical studies of ICC were published, in which ICC were identified by heir characteristic morphology. After 1960...... electron microscopical studies emphasized similarities between ICC and fibroblasts. In our early studies of ICC in the external musculature of mouse small intestine, we identified ICC by their characteristic morphology and topography, and we analyzed the relation between ICC, autonomic nerves and smooth...... muscle. These studies strongly suggested that ICC were fundamental regulators of external muscle function. These hypotheses have since been supported by independent morphological and electrophysiological evidence, strongly suggesting a pacemaker role of some ICC populations as well as other regulatory...

  10. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    Science.gov (United States)

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or

  11. Impact of the alterations in the interstitial cells of Cajal on intestinal motility in post-infection irritable bowel syndrome.

    Science.gov (United States)

    Yang, Bo; Zhou, Xu-Chun; Lan, Cheng

    2015-04-01

    The interstitial cells of Cajal (ICC) are basic components of gastrointestinal motility. However, changes in ICC and their role in post‑infection irritable bowel syndrome (PI‑IBS) remain to be elucidated. To observe the impact of alterations in the ICC on intestinal motility in a PI‑IBS mouse model, female C57BL\\6 mice were infected by the oral administration of 400 Trichinella spiralis larvae. The abdominal withdrawal reflex, intestine transportation time (ITT), grain numbers, Bristol scores, wet/dry weights and the percentage water content of the mice feces every 2 h were used to assess changes in the intestinal motor function. The intestines were excised and sectioned for pathological and histochemical examination. These intestines were also used to quantify the protein and mRNA expression of c‑kit. The C57BL\\6 mouse can act as a PI‑IBS model at day 56 post‑infection. Compared with the control mice, the ITT was shorter, the grain numbers, Bristol scores, wet weights and water contents of the mice feces were higher and the dry weights were unchanged in the PI‑IBS mice. The protein and mRNA expression levels of c‑kit were upregulated in the entire PI‑IBS mouse intestines. Following immunohistochemical staining, the increased number of c‑kit‑positive cells were detected predominantly in the submucosa and myenteron. These results suggested that the alterations of the ICC resulted in the changes of the intestinal motility patterns in the PI‑IBS mouse models induced by Trichinella spiralis infection, which may be the main mechanism underlying intestinal motility disorders in PI‑IBS.

  12. Total Glucosides of Paeony Promote Intestinal Motility in Slow Transit Constipation Rats through Amelioration of Interstitial Cells of Cajal.

    Directory of Open Access Journals (Sweden)

    Feiye Zhu

    Full Text Available Using an atropine-diphenoxylate-induced slow transit constipation (STC model, this study explored the effects of the total glucosides of paeony (TGP in the treatment of STC and the possible mechanisms.A prospective experimental animal study.The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA were employed to determine the changes of nitric oxide (NO, nitric oxide synthase (NOS, vasoative intestinal peptide (VIP and the P substance (SP in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR.The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level.The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP.

  13. Total Glucosides of Paeony Promote Intestinal Motility in Slow Transit Constipation Rats through Amelioration of Interstitial Cells of Cajal

    Science.gov (United States)

    Zhu, Feiye; Xu, Shan; Zhang, Yongsheng; Chen, Fangming; Ji, Jinjun; Xie, Guanqun

    2016-01-01

    Objectives Using an atropine-diphenoxylate-induced slow transit constipation (STC) model, this study explored the effects of the total glucosides of paeony (TGP) in the treatment of STC and the possible mechanisms. Study Design A prospective experimental animal study. Methods The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA) were employed to determine the changes of nitric oxide (NO), nitric oxide synthase (NOS), vasoative intestinal peptide (VIP) and the P substance (SP) in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF) were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR). Results The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC) increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level. Conclusion The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP. PMID:27478893

  14. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions

    DEFF Research Database (Denmark)

    Mikkelsen, Hanne B

    2010-01-01

    Interstitial cells of Cajal (ICC) are recognized as pacemaker cells for gastrointestinal movement and are suggested to be mediators of neuromuscular transmission. Intestinal motility disturbances are often associated with a reduced number of ICC and/or ultrastructural damage, sometimes associated...... conditions such as Crohn's disease and achalasia, ICC and mast cells develop close spatial contacts and piecemeal degranulation is possibly triggered....

  15. Interstitial Cells of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Vladimír Pucovský

    2010-01-01

    Full Text Available Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.

  16. Modulation of Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal by Gamisoyo-San, a Traditional Chinese Herbal Medicine.

    Science.gov (United States)

    Kim, Doeun; Kim, Jung Nam; Nam, Joo Hyun; Lee, Jong Rok; Kim, Sang Chan; Kim, Byung Joo

    2018-04-19

    The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions. © 2018 S. Karger AG, Basel.

  17. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    Science.gov (United States)

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was

  18. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    Science.gov (United States)

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it

  19. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-01-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  20. Plexus muscularis profundus and associated interstitial cells. I. Light microscopical studies of mouse small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1982-01-01

    The zinc iodide/osmic acid (ZIO) method was used in a modification that selectively stained nerves and associated interstitial cells of Cajal (ICC) of muscularis externa. Due to its selectivity the method allowed a detailed stereoscopical analysis of whole mounts with respect to the topography an...

  1. Inhibitory Neural Regulation of the Ca2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine

    Directory of Open Access Journals (Sweden)

    Salah A. Baker

    2018-04-01

    Full Text Available Gastrointestinal motility is coordinated by enteric neurons. Both inhibitory and excitatory motor neurons innervate the syncytium consisting of smooth muscle cells (SMCs interstitial cells of Cajal (ICC and PDGFRα+ cells (SIP syncytium. Confocal imaging of mouse small intestines from animals expressing GCaMP3 in ICC were used to investigate inhibitory neural regulation of ICC in the deep muscular plexus (ICC-DMP. We hypothesized that Ca2+ signaling in ICC-DMP can be modulated by inhibitory enteric neural input. ICC-DMP lie in close proximity to the varicosities of motor neurons and generate ongoing Ca2+ transients that underlie activation of Ca2+-dependent Cl− channels and regulate the excitability of SMCs in the SIP syncytium. Electrical field stimulation (EFS caused inhibition of Ca2+ for the first 2–3 s of stimulation, and then Ca2+ transients escaped from inhibition. The NO donor (DEA-NONOate inhibited Ca2+ transients and Nω-Nitro-L-arginine (L-NNA or a guanylate cyclase inhibitor (ODQ blocked inhibition induced by EFS. Purinergic neurotransmission did not affect Ca2+ transients in ICC-DMP. Purinergic neurotransmission elicits hyperpolarization of the SIP syncytium by activation of K+ channels in PDGFRα+ cells. Generalized hyperpolarization of SIP cells by pinacidil (KATP agonist or MRS2365 (P2Y1 agonist also had no effect on Ca2+ transients in ICC-DMP. Peptidergic transmitter receptors (VIP and PACAP are expressed in ICC and can modulate ICC-DMP Ca2+ transients. In summary Ca2+ transients in ICC-DMP are blocked by enteric inhibitory neurotransmission. ICC-DMP lack a voltage-dependent mechanism for regulating Ca2+ release, and this protects Ca2+ handling in ICC-DMP from membrane potential changes in other SIP cells.

  2. Effects of γ irradiation of hydra: elimination of interstitial cells from viable hydra

    International Nuclear Information System (INIS)

    Fradkin, M.; Kakis, H.; Campbell, R.D.

    1978-01-01

    Hydra attenuata and H. magnipapillata were γ-irradiated from a cesium source. All doses which had any observable effect (3000 rad and above) resulted in a reduction in the number of interstitial cells and of their differentiated product cells, or in the complete elimination of these cells. Interstitial cells were essentially completely eliminated within 5 days after irradiation doses above 5500 rad, and these hydra died. Irradiation doses of 4200 to 5500 rad resulted in a mixture of effects: some hydra recovered completely, some lost all interstitial cells and died, and some lost interstitial cells but could be propagated, as asexually reproducing clones, by hand feeding them. Hydra of some of these hand-fed clones entirely lacked interstitial cells and did not recover interstitial cells during subsequent culturing. Yet when these hydra were repopulated by interstitial cells from a normal hydra, they were restored to normal. Nerve cells became depleted more slowly than interstitial cells following irradiation, so animals can be obtained which possess nerve but no stem (interstitial) cells. The nerve cells and other derivatives of interstitial cells eventually disappear upon prolonged culture of the hydra. Thus γ irradiation can be used to eliminate interstitial cells from hydra, leaving viable polyps composed only of epithelial cells

  3. Advanced sickle cell associated interstitial lung disease presenting ...

    African Journals Online (AJOL)

    Previous studies have reported abnormal pulmonary function and pulmonary hypertension among Nigerians with sickle cell disease, but there is no report of interstitial lung disease among them. We report a Nigerian sickle cell patient who presented with computed tomography proven interstitial lung disease complicated by ...

  4. Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2012-01-01

    Full Text Available Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells caused by interstitial fluid flow. The numerical simulation results show the following: (i the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.

  5. Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation.

    Science.gov (United States)

    Gomez-Pinilla, Pedro J; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E; Matteoli, Gianluca

    2014-01-01

    Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+) , devoid of mast cells but with intact Kit signaling. The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. Kit(W-sh/W-sh) and Cpa3(Cre/+) mice, and by use of the mast cell stabilizer cromolyn. Kit(W-sh/W-sh) mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3(Cre/+) mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3(Cre/+) mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3(+/+) ). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.

  6. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    Science.gov (United States)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  7. c-Kit mutation reduce intestinal epithelial cell proliferation and migration, but not influence intestinal permeability stimulated by lipopolysaccharide.

    Science.gov (United States)

    Xue, Hong; Wang, Feng Yun; Kang, Qian; Tang, Xu Dong

    2018-06-20

    The proto-oncogene c-kit, as a marker of interstitial cells of Cajal (ICCs) in the gastrointestinal tract, plays an important role in the ICCs. Although limited evidences showed c-kit is present in the colonic epithelium but its roles remain unclear. In the present study, we aimed to investigate the expression, location and function of c-kit in the intestinal epithelium. Immunofluorescence, western blotting, and RT-PCR were performed to detect the expression and location of c-kit in the intestinal mucosa of WT mice. We investigated intestinal epithelial proliferation and migration in vivo by performing 5-Bromodeoxyuridine (BrdU) incorporation and Ki-67 staining in WT and Wads m/m mice. An Ussing chamber with fluorescein-isothiocyanate dextran 4000 was used to detect the transepithelial electric resistance (TER), short circuit current (ISC) and permeability across ex vivo colon segments under control and endotoxaemia conditions. We demonstrated that c-kit was located and expressed in the gut crypt compartment in WT mice, which was demonstrated in the c-kit mutant mice (Wads m/m ). In addition, both the number of proliferating cells and the percentage of the distance migrated were lower in the Wads m/m mice than those in the WT mice. Moreover, the intestinal permeability, TER and tight junction were unaltered in the Wads m/m mice under endotoxic conditions compared with those in both the control condition and the WT mice. Altogether, these observations imply that the expression of c-kit in the colonic epithelium is involved in the proliferation and permeability of the colonic epithelium. Copyright © 2018. Published by Elsevier GmbH.

  8. CD34-positive interstitial cells of the human detrusor

    DEFF Research Database (Denmark)

    Rasmussen, Helle; Hansen, Alastair; Smedts, Frank

    2007-01-01

    using a panel of antibodies directed against CD117/c-kit, CD34, CD31, S100, tryptase, neurofilament, NSE, Factor-VIII and GFAP. A striking finding was an interstitial type of cell which is CD34 immunoreactive (CD34-ir) but CD117/c-kit negative. The cells have a tentacular morphology, enveloping...... flattened processes, ramifying primarily in a bipolar fashion. Using immunoelectron microscopy (I-TEM) it was possible to view CD34 gold labelling of cells corresponding to interstitial cells. Although similar CD34-positive cells have been demonstrated in the bowel wall, they have never been described...... in the detrusor. The ontogeny and function of CD34-ir, a kit-negative cell, is unknown, but it may be involved in smooth muscle contraction....

  9. Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation.

    Directory of Open Access Journals (Sweden)

    Pedro J Gomez-Pinilla

    Full Text Available INTRODUCTION: Intestinal manipulation (IM during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI. However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+ , devoid of mast cells but with intact Kit signaling. DESIGN: The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. Kit(W-sh/W-sh and Cpa3(Cre/+ mice, and by use of the mast cell stabilizer cromolyn. RESULTS: Kit(W-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3(Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3(Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3(+/+ . Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. CONCLUSIONS: Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast

  10. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  11. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-01

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  12. Intravascular Large B-Cell Lymphoma Presenting as Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Elham Vali Khojeini

    2014-01-01

    Full Text Available Intravascular large B-cell lymphoma (IVLBL is a rare subtype of diffuse large B-cell lymphoma that resides in the lumen of blood vessels. Patients typically present with nonspecific findings, particularly bizarre neurologic symptoms, fever, and skin lesions. A woman presented with shortness of breath and a chest CT scan showed diffuse interstitial thickening and ground glass opacities suggestive of an interstitial lung disease. On physical exam she was noted to have splenomegaly. The patient died and at autopsy was found to have an IVLBL in her lungs as well as nearly all her organs that were sampled. Although rare, IVLBL should be included in the differential diagnosis of interstitial lung disease and this case underscores the importance of the continuation of autopsies.

  13. Update on small intestinal stem cells

    OpenAIRE

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-01-01

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to id...

  14. Update on small intestinal stem cells.

    Science.gov (United States)

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  15. TNF-α inhibits SCF, ghrelin, and substance P expressions through the NF-κB pathway activation in interstitial cells of Cajal.

    Science.gov (United States)

    Ren, Keyu; Yong, Chunming; Yuan, Hao; Cao, Bin; Zhao, Kun; Wang, Jin

    2018-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNF-α induced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.

  16. Interstitial cells of Cajal in human gut and gastrointestinal disease

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J

    1999-01-01

    This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective of their fun......This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective...

  17. Expression of Nestin, Vimentin, and NCAM by Renal Interstitial Cells after Ischemic Tubular Injury

    Directory of Open Access Journals (Sweden)

    David Vansthertem

    2010-01-01

    Full Text Available This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes during regeneration of S3 tubules of outer stripe of outer medulla (OSOM. Groups of experimental animals (n=4 were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2′-deoxyuridine (BrdU and Proliferating Cell Nuclear Antigen (PCNA labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM positive interstitial cells increased transiently (18–72 hours in the vicinity of altered tubules. We have also localized a small population of α-Smooth Muscle Actin (SMA-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.

  18. Persistent pulmonary interstitial emphysema in a case of Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Abbey, Pooja; Narula, Mahender K.; Anand, Rama; Chandra, Jagdish

    2014-01-01

    We present the case of a 10-month-old boy with multisystem Langerhans cell histiocytosis showing thin-walled lung cysts along with computed tomography (CT) evidence of persistent pulmonary interstitial emphysema (PPIE), in the absence of pneumothorax or pneumomediastinum. Follow-up CT performed after 6 months demonstrated complete resolution of interstitial emphysema

  19. The effect of interstitial 125I seeds implantation on intestinal wall: a pathological observation in experimental dogs

    International Nuclear Information System (INIS)

    Ning Houfa; Zhang Fenglian; Shen An; Cao Guiwen; Cui Xinjiang

    2010-01-01

    Objective: To observe the radiation injury of the bowel wall due to the implantation of interstitial 125 I seeds in experimental dogs. Methods: A total of 12 healthy male dogs were randomly and equally divided into 3 experimental groups and 1 control group, with 3 dogs in each group.In the experimental groups, two 125 I seeds with the active radiation dose of 0.8mCi were symmetrically implanted under the serous membrane of the dog's small intestinal wall. The dogs were fed for 14 days (group A), for one month (group B) and for two months (group C) respectively when the animals were scheduled to be sacrificed. The dogs' general condition was observed till they were sacrificed. The seed-implanting intestinal segments were then removed and dyed with HE staining method for electronic microscopic exam. The histopathologic findings were recorded and the results were compared between four groups. Results: No obvious histopathological changes were found in the dog's bowel wall 14 days after the implantation. One month after the procedure cellular injury was observed under electronic microscope, and two months after the operation partial fibrosis of the intestinal wall appeared but no ulceration or perforation occurred. Conclusion: The implantation of 125 I seeds can cause reversible cellular injuries of the intestinal wall in experimental dogs, the degree of the damage reaches its peak at one month after the implant when the partial fibrosis of bowel wall becomes evident. However, the seeds do not cause any serious complications, such as ulceration or perforation. (authors)

  20. Intestinal endocrine cells in radiation enteritis

    International Nuclear Information System (INIS)

    Pietroletti, R.; Blaauwgeers, J.L.; Taat, C.W.; Simi, M.; Brummelkamp, W.H.; Becker, A.E.

    1989-01-01

    In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were quantified by counting their number per unit length of muscularis mucosa. Results in radiation enteritis were compared with matched control specimens by using Student's t test. Chromogranin immunostaining showed a statistically significant increase of endocrine cells in radiation enteritis specimens compared with controls both in small and large intestine (ileum, 67.5 +/- 23.5 cells per unit length of muscularis mucosa in radiation enteritis versus 17.0 +/- 6.1 in controls; colon, 40.9 +/- 13.7 cells per unit length of muscularis mucosa in radiation enteritis versus 9.5 +/- 4.1 in controls--p less than 0.005 in both instances). Increase of endocrine cells was demonstrated also by Grimelius' staining; however, without reaching statistical significance. It is not clear whether or not the increase of endocrine cells in radiation enteritis reported in this study is caused by a hyperplastic response or by a sparing phenomenon. We should consider that increased endocrine cells, when abnormally secreting their products, may be involved in some of the clinical features of radiation enteropathy. In addition, as intestinal endocrine cells produce trophic substances to the intestine, their increase could be responsible for the raised risk of developing carcinoma of the intestine in long standing radiation enteritis

  1. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  2. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  3. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  4. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc......The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  5. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    Directory of Open Access Journals (Sweden)

    Ward Sean M

    2003-06-01

    Full Text Available Abstract Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission.

  6. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  7. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  8. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation

    Science.gov (United States)

    Reddy, Vishruth K.; Short, Sarah P.; Barrett, Caitlyn W.; Mittal, Mukul K.; Keating, Cody E.; Thompson, Joshua J.; Harris, Elizabeth I.; Revetta, Frank; Bader, David M.; Brand, Thomas; Washington, M. Kay; Williams, Christopher S.

    2016-01-01

    Blood Vessel Epicardial Substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves−/− mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wildtype (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves−/− mice. To examine stem cell function after BVES deletion, we employed ex vivo 3D-enteroid cultures. Bves−/− enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar “CBC” and “+4” stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves−/− enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves−/− mice demonstrated significantly greater small intestinal crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves−/− mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. PMID:26891025

  9. Systemic Amyloidosis and Testicular Interstitial Tumor in a Zebra Finch (Taeniopygia guttata: a Case Report in Iran

    Directory of Open Access Journals (Sweden)

    Mehrnoush Moeini Jazani

    2011-09-01

    Full Text Available Abstract Systemic amyloidosis and testicular interstitial tumor are rare conditions in birds and this is the first report in Iran. A male zebra finch was presented because of white diarrhea, anorexia, loss of weight and lethargy. At necropsy, the small intestine was edematous and congested. The spleen appeared pale. The liver was large, firm and brown. One testis was cystic and neoplastic and the remaining testis was atrophic. Histologically, amyloid materials were seen predominantly in the liver and spleen. Hyaline substances were deposited in the Disse space and in the media of blood vessels of the liver. In spleen, marked deposits thickened the basement membranes of blood vessels and extended into the surrounding parenchyma. In addition, there were lesser degrees of amyloidosis in other organs such as small intestine. Amyloid stained positively with Congo red. In testis, there was encapsulated unilateral interstitial cell tumor, with multiple foci of necrosis and hemorrhage. The neoplastic cells were round to polyhedral, with small round hyperchromatic nuclei and finely vacuolated cytoplasm. Signs of feminization were observed. The cause of amyloidosis in this study was not conclusively identified.

  10. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    Science.gov (United States)

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  11. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  12. Turnover time of Leydig cells and other interstitial cells in testes of adult rats

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; Rommerts, F. F.; van der Tweel, I.; Wensing, C. J.

    1989-01-01

    The aim of this study was to investigate the turnover of Leydig cells and other interstitial cells in the adult rat testis. Normal adult rats received injections of [3H]thymidine at 9:00 and 21:00 for 2, 5, or 8 days. The percentage of labeled Leydig cells, which was initially low (0.8% +/- 0.2%),

  13. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  14. Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell NicheSummary

    Directory of Open Access Journals (Sweden)

    Reina Aoki

    2016-03-01

    Full Text Available Background & Aims: Intestinal epithelial stem cells that express leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 and/or B cell specific Moloney murine leukemia virus integration site 1 (Bmi1 continuously replicate and generate differentiated cells throughout life. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells. However, ablating Paneth cells has no effect on the maintenance of functional stem cells. Here, we show definitively that a small subset of mesenchymal subepithelial cells expressing the winged-helix transcription factor forkhead box l1 (Foxl1 are a critical component of the intestinal stem cell niche. Methods: We genetically ablated Foxl1+ mesenchymal cells in adult mice using 2 separate models by expressing either the human or simian diphtheria toxin receptor under Foxl1 promoter control. Conclusions: Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells. Keywords: Intestinal Stem Cell Niche, Wnt, Mesenchyme

  15. An Interstitial Network of Podoplanin-Expressing Cells in the Human Endolymphatic Duct

    Science.gov (United States)

    Mayerl, Christina; Rubin, Kristofer; Wick, Georg; Rask-Andersen, Helge

    2006-01-01

    The human endolymphatic duct (ED) with encompassing interstitial connective tissue (CT) is believed to be important for endolymph resorption and fluid pressure regulation of the inner ear. The periductal CT cells are interconnected via numerous cellular extensions, but do not form vessel structures. Here we report that the periductal CT is populated by two distinct cell phenotypes; one expressing podoplanin, a protein otherwise found on lymph endothelia and on epithelia involved in fluid fluxes, and a second expressing a fibroblast marker. A majority of the interstitial cells expressed podoplanin but not the lymphatic endothelial cell markers hyaluronan receptor (LYVE-1) or vascular endothelial growth factor receptor-3 (VEGFR-3). The fibroblast marker positive cells were found close to the ED epithelium. In the mid- and distal parts of the ED, these cells were enriched under folded epithelia. Furthermore, subepithelial CT cells were found to express activated platelet derived growth factor (PDGF)-β receptors. Cultured CT cells from human inner ear periductal and perisaccular explant tissues were identified as fibroblasts. These cells compacted a three-dimensional collagen lattice by a process that could be promoted by PDGF-BB, a factor involved in interstitial fluid pressure regulation. Our results are compatible with the notion that the periductal CT cells are involved in the regulation of inner ear fluid pressure. By active compaction of the periductal CT and by the formation of villous structures, the CT cells could modulate fluid fluxes over the ED epithelium as well as the longitudinal flow of endolymph in the ED. PMID:16408168

  16. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  18. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  19. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures.

    Directory of Open Access Journals (Sweden)

    Moon Young Lee

    Full Text Available Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC, which serve as slow-wave electrical pacemakers for gastrointestinal (GI smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.

  20. Recurrent nitrofurantoin-induced giant cell interstitial pneumonia: Case report and literature review

    Directory of Open Access Journals (Sweden)

    Boeun Lee

    2015-01-01

    Full Text Available Giant cell interstitial pneumonia (GIP is a rare form of chronic interstitial pneumonia typically associated with hard metal exposure. Only two cases of GIP induced by nitrofurantoin have been reported in the medical literature. We are reporting a case of recurrent nitrofurantoin-induced GIP. Although extremely rare, GIP needs to be included in the differential diagnosis in patients with chronic nitrofurantoin use who present with respiratory illness.

  1. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  2. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  3. Clinical role in biopsy after interstitial irradiation to squamous cell carcinoma of tongue

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoichi [Kanagawa Dental Coll., Yokosuka (Japan)

    1995-03-01

    The clinical role of biopsy after interstitial irradiation therapy was evaluated in 44 patients with squamous cell carcinoma of tongue on which biopsy was done in our hospital. More residual tumors were observed in the induration-positive groups compared to those of the induration-negative groups. No tumor was histologically observed in 71.4% of the induration-positive groups. On the adjacent and covering mucous membranes, epithelial dysplasia was detected in 15 patients, 1 of them was Grade III and 9 were Grade IV. Two patients had recurrence. In the initial stage of interstitial irradiation, reaction of stoma showed decrease of edema, inflammatory cell infiltration, regeneration and dilation of vessels after 6 weeks. The regeneration of collagen fiber increased within 3-14 weeks after irradiation, followed by decrease of its activity. After interstitial irradiation, 2 of 9 Grade IIb patients treated by surgery and 2 by re-interstitial irradiation survived. One of 3 Grade III patients manifested recurrence and was treated by surgery. All patients were alive. Fourteen of 17 Grade IV patients under careful observation were still alive. Eleven of 15 patients treated by total neck dissection after interstitial irradiation survived. Four Grade IV patients showed recurrence. Two-year primary lesion control rate was 91.2% and the survival rate for 5 year was 74.0%. (S.Y.). 54 refs.

  4. Clinical role in biopsy after interstitial irradiation to squamous cell carcinoma of tongue

    International Nuclear Information System (INIS)

    Sato, Tomoichi

    1995-01-01

    The clinical role of biopsy after interstitial irradiation therapy was evaluated in 44 patients with squamous cell carcinoma of tongue on which biopsy was done in our hospital. More residual tumors were observed in the induration-positive groups compared to those of the induration-negative groups. No tumor was histologically observed in 71.4% of the induration-positive groups. On the adjacent and covering mucous membranes, epithelial dysplasia was detected in 15 patients, 1 of them was Grade III and 9 were Grade IV. Two patients had recurrence. In the initial stage of interstitial irradiation, reaction of stoma showed decrease of edema, inflammatory cell infiltration, regeneration and dilation of vessels after 6 weeks. The regeneration of collagen fiber increased within 3-14 weeks after irradiation, followed by decrease of its activity. After interstitial irradiation, 2 of 9 Grade IIb patients treated by surgery and 2 by re-interstitial irradiation survived. One of 3 Grade III patients manifested recurrence and was treated by surgery. All patients were alive. Fourteen of 17 Grade IV patients under careful observation were still alive. Eleven of 15 patients treated by total neck dissection after interstitial irradiation survived. Four Grade IV patients showed recurrence. Two-year primary lesion control rate was 91.2% and the survival rate for 5 year was 74.0%. (S.Y.). 54 refs

  5. Interstitial administration of perfluorochemical emulsions for reoxygenation of hypoxic tumor cells

    International Nuclear Information System (INIS)

    Woo, D.V.; Seegenschmiedt, H.; Schweighardt, F.K.; Emrich, J.; McGarvey, K.; Caridi, M.; Brady, L.W.

    1987-01-01

    Microparticulate perfluorochemical (PFC) emulsions have the capacity to solubilize significant quantities of oxygen compared to water. Although systemic administration of such emulsions may enhance oxygen delivery to some tissues, hypoxic tumor cells have marginal vascular supplies. The authors report studies which directly attempt to oxygenate hypoxic tumor cells by interstitial administration of oxygenated PFC emulsions followed by radiation therapy. Fortner MMI malignant melanomas (21 day old) grown in Syrian Golden hamsters were injected directly with either oxygenated PFC emulsions or Ringers solution. The volume of test substance administered was equal to 50% of the tumor volume. The tumors were immediately irradiated with 25 Gy of 10 MeV photons (Clinac 18). The tumor dimensions were measured daily post irradiation and the tumor doubling time determined. The results suggest that interstitial administration of oxygenated PFC emulsions directly into tumors followed by radiation therapy may increase the likelihood of killing hypoxic tumor cells

  6. Inherent rhythmcity and interstitial cells of Cajal in a frog vein

    Indian Academy of Sciences (India)

    Interstitial cells of Cajal are responsible for rhythmic contractions of the musculature of the gastrointestinal tract and blood vessels. The existence of these cells and spontaneous rhythmicity were noticed in amphibian vein and the findings are reported in this paper. The postcaval vein was identified in the frog, Rana tigrina ...

  7. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  8. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  9. Pacemaker cells in the gastrointestinal tract

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1996-01-01

    Interstitial cells of Cajal (ICC) were described a century ago as primitive neurons in the intestines. Through the years, ICC have been mistaken for neurons, glial cells, fibroblasts, smooth muscle cells, and macrophages. We identified ICC in the musculature of mouse small intestine...... patterns; characteristic patterns of contact with smooth muscle cells) and ultrastructure (myoid features: basal lamina, caveolae, rich in sER and mitochondria, often prominent filament bundles and dense bands/bodies) has allowed the identification of ICC in the GI musculature of all species investigated...

  10. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  11. Lymphoid cells in chicken intestinal epithelium

    DEFF Research Database (Denmark)

    Bjerregaard, P

    1975-01-01

    The intraepithelial lymphoid cells of chicken small intestine were studied by light microscopy using 1 mu Epon sections, and by electron microscopy. Three cell types were found: small lymphocytes, large lymphoid cells, and granular cells. These cells correspond to the theliolymphocytes and globule...

  12. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  13. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.

    Science.gov (United States)

    Drago, Sandro; El Asmar, Ramzi; Di Pierro, Mariarosaria; Grazia Clemente, Maria; Tripathi, Amit; Sapone, Anna; Thakar, Manjusha; Iacono, Giuseppe; Carroccio, Antonio; D'Agate, Cinzia; Not, Tarcisio; Zampini, Lucia; Catassi, Carlo; Fasano, Alessio

    2006-04-01

    Little is known about the interaction of gliadin with intestinal epithelial cells and the mechanism(s) through which gliadin crosses the intestinal epithelial barrier. We investigated whether gliadin has any immediate effect on zonulin release and signaling. Both ex vivo human small intestines and intestinal cell monolayers were exposed to gliadin, and zonulin release and changes in paracellular permeability were monitored in the presence and absence of zonulin antagonism. Zonulin binding, cytoskeletal rearrangement, and zonula occludens-1 (ZO-1) redistribution were evaluated by immunofluorescence microscopy. Tight junction occludin and ZO-1 gene expression was evaluated by real-time polymerase chain reaction (PCR). When exposed to gliadin, zonulin receptor-positive IEC6 and Caco2 cells released zonulin in the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein-protein interaction, and increased monolayer permeability. Pretreatment with the zonulin antagonist FZI/0 blocked these changes without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from celiac patients in remission expressed a sustained luminal zonulin release and increase in intestinal permeability that was blocked by FZI/0 pretreatment. Conversely, biopsies from non-celiac patients demonstrated a limited, transient zonulin release which was paralleled by an increase in intestinal permeability that never reached the level of permeability seen in celiac disease (CD) tissues. Chronic gliadin exposure caused down-regulation of both ZO-1 and occludin gene expression. Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules.

  15. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  16. Intestinal endocrine cells in radiation enteritis

    NARCIS (Netherlands)

    Pietroletti, R.; Blaauwgeers, J. L.; Taat, C. W.; Simi, M.; Brummelkamp, W. H.; Becker, A. E.

    1989-01-01

    In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were

  17. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling

    Science.gov (United States)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447

  18. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Silvia I. Cazorla

    2018-04-01

    Full Text Available The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431 and L. paracasei CNCM I-1518 (Lp 1518 to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old to old age (180 days old. Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  19. IRF8 dependent classical dendritic cells are essential for intestinal T cell homeostasis

    DEFF Research Database (Denmark)

    Luda, K.; Joeris, Thorsten; Persson, E. K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 dependent DCs have reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8ab+ andCD4+CD8......aa+ T cells; the latter requiring b8 integrin expression by migratory IRF8 dependent CD103+CD11b- DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI derived MLN DCs......, and inefficient T cell localization to the SI. Finally, mice with a DC deletion in IRF8 lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8...

  20. Intestinal stromal cells in mucosal immunity and homeostasis.

    Science.gov (United States)

    Owens, B M J; Simmons, A

    2013-03-01

    A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called "non-immune" cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.

  1. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  2. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    2011-01-01

    Full Text Available Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction

  3. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  4. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  5. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Smoking-related interstitial lung diseases

    International Nuclear Information System (INIS)

    Marten, K.

    2007-01-01

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis

  7. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  8. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis.

    Science.gov (United States)

    Luda, Katarzyna M; Joeris, Thorsten; Persson, Emma K; Rivollier, Aymeric; Demiri, Mimoza; Sitnik, Katarzyna M; Pool, Lieneke; Holm, Jacob B; Melo-Gonzalez, Felipe; Richter, Lisa; Lambrecht, Bart N; Kristiansen, Karsten; Travis, Mark A; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William W

    2016-04-19

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8αβ(+) and CD4(+)CD8αα(+) T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103(+)CD11b(-) DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8 dependent DCs in the maintenance of intestinal T cell homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    Science.gov (United States)

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  10. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  11. Changes of bronchoalveolar cell pattern and lecithin content in experimental interstitial pneumonia

    International Nuclear Information System (INIS)

    Manabe, Hideki; Yasuoka, Susumu; Tsubura, Eiro

    1978-01-01

    The pathogenesis of diffuse interstitial fibrosing pneumonitis (DIFP) was studied by histological observations and analysis of the cells and lecithin content of bronchoalveolar lavage of rats with cyclophosphamide (CY)-induced pneumonitis or irradiation pneumonitis. The rats developed diffuse interstitial pneumonitis one week after the last of 5 intraperitoneal injections of 50 mg/kg of CY and gradually recovered in the next 14 weeks. The number of alveolar macrophages and the lecithin content in the bronchoalveolar lavage from these rats corresponded to the degree of inflammatory change of the lung tissue. The results of cell counts and analysis of the bronchoalveolar lavage from rats with irradiated pneumonitis were similar to those on rats with CY-induced pneumonitis, except that in irradiated rats the lecithin content of the lavage decreased with increase in severity of pulmonary fibrosis. These results indicate that the cell number and lecithin content of bronchoalveolar lavage are good parameters for use in diagnosis of DIFP. (auth.)

  12. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  13. Abdominal Manual Therapy Repairs Interstitial Cells of Cajal and Increases Colonic c-Kit Expression When Treating Bowel Dysfunction after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Yi Zhu

    2017-01-01

    Full Text Available Background. This study aimed to evaluate the therapeutic effects of abdominal manual therapy (AMT on bowel dysfunction after spinal cord injury (SCI, investigating interstitial cells of Cajal (ICCs and related c-kit expression. Methods. Model rats were divided as SCI and SCI with drug treatment (intragastric mosapride, low-intensity (SCI + LMT; 50 g, 50 times/min, and high-intensity AMT (SCI + HMT; 100 g, 150 times/min. After 14 days of treatment, weight, improved Basso-Beattie-Bresnahan (BBB locomotor score, and intestinal movement were evaluated. Morphological structure of spinal cord and colon tissues were examined. Immunostaining, RT-PCR, and western blot were used to assess c-kit expression. Results. In SCI rats, AMT could not restore BBB, but it significantly increased weight, shortened time to defecation, increased feces amounts, and improved fecal pellet traits and colon histology. AMT improved the number, distribution, and ultrastructure of colonic ICCs, increasing colonic c-kit mRNA and protein levels. Compared with the SCI + Drug and SCI + LMT groups, the SCI + HMT group showed better therapeutic effect in improving intestinal transmission function and promoting c-kit expression. Conclusions. AMT is an effective therapy for recovery of intestinal transmission function. It could repair ICCs and increase c-kit expression in colon tissues after SCI, in a frequency-dependent and pressure-dependent manner.

  14. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    Science.gov (United States)

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.

  15. Aortic calcified particles modulate valvular endothelial and interstitial cells.

    Science.gov (United States)

    van Engeland, Nicole C A; Bertazzo, Sergio; Sarathchandra, Padmini; McCormack, Ann; Bouten, Carlijn V C; Yacoub, Magdi H; Chester, Adrian H; Latif, Najma

    Normal and calcified human valve cusps, coronary arteries, and aortae harbor spherical calcium phosphate microparticles of identical composition and crystallinity, and their role remains unknown. The objective was to examine the direct effects of isolated calcified particles on human valvular cells. Calcified particles were isolated from healthy and diseased aortae, characterized, quantitated, and applied to valvular endothelial cells (VECs) and interstitial cells (VICs). Cell differentiation, viability, and proliferation were analyzed. Particles were heterogeneous, differing in size and shape, and were crystallized as calcium phosphate. Diseased donors had significantly more calcified particles compared to healthy donors (Pinnocent bystanders but induce a phenotypical and pathological change of VECs and VICs characteristic of activated and pathological cells. Therapy tailored to reduce these calcified particles should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pneumoperitoneum without Intestinal Perforation in a Neonate: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Prabhavathi Gummalla

    2017-01-01

    Full Text Available Pneumoperitoneum in a preterm neonate usually indicates perforation of the intestine and is considered a surgical emergency. However, there are cases of pneumoperitoneum with no evidence of rupture of the intestine reported in the literature. We report a case of pneumoperitoneum with no intestinal perforation in a preterm neonate with respiratory distress syndrome who was on high frequency oscillatory ventilation (HFOV. He developed bilateral pulmonary interstitial emphysema with localized cystic lesion, likely localized pulmonary interstitial emphysema, and recurrent pneumothoraces. He was treated with dexamethasone to wean from the ventilator. Pneumoperitoneum developed in association with left sided pneumothorax following mechanical ventilation and cardiopulmonary resuscitation. Pneumoperitoneum resolved after the pneumothorax was resolved with chest tube drainage. He died from acute cardiorespiratory failure. At autopsy, there was no evidence of intestinal perforation. This case highlights the fact that pneumoperitoneum can develop secondary to pneumothorax and does not always indicate intestinal perforation or require exploratory laparotomy.

  17. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  18. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Lohr, F.; Schraube, P.; Wenz, F.; Flentje, M.; Kalle, K. von; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1995-01-01

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  19. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuying Liu

    2013-10-01

    Full Text Available The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT. The production of immunoglobulin (Ig A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

  20. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  1. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning.

    Science.gov (United States)

    Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.

  2. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  3. Changes in the Interstitial Cells of Cajal and Immunity in Chronic Psychological Stress Rats and Therapeutic Effects of Acupuncture at the Zusanli Point (ST36

    Directory of Open Access Journals (Sweden)

    Mucang Liu

    2016-01-01

    Full Text Available Now, chronic psychological stress (CPS related diseases are increasing. Many CPS patients have gastrointestinal complaints, immune suppression, and immune imbalance. Increasing evidence is indicating that acupuncture (AP at the Zusanli point (ST36 can alleviate functional gastrointestinal disorders (FGID, immune suppression, and immune imbalance. However, few studies have investigated the potential mechanisms. In this study, CPS rat models were established, and electroacupuncture (EA at ST36 was done for CPS rats. Daily food intake, weight, intestinal sensitivity, the morphology of interstitial cell of Cajal (ICC in the small intestine, and serum indexes were measured. The study found that, in CPS rats, EA at ST36 could improve food intake, weight, visceral hypersensitivity, and immunity; in CPS rats, in small intestine, the morphology of ICCs was abnormal and the number was decreased, which may be part causes of gastrointestinal motility dysfunction. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its repairing effects on ICCs damages; in CPS rats, there were immune suppression and immune imbalance, which may be part causes of visceral hypersensitivity. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its regulation on immunity.

  4. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    Science.gov (United States)

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  5. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Comparing the therapeutic efficiency of aminoguanidine and 3-aminobenzamide in lung and intestine toxicity caused by nitrogen mustard in rats

    International Nuclear Information System (INIS)

    Yaren, H.; Korkmaz, A.; Kunak, Z. I.; Uysal, B.; Topal, T.; Kurt, B; Kenar, L.

    2009-01-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) and peroxynitrite are responsible for sulfur mustard (SM) induced toxicity. Since endogenous production of peroxynitrite is known to lead to poly(ADP-ribose) polymerase (PARP) activation and sometimes ultimately cell death, in this study, it was aimed to compare the therapeutic efficiencies of aminoguanidine (iNOS inhibitor) and 3 aminobenzamide (PARP inhibitor) in lung and intestine toxicity caused by nitrogen mustard in rats. A total of 40 male Sprague-Dawley rats were divided into 4 groups. Group 1 served as control and given 2 ml saline, three groups received single dose of mechlorethamine (MEC) (3.5 mg/kg subcutaneously) with the same time intervals. Group 2 received MEC only, group 3 received selective iNOS inhibitor aminoguanidine (AG) (100 mg/kg i.p.) and, group 4 received PARP inhibitor 3 aminobenzamide (3-AB) (20 mg/kg i.p.). MEC injection resulted in severe lung toxicity with strong interstitial and alveolar edema, hemorrhage, emphysematous changes, Mild inflammatory cell infiltration and septal thickening. MEC injection also caused mucosal thinning, mild inflammatory cell infiltration, ischemic changes and multifocal, superficial ulcerations (erosions) in small intestine. In AG group, interstitial and alveolar edema, hemorrhage slightly reduced in lung comparing to MEC group. Inflammatory cell infiltration was minimal, septal thickening was similar to MEC group at densely edematous and hemorrhagical areas. In 3 AB group, edematous and hemorrhagic areas were very small, inflammatory cell infiltration was minimal and there were no densly densely edematous and hemorrhagical areas in lung. The results were better than AB group. In intestine, results of AG group were better than MEC group but worse than 3 AB group. These results suggest that both iNOS and PARP inhibitors are effective but PARP inhibitors may be more promising for treatment of SM induced early lung and intestinal toxicity.(author)

  8. File list: Unc.Dig.50.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.50.AllAg.Intestinal_stem_cells mm9 Unclassified Digestive tract Intestinal ...stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Dig.50.AllAg.Intestinal_stem_cells.bed ...

  9. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/Wv mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.

  10. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc...

  11. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine.

    Science.gov (United States)

    Nguyen, Duc Ninh; Jiang, Pingping; Stensballe, Allan; Bendixen, Emøke; Sangild, Per T; Chatterton, Dereck E W

    2016-04-29

    Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates. Copyright © 2016 Elsevier B

  12. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    Science.gov (United States)

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    Full Text Available Acetylation and deacetylation of histones and other proteins depends on histone acetyltransferases and histone deacetylases (HDACs activities, leading to either positive or negative gene expression. HDAC inhibitors have uncovered a role for HDACs in proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC. We investigated the consequences of ablating both HDAC1 and HDAC2 in murine IECs. Floxed Hdac1 and Hdac2 homozygous mice were crossed with villin-Cre mice. Mice deficient in both IEC HDAC1 and HDAC2 weighed less and survived more than a year. Colon and small intestinal sections were stained with hematoxylin and eosin, or with Alcian blue and Periodic Acid Schiff for goblet cell identification. Tissue sections from mice injected with BrdU for 2 h, 14 h and 48 h were stained with anti-BrdU. To determine intestinal permeability, 4-kDa FITC-labeled dextran was given by gavage for 3 h. Microarray analysis was performed on total colon RNAs. Inflammatory and IEC-specific gene expression was assessed by Western blot or semi-quantitative RT-PCR and qPCR with respectively total colon protein and total colon RNAs. HDAC1 and HDAC2-deficient mice displayed: 1 increased migration and proliferation, with elevated cyclin D1 expression and phosphorylated S6 ribosomal protein, a downstream mTOR target; 2 tissue architecture defects with cell differentiation alterations, correlating with reduction of secretory Paneth and goblet cells in jejunum and goblet cells in colon, increased expression of enterocytic markers such as sucrase-isomaltase in the colon, increased expression of cleaved Notch1 and augmented intestinal permeability; 3 loss of tissue homeostasis, as evidenced by modifications of claudin 3 expression, caspase-3 cleavage and Stat3 phosphorylation; 4 chronic inflammation, as determined by inflammatory molecular expression signatures and altered inflammatory gene expression

  14. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells.

    Science.gov (United States)

    Kriz, Vitezslav; Korinek, Vladimir

    2018-01-08

    In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL

  15. De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2014-03-01

    Full Text Available The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.

  16. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  17. Interpreting heterogeneity in intestinal tuft cell structure and function.

    Science.gov (United States)

    Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob; Coffey, Robert J; Lau, Ken S

    2018-05-01

    Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.

  18. File list: Oth.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX856961,SRX1141904,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  19. File list: Oth.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.Intestinal_stem_cells mm9 TFs and others Digestive tract Intestina...l stem cells SRX1141904,SRX856961,SRX1141903 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  20. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston

    2014-01-01

    immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive....... The recognition that dietary nutrients and microbial communities in the intestine influence both mucosal and systemic immune cell development and function as well as immune-mediated disease has led to an explosion of literature in mucosal immunology in recent years and a growing interest in the functionality...

  1. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    DEFF Research Database (Denmark)

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T

    2005-01-01

    The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation of the en...

  2. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.

  3. Paraneoplastic hypereosinophilia in a dog with intestinal T-cell lymphoma.

    Science.gov (United States)

    Marchetti, Veronica; Benetti, Cecilia; Citi, Simona; Taccini, Valentina

    2005-09-01

    A 9-year-old, intact male Doberman Pinscher was examined because of anorexia and weakness. Results of a CBC showed severe, microcytic, hypochromic anemia with mild eosinophilia (2944 cells/microL, reference interval 100-1250/microL) and thrombocytosis. Hypoferremia, hypoferritinemia, and a positive fecal occult blood test supported a diagnosis of iron deficiency anemia secondary to chronic intestinal hemorrhage. Abdominal ultrasound evaluation showed a thickened small intestinal loop, of which representative specimens were obtained during exploratory laparotomy. Histologically, the intestinal wall was infiltrated by a neoplastic population of large, round, lymphoid cells with vesicular chromatin, 1 or more prominent nucleoli, and a high number of mitotic figures. The cells were closely admixed with mature eosinophils, but were negative for metachromatic granules with toluidine blue. Immunohistochemically, tumor cells were positive for CD3, and negative for CD21, Pan B, and CD79a. A diagnosis of intestinal T-cell lymphoma was made. Chemotherapy was begun, with 30 mg/m;2 of doxorubicin administered intravenously every 3 weeks. Eosinophil concentration was 880/microL 2 weeks after surgery (on day 15 after presentation) but increased markedly to 62,914/microL on day 30, 62,400/microL on day 37, and 39,444/microL on day 58 after presentation. An association between hypereosinophilia and T-cell lymphoma is well established in human patients, in whom production of IL-5 by neoplastic T cells has been demonstrated. Hypereosinophilia has been reported only rarely with intestinal lymphoma in cats and horses, and with T-cell lymphoma in dogs.

  4. Very late onset small intestinal B cell lymphoma associated with primary intestinal lymphangiectasia and diffuse cutaneous warts

    OpenAIRE

    Bouhnik, Y; Etienney, I; Nemeth, J; Thevenot, T; Lavergne-Slove, A; Matuchansky, C

    2000-01-01

    As only a handful of lymphoma cases have been reported in conjunction with primary intestinal lymphangiectasia, it is not yet clear if this association is merely fortuitous or related to primary intestinal lymphangiectasia induced immune deficiency. We report on two female patients, 50 and 58 years old, who developed small intestinal high grade B cell lymphoma a long time (45 and 40 years, respectively) after the initial clinical manifestations of primary intestinal lymphangiectasia. They pre...

  5. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  6. Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis

    NARCIS (Netherlands)

    de Jong, Joan H.; Rodermond, Hans M.; Zimberlin, Cheryl D.; Lascano, Valeria; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul; Vermeulen, Louis

    2012-01-01

    The epithelial lining of the intestine is characterized by an immense cellular turn-over ascertaining an extensive regenerative capacity. Multiple reports suggest that besides the local intestinal stem cell pool, circulating cells of bone marrow origin (BMDCs) contribute to this process by fusing

  7. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  8. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei

    2009-01-01

    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular proteol...

  9. The role of CD103+ Dendritic cells in the intestinal mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Darren Thomas Ruane

    2011-07-01

    Full Text Available While dendritic cells (DC are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune responses is vital as intestinal inflammation can have detrimental consequences for the host. Strategically positioned within the lamina propria, CD103+ DCs play an important role in maintaining intestinal immune homeostasis. These cells are required for the induction of tolerogenic immune responses and imprinting gut homing phenotypic changes on antigen-specific T cells. Recent insights into their development and regulatory properties have revealed additional immunoregulatory roles and further highlighted their importance for intestinal immunity. In this review we discuss the nature of the intestinal CD103+ DC population and the emerging roles of these cells in the regulation of mucosal immunity.

  10. File list: NoD.Dig.10.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.10.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.10.AllAg.Intestinal_stem_cells.bed ...

  11. File list: NoD.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Dig.20.AllAg.Intestinal_stem_cells mm9 No description Digestive tract Intestina...l stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  12. Esterification of xanthophylls by human intestinal Caco-2 cells.

    Science.gov (United States)

    Sugawara, Tatsuya; Yamashita, Kyoko; Asai, Akira; Nagao, Akihiko; Shiraishi, Tomotaka; Imai, Ichiro; Hirata, Takashi

    2009-03-15

    We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5mumol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.

  13. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nephron progenitor cell death elicits a limited compensatory response associated with interstitial expansion in the neonatal kidney

    Directory of Open Access Journals (Sweden)

    Sree Deepthi Muthukrishnan

    2018-01-01

    Full Text Available The final nephron number in an adult kidney is regulated by nephron progenitor cell availability and collecting duct branching in the fetal period. Fetal environmental perturbations that cause reductions in cell numbers in these two compartments result in low nephron endowment. Previous work has shown that maternal dietary factors influence nephron progenitor cell availability, with both caloric restriction and protein deprivation leading to reduced cell numbers through apoptosis. In this study, we evaluate the consequences of inducing nephron progenitor cell death on progenitor niche dynamics and on nephron endowment. Depletion of approximately 40% of nephron progenitor cells by expression of diphtheria toxin A at embryonic day 15 in the mouse results in 10-20% nephron reduction in the neonatal period. Analysis of cell numbers within the progenitor cell pool following induction of apoptosis reveals a compensatory response in which surviving progenitor cells increase their proliferation and replenish the niche. The proliferative response is temporally associated with infiltration of macrophages into the nephrogenic zone. Colony stimulating factor 1 (CSF1 has a mitogenic effect on nephron progenitor cells, providing a potential explanation for the compensatory proliferation. However, CSF1 also promotes interstitial cell proliferation, and the compensatory response is associated with interstitial expansion in recovering kidneys which can be pharmacologically inhibited by treatment with clodronate liposomes. Our findings suggest that the fetal kidney employs a macrophage-dependent compensatory regenerative mechanism to respond to acute injury caused by death of nephron progenitor cells, but that this regenerative response is associated with neonatal interstitial expansion.

  15. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  16. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    International Nuclear Information System (INIS)

    Semino, Carlos E.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-01-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures

  17. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  18. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    International Nuclear Information System (INIS)

    Desai, S.R.; Ryan, S.M.; Colby, T.V.

    2003-01-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed

  19. Hyperandrogenism from an ovarian interstitial-cell tumor in an alpaca.

    Science.gov (United States)

    Gilbert, Rosanne; Kutzler, Michelle; Valentine, Beth A; Semevolos, Stacy

    2006-11-01

    An 8-year-old intact female Huacaya alpaca (Lama pacos) was presented for recent development of male behavior. Serum testosterone concentration was determined to be 969.1 pg/ml by using radioimmunoassay, while the range in 33 healthy female adult intact alpacas was 11.7-62.1 pg/ml. An ovarian mass was suspected, and an exploratory laparotomy was performed. A tan mass was present on the left ovary. Histologically, the mass was composed of closely packed, plump, polygonal cells with central round nuclei with granular chromatin and abundant eosinophilic finely granular to vesiculate cytoplasm. An ovarian benign interstitial (Leydig) cell tumor was diagnosed.

  20. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  1. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.

    Science.gov (United States)

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine F A; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-04-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  2. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

    Science.gov (United States)

    Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.

    2015-05-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  3. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Science.gov (United States)

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. File list: InP.Dig.20.AllAg.Intestinal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.20.AllAg.Intestinal_stem_cells mm9 Input control Digestive tract Intestinal... stem cells SRX856960,SRX1091861,SRX1091862,SRX193723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Dig.20.AllAg.Intestinal_stem_cells.bed ...

  5. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...... and predictive significance in CRC patients. This review provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), B cell–specific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining region y-box 9 (SOX9......) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC development and progression remain unclear; however, high expression of these stem cell markers have a potential prognostic significance and might be implicated in chemotherapy resistance...

  6. Interstitial cells of Cajal in chagasic megaesophagus.

    Science.gov (United States)

    de Lima, Marcus Aurelho; Cabrine-Santos, Marlene; Tavares, Marcelo Garcia; Gerolin, Gustavo Pacheco; Lages-Silva, Eliane; Ramirez, Luis Eduardo

    2008-08-01

    Chagasic visceromegalies are the most important digestive manifestations of Chagas disease and are characterized by motor disorders and dilation of organs such as esophagus and colon. One of the theories raised to explain the physiopathogenesis of chagasic megas is the plexus theory. Recent studies have shown a reduction of interstitial cells of Cajal (ICCs) in the colon of chagasic patients. These cells are present throughout the gastrointestinal tract and are considered to be pacemaker cells, that is, they are responsible for coordinating peristalsis and for mediating nerve impulses. In view of the lack of studies on these cells in megaesophagus and the previous observation of a reduction of ICCs in chagasic megacolons, we compared the distribution of ICCs in the esophagus of chagasic and nonchagasic patients to contribute to a better understanding of the physiopathogenesis of this esophageal disease. Esophageal biopsy samples from 10 chagasic and 5 nonchagasic patients were used. Cells were identified with the anti-CD117 antibody. The number of ICCs was quantified in longitudinal and circular muscle layers and myenteric plexus. The results were analyzed statistically by comparison of means. An intense reduction in the number of ICCs was observed in muscle layers and in the myenteric plexus of patients with megaesophagus. We conclude that there is an intense reduction of ICCs in the esophagus of chagasic patients when compared to nonchagasic patients, a finding supporting the important role of these cells in gastrointestinal tract motility. A deficiency in these cells might be implied in the genesis of megaesophagus.

  7. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  8. Stem cells and cancer of the stomach and intestine.

    Science.gov (United States)

    Vries, Robert G J; Huch, Meritxell; Clevers, Hans

    2010-10-01

    Cancer in the 21st century has become the number one cause of death in developed countries. Although much progress has been made in improving patient survival, tumour relapse is one of the important causes of cancer treatment failure. An early observation in the study of cancer was the heterogeneity of tumours. Traditionally, this was explained by a combination of genomic instability of tumours and micro environmental factors leading to diverse phenotypical characteristics. It was assumed that cells in a tumour have an equal capacity to propagate the cancer. This model is currently known as the stochastic model. Recently, the Cancer stem cell model has been proposed to explain the heterogeneity of a tumour and its progression. According to this model, the heterogeneity of tumours is the result of aberrant differentiation of tumour cells into the cells of the tissue the tumour originated from. Tumours were suggested to contain stem cell-like cells, the cancer stem cells or tumour-initiating cells, which are uniquely capable of propagating a tumour much like normal stem cells fuel proliferation and differentiation in normal tissue. In this review we discuss the normal stem cell biology of the stomach and intestine followed by both the stochastic and cancer stem cell models in light of recent findings in the gastric and intestinal systems. The molecular pathways underlying normal and tumourigenic growth have been well studied, and recently the stem cells of the stomach and intestine have been identified. Furthermore, intestinal stem cells were identified as the cells-of-origin of colon cancer upon loss of the tumour suppressor APC. Lastly, several studies have proposed the positive identification of a cancer stem cell of human colon cancer. At the end we compare the cancer stem cell model and the stochastic model. We conclude that clonal evolution of tumour cells resulting from genetic mutations underlies tumour initiation and progression in both cancer models. This

  9. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  10. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  11. Lipoprotein(a Induces Human Aortic Valve Interstitial Cell Calcification

    Directory of Open Access Journals (Sweden)

    Bin Yu, PhD

    2017-08-01

    Full Text Available Lipoprotein(a, or Lp(a, significantly increased alkaline phosphatase activity, release of phosphate, calcium deposition, hydroxyapatite, cell apoptosis, matrix vesicle formation, and phosphorylation of signal transduction proteins; increased expression of chondro-osteogenic mediators; and decreased SOX9 and matrix Gla protein (p < 0.001. Inhibition of MAPK38 and GSK3β significantly reduced Lp(a-induced calcification of human aortic valve interstitial cells (p < 0.001. There was abundant presence of Lp(a and E06 immunoreactivity in diseased human aortic valves. The present study demonstrates a causal effect for Lp(a in aortic valve calcification and suggests that interfering with the Lp(apathway could provide a novel therapeutic approach in the management of this debilitating disease.

  12. Identification of Interstitial Cajal-like cells in the Human Thoracic Duct

    DEFF Research Database (Denmark)

    Bødtkjer, Donna Marie Briggs; Rumessen, Jüri; Baandrup, Ulrik

    2013-01-01

    were used to identify ICLCs in live tissue. Methylene blue stained cells with morphology suggestive of ICLCs in the TD. Immunoreactivity localized the ICLC protein markers c-kit, CD34 and vimentin to many cells and processes associated with smooth muscle cells (SMCs): coexpression of c......-kit with vimentin or CD34 was observed in some cells. Electron microscopy analysis confirmed ICLCs as a major cell type of the human TD. Lymphatic ICLCs possess caveolae, dense bands, a patchy basal lamina, intermediate filaments and specific junctions to SMCs. ICLCs were ultrastructurally differentiable from other......Interstitial Cajal-like cells (ICLCs) are speculated to be pacemakers in smooth muscle tissues. While the human thoracic duct (TD) is spontaneously active, the origin of this activity is unknown. We hypothesized that ICLCs could be present in the TD and using histological techniques...

  13. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.

    Science.gov (United States)

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A

    2017-06-29

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.

  14. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells

    Science.gov (United States)

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.

    2018-01-01

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595

  15. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  16. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  17. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    Science.gov (United States)

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. TRAPping telomerase within the intestinal stem cell niche

    OpenAIRE

    Pech, Matthew F; Artandi, Steven E

    2011-01-01

    Recent work from Hans Clevers' lab reveals high telomerase activity and telomere length in dividing LGR5-positive intestinal stem cells. They further report random chromosome segregation and thus challenge the ‘immortal strand' hypothesis at least for this stem cell population.

  19. Wnt control of stem cells and differentiation in the intestinal epithelium

    International Nuclear Information System (INIS)

    Pinto, Daniel; Clevers, Hans

    2005-01-01

    The intestinal epithelium represents a very attractive experimental model for the study of integrated key cellular processes such as proliferation and differentiation. The tissue is subjected to a rapid and perpetual self-renewal along the crypt-villus axis. Renewal requires division of multipotent stem cells, still to be morphologically identified and isolated, followed by transit amplification, and differentiation of daughter cells into specialized absorptive and secretory cells. Our understanding of the crucial role played by the Wnt/β-catenin signaling pathway in controlling the fine balance between cell proliferation and differentiation in the gut has been significantly enhanced in recent years. Mutations in some of its components irreversibly lead to carcinogenesis in humans and in mice. Here, we discuss recent advances related to the Wnt/β-catenin signaling pathway in regulating intestinal stem cells, homeostasis, and cancer. We emphasize how Wnt signaling is able to maintain a stem cell/progenitor phenotype in normal intestinal crypts, and to impose a very similar phenotype onto colorectal adenomas

  20. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  1. Radiobiology of intestinal epithelium stem cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.

    1988-01-01

    After a single or three-fold whole body irradiation of mice with a dose of 4 Gy and the time interval for the proliferation to be restored (5 days or 3 weeks) the survival curve for stem cells of small intestine epithelium with regard to radiation dose was the same as that for non-preirradiated mice. This indicated that the proliferative potential of stem cells in these experimental conditions was not reduced

  2. Morphology of the Interstitial Tissue of Active and Resting Testis of the Guinea Fowl

    OpenAIRE

    Dharani, Palanisamy; Kumary, S. Usha; Sundaram, Venkatesan; Joseph, Cecilia; Ramesh, Geetha

    2017-01-01

    SUMMARY: The morphology of the interstitial tissue of sexually active and resting testis of the guinea fowl were studied. Six adult health birds of active and resting phases of reproductive cycle were used for this study. The interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells, blood vessels and adrenergic nerve fibres in the present study in both active and resting testes. The interstitial tissue was compact in sexually active tes...

  3. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  4. The behavior of interstitials in irradiated graphite

    International Nuclear Information System (INIS)

    Pedraza, D.F.

    1991-01-01

    A computer model is developed to simulate the behavior of self-interstitials with particular attention to clustering. Owing to the layer structure of graphite, atomistic simulations can be performed using a large parallelepipedic supercell containing a few layers. In particular, interstitial clustering is studied here using a supercell that contains two basal planes only. Frenkel pairs are randomly produced. Interstitials are placed at sites between the crystal planes while vacancies are distributed in the two crystal planes. The size of the computational cell is 20000 atoms and periodic boundary conditions are used in two dimensions. Vacancies are assumed immobile whereas interstitials are given a certain mobility. Two point defect sinks are considered, direct recombination of Frenkel pairs and interstitial clusters. The clusters are assumed to be mobile up to a certain size where they are presumed to become loop nuclei. Clusters can shrink by emission of singly bonded interstitials or by recombination of a peripheral interstitial with a neighboring vacancy. The conditions under which interstitial clustering occurs are reported. It is shown that when clustering occurs the cluster size population gradually shifts towards the largest size cluster. The implications of the present results for irradiation growth and irradiation-induced amorphization are discussed

  5. Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2)

    DEFF Research Database (Denmark)

    Boyd, Mette; Hansen, Morten; Jensen, Tine G K

    2010-01-01

    The CDX2 transcription factor is known to play a crucial role in inhibiting proliferation, promoting differentiation and the expression of intestinal specific genes in intestinal cells. The overall effect of CDX2 in intestinal cells has previously been investigated in conditional knock-out mice......, revealing a critical role of CDX2 in the formation of the normal intestinal identity. The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. The ChIP-seq technique combines chromatin immunoprecipitation (ChIP) with next generation sequencing...... resulting in a high throughput experimental method of identifying direct targets of specific transcription factors. The method was applied to CDX2, leading to the identification of the direct binding of CDX2 to several known and novel target genes in the intestinal cell. Examination of the transcript levels...

  6. On the transfer of serum proteins to the rat intestinal juice

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Norén, Ove; Poulsen, Mona D

    1994-01-01

    The in vivo pattern of serum proteins in the rat small-intestinal juice was characterized by crossed immunoelectrophoresis. Immunoglobulins and albumin, alpha-1-antitrypsin, transferrin, and orosomucoid were present. Larger serum proteins were absent (ceruloplasmin, haptoglobin, alpha-1-macroglob...... proteins in the intestinal juice is a selective passage through the capillary wall followed by passive intercellular transport via delivery of the serum in the interstitial space during disintegration of the enterocytes....

  7. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    OpenAIRE

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequ...

  8. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  9. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  10. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors

    NARCIS (Netherlands)

    Stange, D.E.; Clevers, H.

    2013-01-01

    The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to

  11. Plasticity of intestinal epithelial cells in regeneration and cancer

    NARCIS (Netherlands)

    Tetteh, Paul W.

    2015-01-01

    Cellular plasticity refers to the ability of a cell to change its fate or identity in response to external or intrinsic factors. Regeneration of the intestinal epithelium after injury is driven mainly by plasticity of crypt stem cells that can rapidly divide to replace all the lost cells. Stem cell

  12. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease.

    Science.gov (United States)

    Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako

    2018-01-01

    The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  14. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  15. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  16. Interstitial nephritis.

    Science.gov (United States)

    Papper, S

    1980-01-01

    There are many causes of interstitial nephritis other than pyelonephritis. The term interstitial nephritis does not connote a single etiologic or pathogenetic mechanism; it rather arbitrarily places together a wider variety of renal diseases that have a predilection for early and major involvement of the renal interstitium. The prototype of acute interstitial nephritis is acute pyelonephritis. In addition, there is a drug-related acute interstitial disease that is probably of immunological nature and usually reverses with discontinuance of the offending drug. Chronic interstitial nephritis includes many diverse illnesses. Nonobstructive pyelonephritis occurs but its prevalence is debated. Analgesic abuse nephropathy is not rare and is potentially reversible. Papillary necrosis has many causes and a wide spectrum of clinical presentations. Heavy metals, such as lead, cause interstitial nephritis. Balkan nephropathy occurs in an endemic area and although not bacterial in origin is of unknown cause.

  17. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  18. Smoking-related interstitial lung diseases; Interstitielle Lungenerkrankungen bei Rauchern

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Inst. fuer Roentgendiagnostik

    2007-03-15

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis.

  19. Toward a Concept of Stretch Coupling in Smooth Muscle: A Thesis by Lars Thuneberg on Contractile Activity in Neonatal Interstitial Cells of Cajal

    DEFF Research Database (Denmark)

    Huizinga, Jan D; Lammers, Wim J E P; Mikkelsen, Hanne B

    2010-01-01

    The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contrac......The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence...

  20. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  1. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  2. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  3. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review

    Directory of Open Access Journals (Sweden)

    Xiaoshi Ma

    2017-10-01

    Full Text Available The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD. Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

  4. Cellular Evidence of Telocytes as Novel Interstitial Cells Within the Magnum of Chicken Oviduct.

    Science.gov (United States)

    Yang, Ping; Zhu, Xudong; Wang, Lingling; Ahmed, Nisar; Huang, Yufei; Chen, Hong; Zhang, Qian; Ullah, Shakeeb; Liu, Tengfei; Guo, Dawei; Brohi, Sarfaraz Ahmed; Chen, Qiusheng

    2017-01-24

    Telocytes are a novel type of interstitial cell that has been identified in many organs of mammals, but there is little information available on these cells in avian species. This study shows the latest findings associated with telocytes in the muscular layer and lamina propria of the magnum of chicken oviduct analyzed by transmission electron microscopy. Telocytes are characterized by telopodes, which are thin and long prolongations, and a small amount of cytoplasm rich with mitochondria. Spindle- or triangular-shaped telocytes were detected at various locations in the magnum. In the muscular layer, telocytes have direct connection with smooth muscle cells. The cell body of telocytes along with their long telopodes mainly exists in the interstitial space between the smooth muscle bundles, whereas large numbers of short telopodes are scattered in between the smooth muscle cells. In the lamina propria, extremely long telopodes are twisting around each other and are usually collagen embedded. Both in the lamina propria and muscular layer, telocytes have a close relationship with other cell types, such as immune cells and blood vessels. Telopodes appear with dichotomous branching alternating between the podom and podomer, forming a 3D network structure with complex homo- and heterocellular junctions. In addition, a distinctive size of the vesicles is visible around the telopodes and may be released from telopodes because of the close relation between the vesicle and telopode. All characteristics of telocytes in the magnum indicate that telocytes may play a potential, but important, role in the pathogenesis of oviduct diseases.

  5. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4+ intestinal intraepithelial lymphocytes

    International Nuclear Information System (INIS)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-01-01

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4 + IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4 + IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4 + IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4 + IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4 + LPLs and primed splenic CD4 + T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4 + IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo

  6. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    Science.gov (United States)

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  7. Impact of thymectomy and antilymphocytic serum on stem cells of the intestinal epithelium

    International Nuclear Information System (INIS)

    Aparovich, G.G.; Trufakin, V.A.

    1982-01-01

    The population of stem cells of the intestinal epithelium was studied under conditions of the disturbed balance in the immune system on F 1 (CBAxC57B1) mice. It has been shown that thymectomy in adult mice does not influence the stem region of the intestinal epithelium at early time of observation but causes a tendency to the changed number of epithelial stem cells in 4-6 months. Administration of specific sera against T-, B- and mixed lymphoid populations on the 1st day of observation produces an ambi us effect on the stem region and results in an increase of the number of epithelial stem cells on the 5th day. After administration of the antilymphocytic serum there have been determined morphological changes in the population of mature erythrocytes and undulatory fluctuations in the number of mitotic cells of the intestinal epithelium. These data suggest functional correlation of the intestinal epithelium and the state of the immunocompetent tissue [ru

  8. Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2017-09-01

    Full Text Available Visceral fat accumulation as observed in Crohn's disease and obesity is linked to chronic gut inflammation, suggesting that accumulation of gut adipocytes can trigger local inflammatory signaling. However, direct interactions between intestinal epithelial cells (IECs and adipocytes have not been investigated, in part because IEC physiology is difficult to replicate in culture. In this study, we originally prepared intact, polarized, and cytokine responsive IEC monolayers from primary or induced pluripotent stem cell-derived intestinal organoids by simple and repeatable methods. When these physiological IECs were co-cultured with differentiated adipocytes in Transwell, pro-inflammatory genes were induced in both cell types, suggesting reciprocal inflammatory activation in the absence of immunocompetent cells. These inflammatory responses were blocked by nuclear factor-κB or signal transducer and activator of transcription 3 inhibition and by anti-tumor necrosis factor- or anti-interleukin-6-neutralizing antibodies. Our results highlight the utility of these monolayers for investigating IEC biology. Furthermore, this system recapitulates the intestinal epithelium–mesenteric fat signals that potentially trigger or worsen inflammatory disorders such as Crohn's disease and obesity-related enterocolitis.

  9. Intestinal cell proliferation following hyperthermia-radiation combinations

    International Nuclear Information System (INIS)

    Burholt, D.R.; Wilkinson, D.A.; Shrivastava, P.N.

    1987-01-01

    The present work is an investigation of the extent to which hyperthermia enhances x-ray induced inhibition of intestinal epithelial cell proliferation in mice. Hyperthermia was achieved by whole body immersion of anesthetized ice in a temperature controlled water bath (+-0.1 0 C). Post-treatment proliferative activity was monitored by determining the incorporation of /sup 3/H-TdR into intestinal crypt cells and by the counting of epithelial cell mitotic figures. Initial levels of cell kill were assessed by the microcolony crypt survival technique. All heat treatments were 41.5 0 C for 0.5h. Heat alone reduced the /sup 3/H-TdR incorporation to 50% of the control value by 2h post-treatment. This was followed by a return to control value by 10h and a slight hyperplasia at 24h. Heat either immediately before or after 2Gy abdominal field x-irradiation produced a prolonged period of depressed cell proliferation: /sup 3/H-TdR incorporation remained below control value for the first 24h. As the heat and radiation were separated in time from each other (up to 4h) the interaction between the two decreased. The development of thermotolerance was observed following the second and third treatment during either a heat-only or a heat-radiation multifraction treatments schedule with the treatment spaced 24h apart

  10. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  11. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  12. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    Science.gov (United States)

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  13. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  14. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  15. Crohn's disease intestinal CD4+ T cells have impaired interleukin-10 productionwhich is not restored by probiotic bacteria

    DEFF Research Database (Denmark)

    Hvas, Christian L; Kelsen, Jens; Agnholt, Jørgen

    2007-01-01

    OBJECTIVE: Crohn's disease (CD) has been associated with low mucosal interleukin (IL)-10 production, but the mechanism behind this deficiency remains unclear. The aim of this study was to investigate IL-10 and interferon (IFN)-gamma production in intestinal CD4+ T cells from CD patients and healthy...... volunteers (HV) and to examine how this was affected by bacterial products and the presence or absence of autologous dendritic cells. MATERIAL AND METHODS: We cultured intestinal CD4+ T cells from CD patients (n=9) and HV (n=6) and differentiated dendritic cells from their peripheral monocytes. Intestinal T...... this imbalance in CD, but tended to do so in HV. When there were no dendritic cells, CD intestinal T cells responded to autologous bacteria with an increased IFN-gamma production (2.3+/-1.3 ng/ml) compared with HV intestinal T cells (0.3+/-0.2 ng/ml). CONCLUSIONS: Crohn's disease intestinal CD4+ T cells display...

  16. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S.

    1982-01-01

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intest+nal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mo use groups. Repair of single-strand DNA breaks of eldery mice is slower than that of young animals

  17. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    Science.gov (United States)

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Occurrence of lymphoid cells in the intestine of the Goldfish

    NARCIS (Netherlands)

    Weinberg, Steven

    1975-01-01

    The Goldfish intestine normally contains a large number of lymphocytes, many of them being present in the epithelial layer. After stimulation with antigen, the number of lymphoid cells does not increase, but the proportion of large pyroninophilic cells and plasma cells does. It seems therefore that

  19. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  20. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers

    NARCIS (Netherlands)

    Muñoz, Javier; Stange, Daniel E.; Schepers, Arnout G.; van de Wetering, Marc; Koo, Bon-Kyoung; Itzkovitz, Shalev; Volckmann, Richard; Kung, Kevin S.; Koster, Jan; Radulescu, Sorina; Myant, Kevin; Versteeg, Rogier; Sansom, Owen J.; van Es, Johan H.; Barker, Nick; van Oudenaarden, Alexander; Mohammed, Shabaz; Heck, Albert J. R.; Clevers, Hans

    2012-01-01

    Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted

  1. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  2. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with the cell membrane. This involves a large number (17 million per cell) of high affinity binding sites which belong to a single class. Binding of biologically active 125 I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected in the isolated cells. The response (elevation of cellular cAMP) of the enterocytes to cholera toxin is linear with time for 40-50 min and causes a six- to eight-fold increase over control levels at steady stae. cAMP and agents that increase cAMP production inhibit Cl - -independent Na + influx into the isolated enterocytes whereas chlorporomazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na + entry. Correlation between cellular cAMP levels and the magnitude of Na + influx into the enterocytes provides evidence for a cAMP-mediated control of intestinal Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT and Na + during induction of intestinal secretion. The effect of cAMP on Na + but no Cl - influx in our villus cell preparation can be partially explained in terms of a cAMP-regulated Na + /H + neutral exchange system

  3. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  5. Hydrogen Passivation of Interstitial Zn Defects in Heteroepitaxial InP Cell Structures and Influence on Device Characteristics

    Science.gov (United States)

    Ringel, S. A.; Chatterjee, B.

    2004-01-01

    Hydrogen passivation of heteroepitaxial InP solar cells is of recent interest for deactivation of dislocations and other defects caused by the cell/substrate lattice mismatch that currently limit the photovoltaic performance of these devices. In this paper we present strong evidence that, in addition to direct hydrogen-dislocation interactions, hydrogen forms complexes with the high concentration of interstitial Zn defects present within the p(+) Zn-doped emitter of MOCVD-grown heteroepitaxial InP devices, resulting in a dramatic increase of the forward bias turn-on voltage by as much as 280 mV, from 680 mV to 960 mV. This shift is reproducible and thermally reversible and no such effect is observed for either n(+)p structures or homoepitaxial p(+)n structures grown under identical conditions. A combination of photoluminescence (PL), electrochemical C-V dopant profiling, SIMS and I-V measurements were performed on a set of samples having undergone a matrix of hydrogenation and post-hydrogenation annealing conditions to investigate the source of this voltage enhancement and confirm the expected role of interstitial Zn and hydrogen. A precise correlation between all measurements is demonstrated which indicates that Zn interstitials within the p(+) emitter and their interaction with hydrogen are indeed responsible for this device behavior.

  6. Peroxisomes in intestinal and gallbladder epithelial cells of the stickleback, Gasterosteus aculeatus L. (Teleostei)

    NARCIS (Netherlands)

    Ruiter, A.J.H. de; Veenhuis, M.; Wendelaar Bonga, S.E.

    1988-01-01

    The occurrence of microbodies in the epithelial cells of the intestine and gallbladder of the stickleback, Gasterosteus aculeatus L., is described. In the intestine the organelles are predominantly located in the apical and perinuclear zone of the cells and may contain small crystalline cores. In

  7. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  8. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Directory of Open Access Journals (Sweden)

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  9. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  10. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  11. Radiation, an ideal cytotoxic for the study of cell biology in the small intestine

    International Nuclear Information System (INIS)

    Potten, C.

    2003-01-01

    Epithelial tissues are highly polarised with the proliferative compartment sometimes subdivided into units of proliferation in many instances. My interests have been in trying to understand how many cellular constituents exist, what their function is and intercommunicants are that ensure appropriate steady state cell replacement rates. Radiation has proved to be a valuable tool to induce cell death, reproductive sterilisation, and regenerative proliferation in these systems, the responses to which can provide information on the number of regenerative cells (a function associated with stem cells). Such studies have helped define the epidermal proliferative units and the structurally similar units on the dorsal surface of the tongue. The radiation responses considered in conjunction with a wide range of cell kinetic lineage tracking and somatic mutation studies with complex mathematical modelling, provide insights into the functioning of the poliferative units (crypts) of the small intestine. Comparative studies have then been undertaken with the crypts in the large bowel. In the small intestine, which rarely develops cancer, various protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment. Stem cells in the small intestinal crypts have an intolerance of genotoxic damage (including that induced by very low doses of radiation), they do not undergo cell cycle arrest and repair but commit an altruistic p53 dependent cell suicide (apoptosis). This process is compromised in the large bowel by bcl-2 expression. Recent studies have suggested a second genome protection mechanism operating in the stem cells of the small intestinal crypts that may also have a p53 dependence. Such studies have allowed the cell lineages and genome protection mechanisms operating in the small intestinal crypts to be defined

  12. Distribution of mast cell subtypes in interstitial cystitis: implications for novel diagnostic and therapeutic strategies?

    Science.gov (United States)

    Malik, Shabana T; Birch, Brian R; Voegeli, David; Fader, Mandy; Foria, Vipul; Cooper, Alan J; Walls, Andrew F; Lwaleed, Bashir A

    2018-05-15

    To identify the presence and geographical distribution of mast cell (MC) subtypes: MC T (tryptase positive-chymase negative) and MC TC (tryptase positive-chymase positive) in bladder tissue. Bladder tissue was obtained from patients with painful bladder syndrome/interstitial cystitis (n=14) and normal histology from University Hospital Southampton tissue bank. Sequential tissue slices were immunohistochemically stained for MC subtypes using anti-MC tryptase (for MC T and MC TC ) and anti-MC chymase (for MC TC ). Stained sections were photographed, and positively stained MCs were quantified using ImageJ. Data were analysed using descriptive statistics and individual paired t-tests. There was a significant difference in the density of MCs between each layer of the disease bladder, with the greatest accumulation within the detrusor (p<0.001). There was a significant increase in MC TC subtype in the lamina (p=0.009) in painful bladder syndrome/interstitial cystitis. Our results suggest that mastocytosis is present within all layers of disease bladder, especially the muscle layer. The varying increase in MC subtypes in the lamina and mucosa may explain the variability in painful bladder syndrome/interstitial cystitis symptoms. A high influx of MC TC in the mucosa of individuals who also had ulceration noted within their diagnostic notes may be of the Hunner's ulcer subclassification. These findings suggest a relationship between the pathogenesis of MC subtypes and the clinical presentation of painful bladder syndrome/interstitial cystitis. A cohort study would further elucidate the diagnostic and/or therapeutic potential of MCs in patients with painful bladder syndrome/interstitial cystitis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  14. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Directory of Open Access Journals (Sweden)

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  15. Interstitial fluid flow in cancer: implications for disease progression and treatment

    International Nuclear Information System (INIS)

    Munson, Jennifer M; Shieh, Adrian C

    2014-01-01

    As cancer progresses, a dynamic microenvironment develops that creates and responds to cellular and biophysical cues. Increased intratumoral pressure and corresponding increases in interstitial flow from the tumor bulk to the healthy stroma is an observational hallmark of progressing cancers. Until recently, the role of interstitial flow was thought to be mostly passive in the transport and dissemination of cancer cells to metastatic sites. With research spanning the past decade, we have seen that interstitial flow has a promigratory effect on cancer cell invasion in multiple cancer types. This invasion is one mechanism by which cancers can resist therapeutics and recur, but the role of interstitial flow in cancer therapy is limited to the understanding of transport of therapeutics. Here we outline the current understanding of the role of interstitial flow in cancer and the tumor microenvironment through cancer progression and therapy. We also discuss the current role of fluid flow in the treatment of cancer, including drug transport and therapeutic strategies. By stating the current understanding of interstitial flow in cancer progression, we can begin exploring its role in therapeutic failure and treatment resistance

  16. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...... expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila....

  17. [Modern Views on Children's Interstitial Lung Disease].

    Science.gov (United States)

    Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu

    2015-01-01

    Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.

  18. GATA4 Regulates Epithelial Cell Proliferation to Control Intestinal Growth and Development in MiceSummary

    Directory of Open Access Journals (Sweden)

    Bridget M. Kohlnhofer

    2016-03-01

    Full Text Available Background & Aims: The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium is unknown. Methods: By using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between embryonic day (E9.5 and E18.5. Results: We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating epithelial cells at E10.5 and E11.5 in GATA4 mutants. We showed that GATA4 binds to chromatin containing GATA4 consensus binding sites within cyclin D2 (Ccnd2, cyclin-dependent kinase 6 (Cdk6, and frizzled 5 (Fzd5. Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. Conclusions: Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell-cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling. Keywords: Transcriptional Regulation, WNT Signaling, Villus Morphogenesis

  19. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Shao

    Full Text Available Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3, a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min. While A20(FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL villin-Cre APC(min/+ mice contain far greater numbers and larger colonic polyps than control APC(min mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.

  20. Crohn's disease of the colon: ultrastructural changes in submuscular interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johs.; Vanderwinden, Jean-Marie; Horn, Thomas

    2011-01-01

    of the submuscular plexus were often empty and dilated. Fibroblast-like cells selectively encased macrophages and mast cells. The cytological changes in ICC-SMP in CD are thus similar to changes seen in ulcerative colitis and may be of pathophysiological significance with regard to the motility and sensory......Interstitial cells of Cajal (ICC) at the submuscular border of the human colon (ICC-SMP) are the proposed pacemaker cells of the musculature. In patients with Crohn's disease (CD) of the colon, ICC-SMP showed characteristic cytological changes from controls. The changes comprised secondary...... lysosomes in connection with lipid droplets and cytoplasmic vacuoles or multiple empty, confluent and often outbulging vacuoles merging with cisterns of granular endoplasmic reticulum and clusters of glycogen granules. These changes were most pronounced in patients with macroscopical mucosal inflammation...

  1. Radiosensitivity of mice of different lines and age as determinated with reference to ''intestinal'' death and DNA repair in intestinal epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Konoplyannikova, O.A.; Sklobovskaya, M.V.; Konoplyannikov, A.G.; Saenko, A.S. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the influence of strain- and age-related differences on mouse mortality after irradiation with doses lying within the ''intestinal'' dose range, and also damages to stem cells of intestinal epithelium and induction and repair of single-strand DNA breaks in intestinal epitherium cells. Mice of different lines and age vary in LDsub(50/4) and stem cell radiosensitivity. There are no differences in the sedimentation constants of DNA fragments in alkaline lysates of intestinal crypts of intact mice of different age. Radiosensitivity determined with reference to single-strand breaks induction in DNA is similar with different mouse groups. Repair of single-strand DNA breaks of elderly mice is slower than that of young animals.

  2. Tolerogenic CX3CR1+ B cells suppress food allergy-induced intestinal inflammation in mice.

    Science.gov (United States)

    Liu, Z Q; Wu, Y; Song, J P; Liu, X; Liu, Z; Zheng, P Y; Yang, P C

    2013-10-01

    B lymphocytes are an important cell population of the immune regulation; their role in the regulation of food allergy has not been fully understood yet. This study aims to investigate the role of a subpopulation of tolerogenic B cells (TolBC) in the generation of regulatory T cells (Treg) and in the suppression of food allergy-induced intestinal inflammation in mice. The intestinal mucosa-derived CD5+ CD19+ CX3CR1+ TolBCs were characterized by flow cytometry; a mouse model of intestinal T helper (Th)2 inflammation was established to assess the immune regulatory role of this subpopulation of TolBCs. A subpopulation of CD5+ CD19+ CX3CR1+ B cells was detected in the mouse intestinal mucosa. The cells also expressed transforming growth factor (TGF)-β and carried integrin alpha v beta 6 (αvβ6). Exposure to recombinant αvβ6 and anti-IgM antibody induced naive B cells to differentiate into the TGF-β-producing TolBCs. Coculturing this subpopulation of TolBCs with Th0 cells generated CD4+ CD25+ Foxp3+ Tregs. Adoptive transfer with the TolBCs markedly suppressed the food allergy-induced intestinal Th2 pattern inflammation in mice. CD5+ CD19+ CX3CR1+ TolBCs are capable of inducing Tregs in the intestine and suppress food allergy-related Th2 pattern inflammation in mice. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  4. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  5. Interstitial mononuclear cell infiltrates in chronic rejection of the kidney and correlation with peripheral blood.

    OpenAIRE

    Jeong, H. J.; Hong, S. W.; Kim, Y. S.; Kim, M. S.; Choi, I. H.; Park, K.; Choi, I. J.

    1996-01-01

    To investigate the characteristics of interstitial inflammatory cells and possible involvement of nudelta T cells, 16 renal allograft biopsies showing chronic rejection were stained by immunohistochemical method and correlated with the data of peripheral blood evaluated by flow cytometry. For immunophenotyping, fresh frozen sections were stained with monoclonal antibodies against CD3, CD4, CD8, CD68, CD56, TCRdelta1 and HLA DR. Paraffin embedded tissue was stained with CD45RO, CD20-Cy and CD6...

  6. Interstitial Granulomatous Dermatitis (IGD

    Directory of Open Access Journals (Sweden)

    Tiberiu Tebeica

    2017-07-01

    Full Text Available We report the case of a 42 years old male patient suffering from skin changes , which appeared in the last 7-8 years.  Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of lymphocytes and histiocytes dispersed among collagen bundles, with variable numbers of neutrophils scattered throughout. Some histiocytes were clustered in poorly formed granuloma that included rare giant cells, with discrete Palisades and piecemeal collagen degeneration, but without mucin deposition or frank necrobiosis of collagen. The clinical and histologic findings were supportive for interstitial granulomatous dermatitis. Interstitial granulomatous dermatitis (IGD is a poorly understood entity that was regarded by many as belonging to the same spectrum of disease or even synonym with palisaded and neutrophilic granulomatous dermatitis (PNGD. Although IGD and PNGD were usually related to connective tissue disease, mostly rheumatoid arthritis, some patients with typical histologic findings of IGD never develop autoimmune disorders, but they have different underlying conditions, such as metabolic diseases, lymphoproliferative disorders or other malignant tumours. These observations indicate that IGD and PNGD are different disorders with similar manifestations.

  7. Ultrastructure of the Interstitial Tissue in the Testis of the Egyptian Dromedary Camel (Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    M. I. Abd-Elaziz, A. M. Kassem, D. M. Zaghloul*, A. E. Derbalah and M. H. Bolefa

    2012-01-01

    Full Text Available The ultrastructural examination of the testicular interstitial tissue of Egyptian dromedary camel was performed to observe the seasonal changes. The activity of the interstitial tissue increased largely in spring. This was indicated by the large number of mature Leydig cells and two to three layers of myofibroblasts around the basal laminae of the seminiferous tubules with large blood vessels in the interstitial tissue. The testicular activity was moderate in winter as indicated by the lower number of immature Leydig cells. The lowest activity was in summer when Leydig cells became inactive with pyknotic nuclei. The cells of interstitial tissue lost their junctions with each other, leaving large intercellular spaces and myofibroblasts transformed to fibrocytes. The testicular activity began again to increase in autumn. The testicular activity of camel, however, did not stop in any season of the year, because even in non-breeding seasons a part of the interstitial tissue of the testis was active.

  8. Protective effect of NSA on intestinal epithelial cells in a necroptosis model.

    Science.gov (United States)

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-10-17

    This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.

  9. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  10. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  11. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells

    Science.gov (United States)

    Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian

    2013-01-01

    Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and

  12. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Mandayam O. Nandan

    2015-01-01

    Full Text Available Krüppel-like factor 5 (KLF5 is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5fl/fl were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112 days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC cells that express Lgr5. By 11 days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14 days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112 days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.

  13. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  14. Dendritic Cells in the Gut: Interaction with Intestinal Helminths

    Directory of Open Access Journals (Sweden)

    Fela Mendlovic

    2010-01-01

    Full Text Available The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes.

  15. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  16. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  17. Eosinophils may play regionally disparate roles in influencing IgA(+) plasma cell numbers during large and small intestinal inflammation.

    Science.gov (United States)

    Forman, Ruth; Bramhall, Michael; Logunova, Larisa; Svensson-Frej, Marcus; Cruickshank, Sheena M; Else, Kathryn J

    2016-05-31

    Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). We demonstrate for the first time that there are regional differences in the requirement of

  18. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  19. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  20. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  1. Endocrine cells in the denervated intestine

    Science.gov (United States)

    Santos, Gilda C; Zucoloto, Sérgio; Garcia, Sérgio B

    2000-01-01

    This study deals with the effects of myenteric denervation of the proximal jejunum on endocrine cell population of the crypt-villus unit, 5 months after treatment with benzalkonium chloride (BAC). Male Wistar albino rats weighing on average 100 g were allocated to two groups: the BAC group − the proximal jejunal serosa was treated with 2 mm BAC for 30 min, and the control group − treated with saline solution (0,9% NaCl). There was a significant reduction in neurone number in the jejunal myenteric plexus of the BAC group and the endocrine cell population (serotoninergic and argyrophilic cells) was significantly increased in this intestine segment. In conclusion, the present findings provide further evidence that the myenteric denervation induced by BAC may lead to the development of a local imbalance of the neurotransmitters, with a consequent induction of enteroendocrine cell (argyrophilic and serotoninergic cells) hyperplasia in the crypt and villus. PMID:10971748

  2. Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2.

    Science.gov (United States)

    Kang, Seok-Seong; Noh, Su Young; Park, Ok-Jin; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Staphylococcus aureus can cause the intestinal inflammatory diseases. However, little is known about the molecular mechanism of S. aureus infection in the intestine. In the present study, we investigated whether S. aureus could stimulate human intestinal epithelial cells triggering inflammation. When the human intestinal epithelial cell-line, Caco-2, and the primary colon cells were stimulated with ethanol-inactivated S. aureus, IL-8 expression was induced in a dose-dependent manner. The inactivated S. aureus preferentially stimulated Toll-like receptor (TLR) 2 rather than TLR4. Lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN) are considered as potential TLR2 ligands of S. aureus. Interestingly, S aureus lipoproteins and Pam2CSK4 mimicking Gram-positive bacterial lipoproteins, but not LTA and PGN of S. aureus, significantly induced IL-8 expression in Caco-2 cells. Furthermore, lipoprotein-deficient S. aureus mutant strain failed to induce IL-8 production. Collectively, these results suggest that S. aureus stimulates the human intestinal epithelial cells to induce the chemokine IL-8 production through its lipoproteins, potentially contributing the development of intestinal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  4. Intestinal bacteria and the regulation of immune cell homeostasis.

    Science.gov (United States)

    Hill, David A; Artis, David

    2010-01-01

    The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

  5. The crypt and cell size kinetics in the irradiated intestinal epithelium in mice

    International Nuclear Information System (INIS)

    Kononenko, A.M.; Gagarin, A.U.

    1975-01-01

    A study has been made of changes in the average values of the axial cross-sectional area of the crypt and of cell area in this cross-section for eight days after a single whole-body exposure of male mice to 400 rad of X-rays. A small reduction in the crypt area in the destructive period gives way to a much greater increase in the normal dimensions of the area in the regenerative period. Two very considerable waves of anomalous increase are observed in the dimensions of the cryptal cell cross-sections, the first in the destructive and the second in the regenerative period. These fluctuations in cell dimensions do not occur around but above the control level, attaining the latter level only at the minimum (4th day). The size of the cryptal cells of the intact intestinal epithelium is evidently close to the minimum needed for enterocyte proliferation. The considerable increase in crypt dimensions in the regenerative period (beginning from the 6th day) is not due to the larger number of cells (they are even somewhat fewer than normal) but rather to a substantial increase in cell dimensions. Thus, according to these data, on the 6th-8th day after irradiation the intestinal epithelium deviates strongly from the stationary state. The index I sub(v), where I is the mitotic index and v the cell volume, was used to evaluate the changes in the value of the material stream, connected with proliferation, to the intestinal epithelium per cryptal cell. A considerable increase was found in this stream (hypertrophy of proliferative cells) in the intestinal epithelium restored after irradiation. (author)

  6. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death

    International Nuclear Information System (INIS)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries. (author)

  7. Inhibition of EV71 by curcumin in intestinal epithelial cells

    Science.gov (United States)

    Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243

  8. Inhibition of EV71 by curcumin in intestinal epithelial cells.

    Science.gov (United States)

    Huang, Hsing-I; Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.

  9. Inhibition of EV71 by curcumin in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hsing-I Huang

    Full Text Available EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6, an active ingredient of turmeric (Curcuma longa Linn with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK signaling pathways is not involved. We found that protein kinase C delta (PKCδ plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.

  10. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  11. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition....

  13. Atractylodes macrocephala Koidz stimulates intestinal epithelial cell migration through a polyamine dependent mechanism.

    Science.gov (United States)

    Song, Hou-Pan; Li, Ru-Liu; Zhou, Chi; Cai, Xiong; Huang, Hui-Yong

    2015-01-15

    Atractylodes macrocephala Koidz (AMK), a valuable traditional Chinese herbal medicine, has been widely used in clinical practice for treating patients with disorders of the digestive system. AMK has shown noteworthy promoting effect on improving gastrointestinal function and immunity, which might represent a promising candidate for the treatment of intestinal mucosa injury. The aim of this study was to investigate the efficacy of AMK on intestinal mucosal restitution and the underlying mechanisms via intestinal epithelial (IEC-6) cell migration model. A cell migration model of IEC-6 cells was induced by a single-edge razor blade along the diameter of the cell layers in six-well polystyrene plates. After wounding, the cells were grown in control cultures and in cultures containing spermidine (5μM, SPD, reference drug), alpha-difluoromethylornithine (2.5mM, DFMO, polyamine inhibitor), AMK (50, 100, and 200mg/L), DFMO plus SPD and DFMO plus AMK for 12h. The polyamines content was detected by high-performance liquid chromatography (HPLC) with pre-column derivatization. The Rho mRNAs expression levels were assessed by Q-RT-PCR. The Rho and non-muscle myosin II proteins expression levels were analyzed by Western blot. The formation and distribution of non-muscle myosin II stress fibers were monitored with immunostaining techniques using specific antibodies and observed by confocal microscopy. Cell migration assay was carried out using inverted microscope and the Image-Pro Plus software. All of these indexes were used to evaluate the effectiveness of AMK. (1) Treatment with AMK caused significant increases in cellular polyamines content and Rho mRNAs and proteins expression levels, as compared to control group. Furthermore, AMK exposure increased non-muscle myosin II protein expression levels and formation of non-muscle myosin II stress fibers, and resulted in an acceleration of cell migration in IEC-6 cells. (2) Depletion of cellular polyamines by DFMO resulted in a

  14. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  15. Indispensable role of Notch ligand-dependent signaling in the proliferation and stem cell niche maintenance of APC-deficient intestinal tumors

    International Nuclear Information System (INIS)

    Nakata, Toru; Shimizu, Hiromichi; Nagata, Sayaka; Ito, Go; Fujii, Satoru; Suzuki, Kohei; Kawamoto, Ami; Ishibashi, Fumiaki; Kuno, Reiko; Anzai, Sho; Murano, Tatsuro; Mizutani, Tomohiro; Oshima, Shigeru; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Hozumi, Katsuto; Watanabe, Mamoru; Okamoto, Ryuichi

    2017-01-01

    Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5 +ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5 +ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas. - Highlights: • Notch signaling is activated in LGR5 +ve cells of APC-deficient intestinal tumors. • Lack of Jag1 but not RBPJ disrupts stem cell niche formation in those tumors. • Lack of Jag1 reduces the proliferation activity of APC-deficient intestinal tumors.

  16. Actions of vasoactive intestinal peptide and secretin on chief cells prepared from guinea pig stomach

    International Nuclear Information System (INIS)

    Sutliff, V.E.; Raufman, J.P.; Jensen, R.T.; Gardner, J.D.

    1986-01-01

    Vasoactive intestinal peptide and secretin increased cellular cAMP and pepsinogen secretion in dispersed chief cells from guinea pig gastric mucosa. With each peptide there was a close correlation between the dose-response curve for changes in cellular cAMP and that for changes in pepsinogen secretion. Vasoactive intestinal peptide- (10-28) and secretin- (5-27) had no agonist activity and antagonized the actions of vasoactive intestinal peptide and secretin on cellular cAMP and pepsinogen secretion. Studies of binding of 125 I-vasoactive intestinal peptide and of 125 -secretin indicated that gastric chief cells possess four classes of binding sites for vasoactive intestinal peptide and secretin and that occupation of two of these classes of binding sites correlates with the abilities of vasoactive intestinal peptide and secretin to increase cellular cAMP and pepsinogen secretion. What function, in any, is mediated by occupation by the other two classes of binding sites remains to be determined

  17. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema

    Directory of Open Access Journals (Sweden)

    Miserocchi Giuseppe

    2006-01-01

    Full Text Available Abstract Background A correlation between interstial pulmonary matrix disorganization and lung cellular response was recently documented in cardiogenic interstitial edema as changes in the signal-cellular transduction platforms (lipid microdomains: caveoale and lipid rafts. These findings led to hypothesize a specific "sensing" function by lung cells resulting from a perturbation in cell-matrix interaction. We reason that the cell-matrix interaction may differ between the cardiogenic and the hypoxic type of lung edema due to the observed difference in the sequential degradation of matrix proteoglycans (PGs family. In cardiogenic edema a major fragmentation of high molecular weight PGs of the interfibrillar matrix was found, while in hypoxia the fragmentation process mostly involved the PGs of the basement membrane controlling microvascular permeability. Based on these considerations, we aim to describe potential differences in the lung cellular response to the two types of edema. Methods We analysed the composition of plasma membrane and of lipid microdomains in lung tissue samples from anesthetized rabbits exposed to mild hypoxia (12 % O2 for 3–5 h causing interstitial lung edema. Lipid analysis was performed by chromatographic techniques, while protein analysis by electrophoresis and Western blotting. Lipid peroxidation was assessed on total plasma membranes by a colorimetric assay (Bioxytech LPO-586, OxisResearch. Plasma membrane fluidity was also assessed by fluorescence. Lipid microdomains were isolated by discontinuous sucrose gradient. We also performed a morphometric analysis on lung cell shape on TEM images from lung tissue specimen. Results After hypoxia, phospholipids content in plasma membranes remained unchanged while the cholesterol/phospholipids ratio increased significantly by about 9% causing a decrease in membrane fluidity. No significant increase in lipid peroxidation was detected. Analysis of lipid microdomains showed a

  18. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    Science.gov (United States)

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  19. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  20. The intestinal microbiota determines the colitis‐inducing potential of T‐bet‐deficient Th cells in mice

    Science.gov (United States)

    Zimmermann, Jakob; Durek, Pawel; Kühl, Anja A.; Schattenberg, Florian; Maschmeyer, Patrick; Siracusa, Francesco; Lehmann, Katrin; Westendorf, Kerstin; Weber, Melanie; Riedel, René; Müller, Susann; Radbruch, Andreas

    2017-01-01

    Abstract Conflicting evidence has been provided as to whether induction of intestinal inflammation by adoptive transfer of naïve T cells into Rag −/− mice requires expression of the transcription factor T‑bet by the T cells. Here, we formally show that the intestinal microbiota composition of the Rag −/− recipient determines whether or not T‐bet‐deficient Th cells can induce colitis and we have resolved the differences of the two microbiomes, permissive or non‐permissive to T‐bet‐independent colitis. Our data highlight the dominance of the microbiota over particular T cell differentiation programs in the pathogenesis of chronic intestinal inflammation. PMID:28875499

  1. The alteration in intestinal secretory immunoglobulin A and its secreting cells during ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Li-qun SUN

    2012-04-01

    Full Text Available Objective To investigate the change in intestinal secretion immunoglobulin A (sIgA level and IgA-secreting cells during ischemia/reperfusion (I/R injury. Methods Forty-eight BALB/c mice were randomly divided into 6 experimental groups in accordance with different reperfusion times (R2h, R6h, R12h, R24h, and R72h group, and one sham group (n=8. Bacterial translocation to distant organs (lung, spleen, and mesenteric lymph nodes was observed. The sIgA level of the intestinal tract was measured by enzyme-linked immunosorbent assay (ELISA. The B cell subgroup in the lymphocytes related to the intestinal tract was measured by flow cytometry. Results The bacterial translocation occurred during I/R injury, and the intestinal sIgA level decreased, and they showed an obvious negative correlation (r2=0.729. With the increase in intestinal I/R injury, the ratio of IgM+B220+ cells in the gut-associated lymphoid tissue increased, whereas the proportion of IgA+B220+ cells decreased. The most significant change was found in R12h group (P < 0.01. Conclusions The proportion of IgM+ B cells in the gut-associated lymphoid tissue increased, whereas that of IgA+ B cells reduced during I/R injury. These phenomena may cause sIgA level to reduce and bacterial translocation of the distant organs to occur.

  2. Primary Intestinal Lymphangiectasia and its Association With Generalized Lymphatic Anomaly

    Directory of Open Access Journals (Sweden)

    Victoria María Díaz Marugán

    2016-01-01

    Full Text Available Background: Lymph is a fluid originating in the interstitial spaces of the body that contains cells, proteins, particles, chylomicrons, and sometimes bacteria. Objectives: The aim of the present study is to demonstrate that primary intestinal lymphangiectasia (PIL results from a disruption of lymphatic circulation, thus corresponding to a secondary rather than a primary event in the context of generalized lymphatic anomaly. Materials and Methods: In this case series and record review, an analysis of intestinal lymphatic involvement was performed on patients diagnosed with PIL between 1965 and 2013. Of the 21 patients included in the study, 10 had been diagnosed before 5 years of age (1 prenatal, 8 between 5 and 18 years of age, and 3 while older than 18 years of age. The follow-up period varied between 1 and 34 years. Clinical data, blood and fecal parameters, imaging studies, endoscopy results, biopsy analyses, treatment details, and outcome information were collected from medical records. Endoscopy, histological studies, magnetic resonance imaging, and lymphoscintigraphy were performed on all patients. Dynamic intranodal lymphangiography was performed on 8 patients. Results: Central lymphatic channel obstruction was identified in 12 patients (57%. Associated lymphatic malformation (LM was present in 16, diarrhea in 10, chylothorax in 11, chylous ascites in 10, pericardial effusion in 6, coagulopathy in 3, and osteolysis in 7. Conclusions: We consider intestinal lymphangiectasia not as an entity in itself, but as a consequence of lymphatic flow impairment in the thoracic duct, producing chylous reflux into the intestinal lymphatics.

  3. Enteral peptide formulas inhibit radiation induced enteritis and apoptosis in intestinal epithelial cells and suppress the expression and function of Alzheimer's and cell division control gene products

    International Nuclear Information System (INIS)

    Cope, F.O.; Issinger, O.G.; McArdle, A.H.; Shapiro, J.; Tomei, L.D.

    1991-01-01

    Studies have shown that patients receiving enteral peptide formulas prior to irradiation have a significantly reduced incidence of enteritis and express a profound increase in intestinal cellularity. Two conceptual approaches were taken to describe this response. First was the evaluation in changes in programmed intestinal cell death and secondly the evaluation of a gene product controlling cell division cycling. This study provided a relationship between the ratio of cell death to cell formulations. The results indicate that in the canine and murine models, irradiation induces expression of the Alzheimer's gene in intestinal crypt cells, while the incidence of apoptosis in apical cells is significantly increased. The use of peptide enteral formulations suppresses the expression of the Alzheimer's gene in crypt cells, while apoptosis is eliminated in the apical cells of the intestine. Concomitantly, enteral peptide formulations suppress the function of the CK-II gene product in the basal and baso-lateral cells of the intestine. These data indicate that although the mitotic index is significantly reduced in enterocytes, this phenomenon alone is not sufficient to account for the peptide-induced radio-resistance of the intestine. The data also indicate a significant reduction of normal apoptosis in the upper lateral and apical cells of the intestinal villi. Thus, the ratio of cell death to cell replacement is significantly decreased resulting in an increase in villus height and hypertrophy of the apical villus cells. Thus, peptide solutions should be considered as an adjunct treatment both in radio- and chemotherapy

  4. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation.

    Science.gov (United States)

    Koboziev, Iurii; Karlsson, Fridrik; Grisham, Matthew B

    2010-10-01

    The etiologies of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) have not been fully elucidated. However, there is very good evidence implicating T cell and T cell trafficking to the gut and its associated lymphoid tissue as important components in disease pathogenesis. The objective of this review is to provide an overview of the mechanisms involved in naive and effector T cell trafficking to the gut-associated lymphoid tissue (GALT; Peyer's patches, isolated lymphoid follicles), mesenteric lymph nodes and intestine in response to commensal enteric antigens under physiological conditions as well as during the induction of chronic gut inflammation. In addition, recent data suggests that the GALT may not be required for enteric antigen-driven intestinal inflammation in certain mouse models of IBD. These new data suggest a possible paradigm shift in our understanding of how and where naive T cells become activated to yield disease-producing effector cells. © 2010 New York Academy of Sciences.

  5. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Winnie Y. Zou

    2018-01-01

    Full Text Available Intestinal stem cells (ISCs maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.

  6. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Determination of the population of octahedral and tetrahedral interstitials in zirconium hydrides

    International Nuclear Information System (INIS)

    Fedorov, V.M.; Gogava, V.V.; Shilo, S.I.; Biryukova, E.A.

    1983-01-01

    Results of neutron investigations of ZrHsub(1.66), ZrHsub(1.75) and ZrHsub(1.98) zirconium hydrides are presented. Investigations were conducted using plane polycrystal samples by multidetector system of scattered neutron detection. Neutron diffraction method was used to determine the number of interstitial hydrogen atoms in interstitials of the lattice cell in the case of statistic atom distribution. The numbers of interstitial atoms in octahedral interstitials for zirconium hydrides were determined experimentally; the difference of potential energies of hydrogen atoms in octa- and tetrahedral interstitials was determined as well. It is shown that experimentally determined difference of potential energies of hydrogen atoms, occupying octa- and tetrahedral positions in investigated zirconium hydrides results at room temperature in the pretailing occupation of tetrahedral interstitials by hydrogen atoms (85-90%); the occupation number grows with temperature decrease and the ordering of interstitial vacancies with formation of hydrogen superstructure takes place at low temperatures

  8. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2018-01-01

    Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.

  10. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    Science.gov (United States)

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  13. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  14. Stem Cells in the Intestine: Possible Roles in Pathogenesis of Irritable Bowel Syndrome.

    Science.gov (United States)

    Ratanasirintrawoot, Sutheera; Israsena, Nipan

    2016-07-30

    Irritable bowel syndrome is one of the most common functional gastrointestinal (GI) disorders that significantly impair quality of life in patients. Current available treatments are still not effective and the pathophysiology of this condition remains unclearly defined. Recently, research on intestinal stem cells has greatly advanced our understanding of various GI disorders. Alterations in conserved stem cell regulatory pathways such as Notch, Wnt, and bone morphogenic protein/TGF- β have been well documented in diseases such as inflammatory bowel diseases and cancer. Interaction between intestinal stem cells and various signals from their environment is important for the control of stem cell self-renewal, regulation of number and function of specific intestinal cell types, and maintenance of the mucosal barrier. Besides their roles in stem cell regulation, these signals are also known to have potent effects on immune cells, enteric nervous system and secretory cells in the gut, and may be responsible for various aspects of pathogenesis of functional GI disorders, including visceral hypersensitivity, altered gut motility and low grade gut inflammation. In this article, we briefly summarize the components of these signaling pathways, how they can be modified by extrinsic factors and novel treatments, and provide evidenced support of their roles in the inflammation processes. Furthermore, we propose how changes in these signals may contribute to the symptom development and pathogenesis of irritable bowel syndrome.

  15. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.

    Science.gov (United States)

    He, Xi C; Zhang, Jiwang; Tong, Wei-Gang; Tawfik, Ossama; Ross, Jason; Scoville, David H; Tian, Qiang; Zeng, Xin; He, Xi; Wiedemann, Leanne M; Mishina, Yuji; Li, Linheng

    2004-10-01

    In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.

  16. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    Science.gov (United States)

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  17. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    2012-05-01

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  18. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  19. Perforated small intestine in a patient with T-cell lymphoma; a rare cause of peritonitis

    Directory of Open Access Journals (Sweden)

    Petrişor Banu

    2016-04-01

    Full Text Available The nontraumatic perforations of the small intestine are pathological entities with particular aspects in respect to diagnosis and treatment. These peculiarities derive from the nonspecific clinical expression of the peritonitis syndrome, and from the multitude of causes that might be the primary sources of the perforation: foreign bodies, inflammatory diseases, tumors, infectious diseases, etc. Accordingly, in most cases intestinal perforation is discovered only by laparotomy and the definitive diagnosis is available only after histopathologic examination. Small bowel malignancies are rare; among them, lymphomas rank third in frequency, being mostly B-cell non Hodgkin lymphomas. Only 10% of non-Hodgkin lymphomas are with T-cell. We report the case of a 57 years’ old woman with intestinal T-cell lymphoma, whose first clinical symptomatology was related to a complication represented by perforation of the small intestine. Laparotomy performed in emergency identified an ulcerative lesion with perforation in the jejunum, which required segmental enterectomy with anastomosis. The nonspecific clinical manifestations of intestinal lymphomas make from diagnosis a difficult procedure. Due to the fact that surgery does not have a definite place in the treatment of the small intestinal lymphomas (for cases complicated with perforation, and beyond the morbidity associated with the surgery performed in emergency conditions, prognosis of these patients is finally given by the possibility to control the systemic disease through adjuvant therapy.

  20. Coating with luminal gut-constituents alters adherence of nanoparticles to intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Heike Sinnecker

    2014-12-01

    Full Text Available Background: Anthropogenic nanoparticles (NPs have found their way into many goods of everyday life. Inhalation, ingestion and skin contact are potential routes for NPs to enter the body. In particular the digestive tract with its huge absorptive surface area provides a prime gateway for NP uptake. Considering that NPs are covered by luminal gut-constituents en route through the gastrointestinal tract, we wanted to know if such modifications have an influence on the interaction between NPs and enterocytes.Results: We investigated the consequences of a treatment with various luminal gut-constituents on the adherence of nanoparticles to intestinal epithelial cells. Carboxylated polystyrene particles 20, 100 and 200 nm in size represented our anthropogenic NPs, and differentiated Caco-2 cells served as model for mature enterocytes of the small intestine. Pretreatment with the proteins BSA and casein consistently reduced the adherence of all NPs to the cultured enterocytes, while incubation of NPs with meat extract had no obvious effect on particle adherence. In contrast, contact with intestinal fluid appeared to increase the particle-cell interaction of 20 and 100 nm NPs.Conclusion: Luminal gut-constituents may both attenuate and augment the adherence of NPs to cell surfaces. These effects appear to be dependent on the particle size as well as on the type of interacting protein. While some proteins will rather passivate particles towards cell attachment, possibly by increasing colloid stability or camouflaging attachment sites, certain components of intestinal fluid are capable to modify particle surfaces in such a way that interactions with cellular surface structures result in an increased binding.

  1. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief (Marie-José); I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of

  2. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  3. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  4. Protective Role of R-spondin1, an Intestinal Stem Cell Growth Factor, against Radiation-Induced Gastrointestinal Syndrome in Mice

    OpenAIRE

    Bhanja, Payel; Saha, Subhrajit; Kabarriti, Rafi; Liu, Laibin; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta; Sellers, Rani S.; Alfieri, Alan A.; Guha, Chandan

    2009-01-01

    Background Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of...

  5. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  7. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  8. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron

    International Nuclear Information System (INIS)

    Wirth, B.D.; Odette, G.R.; California Univ., Santa Barbara, CA; Maroudas, D.; Lucas, G.E.; California Univ., Santa Barbara, CA

    1997-01-01

    Energetic primary recoil atoms from fast neutron irradiation generate both isolated point defects and clusters of vacancies and interstitials. Self-interstitial mobility as well as defect cluster stability and mobility play key roles in the subsequent fate of defects and, hence, in the overall microstructural evolution under irradiation. Self-interstitials and two, three and four-member self-interstitial clusters are highly mobile at low temperatures as observed in molecular-dynamics simulations and high mobility probably also extends to larger clusters. In this study, the morphology, energetics and mobility of self-interstitials and small self-interstitial clusters in α-iron are studied by molecular-statics and molecular-dynamics simulations using a Finnis-Sinclair many-body interatomic potential. Self-interstitial migration is found to be a two-step process consisting of a rotation out of the split-dumbbell configuration into the split-dumbbell configuration and translational jumps through the crowdion configuration before returning to the dumbbell configuration. Self-interstitial clusters of type split-interstitials assembled on adjacent {110} planes migrate along directions in an amoeba-like fashion by sequential local dissociation and re-association processes. (orig.)

  9. The value of digital subtraction angiography in diagnosing small intestinal hemorrhage with unknown reasons

    International Nuclear Information System (INIS)

    Luo Guanghua; Xiao Wenlian; Tang Deqiu; Chan Hong

    2006-01-01

    Objective: To discuss the diagnostic value of DSA for unknown reason hemorrhage of small intestine. Methods: 25 patients with hemorrhage of small intestine were performed angiography with Seldinger's technique through superior mesenteric artery. Results: Eleven cases demonstrated direct signs of hemorrhage, 12 cases of indirect signs of hemorrhage and 5 with both of the signs. The positive rate of hemorrhage was 72% including 10 cases of tumor (6 leiomyomas, 2 leiomyosarcomas, 1 interstitial tumor, 1 small intestinal cancer), 4 cases of Meckel's diverticulum, 3 cases of vascular malformation and 1 case of inflammation. The coincidence rate of positive cases with pathology was 75% and the diagnostic accuracy of localization was 100%. Conclusions: DSA angiography is very helpful for determining the location and character of unknown reason hemorrhage of small intestine. (authors)

  10. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    Science.gov (United States)

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  12. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Turck, Natacha; Gross, Isabelle; Gendry, Patrick; Stutzmann, Jeanne; Freund, Jean-Noel; Kedinger, Michele; Simon-Assmann, Patricia; Launay, Jean-Francois

    2005-01-01

    Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins

  13. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  14. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Science.gov (United States)

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These

  15. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2015-04-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. Copyright © 2015 the American Physiological Society.

  16. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  17. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody.

    Science.gov (United States)

    Kunisawa, Jun

    2017-04-01

    To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.

  18. The Glycoprofile Patterns of Endothelial Cells in Usual Interstitial Pneumonia

    Directory of Open Access Journals (Sweden)

    A Barkhordari

    2014-09-01

    Full Text Available [THIS ARTICLE HAS BEEN RETRACTED FOR DUPLICATE PUBLICATION] Background: The pathological classification of cryptogenic fibrosing alveolitis has been a matter of debate and controversy for histopathologists. Objective: To identify and specify the glycotypes of capillary endothelial cells in usual interstitial pneumonia (UIP compared to those found in normal tissue. Methods: Sections of formalin-fixed, paraffin-embedded blocks from 16 cases of UIP were studied by lectin histochemistry with a panel of 27 biotinylated lectins and an avidin-peroxidase revealing system. Results: High expression of several classes of glycan was seen de novo in capillary endothelial cells from patients with UIP including small complex and bi/tri-antennary bisected complex N-linked sequences bolund by Concanavalin A and erythro-phytohemagglutinin, respectively, GalNAca1 residues bound by Helix pomatia and Maclura pomifera agglutinins, and L-fucosylated derivatives of type II glycan chains recognized by Ulex europaeus agglutinin-I. Glycans bound by agglutinins from Lycopersicon esculentum (β1,4GlcNAc and Wisteria floribunda (GalNAc as well as GlcNAc oligomers bound by Phytolacca americana and succinylated Wheat Germ agglutinin were also seen in the capillary endothelial cells of UIP. In contrast, L-fucosylated derivatives of type I glycan chains were absent in cells from cases of UIP when Anguilla anguilla agglutinin was applied, unlike the situation in normal tissue. Conclusion: These results may indicate existence of two distinct populations of endothelial cell in UIP with markedly different patterns of glycosylation, reflecting a pattern of differentiation and angiogenesis, which is not detectable morphologically.

  19. Radionuclide study for the interstitial lung disease

    International Nuclear Information System (INIS)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo

    1991-01-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with 81m Kr, distribution of compliance in thoraco-pulmonary system (C) by 81m Kr gas bolus inhalation method, perfusion study (Q) with 99m Tc-MAA, 67 Ga scintigraphy and an assessment of pulmonary epithelial permeability with 99m Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO 2 was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. 67 Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of 67 Ga. 67 Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by 99m Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author)

  20. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  1. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    Science.gov (United States)

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  2. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Cupedo, Tom

    2011-01-01

    Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity. Copyright © 2011 S. Karger AG, Basel.

  3. The diffuse interstitial lung disease - with emphasis in the idiopathic interstitial pneumonias

    International Nuclear Information System (INIS)

    Bustillo P, Jose G; Pacheco, Pedro M; Matiz, Carlos; Ojeda, Paulina; Carrillo B, Jorge A.

    2003-01-01

    The term diffuse interstitial lung disease, it refers to those diseases that commit the interstice basically, the space between the membrane basal epithelial and endothelial, although the damage can also commit the outlying air spaces and the vessels; the supplement is centered in the diffuse interstitial lung illness of unknown cause; well-known as idiopathic interstitial pneumonias, making emphasis in the more frequents, the pulmonary fibrosis idiopathic or cryptogenic fibrosant alveolitis

  4. Heparin modulates human intestinal smooth muscle (HISM) cell proliferation and matrix production

    International Nuclear Information System (INIS)

    Graham, M.; Perr, H.; Drucker, D.E.; Diegelmann, R.F.

    1986-01-01

    (HISM) cell proliferation and collagen production may play a role in the pathogenesis of intestinal stricture in Crohn's disease. The present studies were performed to evaluate the effects of heparin, a known modulator of vascular smooth muscle cells, on HISM cell proliferation and collagen production. Heparin (100 μg/ml) was added daily to HISM cell cultures for cell proliferation studies and for 24 hours at various time points during culture for collagen synthesis studies. Collagen synthesis was determined by the uptake of 3 H proline into collagenase-sensitive protein. Heparin completely inhibited cell proliferation for 7 days, after which cell numbers increased but at a slower rate than controls. Cells released from heparin inhibition demonstrated catch-up growth to control levels. Collagen production was significantly inhibited by 24 hours exposure to heparin but only at those times during culture when collagen synthesis was maximal (8 to 12 days). Non-collagen protein synthesis was inhibited by heparin at all time points during culture. Heparin through its modulation of HISM cells may play an important role in the control of the extracellular matrix of the intestinal wall

  5. Osteopontin attenuates acute gastrointestinal graft-versus-host disease by preventing apoptosis of intestinal epithelial cells

    International Nuclear Information System (INIS)

    Kawakami, Kentaro; Minami, Naoki; Matsuura, Minoru; Iida, Tomoya; Toyonaga, Takahiko; Nagaishi, Kanna; Arimura, Yoshiaki; Fujimiya, Mineko; Uede, Toshimitsu; Nakase, Hiroshi

    2017-01-01

    Background and aims: Acute graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation, which often targets gastrointestinal (GI) tract. Osteopontin (OPN) plays an important physiological role in the efficient development of Th1 immune responses and cell survival by inhibiting apoptosis. The role of OPN in acute GI-GVHD is poorly understood. In the present study, we investigated the role of OPN in donor T cells in the pathogenicity of acute GI-GVHD. Methods: OPN knockout (KO) mice and C57BL/6 (B6) mice were used as donors, and (C57BL/6 × DBA/2) F1 (BDF1) mice were used as allograft recipients. Mice with acute GI-GVHD were divided into three groups: the control group (BDF1→BDF1), B6 group (B6→BDF1), and OPN-KO group (OPN-KO→BDF1). Bone marrow cells and spleen cells from donors were transplanted to lethally irradiated recipients. Clinical GVHD scores were assessed daily. Recipients were euthanized on day 7 after transplantation, and colons and small intestines were collected for various analyses. Results: The clinical GVHD score in the OPN-KO group was significantly increased compared with the B6 and control groups. We observed a difference in the severity of colonic GVHD between the OPN-KO group and B6 group, but not small intestinal-GVHD between these groups. Interferon-γ, Tumor necrosis factor-α, Interleukin-17A, and Interleukin-18 gene expression in the OPN-KO group was differed between the colon and small intestine. Flow cytometric analysis revealed that the fluorescence intensity of splenic and colonic CD8 T cells expressing Fas Ligand was increased in the OPN-KO group compared with the B6 group. Conclusion: We demonstrated that the importance of OPN in T cells in the onset of acute GI-GVHD involves regulating apoptosis of the intestinal cell via the Fas-Fas Ligand pathway. - Highlights: • A lack of osteopontin in donor cells exacerbated clinical gastrointestinal GVHD. • Donor cells lacking

  6. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Hidalgo, Alberto; Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta; Bordes, Ramon

    2006-01-01

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  7. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  8. SITS-sensitive Cl- conductance pathway in chick intestinal cells

    International Nuclear Information System (INIS)

    Montrose, M.; Randles, J.; Kimmich, G.A.

    1987-01-01

    The unidirectional influx of 36 Cl - into isolated chick epithelial cells is 30% inhibited by 300 μM SITS. Characteristics of the SITS-sensitive flux pathway were examined in terms of sensitivity to changes in membrane potential and intracellular pH. Potential dependence was evaluated using unidirectional influx of [ 14 C]tetraphenylphosphonium ([ 14 C]-TPP + ) as a qualitative sensor of diffusion potentials created by experimentally imposed gradients of CL - . Steady-state distribution of [ 14 C]methylamine ([ 14 C]MA) was used to examine for Cl - -dependent changes in intracellular pH. Imposed Na + gradients, but not Cl - gradients, induce changes in [ 14 C]MA distribution. SITS does not alter the [ 14 C]MA distribution observed in cells with imposed gradients of Na + and Cl - . Both results suggest that inhibition of Cl - influx. However, if relative permeabilities for ion pairs via conductance pathways are compared, it can be shown that SITS causes a marked reduction of P Cl relative to either P Na or P K . SITS also inhibits electrically induced influx of [ 14 C]TPP + or [ 14 C]α-methylglucoside driven by imposed Cl - influx can be blocked by SITS. These observations are all consistent with a SITS-sensitive Cl - conductance pathway associated with the plasma membrane of chick intestinal cells. No Cl - -OH - exchange capability can be detected for chick intestinal cells

  9. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  10. Radioprotective effect of dextran sulphate and aerogenic hypoxia on intestinal crypt stem cells in mice

    International Nuclear Information System (INIS)

    Vacek, A.; Bartonickova, A.; Rotkovska, D.; Konoplyanikova, O.A.; Konoplyanikov, A.G.

    1991-01-01

    A single intraperitoneal injection of dextran sulfate given 6 h before irradiation produced higher numbers of microcolonies of intestinal crypt stem cells in whole-body irradiated mice than an injection of saline in control mice. If dextran sulfate and hypoxia are combined, the radioprotective effect of hypoxia on intestinal crypt stem cells depends on the time interval between irradiation and administration of dextran sulfate. (author). 2 figs., 12 refs

  11. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    to enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... the layers was a modified Teflon porous membrane for cell culture. The novelty lies in modifying the surface of the porous Teflon support membrane using thiol-ene ‘click’ chemistry, thus allowing the modified Teflon membrane to be bonded between the chip layers to form an enclosed microchip. Successful...... application of the multi-layer microchip was demonstrated by integrating the microchip to an existing cell culture fluidic system to culture the human intestinal epithelial cells, Caco-2, for long term studies. Under the continuous low flow conditions, the cells differentiated into columnar cells displaying...

  12. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  13. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    Science.gov (United States)

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  14. Crypt base columnar stem cells in small intestines of mice are radioresistant

    NARCIS (Netherlands)

    Hua, G.; Thin, T.H.; Feldman, R.; Haimovitz-Friedman, A.; Clevers, H.; Fuks, Z.; Kolesnick, R.

    2012-01-01

    BACKGROUND & AIMS: Adult stem cells have been proposed to be quiescent and radiation resistant, repairing DNA double-strand breaks by nonhomologous end joining. However, the population of putative small intestinal stem cells (ISCs) at position +4 from the crypt base contradicts this model, in that

  15. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation

    International Nuclear Information System (INIS)

    Leigh, B.R.; Khan, W.; Hancock, S.L.

    1995-01-01

    Recombinant rat stem cell factor (SCF) has been shown to decrease lethality in mice exposed to total-body irradiation (TBI) in the lower range of lethality through radioprotection of hematopoietic stem cells and acceleration of bone marrow repopulation. This study evaluates the effect of SCF on the survival of the intestinal mucosal stem cell after TBI. This non-hematopoietic cell is clinically relevant. Gastrointestinal toxicity is common during and after abdominal and pelvic radiation therapy and limits the radiation dose in these regions. As observed with bone marrow, the administration of SCF to mice prior to TBI enhanced the survival of mouse duodenal crypt stem cells. The maximum enhancement of survival was seen when 100 μ/kg of SCF was given intraperitoneally 8 h before irradiation. This regimen increased the survival of duodenal crypt stem cells after 12.0 Gy TBI from 22.5 ± 0.7 per duodenal cross section for controls to 30.0 ± 1.7 after treatment with SCF (P=0.03). The TBI dose producing 50% mortality of 6 days (LD 50/6 ) was increased from 14.9 Gy for control mice to 19.0 Gy for mice treated with SCF (dose modification factor = 1.28). These findings demonstrate that SCF (dose modification factor = 1.28). These findings demonstrate that SCF has radioprotective effects on a non-hematopoietic stem cell population and suggest that SCF may be of clinical value in preventing radiation injury to the intestine. 29 refs., 4 figs

  16. Squamous cell carcinoma of the oral tongue and floor of mouth. Evaluation of interstitial radium therapy

    International Nuclear Information System (INIS)

    Delclos, L.; Lindberg, R.D.; Fletcher, G.H.

    1976-01-01

    From January 1965, to December 1972, 46 patients with squamous cell carcinoma of the floor of the mouth and 102 patients with squamous cell carcinoma of the oral tongue were treated at M. D. Anderson Hospital and Tumor Institute by interstitial irradiation alone or in combination with external irradiation. Through the years the combination of radiation therapy modalities has been adjusted in an attempt to improve local control, keeping complications to a minimum. In this paper we analyze local control, cause of failure and complications as related to the primary size (T Stage) and radiation therapy techniques employed

  17. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats

    NARCIS (Netherlands)

    M. Verburg (Melissa); I.B. Renes (Ingrid); H.P. Meijer; J.A. Taminiau; H.A. Büller (Hans); A.W.C. Einerhand (Sandra); J. Dekker (Jan)

    2000-01-01

    textabstractProliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths

  18. Peritumoral interstitial double-nuclide double-compound lymphoscintigraphy (PIDDL) in squamous cell carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Munz, D.L.; Jung, H.

    1985-01-01

    PIDDL is a new two-phase lymphoscintigraphic approach developed by MUNZ et al. for identification of lymph node drainage groups of primary tumors followed by direct visualization of metastases in the nodes. The present study was done to test the diagnostic usefulness of PIDDL in squamous cell carcinoma of the oral cavity. 58 patients of either sex, aged 31-86 years, were examined prior to surgery. In the first phase of PIDDL, lymph node groups draining the primary lesions were identified after peritumoral interstitial injection of 1.52.0 mCi Tc-99m antimony trisulfide colloid or Tc-99m human serum albumin microcolloid. In the second phase, metastases located in the draining lymph nodes were visualized following peritumoral interstitial injection of 200-300 μCi Ga-67 citrate. Ga-67 accumulated in 71% of lymph node drainage groups identified. No GA-67 uptake was observed in lymph nodes other than those identified by the radiocolloid. Based on the radiocolloid lymphoscintigraphic data, selective lymph node dissection was performed in 41 of the patients examined. The study concludes that PIDDL offers a promising approach for the noninvasive assessment of lymph node metastases in squamous cell carcinoma of the oral cavity

  19. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinalcells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Tissue response after radiation exposure. Intestine

    International Nuclear Information System (INIS)

    Otsuka, Kensuke; Tomita, Masanori; Yamauchi, Motohiro; Iwasaki, Toshiyasu

    2014-01-01

    Gastrointestinal syndrome followed by 'gut death' is due to intestinal disorders. This syndrome is induced by high-dose (>10 Gy) of ionizing radiation. Recovery from the gastrointestinal syndrome would depend on the number of survived clonogens and regeneration capability of crypts. These tissue alterations can be observed by high-dose radiation, however, cellular dynamics in crypts can be affected by low-dose radiation. For example, Potten et al. found that low-dose radiation induce apoptosis of intestinal stem cells, which produce all differentiated function cells. Recently, intestinal stem cells are characterized by molecular markers such as Lgr5. Since intestinal adenomas can be induced by deletion of Apc gene in Lgr5 + stem cells, it is widely recognized that Lgr5 + stem cells are the cell-of-origin of cancer. Duodenal Lgr5 + stem cells are known as radioresistant cells, however, we found that ionizing radiation significantly induces the turnover of colonic Lgr5 + stem cells. Combined with the knowledge of other radioresistant markers, stem-cell dynamics in tissue after irradiation are becoming clear. The present review introduces the history of gastrointestinal syndrome and intestinal stem cells, and discusses those future perspectives. (author)

  1. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila

    Directory of Open Access Journals (Sweden)

    Péter Nagy

    2016-05-01

    Full Text Available UV radiation resistance-associated gene (UVRAG is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent or late (Rab7-dependent steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans.

  2. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells

    NARCIS (Netherlands)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H.A.M.; Difilippo, Elisabetta; Schols, Henk A.; Schoterman, Margriet H.C.; Garssen, Johan; Braber, Saskia

    2017-01-01

    Purpose: The direct effects of galacto-oligosaccharides (GOS), including Vivinal® GOS syrup (VGOS) and purified Vivinal® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To

  3. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Daniela Ferrari

    2017-01-01

    Full Text Available Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G. In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.

  4. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes

  5. Radionuclide study for the interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo (Jikei Univ., Tokyo (Japan). School of Medicine)

    1991-07-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with {sup 81m}Kr, distribution of compliance in thoraco-pulmonary system (C) by {sup 81m}Kr gas bolus inhalation method, perfusion study (Q) with {sup 99m}Tc-MAA, {sup 67}Ga scintigraphy and an assessment of pulmonary epithelial permeability with {sup 99m}Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO{sub 2} was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. {sup 67}Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of {sup 67}Ga. {sup 67}Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by {sup 99m}Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author).

  6. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge.

    Directory of Open Access Journals (Sweden)

    Catherine R Walker

    Full Text Available Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs that leads to antimicrobial protein (AMP production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/- express significantly reduced levels of the AMP angiogenin 4 (Ang4. These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT mice to TCRδ(-/- mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/- mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+ γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.

  7. Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources.

    Science.gov (United States)

    Maruoka, Yasuhiro; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Okuyama, Shuhei; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-21

    Near infrared photoimmunotherapy (NIR-PIT) is a new target-cell-specific cancer treatment that induces highly selective necrotic/immunogenic cell death after systemic administration of a photoabsorber antibody conjugate and subsequent NIR light exposure. However, the depth of NIR light penetration in tissue (approximately 2 cm) with external light sources limits the therapeutic effects of NIR-PIT. Interstitial light exposure using cylindrical diffusing optical fibers can overcome this limitation. The purpose in this study was to compare three NIR light delivery methods for treating tumors with NIR-PIT using a NIR laser system at an identical light energy; external exposure alone, interstitial exposure alone, and the combination. Panitumumab conjugated with the photoabsorber IRDye-700DX (pan-IR700) was intravenously administered to mice with A431-luc xenografts which are epithelial growth factor receptor (EGFR) positive. One and 2 days later, NIR light was administered to the tumors using one of three methods. Interstitial exposure alone and in combination with external sources showed the greatest decrease in bioluminescence signal intensity. Additionally, the combination of external and interstitial NIR light exposure showed significantly greater tumor size reduction and prolonged survival after NIR-PIT compared to external exposure alone. This result suggested that the combination of external and interstitial NIR light exposure was more effective than externally applied light alone. Although external exposure is the least invasive means of delivering light, the combination of external and interstitial exposures produces superior therapeutic efficacy in tumors greater than 2 cm in depth from the tissue surface.

  8. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    Science.gov (United States)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  9. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2018-01-01

    Full Text Available The relationship between intestinal stem cells (ISCs and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.

  10. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

    Directory of Open Access Journals (Sweden)

    Yu Lu

    Full Text Available The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.

  11. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.

    Science.gov (United States)

    Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li

    2017-07-01

    In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  13. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  14. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function.

    Science.gov (United States)

    Sina, Christian; Kemper, Claudia; Derer, Stefanie

    2018-06-01

    The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  16. Interstitial pregnancy: role of MRI

    International Nuclear Information System (INIS)

    Filhastre, M.; Lesnik, A.; Dechaud, H.; Taourel, P.

    2005-01-01

    We report the MRI features of two cases of interstitial pregnancy. In both cases, MRI was able to localize the ectopic pregnancy by showing a gestational structure surrounded by a thick wall in the upper part of the uterine wall separated from the endometrium by an uninterrupted junctional zone. Because US may confuse angular and interstitial pregnancies and because interstitial pregnancy has a particular evolutive course, MR imaging may play a key role in the diagnosis and management of women with interstitial pregnancy. (orig.)

  17. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  18. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  19. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  20. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eo; Seidelin, Jakob B; Yin, Xiaolei

    2017-01-01

    models suggests that intestinal stem cell transplantation could constitute a novel treatment strategy to re-establish mucosal barrier function in patients with severe disease. Intestinal stem cells can be grownin vitroin organoid structures, though only a fraction of the cells contained are stem cells...... with regenerative capabilities. Hence, techniques to enrich stem cell populations are being pursued through the development of multiple two-dimensional and three-dimensional culture protocols, as well as co-culture techniques and multiple growth medium compositions. Moreover, research in support matrices allowing...... for efficient clinical application is in progress.In vitroculture is accomplished by modulating the signaling pathways fundamental for the stem cell niche with a suitable culture matrix to provide additional contact-dependent stimuli and structural support. The aim of this review was to discuss medium...

  1. Intestinal Parasitosis in Relation to Anti-Retroviral Therapy, CD4(+) T-cell Count and Diarrhea in HIV Patients.

    Science.gov (United States)

    Khalil, Shehla; Mirdha, Bijay Ranjan; Sinha, Sanjeev; Panda, Ashutosh; Singh, Yogita; Joseph, Anju; Deb, Manorama

    2015-12-01

    Intestinal parasitic infections are one of the major causes of diarrhea in human immunodeficiency virus (HIV) seropositive individuals. Antiretroviral therapy has markedly reduced the incidence of many opportunistic infections, but parasite-related diarrhea still remains frequent and often underestimated especially in developing countries. The present hospital-based study was conducted to determine the spectrum of intestinal parasitosis in adult HIV/AIDS (acquired immunodeficiency syndrome) patients with or without diarrhea with the levels of CD4(+) T-cell counts. A total of 400 individuals were enrolled and were screened for intestinal parasitosis. Of these study population, 200 were HIV seropositives, and the remaining 200 were HIV uninfected individuals with or without diarrhea. Intestinal parasites were identified by using microscopy as well as PCR assay. A total of 130 (32.5%) out of 400 patients were positive for any kinds of intestinal parasites. The cumulative number of parasite positive patients was 152 due to multiple infections. A significant association of Cryptosporidium (P<0.001) was detected among individuals with CD4(+) T-cell counts less than 200 cells/μl.

  2. Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats.

    Science.gov (United States)

    Pérez-Cano, Francisco J; Castellote, Cristina; González-Castro, Ana M; Pelegrí, Carme; Castell, Margarida; Franch, Angels

    2005-11-01

    The main objective of this study was to characterize developmental changes in small intestinal intraepithelial lymphocyte (IEL) subpopulations during the suckling period, thus contributing to the understanding of the development of diffuse gut-associated lymphoid tissue (GALT) and to the identification of early mechanisms that protect the neonate from the first contact with diet and gut microbial antigens. The study was performed by double labeling and flow cytometry in IEL isolated from the proximal and distal small intestine of 1- to 21-d-old Lewis rats. During the suckling period, intraepithelial natural killer (NK) cells changed from a typical systemic phenotype, CD8+, to a specific intestinal phenotype, CD8-. Analysis of CD8+ IEL revealed a progressive increase in the relative number of CD8+ IEL co-expressing TCRalphabeta, cells associated with acquired immunity, whereas the percentage of CD8+ cells expressing the NK receptor, i.e. cells committed to innate immunity, decreased. At weaning, IEL maturity was still not achieved, as revealed by a phenotypic pattern that differed from that of adult rats. Thus, late after weaning, the regulatory CD8+CD4+ T IEL population appeared and the NK population declined. In summary, the intestinal intraepithelial compartment undergoes changes in its lymphocyte composition associated with the first ingestion of food. These changes are focused on a relatively high proportion of NK cells during the suckling period, and after weaning, an expansion of the regulatory CD8+CD4+ T cells.

  3. Contribution of Mesenteric Lymph Nodes and GALT to the Intestinal Foxp3+ Regulatory T-Cell CompartmentSummary

    Directory of Open Access Journals (Sweden)

    Duke Geem

    2016-05-01

    Full Text Available Background & Aims: Foxp3+ regulatory T cells (Tregs in the intestine promote immune tolerance to enteric antigens. Previous studies have shown that C-C chemokine receptor 7 (CCR7-dependent migration of intestinal dendritic cells to the mesenteric lymph nodes (mLN is involved in peripheral Foxp3+ Treg accumulation in the intestine and the establishment of oral tolerance. However, the relative contribution of this CCR7+ dendritic cell–mLN–Treg axis to the total intestinal Foxp3+ Treg pool during the steady-state remains unclear. In this study, the contribution of CCR7, as well as the mLN and gut-associated lymphoid tissue (GALT, to the intestinal Foxp3+ Treg compartment in the small intestine (SI and large intestine (LI was assessed. Methods: Intestinal Foxp3+ Tregs were quantitated in Ccr7-/- mice and in mice devoid of secondary lymphoid organs—including mLN and GALT—owing to a deficiency in lymphotoxin (LT signaling. Specific analyses of Foxp3+Helios+ thymically derived (tTregs and Foxp3+Helios- peripherally derived (pTregs in the SI and LI, as well as the role for the mLN in supporting Foxp3+ pTreg development using the B6.Cg-Tg(TcraTcrb425Cbn/J/ovalbumin (OVA feeding system, were performed. Results: Foxp3+ Tregs were enriched in the intestine relative to the mLN, independent of CCR7. In the absence of the mLN and GALT, normal frequency and numbers of Foxp3+ Tregs were observed in LTα-deficient (Lta-/- mice. However, Foxp3+Helios- pTregs were decreased in the SI of Lta-/- mice, corresponding with defective Foxp3+ pTreg expansion to OVA. In the LI, however, the proportion of Foxp3+Helios- pTregs and Foxp3+ pTreg induction to OVA was comparable between Lta-/- and Lta+/+ mice, which coincided with preferential expression of Treg-inducing/immunoregulatory cytokines. Conclusions: The overall size of the intestinal Foxp3+Treg pool is not impacted significantly by CCR7, mLN, or GALT during the steady-state. However, m

  4. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes

    NARCIS (Netherlands)

    Schepers, A.G.; Vries, R.G.J.; van den Born, M.M.W.; van de Wetering, M.L.; Clevers, H.

    2011-01-01

    Somatic cells have been proposed to be limited in the number of cell divisions they can undergo. This is thought to be a mechanism by which stem cells retain their integrity preventing disease. However, we have recently discovered intestinal crypt stem cells that persist for the lifetime of a mouse,

  5. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  6. Differentiation and functional maturation of bone marrow-derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras

    International Nuclear Information System (INIS)

    Mosley, R.L.; Styre, D.; Klein, J.R.

    1990-01-01

    The thymus dependency of murine intestinal intraepithelial lymphocytes (IEL) was studied in an athymic F1----parent radiation chimera model. IEL, although not splenic or lymph node lymphocytes, from athymic chimeras displayed normal levels of cells bearing the class-specific T cell Ag, CD4 and CD8; the TCR-associated molecule, CD3; and the Thy-1 Ag. Moreover, two-color flow cytometric analyses of IEL from athymic mice demonstrated regulated expression of T cell Ag characteristic of IEL subset populations from thymus-bearing mice. In immunoprecipitation experiments, surface TCR-alpha beta or TCR-gamma delta were expressed on IEL, although not on splenic lymphocytes, from athymic chimeras. That IEL from athymic chimeras constituted a population of functionally mature effector cells activated in situ, similar to IEL from thymus-bearing mice, was demonstrated by the presence of CD3-mediated lytic activity of athymic lethally irradiated bone marrow reconstituted IEL. These data provide compelling evidence that intestinal T cells do not require thymic influence for maturation and development, and demonstrate that the microenvironment of the intestinal epithelium is uniquely adapted to regulate IEL differentiation

  7. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  8. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  9. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Science.gov (United States)

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  10. In-vitro analysis of early calcification in aortic valvular interstitial cells using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Davari, Seyyed Ali; Masjedi, Shirin; Ferdous, Zannatul; Mukherjee, Dibyendu

    2018-01-01

    Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in-vitro VIC cultures. Laser-induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in-vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ∼0.17±0.04 μg which indicates a 5-fold improvement over calcium assay. Picture: Quantitative LIBS enables in-vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    International Nuclear Information System (INIS)

    Labadie, Karine; Pelletier, Isabelle; Saulnier, Aure; Martin, Javier; Colbere-Garapin, Florence

    2004-01-01

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  13. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  15. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  16. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    Science.gov (United States)

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis.

  17. Intravesical NGF Antisense Therapy Using Lipid Nanoparticle for Interstitial Cystitis

    Science.gov (United States)

    2015-10-01

    4):572–577. 68. Okragly AJ, Niles AL, Saban R, et al. Elevated tryptase, nerve growth factor, neurotrophin -3 and glial cell line-derived neurotrophic... neurotrophin -3 and glial cell line-derived neurotrophic factor levels in the urine of318 interstitial cystitis and bladder cancer patients. The

  18. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    Science.gov (United States)

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  19. Distribution of E-cadherin and ß-catenin in relation to cell maturation and cell extrusion in rat and mouse small intestines

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge

    2006-01-01

    of programmed cell death (PCD) in mouse small intestinal epithelium. We have studied if this also occurs in the intact rodent small intestine. Our results confirm that extruded cells are negatie for E-cadherin. However, loss of the E-cadherin-interacting protein ß-cetenin preceded both extrusion and loss of E......-cadherin. Thus, all extruded cells as well as all cells in the process of extrusion lacked staining for ß-catenin. Moreover, almost 80% of all cells undergoing programmed cell death, as detected by the TUNEL reaction, lacked ß-catenin whereas over 70% of such cells were positive for E-cadherin. However, most...... ells lacking ß-catenin did not display signs of PCD as detected by the TUNEL method or by staining for active caspase-3. Therefore, these results suggest that loss of ß-catenin precedes the onset of programmed cell death, loss of E-cadherin and extrusion from the villi....

  20. Effects of intraoperative electron irradiation in the dog on cell turnover in intact and surgically-anastomosed aorta and intestine

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Morrow, B.M.; Travis, E.L.; Tepper, J.; Merkel, A.B.; Kranda, K.; Terrill, R.

    1983-01-01

    Adults dogs were subjected to laparotomy and intraoperative electron irradiation after division and reanastomosis of aorta or after construction of a blind loop of small intestine having a transverse suture line and an end-to-side anastomosis. Dogs received intraoperative irradiation of both intact and anastomosed aorta or intestine in doses of 0, 2000, 3000, or 4500 rad. Animals were sacrificed at seven days or three months following treatment. At 24 hours prior to sacrifice, dogs received 5 mCi tritiated thymidine intravenously. Irradiated and non-irradiated segments of aorta and small intestine, including intact and anastomotic regions, were analyzed for tritiated thymidine incorporation and were subjected to autoradiography. Incorporation studies showed diminution in tritiated thymidine uptake by irradiated portions of aorta and small intestine, in both intact and anastomotic regions. Autoradiograms revealed that irradiated areas of intact or anastomotic aorta or intestine had diminished labeling of stromal cells, suggesting a lowered cell proliferative capacity of irradiated tissue compared to non-irradiated portions. Inflammatory cells showed similar labeling indices in irradiated and non-irradiated tissues, both intact and surgically-manipulated, suggesting that irradiation does not significantly affect a subsequent local inflammatory response. Radiation-induced decreases in tritiated thymidine incoporation in irradiated aorta and small intestine were generally more marked at seven days than at three months following irradiation, suggesting that radiation-induced depression of cell turnover rates decreases with time

  1. A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2018-01-01

    Full Text Available Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC-derived intestinal organoids involving four methodological advances. (1 We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2 We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3 Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4 We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.

  2. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium

    NARCIS (Netherlands)

    Gerbe, F.; van Es, J.H.; Makrini, L.; Brulin, B.; Mellitzer, G.; Robine, S.; Romagnolo, B.; Shroyer, N.F.; Bourgaux, J.F.; Pignodel, C.; Clevers, H.; Jay, P.

    2011-01-01

    The unique morphology of tuft cells was first revealed by electron microscopy analyses in several endoderm-derived epithelia. Here, we explore the relationship of these cells with the other cell types of the intestinal epithelium and describe the first marker signature allowing their unambiguous

  3. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2017-01-01

    The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.

  4. Defining a stem cell hierarchy in the intestine: markers, caveats and controversies

    Science.gov (United States)

    Smith, Nicholas R.; Gallagher, Alexandra C.

    2016-01-01

    Abstract The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly‐ and active‐cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly‐cycling stem cells self‐renew but replenish an active‐cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non‐conventional alternatives to a linear hierarchy. While these new and potentially paradigm‐shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system. PMID:26864260

  5. Live Cells Decreased Methane Production in Intestinal Content of Pigs

    Directory of Open Access Journals (Sweden)

    Y. L. Gong

    2013-06-01

    Full Text Available An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane (CH4 production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress CH4 production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells, control (no live yeast cells and yeast (YST supplementation groups (supplemented with live yeast cells, YST1 or YST2. The yeast cultures contained 1.8×1010 cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc×Landrace×Yorkshire pigs, mixed with a phosphate buffer (1:2, and incubated anaerobically at 39°C for 24 h using 500 mg substrate (dry matter (DM basis. Total gas and CH4 production decreased (p<0.05 with supplementation of yeast. The methane production reduction potential (MRP was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD and total volatile fatty acids (VFA concentration increased (p<0.05 in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05, but that of acetate decreased (p<0.05, which led to a decreased (p<0.05 acetate: propionate (A: P ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05 with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05 with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro CH4 production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic

  6. Expression of an Intestine-Specific Transcription Factor (CDX1) in Intestinal Metaplasia and in Subsequently Developed Intestinal Type of Cholangiocarcinoma in Rat Liver

    Science.gov (United States)

    Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.

    2000-01-01

    CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391

  7. Chlorambucil-Induced Acute Interstitial Pneumonitis

    Directory of Open Access Journals (Sweden)

    Hammad Shafqat

    2014-01-01

    Full Text Available Chlorambucil is an alkylating agent commonly used in treatment of chronic lymphocytic leukemia (CLL. We report a case of interstitial pneumonitis developing in an 83-year-old man 1.5 months after completing a six-month course of chlorambucil for CLL. The interstitial pneumonitis responded to therapy with prednisone. We performed a systematic review of literature and identified 13 other case reports of chlorambucil-induced pulmonary toxicity, particularly interstitial pneumonitis. No unifying risk factor could be discerned and the mechanism of injury remains unknown. In contrast, major randomized trials of chlorambucil therapy in CLL have not reported interstitial pneumonitis as an adverse effect, which may be due to the rarity of the phenomenon or due to underreporting of events occurring after completion of treatment. Clinicians should consider drug-induced interstitial pneumonitis in the differential diagnosis of a suggestive syndrome developing even after discontinuation of chlorambucil.

  8. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    .05) in blood flow without a significant enhancement in oxygen uptake. Muscle interstitial fluid was sampled with microdialysis technique and analyzed for vascular endothelial growth factor (VEGF) protein and for the effect on endothelial cell proliferation. Biopsies obtained from the musculus vastus lateralis...... to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were...

  9. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  10. Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells

    Science.gov (United States)

    Kamel, Peter I.; Qu, Xin; Geiszler, Andrew M.; Nagrath, Deepak; Harmancey, Romain; Taegtmeyer, Heinrich; Grande-Allen, K. Jane

    2014-01-01

    Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l−1) with less contraction with excess (4.5 g l−1) or reduced glucose (1 g l−1). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell–matrix interaction. PMID:25320066

  11. Californium-252 interstitial implants in carcinoma of the tongue

    International Nuclear Information System (INIS)

    Vtyurin, B.M.; Ivanov, V.N.; Medvedev, V.S.; Galantseva, G.F.; Abdulkadyrov, S.A.; Ivanova, L.F.; Petrovskaya, G.A.; Plichko, V.I.

    1985-01-01

    A clinical study using 252 Cf sources in brachytherapy of tumors began in the Research Institute of Medical Radiology of the Academy of Medical Sciences of the USSR in 1973. 252 Cf afterloading cells were utilized by the method of simple afterloading. Dosimetry and radiation protection of medical personnel were developed. To substantiate optimal therapeutic doses of 252 Cf neutrons, a correlation of dose, time, and treatment volume factors with clinical results of 252 Cf interstitial implants in carcinoma of the tongue for 47 patients with a minimum follow-up period of 1 year was studied. Forty-nine interstitial implants have been performed. Seventeen patients received 252 Cf implants alone (Group I), 17 other patients received 252 Cf implants in combination with external radiation (Group II), and 15 patients were treated with interstitial implants for recurrent or residual tumors (Groups III). Complete regression of carcinoma of the tongue was obtained in 48 patients (98%). Thirteen patients (27%) developed radiation necrosis. The therapeutic dose of neutron radiation from 252 Cf sources in interstitial radiotherapy of primary tongue carcinomas (Group I) was found to be 7 to 9 Gy. Optimal therapeutic neutron dose in combined interstitial and external radiotherapy of primary tumors (Group II) was 5 to 6 Gy with an external radiation dose of 40 Gy. For recurrent and residual tumors (Group III), favorable results were obtained with tumor doses of 6.5 to 7 Gy

  12. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  13. Perivascular Interstitial Cells of Cajal in Human ColonSummary

    Directory of Open Access Journals (Sweden)

    Yuan-An Liu

    2015-01-01

    Full Text Available Background & Aims: Interstitial cells of Cajal (ICC closely associate with nerves and smooth muscles to modulate gut motility. In the ICC microenvironment, although the circulating hormones/factors have been shown to influence ICC activities, the association between ICC and microvessels in the gut wall has not been described. We applied three-dimensional (3D vascular histology with c-kit staining to identify the perivascular ICC and characterize their morphologic and population features in the human colon wall. Methods: Full-thickness colons were obtained from colectomies performed for colorectal cancer. We targeted the colon wall away from the tumor site. Confocal microscopy with optical clearing (use of immersion solution to reduce scattering in optical imaging was performed to simultaneously reveal the ICC and vascular networks in space. 3D image rendering and projection were digitally conducted to illustrate the ICC–vessel contact patterns. Results: Perivascular ICC were identified in the submucosal border, myenteric plexus, and circular and longitudinal muscles via high-definition 3D microscopy. Through in-depth image projection, we specified two contact patterns—the intimate cell body-to-vessel contact (type I, 18% of ICC in circular muscle and the long-distance process-to-vessel contact (type II, 16%—to classify perivascular ICC. Particularly, type I perivascular ICC were detected with elevated c-kit staining levels and were routinely found in clusters, making them readily distinguishable from other ICC in the network. Conclusions: We propose a new subclass of ICC that closely associates with microvessels in the human colon. Our finding suggests a functional relationship between these mural ICC and microvessels based on the morphologic proximity. Keywords: 3D Histology, c-kit, ICC, Mural Cells

  14. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    International Nuclear Information System (INIS)

    Trotter, P.J.; Storch, J.

    1990-01-01

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3 H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  15. The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Yucel, Ahmet Fikret; Kanter, Mehmet; Pergel, Ahmet; Erboga, Mustafa; Guzel, Ahmet

    2011-12-01

    The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.

  16. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Antoine Soliman

    Full Text Available Necrotizing enterocolitis (NEC is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF, bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line. PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.

  17. Effects of the ionising radiations on the structure and the function of the intestinal epithelial cell

    International Nuclear Information System (INIS)

    Haton, C.

    2005-06-01

    The intestinal mucosa is a particularly radio-sensitive tissue and damage may occur following either accidental or therapeutic exposure. the deleterious actions of ionizing radiation are linked to the formation of sometimes overwhelming quantities of reactive oxygen species (R.O.S.). Production of R.O.S. is both direct and indirect from the secondary effects of irradiation. A better comprehension of the underlying mechanisms of injury will lead to more adapted therapeutic approaches to limit the harmful effects of irradiation. The homeostasis of the intestinal epithelium is regulated by three factors: proliferation, apoptosis and differentiation. these three factors were studied using the cell model, HT29, in order to analyze modulations of this balance after irradiation. our results, in agreement with other data, showed the establishment of mitotic delay. This arrest of proliferation was followed by apoptosis to be the major mechanism leading to cell death in this model. thus, for the first time, we have shown that irradiated intestinal epithelial cells preserve their capacity to differentiate. This indicates, although indirectly, that intestinal cells have and preserve an intrinsic capacity restore a functional epithelium. R.O.S. are considered as intermediates between the physical nature of radiations and biological responses. It seems essential to understand anti-oxidant mechanisms used by the cell for defence against the deleterious effects of R.O.S post exposure. This study of several anti-oxidant defence mechanisms of intestinal mucosa, was carried out in vivo in the mouse at different times following abdominal irradiation. We observed an early mitochondrial response in the hours following irradiation revealing this organelle as a particular target. We demonstrated a strong alteration of anti-oxidant capacity as revealed by a decrease in S.O.D.s, catalase and an increase of the G.P.X.s and M.T.s. A part of these modifications appeared to depend on an

  18. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    Science.gov (United States)

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  19. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with a large number of high affinity binding sites in the cell membrane. Binding of 125 I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected. The response (elevation of cellular cAMP) is linear with time for 40 to 50 min and causes a six- to eight-fold increase over control levels (10 to 15 picomole cAMP/mg cellular protein) at steady state. cAMP and agents that increase cAMP production inhibit Cl - -independent Na + influx into the isolated enterocytes whereas chlorpromazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na + entry. Correlation between cellular cAMP levels and the magnitude of Na + influx provides evidence for a cAMP-mediated control of intestinal Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretion. The effect of cAMP on Na + but not Cl - influx preparations can be partially explained in terms of a cAMP-regulated Na + /H + neutral exchange system. Data on the coupling relationship between Na + transport and the intra- and extracellular pH in the enterocytes show that an amiloride-sensitive electroneutral Na + /H + exchange process occurs. This coupling between Na + and H + is partially inhibited by CT and dbcAMP, suggesting that the Na + /H + exchange may be a cAMP-regulated process. 31 references, 32 figures, 5 tables

  20. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  1. Transfer of intestine-derived diamines into tumour cells during treatment of Ehrlich-ascites--carcinoma-bearing mice with polyamine anti-metabolites.

    Science.gov (United States)

    Kallio, A; Nikula, P; Jänne, J

    1984-01-01

    Treatment of Ehrlich-ascites-carcinoma-bearing mice with methylglyoxal bis(guanylhydrazone) alone or in combination with 2-difluoromethylornithine greatly enhanced the transfer of intragastrically administered radioactive putrescine and cadaverine into the carcinoma cells. Difluoromethylornithine alone did not have any effect on the accumulation of intestine-derived diamines in the tumour cells. The frequently reported restoration of difluoromethylornithine-induced polyamine depletion on administration of methylglyoxal bis(guanylhydrazone) is in all likelihood attributable to a profound inhibition of intestinal diamine oxidase (EC 1.4.3.6), resulting in an enhanced entry of intestinal (bacterial) diamines into general circulation and finally into tumour cells. PMID:6424664

  2. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  3. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium.

    Science.gov (United States)

    Santoro, Rosaria; Consolo, Filippo; Spiccia, Marco; Piola, Marco; Kassem, Samer; Prandi, Francesca; Vinci, Maria Cristina; Forti, Elisa; Polvani, Gianluca; Fiore, Gianfranco Beniamino; Soncini, Monica; Pesce, Maurizio

    2016-02-01

    Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets. © 2015 Wiley Periodicals, Inc.

  4. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  5. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  6. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  7. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex

    DEFF Research Database (Denmark)

    Erickson, A C; Couchman, J R

    2001-01-01

    Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective...... filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK...... core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan...

  8. Intracranial interstitial radiation

    International Nuclear Information System (INIS)

    Willis, D.; Rittenmeyer, H.; Hitchon, P.

    1986-01-01

    Primary malignant brain tumors are fatal, with 90% of patients having these tumors dying within two years following diagnosis. Cranial interstitial radiation therapy, a technique under investigation to control these tumors, involves implantation of radioactive iodine 125 seeds into the tumor bed by stereotaxic technique. The interstitial radiation technique, monitoring of radiation, and nursing care of patients are discussed. Case histories are presented, along with discussion of results attained using this therapy, and its future

  9. Biogenic amines as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1987-01-01

    The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same

  10. Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells.

    Science.gov (United States)

    Zhang, Wen-Ming; Wang, Hai-Feng; Gao, Kan; Wang, Cong; Liu, Li; Liu, Jian-Xin

    2015-05-01

    This study was aimed to identify key surface proteins mediating the adhesion of lactobacilli to intestinal epithelial cells. By using Caco-2 and IPEC-J2 cells labeled with sulfo-NHS-biotin in the western blotting, a protein band of an approximately 37 kDa was detected on the surface layer of Lactobacillus reuteri strains ZJ616, ZJ617, ZJ621, and ZJ623 and Lactobacillus rhamnosus GG. Mass spectrometry analysis using the adhesion-related protein from L. reuteri ZJ617 showed that it was 100% homologous to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. reuteri JCM 1112 (GenBank: YP_001841377). The ability of L. reuteri ZJ617 to adhere to epithelial cells decreased significantly by treatment with LiCl or by blocking with an anti-GAPDH antibody, in comparison with the untreated strain (p reuteri ZJ617. The results indicated that the GAPDH protein of L. reuteri ZJ617 acts as an adhesion component that plays an important role in binding to the intestinal epithelial cells.

  11. PHOTODYNAMIC THERAPY FOR HEAD AND NECK BASAL CELL SKIN CANCER WITH ADDITIONAL INTERSTITIAL LASER IRRADIATION

    Directory of Open Access Journals (Sweden)

    V. N. Kapinus

    2017-01-01

    Full Text Available The article is devoted to the development and evaluation of the effi ciency of photodynamic therapy (PDT with photosensitizer photolon with additional interstitial laser irradiation in patients with head and  neck basal cell skin cancer (BCSC. Treatment was performed in 55  patients. On the fi rst stage, all patients underwent photodynamic  therapy with interstitial irradiation using fl exible optical fi bers with  cylindrical diffuser, on the second stage PDT with distant delivery of  laser at a dose of 50-300 J/cm2 was carried out. During the follow- up period of 6 months to 4 years in 13 (23.6% of the 55 patients a  recurrence of the disease was diagnosed. A higher rate of recurrence was in the group of patients who underwent PDT for recurrent  neoplasms compared with patients with primary disease (37.5% and 4.3%, respectively, in patients with endophytic growth of the tumor compared to patients with exophytic component (30.0% and 16.0%,respectively and in patients with large tumors (up to 2.0 cm – 14.3%, from 2.0 to 5.0 cm – 16.7% and more than 5.0 cm – 54.4%.

  12. PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury.

    Directory of Open Access Journals (Sweden)

    Rym Abderrahmani

    Full Text Available Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1 was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 -/- mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs death was investigated. The level of apoptotic ECs is lower in PAI-1 -/- compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 -/- mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 -/- mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.

  13. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    Directory of Open Access Journals (Sweden)

    Yinhua Jin

    2015-12-01

    Full Text Available Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs. Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic, mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25, Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt. pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  14. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury.Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  15. Chronic primary intestinal pseudo-obstruction from visceral myopathy Pseudo-osbtrucción intestinal crónica primaria debida a miopatía visceral

    Directory of Open Access Journals (Sweden)

    M. T. Muñoz-Yagüe

    2006-04-01

    Full Text Available Chronic intestinal pseudo-obstruction is an uncommon syndrome characterized by relapsing episodes suggesting intestinal obstruction during which no mechanical causes are identified to account for symptoms. Etiologic factors may be manifold. Among them a number of neurologic conditions, gastrointestinal smooth muscle myopathies, endocrino-metabolic and autoimmune diseases, and the use of selected drugs stand out. We report a case of chronic intestinal pseudo-obstruction originating in a sporadic, primary intestinal myopathy that corresponds to no type thus far described. A histological study of the intestinal wall showed disrupted muscle bundles and the presence of interstitial edema. Myocytes had severe degenerative changes, and no alterations were seen in submucosal and myenteric plexus neurons. The activity of enzyme complexes in the mitochondrial respiratory chain, and of thymidine phosphorylase was normal. No mitochondrial DNA changes were seen.La pseudo-obstrucción intestinal crónica es un síndrome infrecuente caracterizado por episodios recidivantes, sugestivos de obstrucción intestinal, durante los cuales no se detectan causas mecánicas que justifiquen la sintomatología. Los factores etiológicos pueden ser múltiples. Entre ellos destacan diversas enfermedades neurológicas, miopatías de la musculatura lisa gastrointestinal, enfermedades endocrino-metabólicas y autoinmunes y el uso de determinados fármacos. Presentamos un caso de pseudo-obstrucción intestinal crónica originada por una miopatía intestinal primaria y esporádica que no corresponde a ningún tipo descrito hasta el momento. El estudio histológico de la pared intestinal mostró que los haces musculares estaban desestructurados y que existía edema intersticial. Los miocitos presentaban marcados cambios degenerativos y no existían alteraciones en las neuronas de los plexos submucoso y mientérico. La actividad de los complejos enzimáticos de la cadena

  16. Interstitial lung disease pattern turned out to be a predominantly lepidic lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Irena Hammen, Dr. Med

    2017-01-01

    Full Text Available We report a case of a 46-year-old woman without any medical history who presented to our Respiratory Department with exertional dyspnoea for the last 6 weeks associated with non-productive cough. Chest radiography showed bilateral diffuse interstitial opacity. Bronchoalveolar lavage and transbronchial biopsies performed during flexible bronchoscopy as a step in the diagnostic workup of idiopathic interstitial pneumonia showed cells of pulmonary adenocarcinoma.

  17. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  18. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells

    Directory of Open Access Journals (Sweden)

    Zhimin Fu

    2016-01-01

    Full Text Available We aimed to explore the effects of raloxifene (RAL on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs. Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.

  20. Migration of di- and tri-interstitials in silicon

    International Nuclear Information System (INIS)

    Posselt, M.; Gao, F.; Zwicker, D.

    2005-01-01

    A comprehensive study on the migration of di- and tri-interstitials in silicon is performed using classical molecular dynamics simulations with the Stillinger-Weber potential. The initial di- and tri-interstitial configurations with the lowest formation energies are determined, and then, the defect migration is investigated for temperatures between 800 and 1600 K. The defect diffusivity and the self-diffusion coefficient per defect are calculated. Compared to the mono-interstitial, the di-interstitial migrates faster, whereas the tri-interstitial diffuses slower. The migration mechanism of the di-interstitial shows a pronounced dependence on the temperature. Like in the case of the mono-interstitial, the mobility of the di-interstitial is higher than the mobility of the lattice atoms during the defect diffusion. On the other hand, the tri-interstitial mobility is lower than the corresponding atomic mobility. The implications of the present results for the analysis of experimental data on defect evolution and migration are discussed

  1. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  2. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  3. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway.

    Science.gov (United States)

    Hewitt, Rachel E; Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Powell, Jonathan J

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer's patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4 + T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4 + T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen-PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer's patch T cell responses.

  4. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral–Antigen Pathway

    Science.gov (United States)

    Hewitt, Rachel E.; Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Powell, Jonathan J.

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses. PMID:28367148

  5. Interstitial irradiation for craniopharyngioma

    International Nuclear Information System (INIS)

    Barlas, O.; Bayindir, C.; Can, M.

    2000-01-01

    The results of interstitial irradiation treatment for craniopharyngioma in two patients with six year follow-ups are presented. Stereotactic interstitial irradiation with iodine-125 sources as sole therapy was employed in two adult patients who refused surgical resection. The diagnoses were confirmed by stereotactic biopsy. The first tumour which underwent interstitial irradiation was solid and 4 cm in diameter, and the second, 2.7 cm in diameter, had both cystic and solid components. The implanted iodine-125 seeds delivered 67 Gy and 60 Gy to tumour periphery at the rate of 12 and 14 cGy/h, respectively, were removed at the end of designated radiation periods. Tumour shrinkage and central hypo density, first observed 3 months after irradiation, continued until one tumour shrank to less than 1 cm at 12 months, and the other disappeared completely at 24 months. In both cases functional integrity was restored, and neither radiation induced toxicity nor recurrence has occurred six years after treatment. The results in these two cases suggest that solid craniopharyngiomas are sensitive to interstitial irradiation. (author)

  6. β-Casein(94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells.

    Science.gov (United States)

    Plaisancié, Pascale; Boutrou, Rachel; Estienne, Monique; Henry, Gwénaële; Jardin, Julien; Paquet, Armelle; Léonil, Joëlle

    2015-02-01

    We recently reported the identification of a peptide from yoghurts with promising potential for intestinal health: the sequence (94-123) of bovine β-casein. This peptide, composed of 30 amino acid residues, maintains intestinal homoeostasis through production of the secreted mucin MUC2 and of the transmembrane-associated mucin MUC4. Our study aimed to search for the minimal sequence responsible for the biological activity of β-CN(94-123) by using several strategies based on (i) known bioactive peptides encrypted in β-CN(94-123), (ii) in silico prediction of peptides reactivity and (iii) digestion of β-CN(94-123) by enzymes of intestinal brush border membranes. The revealed sequences were tested in vitro on human intestinal mucus-producing HT29-MTX cells. We demonstrated that β-CN(108-113) (an ACE-inhibitory peptide) and β-CN(114-119) (an opioid peptide named neocasomorphin-6) up-regulated MUC4 expression whereas levels of the secreted mucins MUC2 and MUC5AC remained unchanged. The digestion of β-CN(94-123) by intestinal enzymes showed that the peptides β-CN(94-108) and β-CN(117-123) were present throughout 1·5 to 3 h of digestion, respectively. These two peptides raised MUC5AC expression while β-CN(117-123) also induced a decrease in the level of MUC2 mRNA and protein. In addition, this inhibitory effect was reproduced in airway epithelial cells. In conclusion, β-CN(94-123) is a multifunctional molecule but only the sequence of 30 amino acids has a stimulating effect on the production of MUC2, a crucial factor of intestinal protection.

  7. TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine

    NARCIS (Netherlands)

    L.J. Bain (Lisa); Montgomery, J. (J.); C.L. Scott (C.); J.M. Kel (Junda); M.J.H. Girard-Madoux (Mathilde); L. Martens (Liesbet); Zangerle-Murray, T.F.P. (T. F.P.); J.L. Ober-Blöbaum (Julia); D.J. Lindenbergh-Kortleve (Dicky); J.N. Samsom (Janneke); S. Henri (Sandrine); T. Lawrence (Toby); Y. Saeys (Yvan); B. Malissen (Bernard); M. Dalod (Marc); B.E. Clausen (Bjorn); Mowat, A.M. (A. McI.)

    2017-01-01

    textabstractCD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGFβR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1

  8. Increased chromogranin A cell density in the large intestine of patients with irritable bowel syndrome after receiving dietary guidance

    OpenAIRE

    Mazzawi, Tarek; Gundersen, Doris Irene; Hausken, Trygve; El-Salhy, Magdy

    2015-01-01

    The large intestine contains five types of endocrine cells that regulate its functions by sensing its luminal contents and releasing specific hormones. Chromogranin A (CgA) is a common marker for the gastrointestinal endocrine cells, and it is abnormal in irritable bowel syndrome (IBS) patients. Most IBS patients relate their symptoms to certain food elements. The present study investigated the effect of dietary guidance on the total endocrine cells of the large intestine as detected by CgA i...

  9. Long chain poly-unsaturated fatty acids attenuate the IL-1?-induced pro-inflammatory response in human fetal intestinal epithelial cells

    OpenAIRE

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2015-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate wit...

  10. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  11. Limited external irradiation and interstitial 192iridium implant in the treatment of squamous cell carcinoma of the tonsillar region

    International Nuclear Information System (INIS)

    Puthawala, A.A.; Syed, A.M.; Eads, D.L.; Neblett, D.; Gillin, L.; Gates, T.C.

    1985-01-01

    Between January 1976 and March 1982, 80 patients with histologically proven diagnosis of squamous cell carcinoma of the tonsillar region were treated with definitive radiotherapy. Sixty-five (81%) of these patients had locally advanced tumors (Stage III and IV); 49% of patients had clinically palpable cervical lymphadenopathy. All patients received a combined external megavoltage and interstitial irradiation. The dose of external irradiation was limited to 4500-5000 cGy over 41/2 to 51/2 weeks. This was followed by interstitial 192 iridium implants to doses of 2000-2500 cGy in 50-60 hours for T1, T2 lesions and 3000-4000 cGy in 60-100 hours for T3, T4 lesions. The neck masses were also separately implanted to deliver additional doses of 2000-4000 cGy in 50-80 hours. Overall local tumor control was observed in 84% of patients with a minimum follow-up period of 2 years. An absolute 3-year disease free survival of the entire group was 72%. Treatment related complications such as soft tissue necrosis or osteoradionecrosis occurred in 6% (5/80) of patients. The salvage of neck failures and local failures was possible in 78 and 38% of patients, respectively, either by surgery or by re-irradiation employing interstitial 192 iridium implants. Functional and esthetic integrity was well preserved in most cases

  12. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  13. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats.

    Directory of Open Access Journals (Sweden)

    Jana Cinova

    Full Text Available BACKGROUND AND AIMS: Celiac disease (CD is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. METHODOLOGY/PRINCIPAL FINDINGS: Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively and CD-triggering agents (gliadin and IFN-γ by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. CONCLUSIONS: Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa

  14. Electro interstitial scan system: assessment of 10 years of research and development

    Directory of Open Access Journals (Sweden)

    Maarek A

    2012-03-01

    Full Text Available Albert MaarekResearch and Development, LD Technology, Miami, FL, USABackground: Ten years of research and development have allowed an understanding of how the electro interstitial scan (EIS works and what its clinical applications may be.Materials and methods: The EIS is a galvanic skin response device. The measurements are performed by electrical stimulation of the post sympathetic cholinergic fiber with weak DC current and voltage 1.28V applied during 2 minutes and in bipolar mode.Current scientific knowledge: EIS electrical measurements are related to: (1 the concentration of free chloride ions in the interstitial fluid, which affects the transfer of electrical current and the ratio intensity/voltage; (2 the morphology of the interstitial fluid, which is related to the electrical dispersion calculated from the Cole equation (α parameter; (3 electrical stimulation, which causes a change in sweat rate at the passive electrodes – post sympathetic cholinergic fiber electrical stimulation appears to be responsible for activating M2 receptors, which regulate nitric oxide (NO production in the endothelial cell and cause vasodilation and a released sweat response; and (4 the electrochemical redox reactions (electrolysis of the released sweat on electrodes, which are different on the bulk of the metal electrodes (O2 + [4H+] + [4e-] and on the Ag/AgCl disposable electrodes (AgCl precipitation.Results: For each of the EIS clinical results, various explanations were posited, such as: (1 electrical stimulation of the postsympathetic cholinergic fiber-activating NO production in the endothelial cell, which causes vasodilation and a released sweat response (diabetes detection; (2 estimation of interstitial fluid's acid–base balance, which is reflected in an electrochemical reaction on the bulk of the electrodes through the released sweat (prostate cancer detection; (3 estimation of cerebral interstitial fluid chloride ions (detection of ADHD in

  15. Intestinal Immunomodulatory Cells (T Lymphocytes: A Bridge between Gut Microbiota and Diabetes

    Directory of Open Access Journals (Sweden)

    Qingwei Li

    2018-01-01

    Full Text Available Diabetes mellitus (DM is one of the most familiar chronic diseases threatening human health. Recent studies have shown that the development of diabetes is closely related to an imbalance of the gut microbiota. Accordingly, there is increasing interest in how changes in the gut microbiota affect diabetes and its underlying mechanisms. Immunomodulatory cells play important roles in maintaining the normal functioning of the human immune system and in maintaining homeostasis. Intestinal immunomodulatory cells (IICs are located in the intestinal mucosa and are regarded as an intermediary by which the gut microbiota affects physiological and pathological properties. Diabetes can be regulated by IICs, which act as a bridge linking the gut microbiota and DM. Understanding this bridge role of IICs may clarify the mechanisms by which the gut microbiota contributes to DM. Based on recent research, we summarize this process, thereby providing a basis for further studies of diabetes and other similar immune-related diseases.

  16. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  17. The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Jerry Zhou

    2017-09-01

    Full Text Available Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC. Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.

  18. Evaluation of preparation methods for MS-based analysis of intestinal epithelial cell proteomes

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius Cosmin; Bendixen, Emøke

    2015-01-01

    analyzed by LC and electrospray QTOF-MS. The methods were evaluated according to efficiency, purity, transmembrane protein recovery, as well as for suitability to large-scale preparations. Our data clearly demonstrate that mucosal shaving is by far the best-suited method for in-depth MS analysis in terms...... are low in abundance, and large amounts of sample is needed for their preparation and for undertaking MS-based analysis. The aim of this study was to evaluate three different methods for isolation and preparation of pig intestinal epithelial cells for MS-based analysis of the proteome. Samples were...... of ease and speed of sample preparation, as well as protein recovery. In comparison, more gentle methods where intestinal epithelial cells are harvested by shaking are more time consuming, result in lower protein yield, and are prone to increased technical variation due to multiple steps involved....

  19. A Unique Cause of Intestinal and Splenic Infarction in a Sickle Cell Trait Patient

    OpenAIRE

    Asfaw, Sofya H.; Falk, Gavin A.; Morris-Stiff, Gareth; Tuthill, Ralph J.; Moorman, Matthew L.; Samotowka, Michael A.

    2013-01-01

    Sickle-cell trait is a common genetic abnormality in the African American population. A sickle-cell crisis in a patient with sickle-cell trait is uncommon at best. Abdominal painful crises are typical of patients with sickle cell anemia. The treatment for an abdominal painful crisis is usually medical and rarely surgical. We present the case of a cocaine-induced sickle-cell crisis in a sickle-cell trait patient that resulted in splenic, intestinal, and cerebral infarctions and multisystem org...

  20. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  1. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    International Nuclear Information System (INIS)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-01-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [ 35 S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35 S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans

  2. Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development

    NARCIS (Netherlands)

    Kosinski, C.; Stange, D.E.; Xu, C.; Chan, A.S.; Ho, C.; Yuen, S.T.; Mifflin, R.C.; Powell, D.W.; Clevers, H.; Leung, S.Y.; Chen, X.N.

    2010-01-01

    BACKGROUND & AIMS: Intestinal stem cells (ISCs) are regulated by the mesenchymal environment via physical interaction and diffusible factors. We examined the role of Indian hedgehog (Ihh) in mesenchymal organization and the mechanisms by which perturbations in epithelial-mesenchymal interactions

  3. Intestinal diffuse large B-cell lymphoma: an evaluation of different staging systems.

    Science.gov (United States)

    Hwang, Hee Sang; Yoon, Dok Hyun; Suh, Cheolwon; Park, Chan-Sik; Huh, Jooryung

    2014-01-01

    The gastrointestinal tract is the most common primary extranodal site for diffuse large B-cell lymphoma (DLBCL). However, there is no consensus on the most appropriate staging system for intestinal DLBCL. We evaluated the utility of the modified Ann Arbor system, the Lugano system, and the Paris staging system (a modification of the Tumor, Node, Metastases [TNM] staging for epithelial tumors) in 66 cases of resected intestinal DLBCL. The cases were treated with surgery, plus either cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) chemotherapy alone (n=26) or with the addition of rituximab immunotherapy (n=40). Median follow-up time was 40.4 months (range, 2.1-171.6 months). Fifty-six patients (84.8%) achieved complete remission. The overall 5-yr survival rate was 86.4% (57/66). Of the stage categories defined for each staging system, only the T stage of the Paris classification showed prognostic significance for overall survival by univariate analysis. However, none of the stage parameters was significantly correlated with patient survival on multivariate analysis. In conclusion, the results suggest that the T stage of the Paris classification system may be a prognostic indicator in intestinal DLBCL. The results also imply that in surgically resected intestinal DLBCL, the addition of rituximab to the CHOP regimen does not confer significant survival advantage.

  4. Enhancing oral vaccine potency by targeting intestinal M cells.

    Directory of Open Access Journals (Sweden)

    Ali Azizi

    2010-11-01

    Full Text Available The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.

  5. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    Directory of Open Access Journals (Sweden)

    Wang YB

    2013-10-01

    Full Text Available Yanbo Wang, Xuxia Yan, Linglin Fu Marine Resources and Nutrition Biology Research Center, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, People's Republic of China Abstract: Nano-selenium (Se, with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. Keywords: selenium nanoparticle, intestinal epithelial cell, crucian carp, primary culture

  6. Porcine intestinal mast cells. Evaluation of different fixatives for histochemical staining techniques considering tissue shrinkage

    Directory of Open Access Journals (Sweden)

    J. Rieger

    2013-07-01

    Full Text Available Staining of mast cells (MCs, including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkage-differences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from

  7. Epimorphin Regulates the Intestinal Stem Cell Niche via Effects on the Stromal Microenvironment.

    Science.gov (United States)

    Vishy, Courtney E; Swietlicki, Elzbieta A; Gazit, Vered; Amara, Suneetha; Heslop, Gabriela; Lu, Jianyun; Levin, Marc S; Rubin, Deborah C

    2018-04-06

    Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche. To examine the role of ISEMFs, we have previously generated mice with deletion of epimorphin (Epim), an ISEMF protein and member of the syntaxin family of intracellular vesicle docking proteins that regulate cell secretion. Herein we explore the mechanisms for previous observations that Epim deletion increases gut crypt cell proliferation, crypt fission and small bowel length in vivo. Stem cell derived crypt culture techniques were used to explore the interaction between enteroids and myofibroblasts from Epim -/- and WT mice. Enteroids co-cultured with ISEMFS had increased growth and crypt-like budding compared to enteroids cultured without stromal support. Epim deletion in ISEMFs resulted in increased enteroid budding and surface area compared to co-cultures with WT ISEMFs. In primary crypt cultures, Epim -/- enteroids had significantly increased surface area and budding compared WTs. However stem cell assays comparing the number of Epim -/- vs WT colony forming units after first passage showed no differences in the absence of ISEMF support. Epim -/- vs. WT ISEMFs had increased Wnt4 expression and addition of Wnt4 to WT co-cultures enhanced budding. We conclude that ISEMFs play an important role in the stem cell niche. Epim regulates stem cell proliferation and differentiation via stromal contributions to the niche microenvironment.

  8. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  9. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  10. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  11. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  12. Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response.

    Science.gov (United States)

    O'Callaghan, John; Buttó, Ludovica F; MacSharry, John; Nally, Kenneth; O'Toole, Paul W

    2012-08-01

    Lactobacillus salivarius strain UCC118 is a human intestinal isolate that has been extensively studied for its potential probiotic effects in human and animal models. The objective of this study was to determine the effect of L. salivarius UCC118 on gene expression responses in the Caco-2 cell line to improve understanding of how the strain might modulate intestinal epithelial cell phenotypes. Exposure of Caco-2 cells to UCC118 led to the induction of several human genes (TNFAIP3, NFKBIA, and BIRC3) that are negative regulators of inflammatory signaling pathways. Induction of chemokines (CCL20, CXCL-1, and CXCL-2) with antimicrobial functions was also observed. Disruption of the UCC118 sortase gene srtA causes reduced bacterial adhesion to epithelial cells. Transcription of three mucin genes was reduced significantly when Caco-2 cells were stimulated with the ΔsrtA derivative of UCC118 compared to cells stimulated with the wild type, but there was no significant change in the transcription levels of the anti-inflammatory genes. UCC118 genes that were significantly upregulated upon exposure to Caco-2 cells were identified by bacterial genome microarray and consisted primarily of two groups of genes connected with purine metabolism and the operon for synthesis of the Abp118 bacteriocin. Following incubation with Caco-2 cells, the bacteriocin synthesis genes were transcribed at higher levels in the wild type than in the ΔsrtA derivative. These data indicate that L. salivarius UCC118 influences epithelial cells both through modulation of the inflammatory response and by modulation of intestinal cell mucin production. Sortase-anchored cell surface proteins of L. salivarius UCC118 have a central role in promoting the interaction between the bacterium and epithelial cells.

  13. Chylothorax in dermatomyositis complicated with interstitial pneumonia.

    Science.gov (United States)

    Isoda, Kentaro; Kiboshi, Takao; Shoda, Takeshi

    2017-04-01

    Chylothorax is a disease in which chyle leaks and accumulates in the thoracic cavity. Interstitial pneumonia and pneumomediastinum are common thoracic manifestations of dermatomyositis, but chylothorax complicated with dermatomyositis is not reported. We report a case of dermatomyositis with interstitial pneumonia complicated by chylothorax. A 77-year-old woman was diagnosed as dermatomyositis with Gottron's papules, skin ulcers, anti-MDA5 antibody and rapid progressive interstitial pneumonia. Treatment with betamethasone, tacrolimus and intravenous high-dose cyclophosphamide was initiated, and her skin symptoms and interstitial pneumonia improved once. However, right-sided chylothorax began to accumulate and gradually increase, and at the same time, her interstitial pneumonia began to exacerbate, and skin ulcers began to reappear on her fingers and auricles. Although her chylothorax improved by fasting and parenteral nutrition, she died due to further exacerbations of dermatomyositis and interstitial pneumonia in spite of steroid pulse therapy, increase in the betamethasone dosage, additional intravenous high-dose cyclophosphamide and plasma pheresis. An autopsy showed no lesions such as malignant tumors in the thoracic cavity. This is the first report of chylothorax complicated by dermatomyositis with interstitial pneumonia.

  14. Simian immunodeficiency virus infection induces severe loss of intestinal central memory T cells which impairs CD4+ T-cell restoration during antiretroviral therapy.

    Science.gov (United States)

    Verhoeven, D; Sankaran, S; Dandekar, S

    2007-08-01

    Simian immunodeficiency virus (SIV) infection leads to severe loss of intestinal CD4(+) T cells and, as compared to peripheral blood, restoration of these cells is slow during antiretroviral therapy (ART). Mechanisms for this delay have not been examined in context of which specific CD4(+) memory subsets or lost and fail to regenerate during ART. Fifteen rhesus macaques were infected with SIV, five of which received ART (FTC/PMPA) for 30 weeks. Viral loads were measured by real-time PCR. Flow cytometric analysis determined changes in T-cell subsets and their proliferative state. Changes in proliferative CD4(+) memory subsets during infection accelerated their depletion. This reduced the central memory CD4(+) T-cell pool and contributed to slow CD4(+) T-cell restoration during ART. There was a lack of restoration of the CD4(+) central memory and effector memory T-cell subsets in gut-associated lymphoid tissue during ART, which may contribute to the altered intestinal T-cell homeostasis in SIV infection.

  15. Saccharomyces boulardii improves intestinal epithelial cell restitution by inhibiting αvβ5 integrin activation state.

    Directory of Open Access Journals (Sweden)

    Alexandra Canonici

    Full Text Available Intestinal epithelial cell damage is frequently seen in the mucosal lesions of infectious or inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the disappearance of inflammation and the repair of damaged epithelium. Saccharomyces boulardii (Sb, Biocodex is a non-pathogenic yeast widely used as a preventive and therapeutic probiotic for the prevention and treatment of diarrhea and other gastrointestinal disorders. We recently showed that it enhances the repair of intestinal epithelium through activation of α2β1 integrin collagen receptors. In the present study, we demonstrated that α2β1 integrin is not the sole cell-extracellular matrix receptor involved during Sb-mediated intestinal restitution. Indeed, by using cell adhesion assays, we showed that Sb supernatant contains heat sensitive molecule(s, with a molecular weight higher than 9 kDa, which decreased αvβ5 integrin-mediated adhesion to vitronectin by competing with the integrin. Moreover, Sb-mediated changes in cell adhesion to vitronectin resulted in a reduction of the αvβ5signaling pathway. We used a monolayer wounding assay that mimics in vivo cell restitution to demonstrate that down-modulation of the αvβ5 integrin-vitronectin interaction is related to Sb-induced cell migration. We therefore postulated that Sb supernatant contains motogenic factors that enhance cell restitution through multiple pathways, including the dynamic fine regulation of αvβ5 integrin binding activity. This could be of major importance in diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.

  16. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  17. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  18. Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in Paneth cells of rat intestine.

    Science.gov (United States)

    Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E

    2017-03-01

    Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the

  19. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  20. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  1. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  2. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction.

    Science.gov (United States)

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, Elizabeth M; da Cunha, Andre Pires; Flak, Magdalena B; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, Janelle C; Dery, Ken J; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V; Ho, Joshua W K; Shively, John E; Jobin, Christian; Onderdonk, Andrew B; Bry, Lynn; Weiner, Howard L; Higgins, Darren E; Blumberg, Richard S

    2012-11-16

    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  4. Balance point characterization of interstitial fluid volume regulation.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  5. Interstitial cystitis

    Science.gov (United States)

    ... symptoms get better. Reduce or stop consuming caffeine, chocolate, carbonated beverages, citrus drinks, and foods with a ... rarely done anymore Support Groups Some people may benefit from taking part in interstitial cystitis support groups . ...

  6. Interstitial Cystitis

    Science.gov (United States)

    ... relieve symptoms. Diet. Alcohol, tomatoes, spices, carbonated drinks, chocolate, caffeine, citrus fruits and drinks, pickled foods, artificial ... at scheduled times and using relaxation techniques. Physical therapy. People who have interstitial cystitis may have painful ...

  7. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells.

    Science.gov (United States)

    Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2018-01-01

    Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  9. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  10. Interstitial cystitis: painful bladder syndrome

    Directory of Open Access Journals (Sweden)

    R F Sholan

    2018-02-01

    Full Text Available Interstitial cystitis, or painful bladder syndrome, is a chronic inflammatory disease of a bladder of unknown etiology. It negatively affects the quality of life, causes depressive disorders, anxiety, and sexual dysfunction. Despite numerous studies, the etiology of interstitial cystitis is still unclear and it’s considered as painful bladder syndrome with multifactorial origin. According to the US National Health and Nutrition Examination Survey, 470/100 000 people (60/100 000 men, 850/100 000 women are diagnosed with interstitial cystitis. Diagnosis of the disease is difficult and is substantially based on clinical symptoms. Pelvic pain, urinary urgency, frequency and nocturia are the basic complaints in this pathology. The diagnosis requires exclusion of diseases with similar manifestations. So interstitial cystitis is frequently misdiagnosed as urinary tract infection, overactive bladder, urethral obstruction or diverticulosis, chronic prostatitis, bladder cancer, vulvodynia, endometriosis, and chronic pelvic pain. Etiopathogenesis of the disease is uncertain, which makes etiologic treatment impossible. Currently scientific discussions on the causes of disease continue as well as different treatment regimens are offered, but are often ineffective, palliative and temporary. The treatment for intersticial cystitis should focus on restoring normal bladder function, prevention of relapse of symptoms and improvement of patients’ quality of life. The literature review presents current view on the terminology, epidemiology, diagnosis and treatment of interstitial cystitis.

  11. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  12. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  13. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  14. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  15. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  16. Interstitial shadow on chest CT is associated with the onset of interstitial lung disease caused by chemotherapeutic drugs

    International Nuclear Information System (INIS)

    Niho, Seiji; Goto, Koichi; Yoh, Kiyotaka; Kim, Y.H.; Ohmatsu, Hironobu; Kubota, Kaoru; Saijo, Nagahiro; Nishiwaki, Yutaka

    2006-01-01

    Pretreatment computerized tomography (CT) films of the chest was studied to clarify the influence of interstitial shadow on developing interstitial lung disease (ILD). Eligible patients were those lung cancer patients who started to receive first-line chemotherapy between October 2001 and March 2004. Patients who received thoracic radiotherapy to the primary lesion, mediastinum, spinal or rib metastases were excluded. We reviewed pretreatment conventional CT and plain X-ray films of the chest. Ground-glass opacity, consolidation or reticular shadow without segmental distribution was defined as interstitial shadow, with this event being graded as mild, moderate or severe. If interstitial shadow was detected on CT films of the chest, but not via plain chest X-ray, it was graded as mild. Patients developing ILD were identified from medial records. A total of 502 patients were eligible. Mild, moderate and severe interstitial shadow was identified in 7, 8 and 5% of patients, respectively. A total of 188 patients (37%) received tyrosine kinase inhibitor (TKI) treatment, namely gefitinib or erlotinib. Twenty-six patients (5.2%) developed ILD either during or after chemotherapy. Multivariate analyses revealed that interstitial shadow on CT films of the chest and treatment history with TKI were associated with the onset of ILD. It is recommended that patients with interstitial shadow on chest CT are excluded from future clinical trials until this issue is further clarified, as it is anticipated that use of chemotherapeutic agents frequently mediate onset of ILD in this context. (author)

  17. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    Science.gov (United States)

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  18. Discriminating between Interstitial and Circulating Leukocytes in Tissues of the Murine Oral Mucosa Avoiding Nasal-Associated Lymphoid Tissue Contamination.

    Science.gov (United States)

    Bittner-Eddy, Peter D; Fischer, Lori A; Tu, Andy A; Allman, Daniel A; Costalonga, Massimo

    2017-01-01

    Periodontitis is a chronic inflammatory response to a microbial biofilm that destroys bone and soft tissues supporting the teeth. Murine models of periodontitis based on Porphyromonas gingivalis ( Pg ) colonization have shown that extravasation of leukocytes into oral tissue is critical to driving alveolar bone destruction. Identifying interstitial leukocytes is key to understanding the immunopathogenesis of periodontitis. Here, we describe a robust flow cytometry assay based on intravenous FITC-conjugated anti-mouse CD45 mAb that distinguishes interstitial leukocytes in the oral mucosa of mice from those circulating within the vasculature or in post-dissection contaminating blood. Unaccounted circulating leukocytes skewed the relative frequency of B cells and granulocytes and inflated the numbers of all leukocyte cell types. We also describe a dissection technique that avoids contamination of oral mucosal tissues with nasal-associated lymphoid tissues (NALT), a B cell rich organ that can inflate leukocyte numbers at least 10-fold and skew the assessment of interstitial CD4 T cell phenotypes. Unlike circulating CD4 T cells, interstitial CD4 T cells were almost exclusively antigen-experienced cells (CD44 hi ). We report for the first time the presence of antigen-experienced Pg -specific CD4 T cells in NALT following oral feeding of mice with Pg . This new combined flow cytometry and dissection approach allows identification of leukocytes infiltrating the connective tissues of the murine oral mucosa and avoids confounding analyses of leukocytes not recruited to inflamed oral mucosal tissues in disease conditions like periodontitis, candidiasis, or sialadenitis.

  19. Impaired Growth of Small Intestinal Epithelium by Adrenalectomy in Weaning Rats

    International Nuclear Information System (INIS)

    Miyata, Tohru; Minai, Yuji; Haga, Minoru

    2008-01-01

    Functional maturation of the small intestine occurs during the weaning period in rats. It is known that this development is facilitated by glucocorticoid. However, the effect of glucocorticoid on morphological development of small intestine has yet to be clarified. The present study evaluated the morphological development and cell proliferation of the small intestine in adrenalectomized (ADX) rat pups. To further understand the mechanism of glucocorticoid effects on intestinal development, we examined the localization of the glucocorticoid receptor in the small intestine. Microscopic analysis showed that growth of villi and crypts is age-dependent, and is significantly attenuated in ADX rats compared with sham-operated rats. BrdU-positive cells, i.e. proliferating cells, were primarily observed in crypt compartments and rapidly increased in number during the early weaning period. The increase in BrdU-positive cells could be attenuated by adrenalectomy. The morphological development of small intestine may be associated with increased proliferation of epithelial cells. On the other hand, glucocorticoid receptors were found in epithelial cells of the mid- and lower villi and not in crypts where BrdU-positive cells were localized. These results indicate that the growth of small intestine is attenuated by adrenalectomy, and that glucocorticoid indirectly acts on proliferation of epithelial cells during the weaning period

  20. Restraint stress intensifies interstitial K+ accumulation during severe hypoxia

    Directory of Open Access Journals (Sweden)

    Christian eSchnell

    2012-03-01

    Full Text Available Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for three weeks (6 h/day. In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current (DC potential shift was shortened after stress. Moreover, K+ fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for GFAP (glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance and K+-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K+ accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K+ buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.

  1. Apc inactivation, but not obesity, synergizes with Pten deficiency to drive intestinal stem cell-derived tumorigenesis.

    Science.gov (United States)

    Tabrizian, Tahmineh; Wang, Donghai; Guan, Fangxia; Hu, Zunju; Beck, Amanda P; Delahaye, Fabien; Huffman, Derek M

    2017-06-01

    Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis after the inactivation of Apc However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 months, and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP- Pten flox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 months of age. Finally, various combinations of Lgr5+-ISC-specific, Apc- and Pten -deleted mice were generated and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU-positive cells in the small intestine ( P  Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion ( P  Apc deficiency in ISCs synergistically increases proliferation, tumor formation and mortality. Thus, aberrant Wnt/β-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ ISC-derived tumorigenesis. © 2017 Society for Endocrinology.

  2. Retinoic acid signalling is required for the efficient differentiation of CD4+ T cells into pathogenic effector cells during the development of intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    Epidemiological studies of vitamin A-deficient populations have illustrated the importance of the vitamin A metabolite retinoic acid (RA) in mucosal immune responses. However, RA seems to be a double-edge sword in CD4+ T cell biology. While it sustains the development of foxp3+ regulatory T cells......, it was also very recently reported to be essential for the stability of the Th1 lineage and to prevent transition to a Th17 program. Here we explored the role of RA signalling in CD4+ T cells during the development of intestinal inflammation in the T cell transfer colitis model. We found that RA signalling......-deficient CD4+ T cells are less potent at inducing intestinal inflammation compared to their RA signalling-competent counterparts and exhibit a differentiation skewing towards more IFNγ- IL-17+, IL-17+IFNγ+ and foxp3+ cells, while their capacity to differentiate into IL-17-IFNγ+ Th1 cells is compromised...

  3. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development.

    Science.gov (United States)

    Okada, Morihiro; Shi, Yun-Bo

    2018-01-01

    The gene ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI encode zinc-finger proteins that have been recognized as important oncogenes in various types of cancer. In contrast to the established role of EVI and MDS/EVI in cancer development, their potential function during vertebrate postembryonic development, especially in organ-specific adult stem cells, is unclear. Amphibian metamorphosis is strikingly similar to postembryonic development around birth in mammals, with both processes taking place when plasma thyroid hormone (T3) levels are high. Using the T3-dependent metamorphosis in Xenopus tropicalis as a model, we show here that high levels of EVI and MDS/EVI are expressed in the intestine at the climax of metamorphosis and are induced by T3. By using the transcription activator-like effector nuclease gene editing technology, we have knocked out both EVI and MDS/EVI and have shown that EVI and MDS/EVI are not essential for embryogenesis and premetamorphosis in X. tropicalis On the other hand, knocking out EVI and MDS/EVI causes severe retardation in the growth and development of the tadpoles during metamorphosis and leads to tadpole lethality at the climax of metamorphosis. Furthermore, the homozygous-knockout animals have reduced adult intestinal epithelial stem cell proliferation at the end of metamorphosis (for the few that survive through metamorphosis) or during T3-induced metamorphosis. These findings reveal a novel role of EVI and/or MDS/EVI in regulating the formation and/or proliferation of adult intestinal adult stem cells during postembryonic development in vertebrates.-Okada, M., Shi, Y.-B. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. © FASEB.

  4. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  5. An intestinal Trojan horse for gene delivery.

    Science.gov (United States)

    Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun

    2015-03-14

    The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.

  6. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Macrophage-like cells in the muscularis externa of mouse small intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Thuneberg, L; Rumessen, J J

    1985-01-01

    by processes of interstitial cells of Cajal. FITC-dextran used in combined fluorescence stereo microscopy, fluorescence microscopy, and electron microscopy was employed as a tracer to study the endocytic qualities of the MLC. The mice were killed 5, 15, 30, and 60 min, 1 day, and 4 days after dextran...... administration. By fluorescence microscopy after 1 or 4 days MLC were observed as a constant cellular population with a strikingly regular distribution. By electron microscopy dextran-containing vacuoles were conspicuous after 1 h or more. MLC of the subserosal layer and between the circular and longitudinal...... muscle layers could be distinguished with respect to general appearance, pattern formation, and apparent dextran contents....

  8. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Gaetana Paolella

    Full Text Available BACKGROUND: Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2 activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS: We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins, three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS: Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here

  9. Cell survival curves deduced from non-quantitative reactions of skin, intestinal mucosa and lung

    International Nuclear Information System (INIS)

    Dutreix, J.; Wambersie, A.

    1975-01-01

    The shape of the cell survival curve for the cell population relevant to some biological effects has been derived from the comparison of the total doses which result in the same biological effect for two irradiations delivered with N and 2N fractions in the same overall time. They show an initial slope which is interpreted as related to directly lethal, i.e. 'one-hit' or 'irreparable' events. The ratio of the initial slope and the slope at a dose D gives the contribution of the cell killing by directly lethal events relative to cell killing by accumulation of sublethal events. The bioligical effects which have been studied are: (i) dry desquamation of the skin of C 3 H mice and patients; (ii) intestinal death of BALB/c mice; and (iii) lung death of C 3 H mice. The shape of the cell survival curve has been found to be similar for skin desquamation and for intestinal death with a large contribution of lethal events, at single doses of 1000 rad. For lung death the initial tangent has a smaller slope and the shoulder is broader; this is interpreted as a relatively smaller contribution of lethal events with respect to accumulation of sublethal events. (author)

  10. HNF1 alpha activates the aminopeptidase N promoter in intestinal (Caco-2) cells

    DEFF Research Database (Denmark)

    Olsen, Jørgen; Laustsen, Lotte; Troelsen, J

    1994-01-01

    The importance of HNF1 binding proteins for intestinal aminopeptidase N expression was investigated using the Caco-2 cell-line. Aminopeptidase N promoter activity in Caco-2 cells depends on the HNF1 element (positions -85 to -58) and co-transfection with an HNF1 alpha expression vector demonstrates...... a direct activation of the promoter by HNF1 alpha through this element. Electrophoretic mobility shift assays using nuclear extracts from Caco-2 cells show the presence of high amounts of HNF1 binding proteins irrespective of their state of differentiation....

  11. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael D; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C; Dandekar, Satya

    2003-07-20

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.

  12. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    George, Michael D.; Sankaran, Sumathi; Reay, Elizabeth; Gelli, Angie C.; Dandekar, Satya

    2003-01-01

    During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression

  13. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice.

    Directory of Open Access Journals (Sweden)

    Silvia Fre

    Full Text Available The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.

  14. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    A new diffusion path is identified for gallium interstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the gallium interstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for gallium interstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been

  15. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  16. Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Mathy, Nicholas W; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2017-12-27

    Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens.

    Science.gov (United States)

    Li, Z; Wang, W; Lv, Z; Liu, D; Guo, Y

    2017-12-01

    1. The objective was to investigate the effects of Bacillus subtilis, yeast cell wall (YCW) and their combination on intestinal health of broilers challenged by Clostridium perfringens over a 21-d period. 2. Using a 5 × 2 factorial arrangement of treatments, 800 1-d-old male Cobb 500 broilers were used to study the effects of feed additives (without additive or with zinc bacitracin, B. subtilis, YCW, and the combination of B. subtilis and YCW), pathogen challenge (without or with Clostridium perfringens challenge), and their interactive effects. 3. C. perfringens infection increased intestinal lesions scores, damaged intestinal histomorphology, increased serum endotoxin concentration, cytokine mRNA expression and intestinal population of C. perfringens and Escherichia coli and decreased ileal bifidobacteria numbers. The 4 additives decreased serum endotoxin. Zinc bacitracin tended to decrease cytokine mRNA expression and the intestinal number of C. perfringens and E. coli. B. subtilis, YCW and their combination increased cytokine mRNA expression. B. subtilis and YCW decreased the number of C. perfringens and E. coli in the ileum, and their combination decreased pathogens numbers in the ileum and caecum. 4. In conclusion, B. subtilis, YCW and their combination improved the intestinal health of NE-infected broilers, and could be potential alternatives to antibiotics.

  18. Primary culture of cat intestinal epithelial cells in vitro and the cDNA library construction.

    Science.gov (United States)

    Zhao, Gui Hua; Liu, Ye; Cheng, Yun Tang; Zhao, Qing Song; Qiu, Xiao; Xu, Chao; Xiao, Ting; Zhu, Song; Liu, Gong Zhen; Yin, Kun

    2018-06-26

    Felids are the only definitive hosts of Toxoplasma gondii. To lay a foundation for screening the T. gondii-felids interaction factors, we have developed a reproducible primary culture method for cat intestinal epithelial cells (IECs). The primary IECs were isolated from a new born cat's small intestine jejunum region without food ingress, and respectively in vitro cultured by tissue cultivation and combined digestion method with collagenase XI and dispase I, then purified by trypsinization. After identification, the ds cDNA of cat IECs was synthesized for constructing pGADT7 homogenization three-frame plasmid, and transformed into the yeast Y187 for generating the cDNA library. Our results indicated that cultivation of primary cat IECs relays on combined digestion to form polarized and confluent monolayers within 3 days with typical features of normal epithelial cells. The purified cells cultured by digestion method were identified to be nature intestinal epithelial cells using immunohistochemical analysis and were able to maintain viability for at least 15 passages. The homogenizable ds cDNA, which is synthesized from the total RNA extracted from our cultured IECs, distributed among 0.5-2.0 kb, and generated satisfying three-frame cDNA library with the capacity of 1.2 × 106 and the titer of 5.2 × 107 pfu/mL. Our results established an optimal method for the culturing and passage of cat IECs model in vitro, and laid a cDNA library foundation for the subsequent interaction factors screening by yeast two-hybrid.

  19. In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steel

    DEFF Research Database (Denmark)

    Niessen, F.; Villa, M.; Danoix, F.

    2018-01-01

    The redistribution of C and N during tempering of X4CrNiMo16-5-1 martensitic stainless steel containing 0.034 wt% C and 0.032 wt% N was studied using in-situ synchrotron X-ray diffraction (XRD) and atom probe tomography (APT). The unit cell volume of martensite decreased continuously during...... tempering. APT showed that this volume decrease is accounted entirely for by segregation of the interstitial atoms, implying that in low interstitial martensitic stainless steel stress relaxation only contributes negligibly to changes in the martensite unit cell volume....

  20. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices

    NARCIS (Netherlands)

    Westerhout, J.; Steeg, E. van de; Grossouw, D.; Zeijdner, E.E.; Krul, C.A.M.; Verwei, M.; Wortelboer, H.M.

    2014-01-01

    A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption,

  1. Therapeutic hypothermia reduces intestinal ischemia/reperfusion ...

    African Journals Online (AJOL)

    The detached intestinal epithelial cells in hypothermia group showed ... of apoptosis than those in normothermia group at 4 h (17.30 ± 2.56 vs. ... intestinal ischemia/reperfusion (IR) injury, which could be attenuated by therapeutic hypothermia.

  2. Conventional alpha beta (αβ) T cells do not contribute to acute intestinal ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Yu, Yi; Feng, Xiaoyan; Vieten, Gertrud; Dippel, Stephanie; Imvised, Tawan; Gueler, Faikah; Ure, Benno M; Kuebler, Jochen F; Klemann, Christian

    2017-01-01

    Ischemia-reperfusion injury (IRI) is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut. Adult wild-type (WT) and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI. Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable. An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.

  3. Conventional alpha beta (αβ T cells do not contribute to acute intestinal ischemia-reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available Ischemia-reperfusion injury (IRI is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut.Adult wild-type (WT and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI.Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable.An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.

  4. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  5. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  6. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  7. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation.

    Science.gov (United States)

    Lu, Xiaozhao; Bai, Danna; Liu, Xiangwei; Zhou, Chen; Yang, Guodong

    2017-03-31

    Pioneering epidemiological work has established strong association of sedentary lifestyle and obesity with the risk of colorectal cancer, while the detailed underlying mechanism remains unknown. Here we show that Hotair (HOX transcript antisense RNA) is a pro-adipogenic long non-coding RNA highly expressed in gluteal-femoral fat over other fat depots. Hotair knockout in adipose tissue results in gluteal-femoral fat defect. Squeeze of the gluteal-femoral fat induces intestinal proliferation in wildtype mice, while not in Hotair knockout mice. Mechanistically, squeeze of the gluteal-femoral fat induces exosomal Hotair secretion mainly by transcriptional upregulation of Hotair via NFκB. And increased exosomal Hotair in turn circulates in the blood and is partially endocytosed by the intestine, finally promoting the stemness and proliferation of intestinal stem/progenitor cells via Wnt activation. Clinically, obese subjects with sedentary lifestyle have much higher exosomal HOTAIR expression in the serum. These findings establish that sedentary lifestyle promotes exosomal Hotair release from the gluteal-femoral fat, which in turn facilitates intestinal stem and/or progenitor proliferation, raising a possible link between sedentary lifestyle with colorectal tumorigenesis.

  8. [Changes in expression of Slingshot protein in hypoxic human intestinal epithelial cell and its relation with barrier function of the cells].

    Science.gov (United States)

    Zhang, Jian; Wang, Pei; He, Wen; Wang, Fengjun

    2016-04-01

    To study the effect of hypoxia on Slingshot protein expression in human intestinal epithelial cell and its relation with changes in barrier function of the cells. The human intestinal epithelial cell line Caco-2 was used to reproduce monolayer-cells. One portion of the monolayer-cell specimens were divided into six parts according to the random number table, and they were respectively exposed to hypoxia for 0 (without hypoxia), 1, 2, 6, 12, and 24 h. Transepithelial electrical resistance (TER) was determined with an ohmmeter. Another portion of the monolayer-cell specimens were exposed to hypoxia as above. Western blotting was used to detect the protein expressions of zonula occludens 1 (ZO-1), occludin, claudin-1, Slingshot-1, Slingshot-2, and Slingshot-3. The remaining portion of the monolayer-cell specimens were also exposed to hypoxia as above. The content of fibrous actin (F-actin) and globular actin (G-actin) was determined by fluorescence method. The sample number of above-mentioned 3 experiments was respectively 10, 10, and 18 at each time point. Data were processed with one-way analysis of variance and Dunnett test. (1) Compared with that of cells exposed to hypoxia for 0 h, TER of cells exposed to hypoxia for 1 to 24 h was significantly reduced (P values below 0.01). (2) Compared with those of cells exposed to hypoxia for 0 h (all were 1.00), the protein expressions of ZO-1, occludin, and claudin-1 of cells exposed to hypoxia for 1 to 24 h were generally lower, especially those of cells exposed to hypoxia for 12 h or 24 h (respectively 0.69 ± 0.20, 0.47 ± 0.15, and 0.47 ± 0.22, Pprotein expressions of Slingshot-1 and Slingshot-3 of cells exposed to hypoxia for 1 to 24 h were not obviously changed (P values above 0.05). The protein expression of Slingshot-2 of cells was decreased at first and then gradually increased from hypoxia hour 1 to 24. The protein expression of Slingshot-2 of cells exposed to hypoxia for 24 h (1.54 ± 0.57) was significantly

  9. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fiona C. Lewis, BSc, PhD

    2017-12-01

    Full Text Available Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

  10. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  11. Potential Role of Probiotics in Mechanism of Intestinal Immunity

    Directory of Open Access Journals (Sweden)

    Imran Rashid Rajput and Wei Fen Li*

    2012-06-01

    Full Text Available Probiotics are nonpathogenic bacteria exert a constructive influence on health or physiology of the host. Effect of probiotics in the intestinal defense against variety of diseases is well known. The probiotics are involved in the mechanism of intestinal defense, support as antagonist against pathogens, improve intestinal epithelial layer and boost the innate as well as adaptive immunity. However these responses are also exerted by intestinal components. The intestinal components as well as probiotics play a reciprocal role to enhance the immune response of the individual. The possibilities of mechanism of action include the stimulation of epithelial cells, activation of dendritic cells via toll-like receptors (TLRs, conversely produce cytokines. These observations reviewed together advocate that specific immunomodulatory properties of probiotic bacteria should be focusing on mechanism of action via antigen presenting cells (APC.

  12. Increased Chromogranin A Cell Density in the Large Intestine of Patients with Irritable Bowel Syndrome after Receiving Dietary Guidance

    Directory of Open Access Journals (Sweden)

    Tarek Mazzawi

    2015-01-01

    Full Text Available The large intestine contains five types of endocrine cells that regulate its functions by sensing its luminal contents and releasing specific hormones. Chromogranin A (CgA is a common marker for the gastrointestinal endocrine cells, and it is abnormal in irritable bowel syndrome (IBS patients. Most IBS patients relate their symptoms to certain food elements. The present study investigated the effect of dietary guidance on the total endocrine cells of the large intestine as detected by CgA in 13 IBS patients. Thirteen control subjects were also included. Each patient received three sessions of dietary guidance. Colonoscopies were performed on controls and patients (at baseline and at 3–9 months after receiving guidance. Biopsy samples from the colon and rectum were immunostained for CgA and quantified by computerized image analysis. The densities of CgA cells in the total colon (mean ± SEM among the controls and the IBS patients before and after receiving dietary guidance were 83.3±10.1, 38.6±3.7, and 64.7±4.2 cells/mm2, respectively (P=0.0004, and were unchanged in the rectum. In conclusion, the increase in CgA cell density after receiving dietary guidance may reflect a change in the densities of the large intestinal endocrine cells causing an improvement in the IBS symptoms.

  13. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette

    2009-01-01

    ABSTRACT: BACKGROUND: The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as key regulator of intestinal epithelial cell differentiation as well. The aim of the present work is to identify novel HNF4alpha target genes....... The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...

  14. Allergic Interstitial Nephritis Manifesting as a Striated Nephrogram

    Directory of Open Access Journals (Sweden)

    Irfan Moinuddin

    2015-01-01

    Full Text Available Allergic interstitial nephritis (AIN is an underdiagnosed cause of acute kidney injury (AKI. Guidelines suggest that AIN should be suspected in a patient who presents with an elevated serum creatinine and a urinalysis that shows white cells, white cell casts, or eosinophiluria. Drug-induced AIN is suspected if AKI is temporally related to the initiation of a new drug. However, patients with bland sediment and normal urinalysis can also have AIN. Currently, a definitive diagnosis of AIN is made by renal biopsy which is invasive and fraught with risks such as bleeding, infection, and hematoma. Additionally, it is frequently unclear when a kidney biopsy should be undertaken. We describe a biopsy proven case of allergic interstitial nephritis which manifested on contrast enhanced Magnetic Resonance Imaging (MRI as a striated nephrogram. Newer and more stable macrocyclic gadolinium contrast agents have a well-demonstrated safety profile. Additionally, in the presentation of AKI, gadolinium contrast agents are safe to administer in patients who demonstrate good urine output and a downtrending creatinine. We propose that the differential for a striated nephrogram may include AIN. In cases in which the suspicion for AIN is high, this diagnostic consideration may be further characterized by contrast enhanced MRI.

  15. Follistatin, an Activin Antagonist, Ameliorates Renal Interstitial Fibrosis in a Rat Model of Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Akito Maeshima

    2014-01-01

    Full Text Available Activin, a member of the TGF-β superfamily, regulates cell growth and differentiation in various cell types. Activin A acts as a negative regulator of renal development as well as tubular regeneration after renal injury. However, it remains unknown whether activin A is involved in renal fibrosis. To clarify this issue, we utilized a rat model of unilateral ureteral obstruction (UUO. The expression of activin A was significantly increased in the UUO kidneys compared to that in contralateral kidneys. Activin A was detected in glomerular mesangial cells and interstitial fibroblasts in normal kidneys. In UUO kidneys, activin A was abundantly expressed by interstitial α-SMA-positive myofibroblasts. Administration of recombinant follistatin, an activin antagonist, reduced the fibrotic area in the UUO kidneys. The number of proliferating cells in the interstitium, but not in the tubules, was significantly lower in the follistatin-treated kidneys. Expression of α-SMA, deposition of type I collagen and fibronectin, and CD68-positive macrophage infiltration were significantly suppressed in the follistatin-treated kidneys. These data suggest that activin A produced by interstitial fibroblasts acts as a potent profibrotic factor during renal fibrosis. Blockade of activin A action may be a novel approach for the prevention of renal fibrosis progression.

  16. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis

    Science.gov (United States)

    Antignano, Frann; Korinek, Vladimir; Underhill, T. Michael

    2018-01-01

    The intestinal immune system must be able to respond to a wide variety of infectious organisms while maintaining tolerance to non-pathogenic microbes and food antigens. The Vitamin A metabolite all-trans-retinoic acid (atRA) has been implicated in the regulation of this balance, partially by regulating innate lymphoid cell (ILC) responses in the intestine. However, the molecular mechanisms of atRA-dependent intestinal immunity and homeostasis remain elusive. Here we define a role for the transcriptional repressor Hypermethylated in cancer 1 (HIC1, ZBTB29) in the regulation of ILC responses in the intestine. Intestinal ILCs express HIC1 in a vitamin A-dependent manner. In the absence of HIC1, group 3 ILCs (ILC3s) that produce IL-22 are lost, resulting in increased susceptibility to infection with the bacterial pathogen Citrobacter rodentium. Thus, atRA-dependent expression of HIC1 in ILC3s regulates intestinal homeostasis and protective immunity. PMID:29470558

  17. Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway.

    Science.gov (United States)

    Liu, Zhihua; Kang, Liang; Li, Chao; Tong, Chao; Huang, Meijin; Zhang, Xingwei; Huang, Nanqi; Moyer, Mary Pat; Qin, Huanlong; Wang, Jianping

    2014-10-03

    Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on protection of normal intestinal barrier function. Binding assay and intestinal permeability were performed to verify the protective effects of micro integral membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and postoperative septicemia. LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability regulated by Lactobacillus plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier. MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from injury, which could be related to the zonulin pathway.

  18. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    Science.gov (United States)

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  19. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    Science.gov (United States)

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  20. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial Caco-2 cells by fluid-phase endocytosis.

    Directory of Open Access Journals (Sweden)

    Ferenc Fenyvesi

    Full Text Available Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10(-8 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.